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The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov detector at the South Pole,
designed to study neutrinos of astrophysical origin. We present an analysis of the Medium
Energy Starting Events (MESE) sample, a veto-based event selection that selects neutrinos and
efficiently rejects a background of cosmic ray-induced muons This is an extension of the High
Energy Starting Event (HESE) analysis, which established the existence of high-energy neutrinos
of astrophysical origin. The HESE sample is consistent with a single power law spectrum
with best-fit index 2.87+0.20

−0.19, which is softer than complementary IceCube measurements of the
astrophysical neutrino spectrum. While HESE is sensitive to neutrinos above 60 TeV, MESE
improves the sensitivity to lower energies, down to 1 TeV. In this analysis we use an improved
understanding of atmospheric backgrounds in the astrophysical neutrino sample via more accurate
modeling of the detector self-veto. A previous measurement with a 2-year MESE dataset had
indicated the presence of a possible 30 TeV excess. With 10 years of data, we have a larger sample
size to investigate this excess. We will use this event selection to measure the cosmic neutrino
energy spectrum over a wide energy range. The flavor ratio of astrophysical neutrinos will also be
discussed.
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1. Introduction

The IceCube Neutrino Observatory is a cubic-kilometer astronomical research facility located
at the South Pole. The detector array uses the Antarctic glacier as a Cherenkov medium to detect
high-energy astrophysical neutrinos via their interactions with nucleons in the ice. Reconstruction
of the incident neutrino events relies on the collection of Cherenkov photons emitted by charged
particles produced as result of the neutrino interactions using optical detectors (DOMs) embedded
in ice [1]. The events detected within the detector typically follow three morphologies: cascades,
tracks, and double cascades. Cascades are shower-like events produced via charged-current (CC)
interaction of electron neutrinos (𝜈𝑒) and neutral-current (NC) interactions of all three neutrino
flavours. Tracks are mostly generated when muon neutrinos (𝜈𝜇) undergo CC interactions, while
double cascades are a distinct feature of tau neutrino (𝜈𝜏) CC interactions. Starting events form
a special class of events detected with IceCube. Here, the interaction of the neutrino with the ice
occurs within the detector volume and therefore a majority of the initial hadronic interaction is
visible. The advantages of such ’starting event’ samples is that they are sensitive to all neutrino
flavours, and to events from all directions.

2. Event Selection

The data sample focuses on starting events with energies greater than 1 TeV, and is known
as the Medium Energy Starting Events (MESE) selection. It extends the High Energy Starting
Events (HESE) selection [2], the dataset developed for the discovery of astrophysical neutrinos with
IceCube, to lower energies. The wider energy range, increased statistics, and improved track energy
resolution will help resolve finer spectral features, making it possible to test flux models down to
1 TeV. While HESE utilizes a single outer veto layer to reject higher energy atmospheric muons,
MESE uses an additional sequence of vetoes to reject lower energy atmospheric muons and thereby
achieves increased sensitivity to astrophysical neutrinos at lower energies. The MESE selection
discussed here is an updated version of the historical MESE sample using two years of IceCube
data [3]. The first stage of the event selection utilizes the outer layer of the detector array to veto
incoming muons. This veto region includes all the outer strings, a layer at the top of the detector
with 90 m thickness, a 120 m thick layer around the dust-dominated region close to the center of the
detector, and a single layer of DOMs at the bottom of the array. Bright HESE events, which deposit
at least 6000 photoelectrons (PE) of charge in the detector volume, are permitted up to 3 hits in this
veto layer. Events with charge less than 6000 PE are required to deposit no hits in the veto region,
to help reject the lower energy atmospheric muons. All HESE-tagged events are retained in the
final sample, whereas MESE events must undergo further cuts to reject atmospheric backgrounds.
The outer-layer veto successfully rejects over 99.99% of the bright muons entering the detector.

The events that survive the outer-layer veto are dominated by low-energy muons which escape
the veto layer before undergoing a large stochastic energy loss within the detector. To reject these
dim muons, one looks for hits associated with various randomly sampled track hypotheses. Events
with greater than 2 PE of incoming charge associated with a track hypothesis are rejected by this
stage of the veto. The events that are retained at this stage are classified as tracks or cascades with
the help of a neural-network-based classifier [4].

2



P
o
S
(
I
C
R
C
2
0
2
3
)
1
0
0
7

Medium Energy Starting Events

A large fraction of low-energy muon background passes the second stage of the veto. For dim
events it is necessary to ensure that the events start further inside the detector, as any potential
muon-induced track would have a greater probability of depositing charge along its way into the
detector. A charge, and direction-dependent fiducial volume cut is therefore used to suppress the
muon background, which yields the final sample. This fiducial-volume cut is applied separately
for track-classified and cascade-classified events, and retains more cascades than tracks within the
final event sample. Since atmospheric muons are downgoing, the fiducial volume cut rejects more
events from the Southern sky than the Northern sky due to its zenith-angle dependency. All events
that pass this stage of the veto are retained in the final event selection.

Figure 1: We depict the expected rates of signal (astrophysical neutrinos) and background (atmospheric
neutrinos and muons) after each level of the event selection, derived from MC simulation. Cleanup cuts
include cuts on the minimum charge deposited, and the number of modules which see hits. This removes low
energy events which are difficult to reconstruct accurately. We see that the muon background is suppressed
by ten orders of magnitude at the final level, improving our signal/background ratio

2.1 Expected Rates

The event sample has a large fraction of events from the Northern sky, especially atmospheric
neutrinos at lower energies. In the Southern sky, a suppression of atmospheric neutrinos is observed
due to the self-veto effect[5]. This effect occurs when atmospheric neutrinos are vetoed due to
accompanying muons from the same air shower. Therefore, the Southern sky sees a higher fraction
of astrophysical neutrinos, although the rate is 10 times lower than the Northern sky. The events
from the Southern sky constrain the prompt atmospheric flux with the help of the self veto, while
the Northern sky events contribute statistical power in constraining the conventional flux. Together
these strongly constrain the various components of the overall measurement. Fig. 1 illustrates the
suppression in background rates with each cut level, while Table 1 shows us the expected final level
rates, from simulations.
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Table 1: A breakdown of the expected final level rates from simulation per year by flux component, and
by hemisphere. The neutrino and muon simulation is used to model the astrophysical and atmospheric
fluxes, with the normalization set to 1 for the atmospheric conventional, atmospheric prompt, and the
atmospheric muon fluxes drawn from the "GaisserH4a" composition model[6] with the "SIBYLL2.3c"
Hadronic Interaction model [7]. The astrophysical flux is drawn from the 2-year MESE result [3].

Flux Component Expected Rates (𝑦𝑟−1) Northern Sky (𝑦𝑟−1) Southern Sky (𝑦𝑟−1)
Astro 𝜈 95.48 70.32 25.16
Atm. 𝜈 650.10 610.89 39.21
Atm. 𝜇 42.38 21.62 20.76

3. Measurement of the Astrophysical Neutrino Flux

3.1 Flux Components

The dataset will contain astrophysical neutrinos, atmospheric conventional and prompt neutri-
nos, and atmospheric muons. We model the atmospheric background events with a normalization
scaling factor multiplying the expectation from a flux model. The astrophysical neutrino flux is
modeled here assuming a single power law flux, and a 1:1:1 neutrino flavor ratio.

3.2 Analysis Method

The diffuse astrophysical spectrum is measured using a multi-component forward folding
binned likelihood analysis. We divide the events by morphology into track-like and cascade-like
events, based on a Deep Neural Net classifier[4]. The observables used for the fit are the event
reconstructed energy and cosine zenith angle[8]. The energy range considered for binning spans
from 1 TeV to 10 PeV. Since cascade events are reconstructed with better energy resolution, they are
divided into 22 bins, while tracks are binned more coarsely into 13 bins. Similarly, the reconstructed
cosine zenith angles are divided into 10 bins for the binned-likelihood test. The form of likelihood
used for the analysis is an effective likelihood[9], which accounts for finite Monte-Carlo (MC)
simulations of the various components of the fit. In the limit of large MC statistics, this effective
likelihood converges to a Poissonian form.

The main component of the fit we are interested in measuring is the astrophysical flux normal-
ization and the spectral index. The atmospheric flux components of the likelihood fit include the
normalization of the conventional neutrino flux, the normalization of the muon component and the
normalization of the atmospheric neutrino flux induced by the decay of the charm component of
air showers. We also account for the uncertainties associated with the air-shower modeling using
a parameterization from Barr et al[10], and a gradient term that allows interpolation between the
Gaisser-H4a cosmic ray composition model[11], which is treated as the baseline model, and the
GST [12] models which show the strongest differences in the atmospheric-neutrino spectra resulting
from their respective primary cosmic-ray predictions. Several detector systematics are also taken
into account for the fit. Uncertainties arise due to the properties of the ice like its absorption
coefficient, scattering coefficient and anisotropies within the bulk ice. The refreezing of the ice
surrounding the optical modules during deployment also adds a systematic effect, since it scatters
light more than the bulk ice. The uncertainty of the optical efficiency of the DOMs also acts as a
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systematic. These detector systematics are included within the fit as perturbations to the baseline
of their respective values. This is done within the MC using the Snowstorm method, which is
described in detail in [13].

The atmospheric self-veto effect, described earlier, is also an important systematic to account
for, requiring the accurate characterisation of the detector response to accompanying muons. For
estimating its effect, we injected muons of varying energies to the final level neutrino sample and
estimated the number of events that get vetoed due to this accompanying muon. With this method,
we obtain probabilities of the neutrino getting vetoed for each energy, zenith, and entering at each
depth of the detector. While we estimate this effect using MC, there could be uncertainties that
arise due to mismodeling of this effect. Therefore, we also account for this as a nuisance parameter
within our fit.

3.3 Sensitivity

We show a two-dimensional Asimov profile likelihood scan and calculate the expected 68%
and 95% confidence intervals for sensitivity to the astrophysical flux parameters assuming a single
power law, seen in Figure 2. We assume 10.6 years of IceCube-86 data here, corresponding
to the seasons from 2011-2021. We inject the astrophysical flux model from the 2-year MESE
result ((𝜙astro, 𝛾astro)= (2.06, 2.46)) [3]. As the prompt and astrophysical neutrino fluxes follow
similar spectral shapes, there is a degeneracy between the normalization factors which expands the
uncertainties on 𝜙astro. The degeneracy between the astrophysical and the prompt neutrino fluxes
is broken by the atmospheric self-veto, which suppresses the prompt atmospheric neutrino flux
prediction in the Southern sky, distinguishing the prompt flux from the astrophysical flux, which is
expected to be isotropic.

4. Measurement of the Astrophysical Flavour Ratio

The MESE dataset contains astrophysical neutrinos of all flavours from the entire sky. This
can help in measuring the flavour ratio of astrophysical neutrinos with this sample. As mentioned
in Section 2, the cascade and track events are classified as such as a part of the event-selection
procedure. We can also additionally identify the double-cascade events produced by tau neutrinos
to make a measurement of the relative fractions of 𝜈𝑒, 𝜈𝜇 and 𝜈𝜏 events that contribute to the overall
astrophysical flux.

4.1 Selection of Double cascades

The final level events from the MESE event selection are used to additional classify double-
cascade events. For this, we use a likelihood-based regression, used for the HESE flavour measure-
ment [14], which estimates the probability that the event also includes a decaying tau. The MESE
events, reconstructed with this routine, are further examined to select the tau neutrino events. For
this, we use the energy ratio (ER) and energy confinement (EC) distributions. We define them as
ER = 𝐸1−𝐸2

𝐸1+𝐸2 and EC =
𝐸1,𝐶+𝐸2,𝐶

𝐸Tot
where 𝐸1 and 𝐸2 are the energies of the first and second cascade

respectively, 𝐸1, 𝐶 and 𝐸2, 𝐶 represent the total deposited energy within 40 m distance of each
cascade, and 𝐸Tot is the total deposited energy of the event. 𝐸Tot = 𝐸1, 𝐶 + 𝐸2, 𝐶 is true only for
double cascades. By examining the background 𝜈𝑒 and 𝜈𝜇 distributions, we have selected the events
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Figure 2: Two-dimensional Asimov profile likelihood scan of the astrophysical flux assuming a Single
Power Law (SPL) flux model. We perform a grid scan over each pair of points representing the astrophysical
normalization 𝜙𝑎𝑠𝑡𝑟𝑜 and spectral index 𝛾𝑎𝑠𝑡𝑟𝑜. The injected flux is derived from the the 2-year MESE
result. Assuming Wilk’s theorem holds, we compute the 68% and 95% confidence intervals depicted. We
incorporate detector systematic effects following the SnowStorm method[13], to model the effect of DOM
Efficiency, Hole and Bulk Ice systematics as nuisance parameters. Additional systematics affecting the
atmospheric neutrino flux are also modelled, including the self-veto effect

that pass the condition of EC≥0.99 and -0.98 ≤ ER ≤ 0.3 as tau-neutrino events. Additionally
we require that each cascade should have at least an energy of 1 TeV. This formalism, the same as
that described in [14], works the best for higher energy events. Therefore, we use only events with
energy > 30 TeV as the finally selected tau-neutrino event candidates. These selected events have a
purity of ≈ 70% of tau-neutrino events. A majority of these events are HESE-classified events due
to the high-energy criterion.

4.2 Analysis Method

We use the three types of events identified by MESE: cascades, tracks, and double cascades
to conduct a binned-likelihood analysis to measure the astrophysical flavour ratio. The major
components for this method are the energy and zenith histograms of each event-topology type.
The cascades-energy and zenith histograms are dominated by electron neutrino events. There is
significant contamination from NC interactions of tau and muon flavoured neutrinos too. A large
fraction of the tau neutrino CC events also contaminate the cascades topology. The tracks topology
is dominated by muon neutrino events through their CC interactions. There is 17% contamination
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of tau neutrinos that decay into muons in this channel. The double cascades channel, on the other
hand, is dominated by tau-neutrinos. There is some amount of contamination from misclassified 𝜈𝑒

and 𝜈𝜇 events also in this channel. However, the relatively high purity of 𝜈𝑒 events in cascades, 𝜈𝜇
events in tracks, and 𝜈𝜏 events in double cascades provides the strength to this analysis in making a
flavour measurement.

We use the same fit parameters used in the fit for the astrophysical flux measurement, and the
systematics are also treated in the same manner. The astrophysical spectral index and normalization
also enter as nuisance parameters for the flavour-ratio measurement. We have two additional
parameters which account for the fraction of 𝜈𝑒 ( 𝑓𝑒) and fraction of 𝜈𝜏 ( 𝑓𝜏) events in the fit. We
additionally keep the constraint that 𝑓𝑒 + 𝑓𝜏 + 𝑓𝜇 = 1, where 𝑓𝜇 represents the fraction of 𝜈𝜇. Figure
3 shows the sensitivity of this analysis to measure the flavour ratio of astrophysical events using 11.3
years of starting events detected by IceCube. The sensitivity projection is determined from a profile
likelihood scan in the 𝑓𝑒 and 𝑓𝜏 dimensions and the confidence intervals are determined assuming
Wilk’s theorem. The analysis mainly depends on the double cascades events with energy > 30 TeV
to constrain the contours along the 𝑓𝜏 axis. The presence of cascade and track events from 1 TeV
and above gives additional leverage to the analysis to measure the flavour ratios due to the increased
availability of statistics. Additionally, the deep-neural network based cascades/tracks classifier
performs well in identifying these topologies which acts as an advantage for this measurement.

5. Conclusion

An overview of a veto-based event selection sensitive to the diffuse astrophysical neutrino
spectrum from TeV-PeV scales has been presented. We utilize events with vertices contained within
the IceCube detector, granting us sensitivity to neutrinos of all flavors from any direction. As an
extension of the existing HESE sample to lower energies, and due to the increase in atmospheric
background, MESE relies on additional cuts and an updated treatment of systematics to improve
sensitivity. The larger sample size and wide energy range helps resolve fine spectral features down
to 1 TeV. In addition to the measurement of the diffuse flux, we also present a method to study the
flavor ratio of the astrophysical neutrino sample, using a classifier to identify tau neutrino events. We
have verified the expected sensitivities with simulations and are proceeding towards a measurement
of the entire dataset.
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