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The planned in-ice radio array of IceCube-Gen2 at the South Pole will provide unprecedented
sensitivity to ultra-high-energy (UHE) neutrinos in the EeV range. The ability of the detector to
measure the neutrino’s energy and direction is of crucial importance. This contribution presents
an end-to-end reconstruction of both of these quantities for both detector components of the hybrid
radio array (’shallow’ and ’deep’) using deep neural networks (DNNs). We are able to predict the
neutrino’s direction and energy precisely for all event topologies, including the electron neutrino
charged-current (𝜈𝑒-CC) interactions, which are more complex due to the LPM effect. This
highlights the advantages of DNNs for modeling the complex correlations in radio detector data,
thereby enabling a measurement of the neutrino energy and direction. We discuss how we can use
normalizing flows to predict the PDF for each individual event which allows modeling the complex
non-Gaussian uncertainty contours of the reconstructed neutrino direction. Finally, we discuss
how this work can be used to further optimize the detector layout to improve its reconstruction
performance.
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1. The IceCube-Gen2 Radio Array

After the IceCube Neutrino Observatory successfully measured the cosmic neutrino flux in
the TeV and low-PeV range [1], and identified the first sources of high-energy neutrinos [2, 3], a
larger detector is needed to be sensitive to the rapidly decreasing flux at higher energies. The radio
component of IceCube-Gen2 [4, 5] is planned to instrument 500 km2 of the ice surface with more
than 300 radio detector stations and is projected to be sensitive to the neutrino flux at energies into
the EeV range. The radio stations can measure radio waves emitted by neutrino interactions via
the Askaryan effect [6]. Due to the kilometer-long attenuation length of radio waves in the ice at
the South Pole, a single radio station is capable of reaching an effective volume in the order of
magnitude of a cubic kilometer in the EeV range.

Figure 1: Hybrid station layout [7], combining 8 ’shal-
low’ antennas down to −10 m and 16 ’deep’ antennas
down to −150 m. The triggers for the deep antennas
are the four bicone antennas (phased array [8]) at the
end of the power string.

Based on the experiments ARA, ARI-
ANNA, and RNO-G [9–11], two radio station
designs are being developed for the radio com-
ponent of IceCube-Gen2. The shallow sta-
tions are planned to consist of three upward
and four downward-facing log-periodic-dipole-
array (LPDA) antennas installed just below the
snow surface as well as a single −10 m deep
bicone antenna (Vpol). The hybrid stations in-
clude all the components of the shallow stations
with twelve additional bicone antennas and four
additional slotted cylinder antennas (Hpol) in
three −150 m deep holes in the ice. The lay-
out of a hybrid station, including the shallow
components can be seen in Figure 1. The Hpol
antennas of the deep components are limited by
the size of the drilled holes which results in a
more narrow frequency response and less over-
all gain. Therefore, the direction reconstruction
is expected to be more challenging for the deep
detector components than for the shallow detec-
tor components. For this analysis, we simulate
the trigger as proposed for the radio component
of IceCube-Gen2 [5]. Indipendent triggers are
simulated for the shallow and the deep compo-
nents of the hybrid stations as a signal trigger-
ing the deep antennas often does not trigger the
shallow components. For that reason, the anal-
ysis of the reconstruction capacity of the station

was also split among the shallow and deep components. Furthermore, this analysis focuses only on
the reconstruction of signals from a single station and omits the additional information potentially
present in neighboring stations which would further improve the reconstruction capabilities.
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Figure 2: The network architecture used for the analysis of the deep components. The dimensions are
indicated below each layer. The output is mapped to a normalizing flow with N_pdf parameters.

2. Deep Learning Reconstruction

A deep-learning-based reconstruction has already been presented previously for shallow sta-
tions [12]. Here, we briefly review the results and apply the method to the deep detector component
while improving the analysis further. The most important component of a deep-learning-based
analysis is the dataset used to train and test the models. The dataset used for this analysis was
created using NuRadioMC [13], a Monte Carlo tool capable of simulating the radio signals induced
by neutrino interactions. The detector and trigger simulation was performed using NuRadioReco
[14]. The dataset for the shallow components (from [12]) was comprised of 40 million events of
charged- and neutral-current events but along a non-uniform energy spectrum ranging from 1016 eV
to 1019 eV with an underrepresentation of low-energy events. The limited and non-uniform energy
spectrum had a negative effect on the reconstruction [12] which is why it was improved here for the
deep components. The dataset for the deep components is comprised of about 2.1 million events
of charged- and neutral-current events along a spectrum uniform in log(𝐸) ranging from 1016 eV to
1020.2 eV of the deposited energy. Even though it is not always possible to identify what interaction
type a signal came from, separate analyses were done for neutral- and charged current events to
understand these different topologies better. These simulations were made with our current under-
standing of the detector and physics processes using the same settings as in [5, 12] and the station
layout shown in Fig. 1. We acknowledge that systematic uncertainties on the ice model, the antenna
response, and the signal chain calibration exist and have to be studied carefully in the future.

The input data to the models is the simulated raw waveforms as measured by the antennas of
the shape antennas × samples (5 × 512 for the shallow components and 16 × 2046 for the deep
components) and the labels are the shower energy induced by the neutrino interaction (𝐸𝑠ℎ) and the
azimuth and zenith angles of the neutrino direction. Several convolutional layers are then used to
analyze the time traces while reducing the length of the traces and increasing the size of the feature
dimensions. After batch normalization, the data is flattened and mapped through dense layers (one
in the case of the deep components) to the output nodes (for the shallow components [12]) or the
output pdf (for the deep components) via a conditional normalizing flow. The architecture of the
model used for the deep components can be seen in Figure 2. In the future, we also plan on further
improving the architecture of the shallow components with conditional normalizing flows.

A conditional normalizing flow [15, 16] is a way to model an arbitrary conditional PDF. This
mapping is a diffeomorphism and it is done via the change-of-variable formula. The parameters
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of this mapping function can be learned by a neural network. Applying a normalizing flow
allows us to predict the PDF for the properties of a neutrino interaction. For the energy, the
mean of this one-dimensional PDF can be compared to the true shower energy and its standard
deviation gives an estimate of the uncertainty of the prediction. For the direction reconstruction
the PDF is mapped onto a two-dimensional sphere where it can be compared to the true direction
and the area of the uncertainty contours can be calculated. The normalizing flows used for this
analysis were implemented using the jammy_flows library [17]. The energy reconstruction used
two gaussianization-flows and a multivariate-normal-flow while the direction reconstruction used a
exponential-map-2d-sphere-flow.

3. Results

In the following, we will shortly present the results obtained from a deep learning analysis for
the resolution of the shallow components before going into detail about the analysis for the deep
station components. The conclusion will offer a comparison between the two analyses.

3.1 Shallow Station Reconstruction

Using a deep neural network, simulated pulses were analyzed for the shallow station components
[12]. The resolution of the energy was determined with a standard deviation of 𝜎 ≈ 0.3 in
log10(𝐸𝑠ℎ). For the first time, predictions of the neutrino direction for all event topologies including
the complicated electron neutrino charged-current (𝜈𝑒-CC) interactions were made possible for the
shallow station components. The obtained angular resolution shows a narrow peak at O(1◦) with
extended tails that push the 68% quantile for non-𝜈𝑒-CC (resp. 𝜈𝑒-CC interactions) to 4◦(5◦). Due
to the non-uniform energy spectrum used to train the network, the resolution decreased significantly
at low and high energies.

3.2 Deep Station Reconstruction

After the analysis of the shallow stations, it became clear that the energy spectrum had to
be extended and have a uniform shape to avoid a bias at low and high energies. Additionally,
conditional normalizing flows were introduced allowing for event-by-event uncertainty predictions.

As the emitted radio pulses are only affected by the energy the neutrino deposits in the ice rather
than the neutrino energy itself, the networks were trained on the shower energy, which includes
all energy deposited after a neutrino interaction. This includes hadronic and electromagnetic
showers. Therefore, the results for the neutral-current events have to be folded with the inelasticity
of the neutrino interaction to calculate the neutrino energy while the charged-current interactions
of electron-neutrinos deposit all the neutrino energy as shower energy.

Figure 3 shows the results of the energy reconstruction for the full energy range. The left plot
displays the distribution when subtracting the true shower energy from the mean of the predicted
PDF of the shower energy for every event. The median is centered around zero (0.0123) and the
values of the 16% percentile (-0.18) and the 84% percentile (+0.16) are the energy resolution of the
analysis. The right plot displays a comparison of the true shower energy and the predicted shower
energy as a function of shower energy. It is visible that the reconstruction gets better the higher the
shower energy gets as the 2d-histogram is centered more around the diagonal. At energies below
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Figure 3: A comparison of the true shower energy and the predicted shower energy by the network over all
events in the test data set. The left plot shows the difference between the mean of the predicted distribution
and the true shower energy. The 16% and 84% percentiles shown behind the median indicate the resolution
of the model on the full dataset.

Figure 4: The energy bias (left) and resolution (right) as a function of shower energy. The median on the
left plot corresponds to the left plot in Figure 3 for different energy ranges. For the right plot, the standard
deviation of the PDF for every predicted event was collected for every energy bin. The median of the resulting
distributions is indicated with markers while the 16% percentile and the 84% percentile are indicated with
the shaded regions.

𝐸𝑠ℎ ≈ 1016.5 eV the network is overpredicting the shower energy similarly to the analysis for the
shallow stations, but with a much smaller effect.

Figure 4 shows the resolution of the energy reconstruction per energy bin. It is visible that
at energies below 𝐸𝑠ℎ ≈ 1017 eV the median has a bias. However, in the most relevant range
between 𝐸𝑠ℎ ≈ 1017 eV − 1019 eV the median is centered around zero. The bias towards low
energies can likely be reduced by extending the dataset towards lower energies. The predicted
uncertainties show a clear energy dependence where the values drop from about 0.2 at the lowest
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Figure 5: Mollweide projec-
tion of the full sky in local coor-
dinates. The arrival direction
is affected by the opaqueness
of the Earth which results in
most events coming from above
the horizon. Displayed are two
examples of the event-by-event
direction reconstruction. Top:
A well-reconstructed event at
1017.77 eV with an almost Gaus-
sian uncertainty contour. Bot-
tom: A less well-reconstructed
event at 1017.13 eV with a larger
non-gaussian uncertainty con-
tour. The 68% uncertainty con-
tour is indicated with a dashed
line and the 95% uncertainty
contour is indicated with a dot-
ted line. The true direction that
the model is trying to recon-
struct is indicated with a red
cross.

shower energies to about 0.05 at the highest shower energies. However, it has to be stated that the
coverage (a measure of how the true shower energy values compare to the uncertainty contours) for
these uncertainties, showed an up to 10% deviation from the expected coverage, which indicates
an underestimation of the uncertainty prediction. This deviation in the coverage indicates that the
network can still be further optimized to yield more accurate uncertainty predictions for the shower
energy reconstruction.

Reconstructing the direction using normalizing flows involves different methods when com-
paring the network prediction with the true label than the methods previous analyses used. Previous
reconstructions predicted a single direction where the angle between the predicted and the true
direction was used to estimate the uncertainty. As we are now predicting a non-Gaussian-shaped
PDF rather than a single vector other methods are needed. First, the coverage of the PDF has to be
checked to see if the true directions correspond to the predicted PDFs. Second, the spread of the
PDFs has to be estimated which can be done by calculating the entropy of the PDF on the sphere or
by calculating the area of the uncertainty contours for every single event. A space-angle difference
is only statistically meaningful with the mean of the predicted PDF if the predicted uncertainty
contours are Gaussian-shaped. So far, we included only hadronic showers in the analysis of the
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Figure 6: Left: The coverage of all test events for the direction reconstruction. The top plot shows how the
real coverage compares to a perfect estimation of the coverage. The bottom plot shows how much the true
coverage deviates from the expected coverage. Right: The areas of the 68% uncertainty contours of every
event in the shower energy range from 𝐸𝑠ℎ ≈ 1017.5 eV−1018.5 eV. The space-angle difference equivalent for
a Gaussian distribution with the same area is shown as the top x-axis. The 16%, 50%, and 84% percentiles
are indicated with red lines to evaluate the shape of the area distribution.

deep station component, while the analysis for electromagnetic showers is ongoing.
Before deep learning was used, the direction reconstruction was done using a forward folding

technique [14, 18–20]. The deep-learning technique, including normalizing flows as presented in
this contribution, allows for event-by-event predictions of the PDF and therefore also uncertainty
contours. Two examples of these predicted PDFs compared with the true direction of the event can
be seen in Figure 5.

The coverage [16] of the direction reconstruction, displayed in Figure 6 (left), shows a good
agreement between the true and the expected coverage with the maximum deviations around 1%.
This indicates that the predicted uncertainty contours can be trusted to a high degree when applying
this network to a new, unknown event of the same class as the training class. Figure 6 (right) shows
the distribution of the areas of the predicted two-dimensional 68% uncertainty contours with the
equivalent space-angle difference in the most relevant energy range (𝐸𝑠ℎ ≈ 1017.5 eV − 1018.5 eV).
It indicates that there are about 16% of high-quality events which can be reconstructed with an
equivalent space-angle difference of less than 3◦. These high-quality samples can be selected
directly from the size of the predicted uncertainty contours. After that, the distribution flattens and
the median sits at about 7.5◦. The distribution also has a very long tail with about 15% of the events
not even fitting on the plot, indicating very low-quality events.

4. Conclusion

For this contribution, a deep-learning-based reconstruction was explored for energy and di-
rection reconstruction of neutrinos detected via in-ice emitted radio signals. The analysis of the
shallow station components resulted in an energy resolution of 𝜎 ≈ 0.3 in log10(𝐸𝑠ℎ)) while the
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analysis on the deep components resulted in an energy resolution of 𝜎 ≈ 0.2 in log10(𝐸𝑠ℎ)). This
improvement can likely be attributed to the uniform shape of the training data set used for the
deep components. Previous findings using traditional approaches were also able to reconstruct
the neutrino energy within the natural inelasticity limit of a factor of two (or 0.3 in log10(𝐸)) but
were reliant on analysis cuts to filter out low-quality events [21, 22]. The direction reconstruction
of neutral-current events showed an average resolution of 4◦ for the shallow components and 7.5◦

for the deep components. This discrepancy very likely comes from the less sensitive horizontally
polarized antennas used by the deep station components and is compatible with previous findings
using traditional reconstruction techniques [18, 19, 23]. The improved methods laid out for the
deep components in this contribution will also be applied to the shallow components and further
improvements can be expected. Several aspects of the analysis of the deep components also indicate
that further improvements in the network model could result in an even better performance. These
improvements could include changes to the convolutional or dense layer architecture as well as
training a model using neutral- and charged-current interactions in the same data set. Perhaps
training a model which can predict shower energy and neutrino direction at the same time would
also increase the performance of the neural network.
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