
Thesis for The Degree of Licentiate of Engineering

Bits of Knowledge: Combining
Probabilistic and Formal Techniques for
Secure and Low-Power Hardware Design

Henrik Jansson Valter

Department of Computer Science and Engineering
Chalmers University of Technology and University of

Gothenburg
Gothenburg, Sweden, 2025

Bits of Knowledge: Combining Probabilistic and Formal Techniques
for Secure and Low-Power Hardware Design

Henrik Jansson Valter

© Henrik Jansson Valter, 2025
except where otherwise stated.
All rights reserved.

Department of Computer Science and Engineering
Division of Computing Science
Chalmers University of Technology and University of Gothenburg
SE-41296 Gothenburg, Sweden
Phone: +46(0)31 772 1000

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2025.

“With great power comes great responsibility”
- Uncle Ben, Spider-Man

i

Abstract

Power consumption is a major concern in hardware design. Additionally, power
usage can be exploited in side-channel attacks, turning power into a security
vulnerability. This thesis lays the groundwork for developing side-channel
resistant hardware by developing tools that combine power analysis, formal
verification, and probabilistic models in order to rigorously establish security
guarantees.

We begin by presenting a simple power model for CMOS circuits, computable
using BDD-based symbolic simulation. This allows the power consumption
to be expressed directly as a function of the circuit inputs, shifting the focus
to symbolically representing the input distribution. While there are methods
for generating symbolic inputs, they have no guarantees with regards to the
distribution of generated vectors. On the other hand, there are methods
that do have some guarantee on the distribution, but these do not support
symbolic simulation. The latter methods are also restricted to generating
uniform distributions. This problem is addressed in one of our papers. We
introduce methods for defining arbitrary input distributions in a way that
supports symbolic simulation, using BDDs as the core computational tool.
Beyond power analysis, these introduced methods are widely applicable in both
software and hardware verification.

We also discuss the implementation and evaluation of a low-power custom
processor for high-level languages, detailing decisions for minimizing energy
consumption for both core and memory. This is compared to a low-power
RISC-V core running a high-level language in software, showing favorable
results for the custom design.

Keywords

Low-power computing, Formal verification, Probabilistic modeling, Computer
Architecture, Functional programming

iii

List of Publications

Appended publications

This thesis is based on the following publications:

[Paper I] Jeremy Pope, Carl-Johan H. Seger, Henrik Valter, Higher-order
Hardware: Implementation and Evaluation of the Cephalopode Graph
Reduction Processor
MEMOCODE, 2024.

[Paper II] Henrik Jansson Valter, Carl-Johan H. Seger, BDD-Based
Methods for Constrained and Biased Simulation-Vector Generation
Under submission.

Author contribution

For Paper I, the Cephalopode architecture was jointly designed by Jeremy
Pope and Carl Seger, while I conducted the evaluation in its entirety, with
the exception of writing the benchmark programs. In addition to carrying out
the evaluation and writing the associated paper sections, I contributed the
introduction, conclusion, and abstract. I was also responsible for presenting
the work at the conference.
For Paper II, I prepared the initial drafts and wrote the bulk of the paper.
Carl later contributed substantial revisions and improvements. We shared
responsibility equally for the implementation and evaluation components.

v

Acknowledgments

I would like to begin by expressing my sincere gratitude to my PhD advisor,
Carl Seger. Your dedication and commitment to supervision have meant so
much to me and I greatly appreciate your passion for the subjects. I am also
incredibly thankful to Mary Sheeran for being an excellent co-advisor, always
challenging me with thought-provoking questions about my research. For the
same reasons I would like to thank my examiner Per Stenström.

Additionally, I extend my appreciation to Jeremy Pope for welcoming me
onto my first paper and giving me the opportunity to contribute to such a
fascinating project. Regarding the first paper, my contribution would not have
been possible without Lennart Augustsson, who implemented MicroHs and
helped me get it running on the RISC-V processor. The final person I would
like to thank in connection with the first paper is Lars Svensson, who guided
me in getting started with the CAD tools.

Next, I would like to thank Patrik Jansson for extensive feedback on both
the second paper and this thesis. Furthermore, I want to thank Mads Dam
and Tamara Rezk for interesting discussions regarding applying my research in
the domain of computer security.

I also express my gratitude to my colleagues in the department. Rather
than listing everyone, I will highlight a few whose support has been especially
invaluable: Robert, Abhiroop, Prabhat, Katya, Wincent, Niklas, and Hanna.
Lastly, I want to extend my heartfelt thanks to my friends, family, and everyone
else who has supported me, even during the difficult times. Above all, I am
deeply grateful to my wife, Julia Jansson Valter. This thesis would not have
been possible without your love, help, and encouragement.

Henrik Jansson Valter
Göteborg, March 2025

vii

Contents

Abstract iii

List of Publications v

Acknowledgements vii

I Summary 1

1 Introduction 3

1.1 Aims . 5

2 Background 7

2.1 Boolean formulas . 7

2.2 Combinational circuits . 8

2.3 Power consumption in CMOS circuits 10

2.4 Power models . 11

2.5 Boolean satisfiability (SAT) . 13

2.6 Binary Decision Diagrams (BDDs) 14

2.7 VossII . 16

2.7.1 BDDs in VossII . 17

2.7.2 SAT in VossII . 18

2.7.3 Symbolic simulation with STE 18

2.7.4 Illustrative example: functional verification of adders . . 20

2.7.5 Parametric substitution 22

2.8 Model counting . 23

2.8.1 Truth cover: model counting with BDDs 24

2.8.2 SAT-based model counting 25

2.9 Average power estimation . 26

2.9.1 Approximate approach with Monte Carlo 27

2.9.2 Probabilistic approaches 27

2.9.3 Symbolic power computation 29

2.9.4 An aside: sequential circuits 32

2.9.5 The problem of correlations 34

ix

x CONTENTS

3 Paper Summaries 35
3.1 Higher-order Hardware: Implementation and Evaluation of the

Cephalopode Graph Reduction Processor 35
3.1.1 Motivation . 35
3.1.2 Design . 38
3.1.3 Evaluation . 39
3.1.4 Related work and conclusions 43

3.2 BDD-Based Methods for Constrained and Biased Simulation-
Vector Generation . 45
3.2.1 Motivation and summary 45
3.2.2 Related work . 49
3.2.3 Conclusions and future work 51

4 Conclusions and future work 53

Bibliography 57

II Appended Papers 69

Paper I - Higher-order Hardware: Implementation and Evaluation
of the Cephalopode Graph Reduction Processor

Paper II - BDD-Based Methods for Constrained and Biased
Simulation-Vector Generation

Part I

Summary

1

Chapter 1

Introduction

Power consumption is a critical design concern for systems across the computing
spectrum, from large-scale data clusters to resource-constrained embedded
systems.

To illustrate this at the scale of the largest computing systems, consider
the TOP500 project, which ranks the world’s most powerful non-distributed
supercomputers. As of November 2024, the leading system was El Capitan,
located at Lawrence Livermore National Laboratory in California, with a
reported power consumption of nearly 30 MW [1]. A rough calculation shows
that such a system would consume approximately 262,800 MWh of energy
annually. For context, the average US household consumes around 10 MWh per
year [2], meaning El Capitan alone uses as much electricity as 26,000 households.
As another example, Bitcoin mining has been estimated to consume about
160,000 GWh annually, equivalent to the energy use of roughly 1.6 million US
homes [3].

For medium-scale computing systems, such as typical desktop machines,
power consumption became a major design constraint starting in the mid-to-
late 1990s. Prior to that, performance was the dominant priority in computer
architecture. This focus was enabled by trends such as Moore’s Law, which
observed that the number of transistors on a dense integrated circuit doubles
roughly every two years [4], and Dennard scaling, which predicted that power
consumption would remain proportional to chip area as transistors shrink [5].
These developments allowed processor clock speeds to steadily increase. How-
ever, by the late 1990s, it became evident that further frequency gains were
unsustainable due to thermal limitations. Clock speeds plateaued around 3
GHz, beyond which cooling becomes prohibitively difficult.

In small-scale systems like embedded devices, another trade-off must be
considered. These systems are often battery-powered and expected to operate
for years without maintenance, making ultra-low energy consumption essential.
As a result, available compute power and memory on such chips are extremely
limited. Additionally, many of these systems must meet real-time constraints,
where unpredictable pauses—such as those caused by garbage collection—
are unacceptable. Given these constraints, developers typically rely on low-

3

4 CHAPTER 1. INTRODUCTION

level languages like C, C++, or even assembly. While these languages offer
high performance and minimal runtime overhead, they sacrifice the safety
and abstraction benefits provided by higher-level languages. This trade-off
becomes especially risky when these devices are internet-connected, forming
part of the so-called Internet of Things (IoT). A 2024 report by the US
Cybersecurity and Infrastructure Security Agency (CISA) highlighted this risk,
urging developers to move away from C/C++ in favor of memory-safe high-level
languages, noting that the majority of security vulnerabilities assigned a CVE
(Common Vulnerabilities and Exposures) stem from issues inherent in low-level
programming [6].

The first paper included in this thesis introduces the Cephalopode processor—
a low-power, custom-designed processor built to support the execution of
high-level languages directly in hardware. Specifically, it targets a functional
programming language similar to Haskell. Functional languages help eliminate
many classes of low-level bugs and provide powerful safety features such as
strong static typing, higher-order functions, and polymorphism. The latter
two promote significant code reuse, and less code generally translates to a
reduced risk of errors. However, the standard Haskell runtime is far too large
for the constrained memory typical of embedded systems, and its reliance on
garbage collection makes it unsuitable for real-time applications. Cephalopode
addresses these limitations with a lightweight execution engine and includes a
concurrent, hardware-based garbage collector. We explore this in more detail
in the paper summary in Section 3.1.

In the remainder of this thesis, we focus on more direct aspects of power
consumption within the context of computer security. In simple terms: if an
attacker can monitor a device’s power consumption while it processes secret
data, can they extract that secret? In 1999, Kocher et al. introduced a landmark
method called differential power analysis (DPA) to address this question [7].
They demonstrated that by carefully observing the power consumption of
a device executing rounds of the Data Encryption Standard (DES), it was
possible to recover the secret key. This discovery generated significant interest
in the field, leading to a detailed follow-up paper in 2011 [8].

One might question the practicality of such attacks, as they appear to
require physical access to the circuit—at which point there are simpler methods
to extract cryptographic secrets. Is it possible to perform power analysis
attacks remotely? Perhaps. In their 2023 paper, Wang et al. introduce
the Hertzbleed attack [9], which exploits the dynamic power management
of a chip. By increasing the chip’s power consumption, the attack induces
thermal throttling, causing the processor to lower its clock frequency. This
frequency reduction results in measurable slowdowns that can be exploited
using traditional timing side-channel techniques. In effect, the attack translates
remote power side-channel leakage into a remote timing side-channel attack.
That said, the practicality of Hertzbleed remains debatable, as the authors
themselves acknowledge in a follow-up study [10].

These attacks fall under the category of side-channel attacks, which exploit
correlations between physical measurements—such as power consumption or,
more commonly, timing variations—and secret information processed by a

1.1. AIMS 5

system. The threat posed by side-channel attacks has intensified with the
advent of machine learning techniques, as shown in works by Dubrova et
al. [11]–[13]. While these studies effectively demonstrate the feasibility and
success of such attacks, they provide limited insight into the underlying circuit
behaviors, data dependencies, or leakage mechanisms that make them possible.
In short, they show that attacks succeed, but offer little understanding of why
they do.

This thesis aims to take steps toward addressing this gap. We focus on
developing tools and methodologies to answer critical questions: Can systems
be designed to resist (remote) power side-channel attacks? How can such side-
channels be detected? Is it possible to formally prove that a circuit is secure?
And if complete security cannot be achieved, can we at least characterize and
bound the vulnerabilities that remain?

Answering these questions requires powerful tools and methods for analyzing
the power consumption of circuits. Specifically, we need techniques that allow us
to assess the sensitivity of power consumption to particular circuit inputs — for
instance, how much the power usage depends on the choice of secret key—or to
evaluate the power behavior when inputs or outputs follow certain probabilistic
distributions. A large portion of this thesis, including the second paper, is
dedicated to developing power models capable of addressing these types of
questions. Research in this area naturally blends concepts from circuit-level
power estimation (from a VLSI perspective), formal verification (to establish
guarantees and reduce large input spaces), and probabilistic analysis.

Circuit-level power estimation can be approached from either an empirical or
an analytical perspective. These terms are fairly intuitive: empirical estimation
involves directly measuring the power consumption of a running chip, while
analytical estimation derives power models based on equations and abstractions.
Empirical measurements tend to be more accurate, capturing higher-order
effects that analytical models may overlook. However, they require completing
the full design and fabrication process before meaningful data can be collected.
In contrast, analytical models offer early-stage feedback during the design
process, though with less accuracy [14].

In this work, we adopt a white-box, analytical approach to power estima-
tion. Although this simplified model provides useful insights, a more detailed
investigation is required to make definitive claims about side-channel resilience.

1.1 Aims

This thesis aims to integrate probabilistic and formal methods to support secure
and energy-efficient hardware design. The first paper introduces and evaluates
a custom processor architecture designed for high-level functional languages,
targeting resource-constrained embedded systems where minimizing energy
consumption is critical. This design is motivated by the security vulnerabilities
commonly found in low-level languages. The core of the thesis focuses on
developing tools and methodologies for analyzing power consumption in digital
circuits. In this context, the second paper makes a central contribution by

6 CHAPTER 1. INTRODUCTION

enabling the efficient generation of input vectors based on arbitrary input
distributions, supporting both scalar and symbolic simulation. These tools are
specifically designed to aid in the construction of hardware that is resistant to
power side-channel attacks.

Chapter 2

Background

This chapter presents the background necessary for the rest of the thesis. We
begin with an introduction to Boolean formulas and how they are implemented
in CMOS (Complementary Metal-Oxide-Semiconductor) circuits, a widely
used technology in digital hardware. Next, we explore the sources of power
dissipation in such circuits and construct a simplified model to estimate it.
Due to the exponential size of the input space, we apply formal verification
methods to explore this space efficiently. This leads to a discussion of methods
for power estimation, which lays the groundwork for the discussions for the
first paper, and also presents symbolic methods for power estimation, which is
the motivation for the second paper.

2.1 Boolean formulas

Boolean formulas are built using the two constants true and false, along
with logical operators that combine them. These operators include negation
(NOT), conjunction (AND), and disjunction (OR). In computer science, these
are typically denoted by ¬, ∧, and ∨, respectively. Boolean variables, like
constants, can take on the values true or false. For example, consider the
Boolean formula

f = (a ∨ b ∨ c) ∧ (¬a ∨ b),

which evaluates to true whenever b = true. In this work we adopt a different
notation, preferred in the context of computer engineering. Negation is written
using an overline, conjunction as · (or omitted), and disjunction as +. Under
this convention, the formula above becomes

f = (a+ b+ c)(a+ b)

Furthermore, we will denote the constants true and false with T and F ,
respectively. This is to match the notation of VossII, which will be introduced
later in Section 2.7. We denote the set {F, T} by B. In computer engineering
the notation 0 and 1 is also common, representing low and high voltage.

7

8 CHAPTER 2. BACKGROUND

Multiple Boolean formulas can represent the same function, meaning they
produce identical results for all possible variable assignments. For instance,
the formulas f = a+ b and g = a · b are equivalent for any assignment of a and
b due to De Morgan’s law.

Boolean formulas are commonly expressed in one of two standard forms:
Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF). A
formula is in CNF if it is written as a conjunction of disjunctions (also known as
a product of sums), while it is in DNF if written as a disjunction of conjunctions
(or sum of products). For example, the formula

f = (a+ b+ c)(a+ b)

is in CNF, whereas the formula

g = ac+ b

is in DNF. Note that both of these functions represent the same Boolean
formula.

Before proceeding, there is an important note to make regarding terminology.
In the context of this thesis, we will refer to Boolean formulas F and T as
scalars, and all others, i.e. those that have variable dependencies, as symbolic.
In contrast, a vector in this work typically refers to an array of Boolean formulas,
the elements of which can be scalar or symbolic. This should not be confused
with the standard mathematical terminology of scalars and vectors.

2.2 Combinational circuits

In this work, our focus is primarily on circuits that implement Boolean
functions—that is, combinational circuits. These digital logic circuits compute
pure Boolean functions and do not contain any memory elements. This is in
contrast to sequential circuits, which include memory and state, with finite
state machines being the simplest example. Figure 2.1 shows a tiny combina-
tional circuit with two input bits a and b and a single output bit e, where e
implements the Boolean function e = a+ ab.

Figure 2.1: A tiny combinational circuit implementing the formula e = a+ ab.

In a more general sense, we can think of combinational circuits as a mapping
from a vector of n bits to a vector of m bits, as illustrated in Figure 2.2.

2.2. COMBINATIONAL CIRCUITS 9

Figure 2.2: A general view of combinational circuits, as a mapping from n to
m bits.

In our analysis, we will consider circuits implemented using CMOS (Comple-
mentary Metal-Oxide-Semiconductor), which is the most widely used technology
for building integrated circuits such as processors and memory. It relies on
two types of transistors: NMOS (N-channel MOS) and PMOS (P-channel
MOS). NMOS transistors conduct electricity when their control signal (called
the gate) is high, while PMOS transistors conduct when their gate is low. By
combining NMOS and PMOS transistors, CMOS circuits achieve low static
power consumption, because very little current flows while maintaining the
current state [4].

In a CMOS gate, logic functions are realized by combining PMOS and
NMOS transistors in a way that the output corresponds to a Boolean function
of the inputs. Figure 2.3 shows an example with a NAND gate built using
CMOS technology. A NAND gate outputs F only when both inputs are T ,
and T otherwise. As seen in the figure, when both A and B are T , the lower
(NMOS) network connects the output to ground, while the upper (PMOS)
network disconnects Vdd, resulting in output F . In all other cases, the PMOS
network connects Vdd, and the NMOS network is incomplete, resulting in a T .
The use of these complementary pull-up and pull-down networks is what gives
CMOS—Complementary Metal-Oxide-Semiconductor—its name.

Figure 2.3: A NAND gate in CMOS.

10 CHAPTER 2. BACKGROUND

2.3 Power consumption in CMOS circuits

The power consumption of CMOS circuits can be broadly categorized into
static power, which is consumed when the circuit is powered but idle, and
dynamic power, which arises from circuit activity during operation. While
the primary focus of this work is on dynamic power, we begin with a brief
discussion of static power.

Historically, static power constituted only a negligible portion of a chip’s
total power consumption. However, with continued technology scaling, this is no
longer the case—static power has become a significant contributor, particularly
in embedded systems, which are often idle for extended periods. The primary
source of static power is subthreshold leakage, which is heavily influenced by
the threshold voltage, Vth. Reducing this leakage requires a higher threshold
voltage, but this comes at the cost of reduced switching speed, since circuits
operate more slowly as Vth increases [4], [14].

This trade-off was carefully considered during the synthesis of the Ceph-
alopode processor, specifically in the selection of standard cell libraries. We
opted for regular threshold voltage cells over super-low threshold variants in
order to minimize static power consumption, aligning with our goals for energy
efficiency [15]. As result, the static power consumption only made up 1.5 % of
the power consumption in Cephalopode.

We now focus on dynamic power consumption, which remains the primary
contributor to power usage in contemporary digital circuits. This type of power
consumption can be broken down into switching power Psw, resulting from
signal transitions within the circuit, and short-circuit power Psc. Short-circuit
power arises due to non-instantaneous input transitions, leading to both PMOS
and NMOS transistors conducting simultaneously and creating a direct path
from the supply to ground. Psc can account for 10-20 % of the total dynamic
power [4], [16]. In this work, we concentrate solely on switching power, which
constitutes the remaining 80-90 %.

For switching power, energy is consumed in both charging and discharging
the load capacitance C driven by the gate output line (Y in Figure 2.3). For a
given gate g, the energy consumption can be expressed as:

Eg = Cg · V 2
g · fg (2.1)

where Cg, Vg, and fg represents the load capacitance, supply voltage and clock
frequency of the gate, respectively. A common assumption is that toggling the
gate from 0 to 1 and 1 to 0 consumes equal energy. Under this assumption,
the energy required for a single toggle becomes

Eg =
Cg · V 2

g · fg
2

. (2.2)

Let αg denote the average number of toggles per clock cycle at gate g. We
then arrive at the formula:

Pg =
αg · Cg · V 2

g · fg
2

. (2.3)

2.4. POWER MODELS 11

To find the total dynamic power, we sum the contributions from all gates
g ∈ G:

P =
1

2

∑

g∈G

αg · Cg · V 2
g · fg. (2.4)

Finally, we assume all gates are driven by the same supply voltage and clock
frequency, which simplifies to

P =
V 2f

2

∑

g∈G

αg · Cg. (2.5)

Among the parameters in this equation, only αg, known as the activity
factor, depends on the workload. Accurately and efficiently determining this
parameter is a central challenge in power estimation, and there is extensive
literature addressing this issue [17]–[21]. A crucial insight is that α can be
computed without the need for complex simulation tools: for a given input
vector, the output of each gate can be evaluated as a Boolean function of the
inputs, allowing us to check whether a transition (toggle) has occurred.

2.4 Power models

With the previous section in mind, we will now construct a power model for
the dynamic power consumption, and then apply this to compute the power
of some simple combinational circuits. Assuming V and f are known and
constant, we know that the power is proportional to

∑

g∈G

αg · Cg (2.6)

From this, it is clear that even if we knew the switching activity αg for every
gate, summing them alone would not give an accurate measure of total power,
as we would also need the capacitance Cg of each gate.

In this work, we adopt the observation made by Chou et al., which states
that the capacitance of a gate is roughly proportional to its fanout—that is,
the number of gates its output drives [22]. Based on this assumption, we arrive
at the expression ∑

g∈G

αg · fanoutg, (2.7)

where fanoutg denotes the fanout of gate g. This simplified expression maintains
proportionality to equation 2.6, and is therefore also directly linked to the
dynamic power in equation 2.5. Proportionality allows for comparisons—for
example, if circuit A yields a value twice that of circuit B for this equation,
then its dynamic power consumption is also twice as high.

This sum of fanout multiplied by switching activity will serve as our working
power model throughout the remainder of this work. While it technically
represents a capacitance-related term proportional to power, we refer to it
simply as power for convenience. This simplification is justified by our focus

12 CHAPTER 2. BACKGROUND

on relative comparisons between circuits or input distributions, rather than on
absolute power values.

Given a gate-level circuit description and corresponding input vectors, this
expression can be readily evaluated. For example, consider Figure 2.4, which
shows our previously introduced simple circuit. We apply a transition on input
a from F to T , while keeping input b constant at T . This causes node c to
toggle from T to F , and node d from F to T , resulting in toggles at gates a, c,
and d. Since a drives two gates (fanout of 2), and c and d each drive one, the
total estimated power is 2 + 1 + 1 = 4 for this particular vector pair.

Figure 2.4: Example power computation with scalar values.

So far, we have assumed idealized gates that respond instantaneously to
input changes. This is known as a zero-delay model, where each gate switches at
most once per input change. In reality, however, gates have finite delays, which
can lead to unintended transient transitions known as glitches. These extra
transitions occur because gate outputs may not update simultaneously. A classic
example is shown in Figure 2.5, where, logically, the output should remain at
F . But when the input changes from F to T , the inverter momentarily delays
its transition, causing both inputs of the AND gate to briefly be T , which flips
the output to T before it returns to F . As a result, the number of transitions
in one cycle can be greater than one. This introduces another dimension to

Figure 2.5: Glitching example.

consider: the delay model. We have already discussed the zero-delay model,
where gates switch instantaneously, meaning no glitches occur. Other models
include the unit-delay model, in which all gates have the same fixed delay, and
the variable-delay model, where each gate may have a different delay.

To summarize the power model, we examine a combinational circuit with n
inputs, where the inputs are updated instantaneously at the beginning of each
clock cycle. During the cycle, and before the next update, each gate in the
circuit may undergo several transitions between Boolean values, depending on
the delay model chosen. The power consumed by a gate is proportional to the
number of these transitions, scaled by its capacitance, which we approximate

2.5. BOOLEAN SATISFIABILITY (SAT) 13

using the fanout of the gate. Therefore, the overall power consumption can be
expressed as a function of two consecutive input vectors, v⃗0 and v⃗1, representing
the inputs at the beginning of successive clock cycles. In the zero-delay case,
we have:

P (v⃗0, v⃗1) =
∑

g∈G

fanoutg · (g(v⃗0)⊕ g(v⃗1)), (2.8)

where g(·) represents the Boolean function computed computed by the circuit
between the input and (including) gate g, and ⊕ denotes the XOR operation,
indicating whether the output of gate g changes between the two input vectors.

Taking glitches into account, our equation for P becomes more complicated.
Instead of having a single potential transition g(v⃗0)⊕ g(v⃗1), we may now have
multiple intermediate glitch values ga, gb, gc that depend on both v⃗0 and v⃗1.
For simplicity, say we only have one intermediate value ga. Then there are two
potential transitions g(v⃗0)→ ga(v⃗0, v⃗1) and ga(v⃗0, v⃗1)→ g(v⃗1), so we obtain
the formula:

P (v⃗0, v⃗1) =
∑

g∈G

fanoutg ·
(
(g(v⃗0)⊕ ga(v⃗0, v⃗1)) + (ga(v⃗0, v⃗1)⊕ g(v⃗0)

)
(2.9)

With this, we can compute the power of changing from some input vector
v⃗0 to some other input vector v⃗1, each of them n bits wide, meaning we have
an input space of 22n.

To compute the average power, we would need to consider the entire input
space of vector pairs. For a circuit with n inputs, this results in 2n possible
input combinations, and thus 22n input pairs to examine. This exponential
growth makes a brute-force approach impractical. Fortunately, formal methods
provide powerful techniques for efficiently exploring large input spaces. In the
following sections, we explore how to leverage these tools.

2.5 Boolean satisfiability (SAT)

The Boolean satisfiability problem (SAT) asks whether there exists an interpret-
ation that satisfies a Boolean formula. In other words, given a Boolean formula
f that depends on variables v⃗, it asks whether we can find an assignment m⃗
of the variables of v⃗ such that f(m⃗) = T . A satisfying assignment is called
a model. If there exists a model to a formula, the formula is satisfiable, and
otherwise unsatisfiable. For example, formula

f = (a+ b+ c)(a+ b)

has a model (a = F, b = F, c = T), meaning f is satisfiable. On the other hand,
g = a · a is unsatisfiable.

SAT is particularly interesting because it was the first problem proven to
be NP-complete [23]. This means that there is no known algorithm that can
solve all instances of SAT in polynomial time, and yet, any problem in the
class NP can be reduced to SAT in polynomial time. In other words, if we
could efficiently solve SAT, we could efficiently solve all problems in NP. This

14 CHAPTER 2. BACKGROUND

result makes SAT a fundamental problem in computational complexity theory
and a common focus in areas such as algorithm design, optimization, artificial
intelligence, and formal verification.

In the context of combinational circuits, SAT can be viewed as the problem
of determining whether there exists an input vector that causes the circuit to
produce an output satisfying a given condition. If the circuit has n input bits,
then there are 2n possible input combinations to consider. To illustrate the
scale of this, suppose the circuit has 270 input bits, which is still a rather small
circuit. A rough calculation shows:

2270 = (210)27 ≈ (103)27 = 1081,

which is roughly the estimated number of atoms in the observable universe.
This highlights just how quickly the number of input combinations grows and
why the problem becomes computationally challenging.

Although SAT problems are inherently challenging, SAT solvers have signi-
ficantly advanced over the years, with modern solvers capable of handling in-
stances involving hundreds of thousands of variables. A foundational milestone
in this progress was the DPLL algorithm [24], which introduced a systematic
method for variable selection and efficient propagation of their implications.
This approach was further enhanced in the GRASP solver, which pioneered
conflict analysis techniques that generate new clauses to prevent recurring
conflicts [25]. This strategy, now known as conflict-driven clause learning
(CDCL), underpins nearly all contemporary SAT solvers.

Each year, the SAT competition is organized, where developers and research-
ers submit their solvers to compete against each other. This event showcases
the latest advancements in SAT-solving techniques and provides a platform
for comparing the performance of different solvers on a variety of complex
problems. The competition has played a significant role in driving innovation
in the field of automated reasoning and optimization1. For a general overview
of modern SAT solving we recommend the handbook of satisfiability [26].

2.6 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD) is a data structure designed for the efficient
representation and manipulation of Boolean formulas [27]. In a BDD, a
Boolean function is expressed as a directed acyclic graph (DAG), where each
non-terminal node corresponds to a Boolean variable, and its outgoing edges
represent the two possible values of the variable (a = F or a = T). The terminal
nodes are the constants F and T . Throughout this work, the term BDD refers
specifically to Reduced Ordered BDDs (ROBDDs). In this subset, variables
appear in a fixed order along every path, and redundant nodes are eliminated.
As a result, ROBDDs provide a canonical representation of Boolean functions,
meaning that equivalent functions have identical ROBDD representations.

1Information regarding the International SAT Competition can be found at https://

satcompetition.github.io/

2.6. BINARY DECISION DIAGRAMS (BDDS) 15

Figure 2.6 illustrates the BDD representation of the Boolean function ab+ac
with variable ordering a, b, c. Each node in the diagram is labeled with its
corresponding variable. The low child (resulting from setting the variable to 0)
is connected via a dotted edge, while the high child (resulting from setting the
variable to 1) is connected via a solid edge.

Figure 2.6: BDD representation of the Boolean formula ab+ ac.

While constructing a BDD from a Boolean formula is generally NP-hard,
and the resulting graph may grow exponentially in the worst case, BDDs
remain efficient for many practical applications. In cases where the constraint
exhibits structural regularity or redundancy, BDDs often provide a compact
and manageable representation.

As previously noted, BDDs require that variables follow a fixed order along
every path. Selecting an efficient variable ordering is critical, as it has a
significant effect on the size of the BDD. For example, Figure 2.7(a) shows
the BDD for the equality of three-bit wide vectors a and b using a suboptimal
variable order. In contrast, Figure 2.7(b) presents a much more compact
representation achieved by interleaving the bits of a and b. This optimized
ordering reduces the number of BDD nodes2 from 20 to 8. When scaling up to
16-bit values for a and b, the improved ordering brings the node count down
from 196,604 to just 47.

A substantial amount of research has focused on the challenge of variable
ordering, with particular emphasis on automatic dynamic ordering techniques.
The most widely adopted method is sifting, in which each variable is sys-
tematically repositioned within the ordering to identify the placement that
minimizes the BDD size [28]. Many BDD libraries implement dynamic reorder-
ing strategies, which play a crucial role in preventing exponential blowup and
thereby making BDDs practical for applications such as formal verification.
Nonetheless, there exist functions—such as integer multiplication—whose BDD
representations are inherently exponential regardless of ordering. In such cases,
alternative representations or techniques should be explored.

Given a Boolean formula represented with a BDD, determining satisfiability
is trivial, since all unsatisfiable formulas are represented as the constant F .

2Measured using bv size in VossII.

16 CHAPTER 2. BACKGROUND

(a) Bad variable order. (b) Good variable order.

Figure 2.7: BDDs for the equality of three-bit wide vectors a and b with bad
and good variable ordering.

Determining satisfiability therefore involves just checking whether f = F .

2.7 VossII

As stated, this thesis explores this intersection between formal methods, spe-
cifically symbolic model checking, and probabilistic analysis. For this purpose
we use the VossII platform, a hardware design and verification system.

The original Voss formal verification system was developed at the University
of British Columbia between 1990 and 1995 as an evaluation-based decision
procedure for the HOL theorem prover. Initially, it integrated a lambda
evaluator, an BDD package, and a symbolic trajectory evaluation (STE) engine.
Over time, Voss evolved into a more user-friendly system with a Hindley-Milner
type system, making it a powerful scripting, specification, and implementation
language for formal verification. Its versatility led to widespread adoption,
particularly at Intel (renamed Forte), where it became the backbone of formal
equivalence verification and execution unit verification for two decades. Despite
enhancements for large-scale industrial use, its core approach remained robust.
The VossII system is a re-implementation of Forte, released as open-source
under the Apache 2.0 license and available at GitHub3.

The meta-language used in VossII is called fl, a functional language with
lazy evaluation semantics. As such, it should be quite familiar and readable to
users of other lazy functional languages like Haskell. To illustrate the language,
Listing 2.1 presents four different implementations of the n-th Fibonacci number.
The first example relies on basic recursion with an if-then-else structure. The
second employs pattern matching and demonstrates that, due to laziness, the

3https://github.com/TeamVoss

2.7. VOSSII 17

error expression is never evaluated. These initial implementations suffer from
exponential time complexity due to re-evaluating results, which the third version
addresses by manually caching results in a list. This also introduces other basic
operations, such as el for list indexing, the cons operator :, and an alternative
if-then-else syntax: condition => then | else. The final implementation
uses memoization, which is enabled by replacing letrec with cletrec. With
memoization, once a function is evaluated, its result is stored in a hash table,
so that subsequent calls with the same arguments return the cached result.

Listing 2.1: Four implementations of the Fibonacci sequence in VossII.

letrec fib1 n =

IF n == 0 THEN 0 ELSE

IF n == 1 THEN 1 ELSE

fib1 (n-1) + fib1 (n-2);

letrec fib2 0 = 0

/\ fib2 1 = 1

/\ fib2 n =

let unevaluted_expression = error "message" in

fib2 (n-1) + fib2 (n-2);

let fib3 n =

letrec rec m results =

m > n => results |

let new = el 1 results + el 2 results in

rec (m+1) (new:results) in

let results = rec 2 [1,0] in

n==0 => 0 | hd results;

cletrec fib4 n =

n <= 1 => n |

fib4 (n-1) + fib4 (n-2);

As a verification platform, VossII offers extensive support for BDDs and
SAT. We introduce these next.

2.7.1 BDDs in VossII

In VossII, every value of type bool is a Boolean formula built as a BDD. Such a
value can have the constant values T and F for true and false, or be a function
such as a+b, where a and b are Boolean variables. In fact, all Boolean formulas
in VossII are maintained as BDDs. This treatment of BDDs as first-class
objects makes VossII ideal for our purposes.

A Boolean variable can be created with the variable function, which
accepts a string as input and returns a Boolean formula containing a variable
with the given name. For example, let myvar = variable "a"; defines a variable
myvar of type bool (i.e., a BDD) representing the Boolean formula a. To create
f = (a+ b+ c)(a+ b), we can write:

let a = variable "a";

let b = variable "b";

let c = variable "c";

let f = (a OR b OR c) AND (NOT a OR b);

18 CHAPTER 2. BACKGROUND

When printing f, we obtain the expression b+ ac, which is a simplification of
the original formula.

The depends function can be used to retrieve a list of the variables that an
expression depends on. For example, depends f returns ["a", "b", "c"]. Note
that the result is a list of strings representing variable names, not bool values;
depends provides the names of the variables, not the corresponding Boolean
formulas.

VossII supports dynamic reordering of BDDs, which is automatically
triggered when their size exceeds a certain threshold. It uses the standard
sifting algorithm, common in many BDD libraries. Additionally, users can
specify a custom variable ordering using the var order function, as illustrated
in Section 2.7.4.

2.7.2 SAT in VossII

Constructing a BDD for a Boolean formula just to check satisfiability is
inefficient—building the BDD itself is often more complex than the satisfiability
check. To address this, VossII offers an alternative datatype called bexpr,
which represents Boolean expressions as AND-inverter graphs. These can
be built in time linear to the size of the Boolean formula. Once a bexpr is
created, satisfiability can be checked using a SAT solver. For this, VossII uses
MiniSAT [29], which is a well-known CDCL solver.

Listing 2.2 shows a simple example using bexprs. Each logical operation
on bools has a corresponding bexpr version prefixed with a “b”—for example,
AND becomes bAND. To check satisfiability, VossII uses the bget model function,
which takes a list of bexprs, assumes their conjunction, and attempts to find a
satisfying assignment within a given timeout (in seconds). It returns a list of
variable assignments if satisfiable. In the first case, we check satisfiability of a ·b,
which requires both to be T, and res1 correctly returns [("a", bT), ("b", bT)].
The second formula is unsatisfiable, indicated by an empty result list.

Listing 2.2: Small demonstration of bexprs and SAT.

let a = bvariable "a";

let b = bvariable "b";

let ex1 = a bAND b;

let ex2 = bNOT (a bAND b);

let res1 = bget_model [ex1] 60;

let res2 = bget_model [ex1 bAND ex2] 60;

2.7.3 Symbolic simulation with STE

Symbolic execution, commonly referred to as symbolic simulation in hardware
contexts, is a technique where symbolic values represent variables during system
simulation instead of using concrete data. This enables exploration of multiple
execution paths simultaneously, helping to identify errors or vulnerabilities in
hardware or software without needing to test every possible input.

2.7. VOSSII 19

In VossII, symbolic simulation is available through the STE command. As
input it takes a circuit and an ant list, which defines input stimuli, along with
other parameters not relevant to this work. The ant list contains tuples of five
values (w, nd, v, f, t), which specify that when w holds, node nd should take
the value v from time f until, but not including, time t.

Listing 2.3 demonstrates an example of using STE to simulate an OR-gate
c = a+ b. In this case, ant sets node a to the constant F and node b to the
Boolean function f(b) = b. Both nodes have their first argument set to T ,
meaning the stimuli are applied unconditionally, and they are applied during
phase [0, 1), i.e., in phase 0. This example uses both scalar and symbolic
simulation.

Listing 2.3: Tiny example of symbolic simulation with STE.

let ant = [

(T, "a", F, 0, 1),

(T, "b", variable "b", 0, 1)

];

let ste = STE "-e" my_or_gate [] ant [] [];

let out = get_trace_val ste "c" 0;

out;

We expect the value b to appear at the output since F + b = b. To retrieve
the value of the output node c at phase 0, we use the get trace val function,
which returns [(b, b’)]. The result is a pair of values because STE implements
symbolic trajectory evaluation [30], encoding the node’s value using dual-rail
(H,L) logic to represent both normal and error states. For this work, we do not
require this feature, so we can simply examine the H value.

VossII also provides syntactic sugar for defining ant, as shown in Listing 2.4.
In this case, we simulate a 4-bit bitwise AND operation and define input vectors.
Internally, this corresponds to the tuples we saw earlier. The a input is set to
be 3 in the first phase and then symbolic, while the b input is given the scalar
value 5 for the first phase and then also symbolic in the second phase.

Listing 2.4: Symbolic simulation with vectors.

let ant =

"a[3:0]" is 3 for 1 phase followed_by

"a[3:0]" for 1 phase

and

"b[3:0]" is 5 for 1 phase followed_by

"b[3:0]" for 1 phase;

let ste = STE "-e" and4 [] ant [] [];

let out t =

let vars = md_expand_vector "c[3:0]" in

map (\v. fst (get_trace_val ste v t)) vars;

out 0;

out 1;

To obtain the output, we first need the names of the output nodes, which
we get by using md expand vector to expand "c[3:0]" into the list ["c[3]",

20 CHAPTER 2. BACKGROUND

"c[2]", "c[1]", "c[0]"]. We then apply the get trace val function to
each of these nodes, as before, but this time using the fst function to disregard
the dual-rail encoding. In the first phase, the output is [F, F, F, T], which
correctly represents the bitwise AND of 3 ([F, F, T, T]) and 5 ([F, T, F, T]). In
the second phase, the output is [[a[3] · b[3]], ...[a[0] · b[0]]], as expected.

Internally, STE uses bools, that is, BDDs, for simulation. It also provides
bSTE for bexpr -based simulation, where the results can be passed to a SAT
solver. The interface for bSTE is similar to STE, with the main difference being
the use of bexpr instead of bool and the absence of syntactic sugar for defining
ant.

2.7.4 Illustrative example: functional verification of ad-
ders

This section provides an illustrative example that brings together several of
the techniques explored thus far in this thesis. Using VossII, we will verify
the correctness of an adder circuit by applying SAT, BDDs, and symbolic
simulation. In the process, we also highlight the impact of variable ordering on
BDD performance.

Suppose we are given two 32-bit adders: a Ripple Carry Adder (RCA), which
we assume to be correct, and a Carry-Select Adder (CSA), whose correctness
we want to verify. The verification involves checking that, for all possible input
combinations, the CSA produces the same output as the RCA. For simplicity,
we will omit the carry-in and carry-out bits from consideration.

As an initial step, we perform basic scalar verification by applying a few
simple input values and checking that the outputs match the expected results.
Specifically, we will verify that the adder computes 12+3 = 15 and 37−10 = 27
correctly. We set up the input stimuli:

let ant =

"a[31:0]" is 12 for 1 phase followed_by

37 for 1 phase

and

"b[31:0]" is 3 for 1 phase followed_by

(-10) for 1 phase;

let ste = STE "-e" csa_ckt [] ant [] [];

After running the simulation, we extract the sum bits as follows:

let sum t =

let nds = md_expand_vector "sum [31:0]" in

map (\nd. fst (get_trace_val ste nd t)) nds;

bl2int (sum 0); // returns 15

bl2int (sum 1); // returns 27

Here, the sum function collects each bit of the sum into a Boolean list bl, which
we then interpret as an integer. As expected, the resulting values are 15 and 27.
Verification can also be performed during simulation by specifying a consequent
in the STE run. However, for this demonstration, we choose to verify the
results manually.

2.7. VOSSII 21

To verify all possible input combinations, we would need to check all
232+32 = 264 input pairs—an approach that is clearly infeasible using scalar
values as we just did. Instead, we turn to BDD-based verification. Our
approach is to simulate both the RCA and CSA using symbolic inputs, extract
the Boolean functions representing each output bit, and then check that they
are equal.

We begin by defining a new antecedent, where the inputs are driven with
symbolic inputs rather than scalars:

let antecedent =

"a[31:0]" is "a[31:0]" for 1 phase

and

"b[31:0]" is "b[31:0]" for 1 phase;

let rca_ste = STE "-e" rca_ckt [] antecedent [] [];

let csa_ste = STE "-e" csa_ckt [] antecedent [] [];

Running the simulation for the RCA completes in 24 ms, which is reasonably
quick. In contrast, the simulation for the CSA takes significantly longer. This
slowdown is due to the large number of multiplexers in carry-select adders,
making them particularly sensitive to variable ordering. To address this, we
stop the simulation and apply a new variable ordering that interleaves the bits
of a and b:

let as = md_expand_vector "a[31:0]";

let bs = md_expand_vector "b[31:0]";

var_order (interleave [as ,bs]);

After applying this ordering, we rerun the simulations and observe that it
executes in roughly the same time as the RCA. Once the simulation is complete,
we can easily verify that the outputs represent the same function:

let sum ste =

let nds = md_expand_vector "sum [31:0]" in

map (\nd. fst (get_trace_val ste nd 0)) nds;

let rca_sum = sum ste_rca;

let csa_sum = sum ste_csa;

let equal = csa_sum == rca_sum; // returns T

We conclude this section by verifying the adder using the built-in SAT solver.
To do this, we must run the simulator using bexprs as the underlying Boolean
representation instead of BDDs. This only requires a slight modification of the
setup code:

22 CHAPTER 2. BACKGROUND

let bant =

let nd2term nd = (bT, nd, bvariable nd , 0, 1) in

let as = md_expand_vector "a[31:0]" in

let bs = md_expand_vector "b[31:0]" in

(map nd2term as)@(map nd2term bs);

let rca_ste = bSTE "-e" rca_ckt [] bant [] [];

let csa_ste = bSTE "-e" csa_ckt [] bant [] [];

let sum ste =

let nds = md_expand_vector "sum [31:0]" in

map (\nd. fst (bget_trace_val ste nd 0)) nds;

let rca_sum = sum ste_rca;

let csa_sum = sum ste_csa;

To check for equality, we first create a list by combining the results with
XOR, meaning the i-th entry in the list represents the inequality of the i-th
bits of the results. If the disjunction of all such inequalities is unsatisfiable, the
equality holds:

let inequality_list =

map (\(k,r). k bXOR r) (zip ksa_sum rca_sum);

let any_bit_different =

accumulate (defix bOR) inequality_list;

let sat_res = bget_model [any_bit_different] 10;

let equal = empty sat_res;

bget model calls the SAT solver, and we interpret the empty result as the
formula being unsatisfiable. We again find that the adders are equivalent.
Moreover, the result is computed an order of magnitude faster than with
BDDs.

With this, we have seen how VossII can be used for verification, utilizing
symbolic simulation with BDDs and SAT.

2.7.5 Parametric substitution

Parametric substitution provides a way to restrict input vectors to those
satisfying a particular constraint, guaranteeing that all valid vectors are included
(completeness) and no invalid ones are possible (soundness). The method
constitutes a cornerstone in formal verification based on symbolic simulation [31].
It is useful for verifying properties that must hold under a specific precondition
on the inputs, such as P =⇒ Q. Parametric substitution eliminates false
alarms, as vectors that violate P are never generated and thus cannot lead
to a violation of Q. At the same time, any ”bad” vectors—those that satisfy
P but violate Q—can still be generated, ensuring that the verification is
comprehensive.

VossII supports parametric substitution with the param function, whose
functionality can be formalized as follows. Let Bn be the set of Boolean
vectors of length n, and S be the subset of Bn that satisfies a given constraint
C : Bn → B, which we assume is satisfiable. Applying param to C creates a
parametric substitution (param C) : Bn → S, which (1) only maps to values
that satisfy C, as specified by the type signature, and (2) is surjective, meaning
that any value that satisfies S can be obtained.

2.8. MODEL COUNTING 23

For example, C could enforce a mutual exclusion (mutex) condition, meaning
that exactly one bit in the vector is set. Valid inputs under this constraint would
include ⟨F, F, F, T ⟩ and ⟨F, T, F, F ⟩, while an input like ⟨F, T, F, T ⟩ would be
invalid. We can define the constraint and parametric substitution as:

let a = bv_variable "a[3:0]";

let C = bv_ones a = ’1;

param C;

which returns a substitution

⟨a[3], a[3] a[2], a[3] a[2] a[1], a[3] a[2] a[1]⟩. (2.10)

Any substitution for the variables a[3], a[2], and a[1] will yield a mutex input
vector, and each of the four such vectors have some substitution that generates
it. Conceptually, we can now construct a combinational circuit that implements
these four Boolean functions, effectively mapping the variables to the circuit
inputs, as shown in Figure 2.8.

Figure 2.8: A circuit implementing a parametric substitution for the mutex
condition.

2.8 Model counting

SAT addresses the question of whether there exists an assignment that satisfies
a given Boolean formula, and returns such an assignment if one exists. A
closely related—but more difficult—problem is model counting (also known
as #SAT), which asks how many satisfying assignments exist. For example,
there are three models to the formula a + b for variables a and b. Model
counting is strictly harder than SAT: if we know the total number of satisfying
assignments, determining satisfiability is trivial—we simply check if the count
is zero. However, the reverse does not hold. Knowing that there is at least one
solution offers little insight into the total number of solutions, which could be
exponentially large. Model counting is widely recognized as the prototypical
#P-complete problem, serving as a central representative of the class due to
its foundational role [26].

24 CHAPTER 2. BACKGROUND

The second paper in this thesis makes substantial use of efficient model
counting, which is crucial for the techniques it presents. One of the main
advantages of BDDs is their support for model counting in time linear to the
size of the diagram, making them especially appealing for this purpose. In the
VossII system, this functionality is provided by the truth cover function, which
is described in detail in Section 2.8.1. An alternative approach is SAT-based
solutions, explored in Section 2.8.2.

Model counting is closely related to probabilistic inference, which can often
be reduced to weighted model counting (WMC) [32]. In WMC, each Boolean
variable is assigned weights for T and F values, and the total weight of a
formula is the sum over all models, where the weight of each model is the
product of its literal weights:

WMC(f, w) =
∑

m∈M(f)

∏

v∈m

w(v), (2.11)

where f is a Boolean formula, w maps literals to weights, and M(f) is the set
of models of f . As a simple example, let f = ab+ ab, with weights w(a) = 2,
w(b) = 3, and w(b) = 4, for which we get:

WMC(f, w) = w(a)w(b) + w(a)w(b) = 2 · 3 + 2 · 4 = 14 (2.12)

We will note the similarity to WMC when discussing probabilistic techniques
in Section 2.9.2. The difference is whether the weights are provided as integers
(as they are here) or as probabilities.

2.8.1 Truth cover: model counting with BDDs

VossII features the built-in function truth cover, which computes the number
of satisfying assignments to a formula f represented as a BDD. In other words,
it is model counting for BDDs. Along with the BDD, truth cover requires
a list of the variables the formula (nominally) depends on and returns the
number of assignments to those variables that satisfy the BDD. A simple
implementation is:

letrec tc_slow vars f =

IF vars = [] THEN

IF f == F THEN 0 ELSE

IF f == T THEN 1 ELSE

error "Undefined."

ELSE

val (v:vs) = vars in

let H = substitute [(v,T)] f in

let L = substitute [(v,F)] f in

(tc_slow vs H) + (tc_slow vs L)

2.8. MODEL COUNTING 25

To illustrate its use we consider the following example, where we note the
critical importance of the list of variables:

VARS "a b";

tc_slow ["a", "b"] (a OR b); // returns 3

tc_slow ["a", "b"] T; // returns 4

tc_slow ["a", "b"] F; // returns 0

tc_slow ["a"] b; // Undefined , crashes

Listing 2.5 shows a much more efficient implementation, tc, which incor-
porates memoization. It also makes use of top cofactor to identify the top
variable and performs a linear search through the variable list to locate it. Any
variables that are skipped in this process are considered free and can be omitted
in the recursive calls—each such omission requiring us to double the result to
account for the free variable. Out of these optimizations, memoization remains
the most critical performance enhancement. This version closely resembles
the built-in truth cover function, although the latter is implemented in C for
increased performance.

Listing 2.5: Better implementation of truth cover.

cletrec tc vars f =

IF f == F THEN 0 ELSE

IF f == T THEN 2**(length vars) ELSE

val (v,H,L) = top_cofactor f in

let idx = find_first (\s. s = v) vars in

let vars ’ = butfirstn idx vars in

let m = 2**(idx -1) in

m*((tc vars ’ H)+(tc vars ’ L));

Thanks to memoization, the complexity of truth cover is O(n) for a BDD
with n nodes.

2.8.2 SAT-based model counting

SAT-based techniques have been extensively studied in the literature. While
they have not yet been applied in our current work, we include them here as
related methods with potential for future exploration.

One of the earliest solvers for exact model counting was sharpSAT [33].
It performs a search over the solution space similar to CDCL-based SAT
solvers but continues until all satisfying assignments are enumerated. To reduce
redundant computation, sharpSAT employs component caching—analogous
to memoization in truth cover. While the paper also presents strategies for
efficient cache management, we do not explore those details here. More recently,
Sharma et al. introduced the probabilistic model counter GANAK [34], which
can be seen as an extension of sharpSAT with probabilistic aspects and new
heuristics.

Due to the computational complexity of the problem, SAT-based approx-
imate techniques have also been developed, most prominently the ApproxMC
solver [35]–[37]. The underlying idea is to randomly partition the solutions
space using hashing techniques, typically XOR constraints, and then estimating

26 CHAPTER 2. BACKGROUND

the number of models based on how many models are in a randomly chosen
subset. XOR constraints are formed by selecting a random subset of the vari-
ables, and add the constraint that their parity should be F or T . For example,
if we have variables a, b, c, and d, we could randomly pick variables a and
d. We then randomly pick a parity T or F , say T , resulting in the constraint
a⊕ d = T . Each such constraint reduces the set of satisfying assignment by
half on average [38].

2.9 Average power estimation

With the basic formal verification methods covered, we now return to our power
model from Section 2.4, and consider the problem of computing the average of
this formula. This is given by

E [P] = E

∑

g∈G

fanoutg · (g(v⃗0)⊕ g(v⃗1)

 , (2.13)

where E denotes the expectation. For a finite number of outcomes, it is
computed by summing each outcome multiplied by its probability:

E [P] = x1p1 + x2p2 + . . . + xnpn

= Pr{P = 0} · 0 + Pr{P = 1} · 1 + . . . + Pr{P = M} ·M
=

∑

i∈[0,M]

Pr{P = i} · i

(2.14)

for some for some maximum power M . Clearly, this expression heavily depends
on the input probabilities, that is, the probability of seeing each input vector
pair v⃗0 and v⃗1. Note that if each vector is equally likely, this can be viewed as
a model counting problem:

E [P] =
∑

i∈[0,M]

Pr{P = i} · i

=
∑

i∈[0,M]

MC(P = i)

2n
· i

=
1

2n

∑

i∈[0,M]

MC(P = i) · i

(2.15)

where MC(·) denotes model counting and n is the input vector width. The
assumption of uniform input probabilities is rarely realistic in practice. To
address this, we require a way to specify input probabilities—that is, the
likelihood of observing each (v⃗0, v⃗1) pair. One practical solution is to allow the
user to provide these input vectors directly. This approach is known as vector-
based power estimation in tools like Cadence Genus [39]. However, it comes
with significant trade-offs: the quality of the estimation heavily depends on how
representative the provided vectors are. Manually creating or sourcing realistic

2.9. AVERAGE POWER ESTIMATION 27

input vectors can be time-consuming and error-prone, and poor coverage may
lead to misleading power estimates. Moreover, if exhaustive vector generation
is required, this approach does not scale well.

2.9.1 Approximate approach with Monte Carlo

If an approximate solution is sufficient, one of the most straightforward methods
of computing equation 2.13 is using Monte Carlo simulation. For our use case,
the approach is entirely straightforward: we sample v⃗0 and v⃗1 according to the
chosen input distribution and simulate the circuit with these scalar vectors,
and obtain a sample of the power distribution. This continues until some stop
condition is reached. A commonly used stopping condition, proposed in prior
work, is:

tα/2 · σ
µ ·
√
N

> ϵ, (2.16)

where tα/2 is the critical value from the t-distribution, σ is the sample standard
deviation, µ is the sample mean, and ϵ is the target relative error [18], [40].
This criterion allows users to balance accuracy and computational effort by
selecting a desired error margin in advance, which they found works well in
practice. T-tests of this kind assume that the underlying distribution follows a
Gaussian model, which has been found to hold true in many practical cases [18].

2.9.2 Probabilistic approaches

Monte Carlo approximation offers a powerful fallback when approximate solu-
tions are acceptable. However, in this work, we focus on exploring the limits
of exact methods, which is particularly important in security-sensitive applic-
ations. To this end, we consider probabilistic approaches. Here, users can
specify the probability distribution over input transitions, i.e., the likelihood of
each (v⃗0, v⃗1) pair occurring. This is known as vector-free or probability-based
power estimation [14], in contrast to vector-based estimation. However, since
there are 22n possible pairs for n inputs, explicitly enumerating them quickly
becomes infeasible. A more scalable approach is to define the probability of
each individual input bit being high, which is known as signal probability. For
example, if input bit a has Pr{a = T} = 0.3, then it is low with probability 0.7.
This bit-level probabilistic modeling has a long history in digital circuit analysis,
dating back to as early as 1975 [41]. It has proven useful not only in power
estimation but also in evaluating circuit reliability under uncertainty [42].

Using basic rules from probability theory, signal probability can be propag-
ated through the circuit. For instance, Pr{a} = 1 − Pr{a} and Pr{ab} =
Pr{a} · Pr{b}. Note however that the latter only holds when expressions a
and b are not correlated. To show this, first define a simple recursive datatype
mybool in Listing 2.6, along with corresponding signal propagation rules.

28 CHAPTER 2. BACKGROUND

Listing 2.6: Basic datatype for Boolean functions and propagation rules for
signal probability.

lettype mybool = True

| Var {n :: string}

| Not {b :: mybool}

| And {b1 :: mybool} {b2 :: mybool };

let False = Not True;

let Or b1 b2 = Not (And (Not b1) (Not b2));

let sigprob_propagation {sp :: (string#float) list} b =

letrec rec True = 1.0

/\ rec (Var v) = assoc v sp

/\ rec (Not b) = 1.0 - (rec b)

/\ rec (And b1 b2) = (rec b1) * (rec b2)

in rec b;

This method yields correct results under the assumption that each variable
appears only once in an expression. For instance:

let a = Var "a"; let b = Var "b";

let e1 = And (Not a) b;

let sp = [("a", 0.4), ("b", 0.3)];

sigprob_propagation sp e1;

This returns (1 − 0.4) · 0.3 = 0.6 · 0.3 = 0.18, as expected. However, in the
expression

let e2 = And a (Not a);

sigprob_propagation sp e2;

the function returns 0.24, though the expression e2 is always false and should
return 0. One might wonder whether the function always overapproximates,
but this is not the case. Consider:

let e3 = Or a (Not a);

sigprob_propagation sp e3;

Here, the result is 0.76, though the expression e3 is always true and should
return 1.

This example highlights the issue of correlation between Boolean signals.
In the context of digital circuits, this arises when we assign independent signal
probabilities to the inputs, yet attempt to compute the probability of a signal
deeper in the circuit that depends on multiple correlated paths. Correlation in
this case translates to reconvergent fanout—a well-known challenge in prob-
abilistic circuit analysis where signals split and later recombine, violating the
assumption of independence [43].

We can resolve the correlations and obtain an exact solution by computing
every satisfying assignment (model) for the expression, compute the probability
of each model independently, and return the sum of these probabilities. In
other words, we convert the formula to DNF, evaluate the probability of each
term, and sum the results:

Pr{f = T} =
∑

m∈M(f)

∏

v∈m

w(v) (2.17)

2.9. AVERAGE POWER ESTIMATION 29

We note that this is the same formula as in WMC, mentioned in Section 2.8.
For instance, the formula f = ab+ bc can be expanded into DNF as

f = abc+ abc+ abc

Given P (a) = 0.5, P (b) = 0.4, and P (c) = 0.3, we compute

Pr{f} = P (a)P (b)P (c) + P (a)P (b)(1− P (c)) + (1− P (a))P (b)P (c)

= 0.5 · 0.4 · 0.3 + 0.5 · 0.4 · 0.7 + 0.5 · 0.4 · 0.3
= 0.26

(2.18)

Technically, it is sufficient to compute the disjoint cover of the formula
instead of the DNF [40]. We will not explore this further, and instead consider
the use of BDDs in the probability computation, as demonstrated by Ghosh et
al [44]. In VossII, we can write this as:

cletrec bdd2p sp bdd =

IF bdd == F THEN 0.0 ELSE

IF bdd == T THEN 1.0 ELSE

val (v,H,L) = top_cofactor bdd in

let prob = assoc v sp in

let res_L = bdd2p sp L in

let res_H = bdd2p sp H in

(1.0- prob)*res_L + prob*res_H;

Since the implementation leverages memoization, the computation runs in time
linear to the size of the BDD.

We note that if all signal probabilities are 0.5, we can write this as

let bdd2p_tc bdd =

let deps = depends bdd in

let num = truth_cover deps bdd in

let den = 2**(length deps) in

(int2float num) / (int2float den);

which is equivalent to equation 2.15. With these components in place, the
power model can now be evaluated exactly, using the provided input signal
probabilities.

2.9.3 Symbolic power computation

Combining the above methods with BDD-based symbolic simulation, we can
compute the power consumption of a circuit exactly, provided the signal
probabilities for the inputs. This approach of symbolic power analysis has
previously been explored by Monteiro et al. [43]. In this section, we demonstrate
how this can be implemented in VossII, using a 4-bit RCA as an example,
shown in Figure 2.9. The triangles in the diagram represent artificial phase
delays, which are included to demonstrate the appearance of glitches. These
delays are not meant to represent realistic timing behavior and will not be
explored further; for additional details, see [45]. In our framework, a phase
represents one unit of simulation time, with 1000 phases corresponding to one
full clock cycle.

30 CHAPTER 2. BACKGROUND

Figure 2.9: 4-bit RCA with inserted delays.

Given this circuit, we can set up the symbolic simulation as follows:

let all_nodes = md_expand_vectors (nodes ckt);

let input_nodes = md_expand_vectors (inputs ckt);

let ant =

let input_stimuli nd =

let val_before =

variable nd in

let val_after =

variable (nd^"_1") in

[(T, nd, val_before , 0, 1000),

(T, nd , val_after , 1000, 2000)] in

flatmap input_stimuli input_nodes;

let ste =

STE "-e" ckt [] ant [] [];

Once the STE run is complete, we implement the nd xors function to obtain
a list of toggle expressions for a node. We omit the implementation here, as
it is lengthy and detracts from the main focus. With these expressions, we
can compute the power as a bit-vector, as shown in Listing 2.7. This function
implements equation 2.9.

Listing 2.7: Symbolically computing the total power.

let power_bv =

let nd_power nd =

let cap = int2bv (length (fanout ckt nd)) in

let changes = map bdd2bv (nd_xors nd) in

bv_mul cap (bv_sum changes) in

bv_sum (map nd_power all_nodes);

For simplicity we assume uniform inputs, with which we can compute the
probability of each outcome, that is, the value of the bit-vector, as shown in
Listing 2.8. From this we can then compute the average power, which turns
out to be 413.664. We can also plot the power as a distribution, shown in
Figure 2.10.

2.9. AVERAGE POWER ESTIMATION 31

Listing 2.8: Average power computation utilizing the bdd2p tc from before.

let maximum = bv_max power_bv;

let xs = (0--maximum);

let ys = map (\x. bdd2p_tc (power_bv = int2bv x)) xs;

let products = map (\(x,y). (int2float x)*y) (zip xs ys);

let avg = accumulate fadd products;

Figure 2.10: Power distribution for a 4-bit ripple-carry adder with the power
on the x-axis and probability on the y-axis, assuming uniform inputs. For each
value of x, the probability y(x) is the number of is the vectors that makes the
circuit use x power, divided by the total number of input vectors. The average
is marked.

An important observation is that if we are only interested in the average
power, then we do not need to compute the power bv expression due to the
linearity of expectation. Analytically, with a zero-delay model, we have

E [P] = E

∑

g∈G

fanoutg ·
(
g(v⃗0)⊕ g(v⃗1)

)

=
∑

g∈G

fanoutg · E
[(
g(v⃗0)⊕ g(v⃗1)

)]

(2.19)

meaning we can compute the activity for each node separately, and compute
the sum and get the same result. Furthermore, if we have glitches, this holds

32 CHAPTER 2. BACKGROUND

for each transition expression:

E [P] = E

∑

g∈G

fanoutg ·
(
(g(v⃗0)⊕ ga) + (ga ⊕ g(v⃗0)

)

=
∑

g∈G

fanoutg ·
(
E
[
(g(v⃗0)⊕ ga)

]
+ E

[
(ga ⊕ g(v⃗0)

])

(2.20)

This lets us compute the average as follows, which is significantly faster:

let avg =

let nd_avg nd =

let cap = int2float (length (fanout ckt nd)) in

let toggle_probs = map bdd2p_tc (nd_xors nd) in

cap * (fsum toggle_probs) in

fsum (map nd_avg all_nodes);

2.9.4 An aside: sequential circuits

While not something we will pursue further in this thesis, a natural and necessary
extension of our work is to expand beyond purely combinational circuits and
consider sequential circuits. The simplest such circuits, deterministic finite
state machines, can be modeled by augmenting combinational logic with D
flip-flops. The behavior of such circuits can be captured by Boolean functions
Output(v⃗, σ) and NextState(v⃗, σ), where v⃗ denotes primary inputs and σ is
the current state. These functions typically share logic and together form the
circuit’s combinational block, as visualized in Figure 2.11.

Figure 2.11: A deterministic finite state machine.

The average power consumption of this combinational block is given by:
∑

σ∈S

Pr{in σ} · E[P (v⃗, σ)],

where S is the set of all possible states and E[P (v⃗, σ)] is the expected power in
state σ. This analysis assumes no feedback from state to input, a simplifying

2.9. AVERAGE POWER ESTIMATION 33

but significant limitation. To solve this, we need to compute the probability
of being in each state. An exact solution can be obtained by solving the
Chapman-Kolmogorov equations, solving for a steady-state distribution v⃗
satisfying v⃗ · P = v⃗ for stochastic next-state matrix P [40].

This warrants an example, for which we will use a tiny two-bit branch
predictor circuit, whose behavior is captured in Figure 2.12. The circuit has a

Figure 2.12: State transition graph for a two-bit branch predictor.

single input bit t (taken) and a single output bit p (prediction). The state is
captured in two counter bits, increased when t is high and decreased when low.
Assuming the input bit has signal probability pt, the state transitions can be
captured with the stochastic matrix

P =

1− pt pt 0 0
1− pt 0 pt 0

0 1− pt 0 pt
0 0 1− pt pt

 (2.21)

where we interpret the row as the starting state and the column as the next state.
Multiplying a current-state probability vector with P gives the probabilities
for the next state, for example:

[
1 0 0 0

]
· P =

[
1− pt pt 0 0

]
(2.22)

Solving for fix-point vector v⃗ in v⃗P = v⃗ (or v⃗(P − I) = 0) gives us a vector
whose elements represent the probability of being in each state. This is a linear
equation and can be solved with straightforward Gaussian elimination for small
examples. With input probability pt =

1
2 , we obtain v⃗ =

[
1
4

1
4

1
4

1
4

]
, i.e.

each state is equally likely. If however the branch is taken often, say pt = 0.8,
we get

[
1
85

4
85

16
85

64
85

]
, skewing the distribution towards the taken side.

A major challenge is scalability: with n flip-flops, the state space grows
exponentially to 2n, such that P becomes a 2n × 2n matrix. Previous work has
addressed this through approximation techniques [40], but we theorize that
with symbolic methods, we can push the limits of an exact solution. We discuss
this as a future work in Chapter 4.

34 CHAPTER 2. BACKGROUND

2.9.5 The problem of correlations

Returning to our symbolic power computation, one key limitation of the
approach so far is the treatment of input signal probabilities. While BDDs
effectively model correlations within the circuit itself, we assume that the input
signals are independent. In practice, this assumption often breaks down due to
two types of correlation: temporal correlation—dependencies between the values
of the same signal across clock cycles—and spatial correlation—dependencies
between different input signals at a given time [40]. Fundamentally, both types
of correlation reduce to the problem of accurately capturing joint probability
distributions.

To illustrate temporal correlation, consider a signal a in two consecutive
cycles: we denote its value in the first cycle as a, and in the second as A.
We can assign signal probabilities Pr{a = T} and Pr{A = T} independently,
but this ignores any statistical relationship between them. In real systems,
these values may be strongly correlated. Empirical results show that neglecting
temporal correlation can lead to power estimation errors ranging from 15 % to
50 % [46].

To address temporal correlation, transition probabilities can be used. For
each bit, four probabilities P00, P01, P10, and P11 are specified to describe the
likelihood of each possible transition from one cycle to the next. Incorporating
this into our symbolic method is straightforward: we need only adapt the
bdd2p function to handle pairs of Boolean variables representing transitions.
While this modification is conceptually simple, we omit the implementation
details here.

While modeling temporal correlation improves our control over signal
behavior across time, it does not capture spatial correlation—dependencies
between different input signals in the same cycle, which are also important
for accurate power estimation. One way to approximate spatial correlation
is through correlation coefficients [47], which quantify pairwise dependencies
between input signals. Correlation coefficients are also used in the field of
reliability [42].

Recall from our earlier discussion on sequential circuits that the inputs to
the combinational logic consist of both the primary inputs and the current
state. Estimating power in this setting requires computing the probability
distribution over all state bits—effectively modeling spatial correlation among
them—before applying symbolic power computation.

The second paper of this thesis addresses techniques for managing these joint
distributions, applicable to both scalar and symbolic simulation, as summarized
in Section 3.2.

Chapter 3

Paper Summaries

3.1 Higher-order Hardware: Implementation
and Evaluation of the Cephalopode Graph
Reduction Processor

3.1.1 Motivation

The paper focuses on the domain of resource-constrained environments, such as
those found in the Internet of Things (IoT). IoT devices, like other embedded
systems, are typically designed with strict resource limitations. Energy efficiency
is especially critical, as these devices are often powered by batteries and are
expected to function for extended periods – often several years – without
the need for battery replacement. Due to these strict energy consumption
constraints, the compute power and memory available on these chips are highly
limited. As a result, they are typically programmed using low-level languages
such as C and C++, which offer minimal runtime overhead and direct access
to hardware.

This simplicity comes at the expense of the abstractions and safety features
provided by higher-level languages, particularly memory safety. This trade-
off has already led to security vulnerabilities in IoT devices, with incidents
including smart fridges exposing Gmail credentials [48], cars being remotely
hijacked [49], and household gadgets being exploited to launch large-scale DDoS
attacks [50].

As an initial illustrative example of how such issues can arise, we consider the
small C program shown in Listing 3.1. This program contains a precomputed
array, primes, which encodes the primality status of the first 256 natural
numbers. When the array is indexed with a number a, the function is prime

returns 1 if a is prime and 0 otherwise. For instance, the first four entries
of the array are [0, 0, 1, 1], accurately reflecting the primality of the numbers
[0, 1, 2, 3].

In the main function, we try this for the number 131. We compile and run
the program, and get

35

36 CHAPTER 3. PAPER SUMMARIES

Listing 3.1: Prime number example.

static WORD primes [] = {

0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

};

WORD is_prime(WORD nr) {return primes[nr];}

void main(void) {

WORD number = 131;

if (is_prime[number])

printf("131 is a prime.\n");

else

printf("131 is not a prime .\n");

}

131 is not a prime.

which is wrong. What caused the issue? It turns out that WORD is defined as a
signed char, which is an 8-bit integer type capable of representing values in the
range [−128, 127]. As a result, the value 131 is interpreted as −125, causing
the program to index the array at position −125. This accesses a memory
location outside the bounds of the array, which in this case happened to contain
the value 0. Fortunately, this particular memory region did not contain any
sensitive data, such as a password.

Simple mistakes like this can be detected by the compiler, provided that
warnings are enabled. In this case, the variable number is assigned a value that
exceeds the representable range of its declared type, allowing the compiler to
identify the issue through static analysis and issue a warning. However, with
more subtle or complex bugs, we may not be as fortunate.

For example, consider the program presented in Listing 3.2. It includes a
function, avg, that calculates the average of an array of numbers, where the
end of the array is indicated by the value 0. This time, we also incorporate a
set of tests to help detect potential errors. In the main function, these tests
are executed first, and the program will terminate if any of them fail. If all
tests pass, execution proceeds to the primary logic, where we process a set
of temperature readings from a hypothetical boiler. We want the program to
shut down the boiler if the average temperature exceeds 55 degrees, which we

3.1. HIGHER-ORDER HARDWARE: IMPLEMENTATION AND EVALUATION OF THE
CEPHALOPODE GRAPH REDUCTION PROCESSOR 37

anticipate will occur for the given readings (50, 60, 70). The expected average,
60, is also well within the representable range of a signed char. As before, we

Listing 3.2: Mean value example.

WORD avg(WORD* items) {

WORD sum = 0, cnt = 0;

while (*items != 0) {

sum += *items;

items ++; cnt++;

}

if (cnt != 0) return sum / cnt;

return 0;

}

void test_avg(void) {

WORD arr [10];

arr [0]=5; arr [1]=0;

if (avg(arr) != 5) panic("FAIL!");

arr [0]=20; arr [1]=30; arr [2]=40; arr [3]=0;

if (avg(arr) != 30) panic("FAIL!");

arr [0] = -20; arr [1] = -30; arr[2] = 10;

arr [3] = 40; arr[4] = 30; arr[5] = 0;

if (avg(arr) != 6) panic("FAIL!");

}

void main(void) {

test_avg ();

printf("All tests passed .\n");

// "Real" program starts here

WORD temp [10];

temp [0] = 50; temp [1] = 60; temp [2] = 70; temp [3] = 0;

if (avg(temp) > 55)

printf("Turn off boiler .\n");

else

printf("Keep boiler running .\n");

}

compile and run the program, which outputs

All tests passed.

Keep boiler running.

which, once again, is wrong. And the kitchen is on fire.
In this case, the issue is an integer overflow. Although the expected

average value, 60, falls within the representable range, the intermediate value
sum computed in the avg function becomes 50 + 60 + 70, which exceeds the
allowable range and causes an overflow. Errors like this are dynamic in nature
and typically cannot be detected by the compiler.

In high-level languages, such errors are typically prevented by the language’s
built-in safeguards. Most of these languages raise an exception when attempting
to access elements outside the bounds of an array, thereby preventing errors
like the one in the first program. Additionally, languages such as Python and
Haskell use arbitrary-precision arithmetic, which helps avoid issues like integer
overflow.

38 CHAPTER 3. PAPER SUMMARIES

High-level functional languages such as Haskell present a compelling option
for programming embedded devices. They have demonstrated strong potential
in enabling programming environments that support security and privacy
guarantees without placing significant burdens on the developer [51], [52]. Like
most high-level languages, Haskell offers memory safety, which helps prevent
low-level programming errors. Its robust type system further aids in catching
many mistakes at compile time. However, Haskell’s particular emphasis on
higher-order functions and polymorphism enhances opportunities for code reuse,
and less code generally translates to a reduced likelihood of errors.

Unfortunately, there is a clear reason why microcontrollers are not typically
programmed in Haskell: the size and complexity of its runtime system. In
practice, this refers to the runtime system of the Glasgow Haskell Compiler
(GHC), which is effectively the only widely used Haskell compiler. The GHC
runtime system has proven challenging to deploy in resource-constrained en-
vironments, rendering it infeasible for use on small embedded devices [53].
Moreover, it relies on garbage collection, which complicates the ability to de-
liver the strict performance guarantees often required by real-time systems—a
common demand in many embedded applications.

Instead of depending on a full-featured software runtime system, another
approach is to design a specialized hardware architecture that can natively
execute a high-level language, incorporating essential features like garbage col-
lection directly into the hardware. The Cephalopode processor exemplifies this
strategy, aiming to combine the safety and ease-of-use of high-level languages
with the stringent resource limitations of embedded systems—prioritizing min-
imal energy consumption as its central design objective.

3.1.2 Design

Although the primary focus of the author was on the evaluation, we will briefly
outline the design and implementation for completeness. For more information
on the design of the processor, we refer to the PhD thesis of the first author [54].

The program execution model in Cephalopode is based on combinator
graph reduction. In this approach, a program is compiled into a small set of
primitive functions known as combinators, which are used to build a graph
representing the program. Computation proceeds by systematically applying
these functions—reducing the graph—until no further reductions are possible.
For a detailed explanation, we refer the reader to Turner’s original work [55].
A common notion regarding combinator graph reduction is that it is memory-
intensive: a topic we will revisit later.

A helpful analogy is to think of combinators as opcodes: the high-level
language is compiled into a sequence of these primitive operations, and execution
involves examining the next opcode along with its arguments and performing
the corresponding action.

Figure 3.1 provides a high-level overview of the Cephalopode architecture.
At its core is the graph reduction engine, which traverses the graph and
performs reduction steps, delegating arithmetic and logic operations to the
ALU as needed. The combinator graph is stored in RAM and updated in-place

3.1. HIGHER-ORDER HARDWARE: IMPLEMENTATION AND EVALUATION OF THE
CEPHALOPODE GRAPH REDUCTION PROCESSOR 39

during execution, with memory management handled by the allocator.

Figure 3.1: The architecture of Cephalopode.

One of the most notable components is the hardware-based garbage collec-
tion unit, which uses a tracing approach. Instead of employing a traditional stop-
the-world collector—unsuitable for real-time embedded systems—Cephalopode
performs garbage collection concurrent with program execution. This is made
possible by the key insight that garbage remains garbage until it is freed [56],
allowing collection to safely operate on a snapshot of the graph, with any newly
created garbage handled in subsequent passes. Because of the snapshotting
approach, memory usage is effectively doubled. However, we mitigate this
overhead using a copy-on-write strategy to minimize unnecessary duplication.
Further details can be found in the paper.

The final design point to mention is that of arithmetic precision. We recall
from the example in Listing 3.2 that arithmetic overflow errors can be subtle,
and that many high-level languages provide arbitrary-precision capabilities for
avoiding this. In Cephalopode, this capability is provided in the hardware.
All numbers are fixed-precision by default, becoming a arbitrary-precision
automatically when needed. Fixed-precision numbers fit into one graph node,
while arbitrary-precision integers are represented as a list of chunks. Essentially,
this approach combines the speed of fixed-precision with the safety of arbitrary-
precision. In the paper, we referred to this mechanism as multiple-precision,
though we later adopted the term dynamic precision.

3.1.3 Evaluation

The design and evaluation flow for Cephalopode is illustrated in Figure 3.2.
The processor is developed using the Bifröst system [57], whose output is passed
to VossII to generate a Verilog file (ceph.v) for evaluation. Note that this

40 CHAPTER 3. PAPER SUMMARIES

process covers only the core; the memories are not synthesized, a point we will
revisit later. This Verilog description is then synthesized into a netlist using
industrial-grade synthesis tools. Our analysis is based on post-synthesis results
rather than post-place-and-route, as the latter process is significantly more
complex and was deemed outside the scope of this work. After synthesis, we can

Figure 3.2: High-level overview of the evaluation for Cephalopode. The corres-
ponding flow for MicroHs is in Figure 3.3.

extract figures for the maximum clock frequency and gate count. Additionally,
we obtain a preliminary power estimate using vector-free power estimation
techniques, which report an approximate consumption of 2.2 mW. However,
we know from Section 2.9 that vector-free estimates can be highly inaccurate;
to achieve more reliable results, it is necessary to run benchmark programs on
the processor.

To assemble a representative benchmark suite for IoT applications, we
selected one program from each class in IoTBench [58]. These are small
programs, ranging from a recursive computation of 10! to a 10 × 10 matrix
multiplication. The programs are compiled using a basic compiler that produces
a ROM image containing the corresponding combinator graph, which can be
loaded into the ROM memory for simulation on the netlist. We do not elaborate
on the compiler here and refer the reader to the paper for details, noting only
that it applies little to no optimization.

Using vector-based power estimation, we observe a power consumption
ranging from 300 µW to 400 µW across different programs, with an average of
approximately 330 µW. This represents an 85 % reduction compared to the
2.2 mW estimated using vector-free methods.

Up to this point, our analysis has focused solely on the processor core,
excluding the memories. The memories are modeled in behavioral Verilog
and are not synthesized, requiring us to develop a separate power model for

3.1. HIGHER-ORDER HARDWARE: IMPLEMENTATION AND EVALUATION OF THE
CEPHALOPODE GRAPH REDUCTION PROCESSOR 41

them based on the target implementation technology. In desktop systems,
main memories are typically built using DRAM cells due to their low cost
per bit. However, DRAM exhibits higher power consumption than SRAM
because it must be periodically refreshed. Additionally, DRAM is significantly
slower than SRAM, and since graph reduction is highly memory-intensive, fast
memory access is critical. For these reasons, we assume that the memories
are implemented using SRAM cells. Accordingly, we model memory accesses
such that each read or write operation completes in a single phase, making the
memories functionally similar to L1 caches in high-performance systems [4].

With the decision to use SRAM cells, we require an energy consumption
model. Since the processor is synthesized using the ASAP7 standard cell library,
we draw on prior experimental data from this library, which reports energy
usage of approximately 0.25 pJ per write and 0.23 pJ per read [59]. Based on
this, our model scales the energy per access by the memory width, yielding:

E = mem width · (0.25 ·#writes+ 0.23 ·#reads).

The static power consumption of SRAM is near-zero, so we exclude it from the
analysis [60]. Tracking memory accesses is straightforward using counters in
the behavioral memory module that are incremented for each read and write.

For evaluation, we need to compare the processor to another system setup
(hardware and software) that one may reasonably use for embedded devices.
For hardware, we use a small RISC-V processor [61], [62]. In terms of software,
we use two setups, seeking to answer two different questions. First, we compare
with handwritten C code, comparing the energy consumption while accepting
the risks of low-level languages. Secondly, we aim to investigate alternative
options for programming IoT devices using high-level functional languages.
At first glance, this seems challenging, as we cannot rely on GHC—its large
runtime system was the very reason this project was initiated. Fortunately, an
alternative exists: in spring 2023, Augustsson began developing MicroHs, a
lightweight Haskell compiler that translates Haskell programs into combinator
graphs [63]. These graphs, which represent the compiled programs, are executed
by the minimalist MicroHs runtime system. This is written in C, and is small
enough to fit within the memory constraints of typical IoT devices.

For both approaches, we need a way to compile and execute C code on the
simulated RISC-V core. For this, we use the GNU GCC RISC-V toolchain [64]
to create memory images for the ROM and RAM memories. These are then
loaded into the memories for simulation.

For MicroHs, there are some prior steps to consider. The MicroHs compiler
mhs is first compiled normally, on a regular desktop machine. The resulting
binary is then used to compile the Haskell program into a combinator graph
file, which essentially is a large C array containing the combinator graph. This
is bundled together with the MicroHs runtime and compiled to ROM and RAM
images as before. Figure 3.3 illustrates the evaluation flow, which we note is
very similar to Cephalopode.

As a final note before we show the results, recall that Cephalopode uses
what we call dynamic precision. In MicroHs, at the time the paper was

42 CHAPTER 3. PAPER SUMMARIES

Figure 3.3: Evaluation flow for MicroHs on the RISC-V core.

written1, arbitrary precision was implemented as a library rather than runtime
system primitives. As a result, its performance is significantly worse than
it would be in a lower level implementation. Therefore, we compare both
with fixed-precision and arbitrary-precision MicroHs, concluding that the ”real”
number is somewhere in between. We do the same for C, where we use the
arbitrary-precision arithmetic package from VossII [65].

We now present the results. Figure 3.4 shows the energy consumption
comparisons relative to Cephalopode. First, we examine the comparison
between Cephalopode and MicroHs, addressing the question of alternative
options for executing high-level functional languages on low-level platforms.
The geometric mean (GM), is shown to the far right. The data reveals that
Cephalopode consumes 17 times less energy than fixed-precision MicroHs and
174 times less than arbitrary-precision MicroHs running on the RISC-V core.
To provide some context, imagine a battery that could power Cephalopode
for 10 years. That same battery would only last 7 months for the fixed-
precision MicroHs implementation, and just 3 weeks for the arbitrary-precision
version. In conclusion, we conclude that Cephalopode is an energy-efficient
hardware execution engine for high-level functional languages. We then evaluate
the results of handwritten C code running on a RISC-V platform, thereby
addressing the question of Cephalopode’s energy efficiency in comparison to
low-level implementations, while acknowledging the inherent trade-offs and
risks of working in low-level languages. As expected, the fixed-precision C
version achieves the highest efficiency—approximately 50 times more memory
efficient than Cephalopode—while the arbitrary-precision C version performs
about twice as efficiently. However, it is noteworthy that Cephalopode, despite

1The arbitrary-precision implementation in MicroHs has been improved since the paper
was published. Private communication, Augustsson, 2024.

3.1. HIGHER-ORDER HARDWARE: IMPLEMENTATION AND EVALUATION OF THE
CEPHALOPODE GRAPH REDUCTION PROCESSOR 43

Figure 3.4: Energy consumption of the systems relative to Cephalopode. GM,
to the far right, is the geometric mean of the results.

being a high-level and type-safe system, remains remarkably competitive with
the arbitrary-precision C code. This demonstrates the ability of Cephalopode
to deliver strong performance without sacrificing the benefits of abstraction
and safety.

A deeper analysis of power consumption reveals interesting insights. Fo-
cusing solely on the processor cores and excluding memory, Cephalopode
draws just 336 µW, outperforming the RISC-V core, which consumes 445
µW—despite Cephalopode being approximately 3.6 times larger in terms of
gate count (49,000 vs. 13,500 gates). This efficiency can be largely attributed
to the inherently low-power nature of the combinator graph reduction execution
model. Another key contributor is Cephalopode’s use of clock gating, which is
a technique for minimizing dynamic power consumption by disabling the clock
from unused parts of the circuit [4]. When clock gating was first introduced
in Cephalopode, core power dropped by approximately 40 %. Cephalopode
operates with 18 distinct clock domains, allowing most of the processor to
remain inactive during execution.

3.1.4 Related work and conclusions

Cephalopode introduces a new design point within the field of custom pro-
cessors for functional languages. This area of research was particularly active
in the 1980s, spurred by Turner’s 1979 paper on using combinators for program
evaluation [66]. Notable historical examples include SKIM [67], NORMA [68],
TIGRE [69], and the G-machine [70]. The G-machine later influenced the devel-
opment of the Spineless Tagless G-machine [71], which remains the foundation

44 CHAPTER 3. PAPER SUMMARIES

of GHC today, largely because of its efficiency on conventional computer archi-
tectures, especially in minimizing memory accesses. More recent contributions
to the field include the Reduceron [72] and the Heron processor [73]. To the
best of our knowledge, however, Cephalopode is the first design specifically
aimed at resource-constrained devices, with low energy consumption as the
primary objective.

In conclusion, Cephalopode demonstrates that specialized hardware for
executing functional languages in resource-limited environments is both a
practical and efficient solution. It adds a new option in the design space
where the trade-offs among hardware resources, energy efficiency, programming
abstraction, and security must be carefully considered.

3.2. BDD-BASED METHODS FOR CONSTRAINED AND BIASED SIMULATION-VECTOR
GENERATION 45

3.2 BDD-Based Methods for Constrained and
Biased Simulation-Vector Generation

This paper introduces methods for generating input vectors for hardware
simulation that conform to arbitrary input distributions, using BDDs as the
core computational tool. These methods have broad applicability in the domain
of verification, where properties are often formulated as implications—that is,
a property must hold only whenever a specified precondition is satisfied. If
the precondition does not hold, the test case is considered irrelevant and can
be discarded. This concept forms the basis of constrained vector simulation,
which focuses on generating only those input patterns that meet the specified
constraints.

In Section 2.9 we detailed how to compute the power of a combinational
circuit as a function of its input vectors. This can be done using either scalar
inputs (useful in approximate solutions, e.g. Monte Carlo) or symbolic inputs
(for exact solutions). We also have seen how signal probabilities can bias the
input distribution, and then how transition probabilities give further control of
the input distribution.

However, methods for defining and generating arbitrary input vector dis-
tributions have not yet been addressed. This work introduces techniques that
enable symbolic power estimation under arbitrary input distributions. We
present methods that generate scalar vectors, and also techniques that work in
symbolic simulation.

3.2.1 Motivation and summary

We introduce the motivation for the problem at hand by gradually building
up its complexity. Consider a small example circuit with four input bits, and
suppose we want to generate input vectors of the form ⟨a, b, c, d⟩. These vectors
must satisfy a Boolean constraint C : B4 → B, which we assume is satisfiable.
In other words, every generated vector v⃗ must satisfy C(v⃗) = 1. To illustrate,
we reuse the mutex condition introduced in Section 2.7.5, which requires that
exactly one of four bits is set to true. Thus, ⟨F, F, F, T ⟩ satisfies the condition,
while ⟨F, T, F, T ⟩ violates it.

If we only require soundness—that is, all generated vectors satisfy the
constraint—then, technically, we could repeatedly produce the same valid
vector (e.g., ⟨F, T, F, F ⟩). While clearly insufficient for most purposes, this
still presents a computational challenge: even finding one satisfying vector is
generally NP-hard, as it involves solving the SAT problem for C.

However, we typically also want completeness: every vector satisfying C
should have a non-zero probability of being generated. This ensures coverage of
the entire solution space. This problem was addressed earlier in Section 2.7.5,
where we used param to create a parametric substitution for the example above.
Substitutions generated using param ensure soundness and completeness.

While soundness and completeness are often sufficient, there are many cases
where we also care about the distribution of the generated vectors. Typically,

46 CHAPTER 3. PAPER SUMMARIES

we want a uniform distribution, where each satisfying vector is equally likely
to be generated.

One straightforward approach to achieve uniformity is rejection sampling,
where we sample vectors uniformly from the full input space and test them
against the constraint C. Vectors that do not satisfy C are discarded, and
the process is repeated. This guarantees uniformity among the satisfying
vectors, assuming uniform initial sampling. While rejection sampling guarantees
uniformity, it becomes highly inefficient when the constraint is too restrictive.
For instance, if we consider the mutex constraint for vectors of length n, only
n
2n of the possible input vectors satisfy C, making the approach impractical for
large n given this constraint. Clearly, we also need to consider the sampling
efficiency.

If the constraint C can be encoded as a BDD, exact uniform sampling can
be achieved with the following baseline algorithm. We first compute the truth
cover (introduced in Section 2.8.1) of C—we denote this by tc(C). To generate
a vector, we then perform a walk down the BDD, branching to the low or high
child depending on their respective truth covers, as illustrated in Figure 3.5. In
the figure, we are about to pick the value for variable a, knowing that if we set
a = F there are 3 vectors that satisfy C, and 5 if a = T . We should therefore
set a = F with probability 3

3+5 .

Figure 3.5: Variable a should be set to F with probability 3
3+5 .

This process can be implemented by generating a new random value at
each decision node. However, a more efficient alternative is to randomize a
single value once and then follow a deterministic path based on that value.
Specifically, we sample an index i uniformly from the range [0, tc(C)−1], where
tc(C) is the truth cover for the constraint.

The walk proceeds as follows: at each node, we compare i with the truth
cover of the left child, tc(L). If i < tc(L), we continue to the left child L.
Otherwise, we move to the right child H and update the index: i′ := i− tc(L).
For example, in the figure above, suppose we sample i = 6. We check whether
6 < 3. This is false, so we move to the right and update the index to 6− 3 = 3.
We are now looking for the 3rd solution in a the H BDD, which we know has
5 solutions. This continues until all variables are assigned.

In the paper, we refer to this baseline method as tcwalk: truth cover-guided
walk. Thanks to memoization of truth cover, its complexity is O(n), where n

3.2. BDD-BASED METHODS FOR CONSTRAINED AND BIASED SIMULATION-VECTOR
GENERATION 47

is the number of variables in the BDD.
For our purposes in symbolic analysis of power consumption, we also want

the results to be usable in symbolic simulation. While methods like
rejection sampling generate individual vectors which cannot be used for this,
parametric substitutions can. Unfortunately, param does not not take the
distribution of values into account, and thus violate our uniformity requirement.
We recall the parametric substitution for the mutex condition that we computed
in Section 2.7.5:

⟨a[3], a[3] a[2], a[3] a[2] a[1], a[3] a[2] a[1]⟩ (3.1)

There are eight possible assignments to variables a[3], a[1], and a[1]. This
substitution maps four of them to ⟨T, F, F, F ⟩, two to ⟨F, T, F, F ⟩, and the
remaining solutions have one mapping each. In other words, applying uniform
input probabilities results in a highly skewed distribution.

As an alternative, consider the substitution

⟨a[1] a[0], a[1] a[0], a[1] a[0], a[1] a[0]⟩ (3.2)

in which every mutex vector has equal probability of being generated. Com-
puting substitutions like this is the first major contribution of the paper. To
this end, we introduce the function uparam, short for uniform parametric sub-
stitution. Given a constraint C, uparam generates a parametric substitution
that ensures: (1) all generated vectors satisfy C (soundness), (2) every vector
satisfying C can be generated (completeness), (3) all satisfying vectors are
produced with approximately equal probability (uniformity). Most importantly,
the results can be used in symbolic simulation, facilitating their use in our
symbolic analysis of power consumption.

A straightforward way to implement uparam is as a symbolic counterpart to
tcwalk. This involves first creating a symbolic version of the function that finds
the i-th solution—achieved simply by changing the index i from an integer to
a symbolic bit-vector. The randomization step at the top level is then handled
by introducing a bit-vector u that is large enough to represent any value in the
range [0, tc(C)−1]. We compute the symbolic index as i = u mod tc(C), which
effectively maps u into the desired range as uniformly as possible. Although the
implementation in the paper is more sophisticated—mainly to better leverage
memoization—it follows the same core idea.

With uparam covered, we drop the requirement of usability in symbolic
simulation at the moment. In some cases, we want to go beyond a uniform
distribution and allow for user-defined arbitrary distributions of the inputs.
For instance, if analyzing an adder, we may want to generate small inputs
more frequently than larger ones. In our work, we allow the user to provide
the distribution using a symbolic bit-vector, where substitution of vector v⃗
yields the frequency of v⃗. We call these FBVs, short for frequency bit-vectors.
Conceptually, an FBV can be viewed as a multiset (or ”bag”) of vectors, where
the frequency of a vector indicates how many times it appears in the bag.
Sampling from the FBV involves selecting a vector uniformly at random from
this multiset. For example, we have

48 CHAPTER 3. PAPER SUMMARIES

let a = bv_unsigned "a" 4;

let {fbv1::bv} =

IF a = ’0b0001 THEN ’5 ELSE

IF a = ’0b0010 THEN ’1 ELSE

IF (mutex cmd) THEN ’2 ELSE ’0;

This bit-vector effectively represents a frequency table for each value. By
substituting an input vector, we can retrieve its corresponding frequency:

let subst [v3,v2 ,v1,v0] =

substitute [("a[3]", v3), ("a[2]", v2),

("a[1]", v1), ("a[0]", v0)] fbv1;

subst [F,T,F,F]; // <F,T,F>, i.e. 2

subst [F,F,F,T]; // <F,T,F,T>, i.e. 5

subst [F,F,F,F]; // <F>, i.e. 0

The probability of selecting a specific vector v⃗ is given by:

Pr{Picking v⃗} = frequency of v⃗

sum of all frequencies in the FBV
. (3.3)

For example,

Pr{Picking ⟨F, F, T, F ⟩} = 1

5 + 1 + 2 + 2
= 10%.

To simplify the definition of such FBVs, we introduce the weighted switch

function, used as follows:

let a = bv_unsigned "a" 16;

let b = bv_unsigned "b" 16;

let adder_inputs_small = weighted_switch [

(30, (a = ’0) OR (b = ’0)),

(60, (a < ’16) AND (b < ’16)),

(10, T)];

This FBV specifies the distribution for generating bit-vectors a and b. In 30
% of the cases, either a = 0 or b = 0 is produced. In 60 % of the cases, both
a and b are generated with small values (less than 16). The remaining 10 %
covers all other values that do not meet the previous conditions.

We introduce the bv tcwalk algorithm for sampling from FBVs. Con-
ceptually, it is a variant of tcwalk where we replace the calls to tc with a
new function bv tc. This function computes the sum of all values that a
bit-vector may represent, that is, the denominator in equation 3.3. We leave
its implementation, and that of bv tcwalk itself, for the paper.

Our final contribution is nuparam (non-uniform param), a function that
computes a parametric substitution for arbitrary distributions under certain
simplifying assumptions. Instead of operating on FBVs, nuparam directly takes
a list of (weight, condition) pairs—similar in form to the arguments used in
weighted switch. This approach assumes that the weights sum to a power of
two, and that the conditions are mutually exclusive. If these assumptions are
not initially met, simple preprocessing steps can be applied to enforce them.
Further implementation details and discussion are provided in the paper.

3.2. BDD-BASED METHODS FOR CONSTRAINED AND BIASED SIMULATION-VECTOR
GENERATION 49

Table 3.1 summarizes our main contributions2 alongside related work, which
we will discuss shortly. A detailed performance comparison is not included at
this stage, as we have not yet conducted a thorough evaluation.

Table 3.1: Overview of contributed methods (top) and related work (bottom).
nuparam requires some simplification of its input, hence the asterisk.

Method Distribution
Supports symbolic

simulation
tcwalk Uniform No
bv tcwalk Arbitrary No
uparam Near-uniform Yes
nuparam Arbitrary* Yes
param No guarantees Yes
Relation circuits [74] No guarantees Yes
SAT-based [38][75][76][77][78] Near-uniform No
MCMC [79][80] Near-uniform No
Weighted BDDs [81][82] Bitwise biasing No

3.2.2 Related work

param was covered in Section 2.7.5. It computes parametric substitutions for a
constraint, meaning soundness and completeness are satisfied, and its output
can be used in symbolic simulation. However the distribution of generated
values is not considered.

Kukula et al. propose a method that can be seen as a generalization of
param [74]. Their method allows the the construction of a combinational circuit
satisfying a relation T(x,y) between inputs x and outputs y. However, much
like param, their method does not take distributions into account.

The following methods focus on the problem of constrained random simulation—
that is, generating individual satisfying assignments for a constraint C in a
manner that balances sampling efficiency and uniformity. Note that they
produce concrete vectors rather than symbolic representations, and thus are
not suitable for symbolic simulation.

SAT-based techniques have been widely used for this task. The general
strategy closely follows the approach used in approximate model counting, as
discussed in Section 2.8.2. Put simply, randomly generated XOR constraints are
added to the original formula to shrink the solution space to a manageable size.
Once the space is small enough, all satisfying assignments can be enumerated,
and one can be selected uniformly at random. The primary difficulty—and the
source of approximation—lies in how the constraints are chosen to ensure the
reduced space is neither too large nor empty [38], [75]–[78]. Thanks to this
reduction of the solution space, this approach can scale to problem sizes of
hundreds of thousands of variables.

2Referring to tcwalk as a contribution is generous, will be made clear in the related work
on weighted BDDs. Nevertheless, we include it for completeness.

50 CHAPTER 3. PAPER SUMMARIES

If a vector v⃗ is known to satisfy constraint C, then vectors similar to v⃗ are
likely to also satisfy C. Kitchen et al. applied this intuition in constrained
random simulation by applying MCMC (Markov Chain Monte Carlo) meth-
ods [79]. They use Gibbs sampling and generate each new sample by mutating
the previous one, with a recovery strategy in place for samples that violate
C—ultimately falling back on SAT solving when needed. Their system sup-
ports both integer and Boolean constraints, enabling the use of operations
like multiplication without the exponential blowup typically encountered with
BDDs. However, a known drawback of MCMC methods, Gibbs sampling in
particular, is that consecutive samples are highly correlated. To address this,
they maintain a ”pool” of previously generated samples and randomly select
one to mutate, reducing correlation to some extent. Their evaluation shows
promising results, with performance on par with BDD-based techniques, but
without the risk of exponential state space growth. Further details can be
found in Kitchen’s PhD thesis [80].

Finally, Yuan et al. present BDD-based method, which, alongside param,
is the closest to our work [81], [82]. Their algorithm consists of sampling
vectors that satisfy a constraint C provided as a BDD. Conceptually, it is a
generalization of tcwalk—which we originally implemented as a simplification
of their approach. Unlike tcwalk and the SAT and MCMC methods from
before, their technique allows for non-uniform sampling and by imposing
weights—which work like signal probabilities—on individual bits.

To clarify this, we again consider the 4-bit mutex example for vector
⟨a[3], a[2], a[1], a[0]⟩, where we now apply the biases:

Pr{a[3]} = 1

2
,Pr{a[2]} = 1

3
,Pr{a[1]} = 1

4
,Pr{a[0]} = 1

5
(3.4)

Given this, the weight of each vector is the product of the individual bit biases,
for instance:

w(⟨T, F, F, F ⟩) =
(
1

2

)
·
(
1− 1

3

)
·
(
1− 1

4

)
·
(
1− 1

5

)
=

24

120
(3.5)

The probability of generating a particular vector is the weight of the vector
divided by all weights. for instance the probability Pr{⟨T, F, F, F ⟩} is given by

w(⟨T, F, F, F ⟩)
w(⟨T, F, F, F ⟩) + w(⟨F, T, F, F ⟩) + w(⟨F, F, T, F ⟩) + w(⟨F, F, F, T ⟩) (3.6)

Which for our biasing is

24
120

24
120 + 12

120 + 8
120 + 6

120

=
24

50
(3.7)

This simplifies to a uniform distribution if no biasing is applied.
In tcwalk, we generate vectors using random walks down the BDD based on

truth cover. In their work, the role of truth cover is the placed by the weight
function, which also taking the biases into account. The weight function is
computed bottom-up as:

weight(n) = Pr{n} · weight(H) + (1− Pr{n}) · weight(L)

3.2. BDD-BASED METHODS FOR CONSTRAINED AND BIASED SIMULATION-VECTOR
GENERATION 51

for node n with biasing Pr{n} and children H and L. Figure 3.6 shows
the constraint BDD for the 4-bit mutex example where the nodes have been
annotated by their weights, biased according to equation 3.4. To exemplify a

Figure 3.6: Constraint BDD with weights.

weight computation, the weight of node n4 would be computed as:

Pr{a[1]} ·weight(n7) + (1−Pr{a[1]}) ·weight(n6) =
1

4
· 4
5
+

3

4
· 1
5
=

7

20
(3.8)

When walking down the data structure, we branch to H with probability
Pr{n}·weight(H)

weight(n) , and to L otherwise.

To demonstrate correctness, we consider the probability of generating the
vector ⟨1, 0, 0, 0⟩, which corresponds to a walk though nodes n1, n3, n5, n7, T :

Pr{a[3]}w(n3)

w(n1)

Pr{a[2]})w(n5)

w(n3)

Pr{a[1]})w(n7)

w(n5)

Pr{a[0]})w(T)
w(n7)

= (3.9)

w(T)

w(n1)
(Pr{a[3]}Pr{a[2]}Pr{a[1]}Pr{a[0]}) = (3.10)

1
5
12

(
1

2

2

3

3

4

4

5
) =

24

50
(3.11)

Which is the same probability that we computed in equation 3.7.
As previously mentioned, biasing individual input bits corresponds to signal

probabilities, in that we cannot take correlations between the bits into account.

3.2.3 Conclusions and future work

In summary, this paper introduces new techniques for generating vectors under
constraints and specified input distributions, applicable to both scalar and
symbolic simulation.

52 CHAPTER 3. PAPER SUMMARIES

There are several promising directions for future work. A key one is
conducting a thorough performance evaluation of the proposed algorithms,
with comparisons to existing approaches. This is particularly challenging for the
uparam and nuparam algorithms, as there is limited prior work to benchmark
against. A starting point would be to analyze their computational complexity,
which has not yet been determined. Preliminary findings suggest that while
these algorithms generally scale less favorably than param, the difference is
surprisingly small.

Related work on weighted BDDs highlights methods such as constraint
partitioning and simplification to improve scalability for larger problem in-
stances [81], [82]. Additionally, their framework supports varying constraints
and bias based on the current state. Neither of these are features we have
included in our methods, but would be very good to have.

Another avenue worth exploring is the use of binary moment diagrams
(BMDs) for specifying input distributions [83]. BMDs generalize BDDs by
supporting linear functions over integers or real numbers, offering a more
expressive representation framework.

Finally, and perhaps most significantly in the context of this thesis, is the
application of these methods to our ongoing work in symbolic power analysis.
While the paper includes some initial examples, the most compelling and
impactful developments are yet to come.

Chapter 4

Conclusions and future
work

In this thesis, we have explored the intersection of power consumption and
hardware security. We began by presenting the implementation and evaluation
of the Cephalopode processor—a custom, low-power processor designed to
execute high-level functional languages. The motivation for this stems from
the inherent security vulnerabilities of low-level languages, as demonstrated
by several practical examples we have examined. The energy efficiency of the
processor was compared against a low-power RISC-V core executing a similar
high-level language in software. The evaluation showed that Cephalopode
achieves strong energy performance, highlighting the effectiveness of custom
hardware designs in providing high security without sacrificing energy efficiency.

In the core of the thesis we have investigated the application of formal
verification tools in the area of power analysis in hardware circuits. This area
involves computing the power consumption of a circuit as a function of its
input vectors. The power consumption therefore becomes a function of the
distribution of the input vectors, adding the additional dimension of probability
to the problem. Whereas previous work only allowed for limited control of the
input distribution, we have seen how the second paper in this thesis allows for
efficiently describing and generating arbitrary distributions of input vectors,
for both scalar and symbolic simulation.

We now turn to directions for future work. It is helpful to frame this
discussion across three time horizons: short-term (weeks to months, or the next
paper), medium-term (spanning a few years or several publications ahead), and
long-term (extending over many years).

We first revisit the central research question: Is it possible to design circuits
that are provably secure against power side-channel attacks? This question can
be approached at three levels of abstraction:

53

54 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

• Analysis - What does it mean for a circuit to be secure against power
attacks? How should power be modeled?

• Verification - Given a specific circuit, how can we determine or prove
that it is secure?

• Design - Can we create circuits that are provably secure from the outset,
and can this be incorporated into a broader design methodology?

This thesis has concentrated solely on the analysis level. We have examined
power models that abstract the complex behavior of CMOS circuits into forms
amenable to formal analysis. We demonstrated how BDD-based symbolic
simulation can be used to represent power as a function of the primary circuit
inputs. Our main contribution lies in extending this analysis by enabling the
use of symbolic input distributions, thus allowing power consumption to be
studied as a posterior distribution determined by the input vector distribution.

Work remains with regards to bringing our tools into the verification stage.
The most important next step is to expand beyond purely combinational
circuits and consider sequential circuits. Since most real-world digital systems
are sequential in nature, this step is crucial for the broader applicability of our
methods. We discussed in Section 2.9.4 that the average power consumption
of the simplest sequential circuits, deterministic finite state machines, can
be computed by finding the probability of being in each state, which can be
found by solving a linear equation. The problem is state-explosion: with n
flip flops, there are 2n states. In future work, we aim to investigate the use of
symbolic methods to mitigate this. We anticipate that extending our analysis to
sequential circuits will be achievable within a short- to medium-term timeframe.

Another important consideration is the accuracy of the employed power
model. In our work, we have focused on a simple, deterministic model that
considers only dynamic power. As discussed in the introduction, proving
security under such a model may fail to account for ”higher-order” power
effects that a skilled attacker could potentially exploit. For example, the
model treats transitions like T → F and F → T as equivalent, which is not
entirely accurate. Similarly, even for gates implementing commutative Boolean
functions—such as NAND—the actual power consumption may differ slightly
depending on the input ordering, though our model does not distinguish
between them. Additionally, the influence of interconnects (wires), which
can represent a significant portion of total power consumption [4], is entirely
omitted. Naturally, incorporating more detailed power models would increase
computational complexity and may end up modeling variations too subtle to
be exploitable in practical attacks. While this can be worked on in the short
timeframe, it is likely more valuable to revisit once we have more insight into
assumptions about the attacker capability.

Also in the short to medium term, we aim to develop a tool for identifying
vulnerabilities to power side-channel attacks, thereby progressing into the veri-
fication phase. This tool would take a hardware circuit and corresponding
input specifications as input, and automatically flag potential security weak-
nesses. We can draw significant inspiration from existing tools designed for

55

timing side-channel analysis, such as Iodine [84] and WhisperFuzz [85]. It is
likely that we will build such a tool ourselves—possibly even one that integrates
both power and timing side-channel analysis. Once the tool is developed and
released, we plan to evaluate its usability, again looking to the usability studies
of timing-analysis tools for guidance [86].

In the long term, we can eventually consider the design stage—designing
circuits are provably secure from side-channel attacks. Here, we can draw
inspiration from functional verification: Can we design circuits that are provably
secure from the ground up, in the same way that we design circuits that are
provably correct from the ground up? This will invariably lead to trade-offs
between security and efficiency, requiring methods for quantifying leakage.

To explore the idea of quantifying leakage, we consider the following. The
contribution of our second paper enables the analysis of power consumption as a
posterior distribution derived from a given prior input distribution. This opens
the door to situating our work within the broader framework of quantitative
information flow [87]. In essence, this field models systems as mappings
from input distributions to output distributions, providing a foundation for
quantifying the likelihood of information—such as secrets—being leaked. We
speculate that the insight this brings will be highly useful in the case where
we allow some information to be leaked, but want to quantify the risk in
order to make informed trade-offs between security and efficiency. Like more
advanced power models, this may be more beneficial to return to later rather
than considering now.

One important direction we should pursue in the near future is the in-
tegration of alternative decision procedures—such as SAT and SMT solvers—
alongside BDDs. Recent advances in SMT technology [88] create promising
opportunities for experimentation and enhancements to our toolchain. Further-
more, VossII has recently integrated an SMT interface, making experimentation
easier. Regarding our work in symbolic constrained vector generation, we see
particular potential in SAT/SMT-based model counting techniques. Addi-
tionally, the floating-point capabilities of modern SMT solvers could prove
highly effective for probabilistic computations—for example, calculating the
probability distribution over states in sequential circuits. In this setting, formal
methods for linear algebra may also become increasingly relevant, as discussed
in [89]. We ourselves have done some preliminary work on symbolic linear
algebra, but this is still in the early stages.

Future work related to the input generation paper includes exploring ap-
proximate techniques, particularly those used in approximate SAT-based model
counting solvers. This is especially relevant for the uparam and nuparam al-
gorithms, whose computational complexity also remains to be fully analyzed.
Another promising direction is improving usability—specifically, identifying
convenient yet efficient methods for users to define input distributions. One
possible approach is developing a domain-specific language (DSL) for this
purpose, taking inspiration from tools like QuickCheck [90].

We conclude by outlining potential future directions for the evaluation
of Cephalopode. In our current evaluation, we synthesized the design and
performed all analysis on the post-synthesis results. Future work could take

56 CHAPTER 4. CONCLUSIONS AND FUTURE WORK

the processor closer to physical implementation, potentially mapping it onto an
FPGA. This would enable the collection of more realistic power measurements
and eliminate the need for a simulated memory model. Additionally, it would
facilitate more direct comparisons with related projects such as Heron [73].

Bibliography

[1] TOP500 Project, Top500 list - november 2024, Accessed: 2025-04-25, 2024.
[Online]. Available: https://top500.org/lists/top500/2024/11/ (cit.
on p. 3).

[2] U.S. Energy Information Administration, How much electricity does an
american home use? Accessed: 2025-04-25, 2024. [Online]. Available:
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3 (cit. on p. 3).

[3] P. Insights. “Bitcoin electricity consumption comparable to that of
poland.” Accessed: 2025-04-25. (2023), [Online]. Available: https://
www.polytechnique-insights.com/en/columns/energy/bitcoin-

electricity-consumption-comparable-to-that-of-poland/ (cit.
on p. 3).

[4] S. Kaxiras and M. Martonosi, Computer Architecture Techniques for
Power-Efficiency (Synthesis Lectures on Computer Architecture), en.
Cham: Springer International Publishing, 2008, isbn: 978-3-031-00593-
0 978-3-031-01721-6. doi: 10.1007/978- 3- 031- 01721- 6. [Online].
Available: https://link.springer.com/10.1007/978-3-031-01721-
6 (visited on 02/02/2023) (cit. on pp. 3, 9, 10, 41, 43, 54).

[5] M. Själander, M. Martonosi and S. Kaxiras, Power-Efficient Computer
Architectures: Recent Advances (Synthesis Lectures on Computer Ar-
chitecture), en. Cham: Springer International Publishing, 2015, isbn:
978-3-031-00617-3 978-3-031-01745-2. doi: 10.1007/978-3-031-01745-
2. [Online]. Available: https://link.springer.com/10.1007/978-3-
031-01745-2 (visited on 24/04/2025) (cit. on p. 3).

[6] Cybersecurity and Infrastructure Security Agency, Product security: Bad
practices, Accessed: 2025-04-25, 2024. [Online]. Available: https://www.
cisa.gov/resources- tools/resources/product- security- bad-

practices (cit. on p. 4).

[7] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” en, in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed., ser. Lecture
Notes in Computer Science, Berlin, Heidelberg: Springer, 1999, pp. 388–
397, isbn: 978-3-540-48405-9. doi: 10.1007/3-540-48405-1_25 (cit. on
p. 4).

57

58 BIBLIOGRAPHY

[8] P. Kocher, J. Jaffe, B. Jun and P. Rohatgi, “Introduction to differential
power analysis,” en, Journal of Cryptographic Engineering, vol. 1, no. 1,
pp. 5–27, Apr. 2011, issn: 2190-8516. doi: 10.1007/s13389-011-0006-y.
[Online]. Available: https://doi.org/10.1007/s13389-011-0006-y
(visited on 10/04/2024) (cit. on p. 4).

[9] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher and
D. Kohlbrenner, “Hertzbleed: Turning Power Side-Channel Attacks
Into Remote Timing Attacks on x86,” en, IEEE Micro, vol. 43, no. 4,
pp. 19–27, Jul. 2023, issn: 0272-1732, 1937-4143. doi: 10.1109/MM.
2023.3274619. [Online]. Available: https://ieeexplore.ieee.org/
document/10122602/ (visited on 20/11/2023) (cit. on p. 4).

[10] Y. Wang, R. Paccagnella, A. Wandke et al., “DVFS Frequently Leaks
Secrets: Hertzbleed Attacks Beyond SIKE, Cryptography, and CPU-Only
Data,” en, in 2023 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA: IEEE, May 2023, pp. 2306–2320, isbn: 978-1-66549-
336-9. doi: 10.1109/SP46215.2023.10179326. [Online]. Available:
https://ieeexplore.ieee.org/document/10179326/ (visited on
20/11/2023) (cit. on p. 4).

[11] E. Dubrova, K. Ngo, J. Gärtner and R. Wang, “Breaking a Fifth-Order
Masked Implementation of CRYSTALS-Kyber by Copy-Paste,” en, in Pro-
ceedings of the 10th ACM Asia Public-Key Cryptography Workshop, Mel-
bourne VIC Australia: ACM, Jul. 2023, pp. 10–20, isbn: 9798400701832.
doi: 10.1145/3591866.3593072. [Online]. Available: https://dl.acm.
org/doi/10.1145/3591866.3593072 (visited on 08/03/2024) (cit. on
p. 5).

[12] K. Ngo, E. Dubrova, Q. Guo and T. Johansson, “A Side-Channel Attack
on a Masked IND-CCA Secure Saber KEM Implementation,” en, IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 676–
707, Aug. 2021, issn: 2569-2925. doi: 10.46586/tches.v2021.i4.676-
707. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/9079 (visited on 10/12/2023) (cit. on p. 5).

[13] Y. Yu, F. Marranghello, V. D. Teijeira and E. Dubrova, “One-Sided
Countermeasures for Side-Channel Attacks Can Backfire,” in Proceedings
of the 11th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, ser. WiSec ’18, New York, NY, USA: Association
for Computing Machinery, Jun. 2018, pp. 299–301, isbn: 978-1-4503-
5731-9. doi: 10.1145/3212480.3226104. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3212480.3226104 (visited on 30/11/2023)
(cit. on p. 5).

[14] Y. Nasser, J. Lorandel, J.-C. Prévotet and M. Hélard, “RTL to Transistor
Level Power Modeling and Estimation Techniques for FPGA and ASIC:
A Survey,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 3, pp. 479–493, Mar. 2021, Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated Cir-

BIBLIOGRAPHY 59

cuits and Systems, issn: 1937-4151. doi: 10.1109/TCAD.2020.3003276
(cit. on pp. 5, 10, 27).

[15] L. T. Clark, V. Vashishtha, L. Shifren et al., “ASAP7: A 7-nm finFET pre-
dictive process design kit,” Microelectronics Journal, vol. 53, pp. 105–115,
Jul. 2016, issn: 0026-2692. doi: 10.1016/j.mejo.2016.04.006. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S002626921630026X (visited on 14/11/2023) (cit. on p. 10).

[16] P. Gupta and A. Kahng, “Quantifying error in dynamic power estima-
tion of CMOS circuits,” in Fourth International Symposium on Quality
Electronic Design, 2003. Proceedings., Mar. 2003, pp. 273–278. doi: 10.
1109/ISQED.2003.1194745. [Online]. Available: https://ieeexplore.
ieee.org/document/1194745 (visited on 24/04/2025) (cit. on p. 10).

[17] F. Najm, “Transition density, a stochastic measure of activity in digital
circuits,” in 28th ACM/IEEE Design Automation Conference, Jun. 1991,
pp. 644–649. doi: 10.1145/127601.127744 (cit. on p. 11).

[18] R. Burch, F. Najm, P. Yang and T. Trick, “A Monte Carlo approach for
power estimation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 1, no. 1, pp. 63–71, Mar. 1993, Conference Name:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
issn: 1557-9999. doi: 10.1109/92.219908. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/219908 (visited on
03/03/2025) (cit. on pp. 11, 27).

[19] C.-Y. Tsui, M. Pedram and A. Despain, “Exact and Approximate Meth-
ods for Calculating Signal and Transition Probabilities in FSMs,” in 31st
Design Automation Conference, ISSN: 0738-100X, Jun. 1994, pp. 18–23.
doi: 10.1109/DAC.1994.204066 (cit. on p. 11).

[20] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain and B.
Lin, “Power estimation methods for sequential logic circuits,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3,
no. 3, pp. 404–416, Sep. 1995, Conference Name: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, issn: 1557-9999. doi:
10.1109/92.406998. [Online]. Available: https://ieeexplore.ieee.
org/document/406998 (visited on 12/11/2024) (cit. on p. 11).

[21] S. Bhanja and N. Ranganathan, “Switching activity estimation of VLSI
circuits using Bayesian networks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 4, pp. 558–567, Aug. 2003, Con-
ference Name: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, issn: 1557-9999. doi: 10.1109/TVLSI.2003.816144. [Online].
Available: https://ieeexplore.ieee.org/document/1229864 (visited
on 13/03/2025) (cit. on p. 11).

[22] T.-L. Chou and K. Roy, “Accurate estimation of power dissipation
in CMOS sequential circuits,” in Proceedings of Eighth International
Application Specific Integrated Circuits Conference, ISSN: 1063-0988, Sep.
1995, pp. 285–288. doi: 10.1109/ASIC.1995.580733 (cit. on p. 11).

60 BIBLIOGRAPHY

[23] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing,
ser. STOC ’71, New York, NY, USA: Association for Computing Ma-
chinery, 1971, pp. 151–158, isbn: 978-1-4503-7464-4. doi: 10.1145/
800157.805047. [Online]. Available: https://dl.acm.org/doi/10.
1145/800157.805047 (visited on 24/04/2025) (cit. on p. 13).

[24] M. Davis, G. Logemann and D. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, Jul. 1962,
issn: 0001-0782. doi: 10.1145/368273.368557. [Online]. Available:
https://dl.acm.org/doi/10.1145/368273.368557 (visited on
24/04/2025) (cit. on p. 14).

[25] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506–521, May 1999, issn: 1557-9956. doi: 10.1109/12.769433.
[Online]. Available: https://ieeexplore.ieee.org/document/769433
(visited on 07/04/2025) (cit. on p. 14).

[26] A. Biere, A. Biere, M. Heule, H. van Maaren and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Ap-
plications. NLD: IOS Press, Jan. 2009, isbn: 978-1-58603-929-5 (cit. on
pp. 14, 23).

[27] Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, Aug.
1986, Conference Name: IEEE Transactions on Computers, issn: 1557-
9956. doi: 10.1109/TC.1986.1676819. [Online]. Available: https:
//ieeexplore.ieee.org/document/1676819 (visited on 26/03/2025)
(cit. on p. 14).

[28] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” in Proceedings of 1993 International Conference on Computer
Aided Design (ICCAD), Nov. 1993, pp. 42–47. doi: 10.1109/ICCAD.
1993.580029. [Online]. Available: https://ieeexplore.ieee.org/
document/580029 (visited on 24/04/2025) (cit. on p. 15).

[29] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–518,
isbn: 978-3-540-24605-3 (cit. on p. 18).

[30] C.-j. Seger and R. Bryant, “Formal Verification by Symbolic Evaluation
of Partially-Ordered Trajectories,” Formal Methods in System Design,
vol. 6, Mar. 1994. doi: 10.1007/BF01383966 (cit. on p. 19).

[31] M. D. Aagaard, R. B. Jones and C.-J. H. Serger, “Formal verification
using parametric representations of boolean constraints,” in Proceedings
of the 36th annual ACM/IEEE Design Automation Conference, 1999,
pp. 402–407 (cit. on p. 22).

BIBLIOGRAPHY 61

[32] M. Chavira and A. Darwiche, “On probabilistic inference by weighted
model counting,” Artificial Intelligence, vol. 172, no. 6, pp. 772–799, Apr.
2008, issn: 0004-3702. doi: 10.1016/j.artint.2007.11.002. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0004370207001889 (visited on 12/03/2025) (cit. on p. 24).

[33] M. Thurley, “sharpSAT – Counting Models with Advanced Component
Caching and Implicit BCP,” en, in Theory and Applications of Satis-
fiability Testing - SAT 2006, D. Hutchison, T. Kanade, J. Kittler et al.,
Eds., vol. 4121, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 424–429, isbn: 978-
3-540-37206-6 978-3-540-37207-3. doi: 10.1007/11814948_38. [Online].
Available: http://link.springer.com/10.1007/11814948_38 (visited
on 07/05/2025) (cit. on p. 25).

[34] S. Sharma, S. Roy, M. Soos and K. S. Meel, “GANAK: A Scalable
Probabilistic Exact Model Counter,” en, in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, Ma-
cao, China: International Joint Conferences on Artificial Intelligence
Organization, Aug. 2019, pp. 1169–1176, isbn: 978-0-9992411-4-1. doi:
10.24963/ijcai.2019/163. [Online]. Available: https://www.ijcai.
org/proceedings/2019/163 (visited on 12/03/2025) (cit. on p. 25).

[35] M. Soos and K. S. Meel, “BIRD: Engineering an Efficient CNF-XOR
SAT Solver and Its Applications to Approximate Model Counting,” en,
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, pp. 1592–1599, Jul. 2019, issn: 2374-3468, 2159-5399. doi: 10.
1609/aaai.v33i01.33011592. [Online]. Available: https://ojs.aaai.
org/index.php/AAAI/article/view/3974 (visited on 07/05/2025)
(cit. on p. 25).

[36] M. Soos, S. Gocht and K. S. Meel, “Tinted, Detached, and Lazy CNF-
XOR Solving and Its Applications to Counting and Sampling,” en, in
Computer Aided Verification, S. K. Lahiri and C. Wang, Eds., vol. 12224,
Series Title: Lecture Notes in Computer Science, Cham: Springer Inter-
national Publishing, 2020, pp. 463–484, isbn: 978-3-030-53287-1 978-3-
030-53288-8. doi: 10.1007/978-3-030-53288-8_22. [Online]. Available:
http://link.springer.com/10.1007/978- 3- 030- 53288- 8_22

(visited on 11/04/2025) (cit. on p. 25).

[37] J. Yang and K. S. Meel, Rounding Meets Approximate Model Counting,
arXiv:2305.09247 [cs], May 2023. doi: 10.48550/arXiv.2305.09247.
[Online]. Available: http://arxiv.org/abs/2305.09247 (visited on
07/05/2025) (cit. on p. 25).

[38] C. P. Gomes, A. Sabharwal and B. Selman, “Near-uniform sampling
of combinatorial spaces using XOR constraints,” in Proceedings of the
20th International Conference on Neural Information Processing Systems,
ser. NIPS’06, Cambridge, MA, USA: MIT Press, Dec. 2006, pp. 481–488.
(visited on 12/03/2025) (cit. on pp. 26, 49).

62 BIBLIOGRAPHY

[39] Cadence Design Systems, Genus Synthesis Solution, https : / / www .

cadence.com/en_US/home/tools/digital-design-and-signoff/

synthesis/genus-synthesis-solution.html, Accessed: 2025-05-05,
2025 (cit. on p. 26).

[40] F. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 2, no. 4, pp. 446–455, Dec. 1994, Conference Name: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, issn: 1557-9999. doi:
10.1109/92.335013 (cit. on pp. 27, 29, 33, 34).

[41] K. Parker and E. McCluskey, “Probabilistic Treatment of General Com-
binational Networks,” IEEE Transactions on Computers, vol. C-24, no. 6,
pp. 668–670, Jun. 1975, Conference Name: IEEE Transactions on Com-
puters, issn: 1557-9956. doi: 10.1109/T-C.1975.224279 (cit. on p. 27).

[42] Z. Wang, G. Zhang, J. Ye and J. Jiang, “Reliability Evaluation of Approx-
imate Arithmetic Circuits Based on Signal Probability,” in 2021 IEEE
International Test Conference in Asia (ITC-Asia), ISSN: 2768-069X, Aug.
2021, pp. 1–6. doi: 10.1109/ITC-Asia53059.2021.9808704 (cit. on
pp. 27, 34).

[43] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer and J. White, “Estimation
of average switching activity in combinational logic circuits using symbolic
simulation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 16, no. 1, pp. 121–127, Jan. 1997, Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, issn: 1937-4151. doi: 10.1109/43.559336 (cit. on
pp. 28, 29).

[44] A. Ghosh, S. Devadas, K. Keutzer and J. White, “Estimation of average
switching activity in combinational and sequential circuits,” in [1992]
Proceedings 29th ACM/IEEE Design Automation Conference, ISSN: 0738-
100X, Jun. 1992, pp. 253–259. doi: 10.1109/DAC.1992.227826. [Online].
Available: https://ieeexplore.ieee.org/document/227826 (visited
on 20/11/2024) (cit. on p. 29).

[45] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits (Monographs
in Computer Science), D. Gries and F. B. Schneider, Eds. New York,
NY: Springer, 1995, isbn: 978-1-4612-8698-1 978-1-4612-4210-9. doi:
10.1007/978- 1- 4612- 4210- 9. [Online]. Available: http://link.
springer.com/10.1007/978-1-4612-4210-9 (visited on 13/05/2025)
(cit. on p. 29).

[46] P. Schneider and S. Krishnamoorthy, “Effects of correlations on accuracy
of power analysis-an experimental study,” in Proceedings of 1996 Inter-
national Symposium on Low Power Electronics and Design, Aug. 1996,
pp. 113–116. doi: 10.1109/LPE.1996.547490 (cit. on p. 34).

[47] C.-Y. Tsui, M. Pedram and A. Despain, “Efficient estimation of dynamic
power consumption under a real delay model,” in Proceedings of 1993
International Conference on Computer Aided Design (ICCAD), Nov.
1993, pp. 224–228. doi: 10.1109/ICCAD.1993.580061 (cit. on p. 34).

BIBLIOGRAPHY 63

[48] J. Leyden, Samsung smart fridge leaves Gmail logins open to attack,
https://www.theregister.com/2015/08/24/smart_fridge_security_

fubar/, Accessed: 2023-11-20, Aug. 2015 (cit. on p. 35).

[49] A. Greenberg, “The Jeep Hackers Are Back to Prove Car Hacking Can
Get Much Worse,” en-US, Wired, Section: tags, issn: 1059-1028. [Online].
Available: https://www.wired.com/2016/08/jeep-hackers-return-
high-speed-steering-acceleration-hacks/ (visited on 20/11/2023)
(cit. on p. 35).

[50] Twitter, Email and Facebook, Hackers tapping home appliances to launch
attacks, en-US, Section: Science, Oct. 2016. [Online]. Available: https:
//www.sandiegouniontribune.com/news/science/sd-me-hackable-

home-20161003-story.html (visited on 20/11/2023) (cit. on p. 35).

[51] S. Marlow et al., “Haskell 2010 language report,” Available on: ht-
tps://www. haskell. org/onlinereport/haskell2010, 2010 (cit. on p. 38).

[52] P. Li and S. Zdancewic, “Encoding information flow in Haskell,” in
19th IEEE Computer Security Foundations Workshop (CSFW’06), ISSN:
2377-5459, Jul. 2006, 12 pp.–16. doi: 10.1109/CSFW.2006.13. [Online].
Available: https://ieeexplore.ieee.org/document/1648705 (visited
on 22/05/2024) (cit. on p. 38).

[53] J. Pope, J. Saget and C.-J. H. Seger, “Cephalopode: A custom pro-
cessor aimed at functional language execution for IoT devices,” en, in
2020 18th ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE), Jaipur, India: IEEE, Dec.
2020, pp. 1–6, isbn: 978-1-72819-148-5. doi: 10.1109/MEMOCODE51338.
2020.9315094. [Online]. Available: https://ieeexplore.ieee.org/
document/9315094/ (visited on 25/01/2023) (cit. on p. 38).

[54] J. Pope, “Once More, With Combinators: Designing a Low-Power Archi-
tecture for Functional Programming,” en, ISBN: 9789181030624, Ph.D.
dissertation, Chalmers University of Technology, 2024. [Online]. Available:
https://research.chalmers.se/en/publication/541212 (visited on
24/04/2025) (cit. on p. 38).

[55] D. A. Turner, “A new implementation technique for applicative languages,”
en, Software: Practice and Experience, vol. 9, no. 1, pp. 31–49, 1979,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380090105,
issn: 1097-024X. doi: 10.1002/spe.4380090105. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090105

(visited on 28/04/2025) (cit. on p. 38).

[56] T. Yuasa, “Real-time garbage collection on general-purpose machines,”
Journal of Systems and Software, vol. 11, no. 3, pp. 181–198, 1990 (cit. on
p. 39).

[57] J. Pope and C.-J. H. Seger, “Bifro¨st: Creating Hardware With Building
Blocks,” en, (cit. on p. 39).

64 BIBLIOGRAPHY

[58] S. Chen, C. Luo, W. Gao and L. Wang, “Iotbench: A data centrical
and configurable iot benchmark suite,” BenchCouncil Transactions on
Benchmarks, Standards and Evaluations, vol. 2, no. 4, p. 100 091, 2022
(cit. on p. 40).

[59] V. Vashishtha, M. Vangala, P. Sharma and L. T. Clark, “Robust 7-
nm SRAM design on a predictive PDK,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), ISSN: 2379-447X, May
2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050316. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8050316 (visited on
10/11/2023) (cit. on p. 41).

[60] P. Sandeep, P. A. Harsha Vardhini and V. Prakasam, “SRAM Utilization
and Power Consumption Analysis for Low Power Applications,” in 2020
International Conference on Recent Trends on Electronics, Information,
Communication & Technology (RTEICT), Nov. 2020, pp. 227–231. doi:
10.1109/RTEICT49044.2020.9315558. [Online]. Available: https://
ieeexplore.ieee.org/document/9315558 (visited on 13/11/2023) (cit.
on p. 41).

[61] A. Waterman and K. Asanovic. “The risc-v instruction set manual, volume
i: User-level isa, document version 2.2.” (2017) (cit. on p. 41).

[62] “Risc-v.” (), [Online]. Available: https://github.com/ultraembedded/
riscv (visited on 16/05/2013) (cit. on p. 41).

[63] Augustsson, Lennart, Microhs: Haskell implemented with combinators,
2024. [Online]. Available: https://github.com/augustss/MicroHs
(cit. on p. 41).

[64] RISC-V Collaborative, Risc-v gnu toolchain, 2023. [Online]. Available:
https://github.com/riscv-collab/riscv-gnu-toolchain (cit. on
p. 41).

[65] C.-J. Seger, The {VossII} Hardware Verification Suite, 2020. [Online].
Available: https://github.com/TeamVoss/VossII (cit. on p. 42).

[66] D. A. Turner, “A new implementation technique for applicative languages,”
Software: Practice and Experience, vol. 9, no. 1, pp. 31–49, 1979 (cit. on
p. 43).

[67] W. R. Stoye, “The implementation of functional languages using custom
hardware,” University of Cambridge, Computer Laboratory, Tech. Rep.,
1985 (cit. on p. 43).

[68] M. Scheevel, “NORMA: A graph reduction processor,” en, in Proceedings
of the 1986 ACM conference on LISP and functional programming -
LFP ’86, Cambridge, Massachusetts, United States: ACM Press, 1986,
pp. 212–219, isbn: 978-0-89791-200-6. doi: 10.1145/319838.319864.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=
319838.319864 (visited on 20/11/2023) (cit. on p. 43).

[69] P. J. Koopman Jr and P. Lee, “A fresh look at combinator graph reduc-
tion,” ACM SIGPLAN Notices, vol. 24, no. 7, pp. 110–119, 1989 (cit. on
p. 43).

BIBLIOGRAPHY 65

[70] L. Augustsson and T. Johnsson, “The chalmers lazy-ml compiler,” The
computer journal, vol. 32, no. 2, pp. 127–141, 1989 (cit. on p. 43).

[71] S. L. P. Jones, “Implementing lazy functional languages on stock hardware:
The Spineless Tagless G-machine,” Journal of functional programming,
vol. 2, no. 2, pp. 127–202, 1992 (cit. on p. 43).

[72] M. Naylor and C. Runciman, “The reduceron reconfigured,” in Proceed-
ings of the 15th ACM SIGPLAN international conference on Functional
programming, ser. ICFP ’10, New York, NY, USA: Association for Com-
puting Machinery, Sep. 2010, pp. 75–86, isbn: 978-1-60558-794-3. doi:
10.1145/1863543.1863556. [Online]. Available: https://dl.acm.org/
doi/10.1145/1863543.1863556 (visited on 20/11/2023) (cit. on p. 44).

[73] C. Ramsay and R. Stewart, “Heron: Modern Hardware Graph Reduction,”
in Proceedings of the 35th Symposium on Implementation and Application
of Functional Languages, ser. IFL ’23, New York, NY, USA: Association
for Computing Machinery, Jun. 2024, pp. 1–12, isbn: 9798400716317.
doi: 10.1145/3652561.3652564. [Online]. Available: https://dl.acm.
org/doi/10.1145/3652561.3652564 (visited on 28/04/2025) (cit. on
pp. 44, 56).

[74] J. H. Kukula and T. R. Shiple, “Building Circuits from Relations,” en,
in Computer Aided Verification, E. A. Emerson and A. P. Sistla, Eds.,
Berlin, Heidelberg: Springer, 2000, pp. 113–123, isbn: 978-3-540-45047-4.
doi: 10.1007/10722167_12 (cit. on p. 49).

[75] C. P. Gomes, W.-J. van Hoeve, A. Sabharwal and B. Selman, “Counting
CSP Solutions Using Generalized XOR Constraints,” en, (cit. on p. 49).

[76] S. M. Plaza, I. L. Markov and V. Bertacco, “Random Stimulus Generation
using Entropy and XOR Constraints,” in 2008 Design, Automation and
Test in Europe, ISSN: 1558-1101, Mar. 2008, pp. 664–669. doi: 10.1109/
DATE.2008.4484754. [Online]. Available: https://ieeexplore.ieee.
org/document/4484754 (visited on 13/03/2025) (cit. on p. 49).

[77] S. Deng, Z. Kong, J. Bian and Y. Zhao, “Self-adjusting constrained
random stimulus generation using splitting evenness evaluation and
XOR constraints,” in 2009 Asia and South Pacific Design Automation
Conference, ISSN: 2153-697X, Jan. 2009, pp. 769–774. doi: 10.1109/
ASPDAC.2009.4796573. [Online]. Available: https://ieeexplore.ieee.
org/document/4796573/?arnumber=4796573 (visited on 13/03/2025)
(cit. on p. 49).

[78] S. Chakraborty, K. S. Meel and M. Y. Vardi, “Balancing Scalability
and Uniformity in SAT Witness Generator,” in Proceedings of the 51st
Annual Design Automation Conference, ser. DAC ’14, New York, NY,
USA: Association for Computing Machinery, Jun. 2014, pp. 1–6, isbn:
978-1-4503-2730-5. doi: 10.1145/2593069.2593097. [Online]. Available:
https://dl.acm.org/doi/10.1145/2593069.2593097 (visited on
13/03/2025) (cit. on p. 49).

66 BIBLIOGRAPHY

[79] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in Proceedings of the 2007 IEEE/ACM interna-
tional conference on Computer-aided design, ser. ICCAD ’07, San Jose,
California: IEEE Press, Nov. 2007, pp. 258–265, isbn: 978-1-4244-1382-9.
(visited on 13/03/2025) (cit. on pp. 49, 50).

[80] N. Kitchen, “Markov Chain Monte Carlo Stimulus Generation for Con-
strained Random Simulation,” en, Ph.D. dissertation, UC Berkeley, 2010.
[Online]. Available: https://escholarship.org/uc/item/6gp3z1t0
(visited on 13/03/2025) (cit. on pp. 49, 50).

[81] J. Yuan, K. Shultz, C. Pixley, H. Miller and A. Aziz, “Modeling design
constraints and biasing in simulation using BDDs,” in 1999 IEEE/ACM
International Conference on Computer-Aided Design. Digest of Technical
Papers (Cat. No.99CH37051), ISSN: 1092-3152, Nov. 1999, pp. 584–
589. doi: 10.1109/ICCAD.1999.810715. [Online]. Available: https:
//ieeexplore.ieee.org/document/810715 (visited on 13/03/2025)
(cit. on pp. 49, 50, 52).

[82] J. Yuan, K. Albin, A. Aziz and C. Pixley, “Simplifying Boolean con-
straint solving for random simulation-vector generation,” in IEEE/ACM
International Conference on Computer Aided Design, 2002. ICCAD
2002., ISSN: 1092-3152, Nov. 2002, pp. 123–127. doi: 10.1109/ICCAD.
2002.1167523. [Online]. Available: https://ieeexplore.ieee.org/
document/1167523 (visited on 13/03/2025) (cit. on pp. 49, 50, 52).

[83] Y.-A. C. Randal E. Bryant, “Verification of arithmetic circuits with
binary moment diagrams,” in 32nd Design Automation Conference, 1995,
pp. 535–541. doi: 10.1109/DAC.1995.250005 (cit. on p. 52).

[84] K. v. Gleissenthall, R. G. Kıcı, D. Stefan and R. Jhala, “IODINE: Veri-
fying Constant-Time execution of hardware,” in 28th USENIX Security
Symposium (USENIX Security 19), Santa Clara, CA: USENIX Asso-
ciation, Aug. 2019, pp. 1411–1428, isbn: 978-1-939133-06-9. [Online].
Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/von-gleissenthall (cit. on p. 55).

[85] P. Borkar, C. Chen, M. Rostami et al., “WhisperFuzz: White-Box fuzzing
for detecting and locating timing vulnerabilities in processors,” in 33rd
USENIX Security Symposium (USENIX Security 24), Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 5377–5394, isbn: 978-1-939133-
44-1. [Online]. Available: https : / / www . usenix . org / conference /
usenixsecurity24/presentation/borkar (cit. on p. 55).

[86] M. Fourné, D. D. A. Braga, J. Jancar et al., “”these results must be false”:
A usability evaluation of constant-time analysis tools,” in 33rd USENIX
Security Symposium (USENIX Security 24), Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 6705–6722, isbn: 978-1-939133-44-1. [Online].
Available: https://www.usenix.org/conference/usenixsecurity24/
presentation/fourne (cit. on p. 55).

BIBLIOGRAPHY 67

[87] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi
and G. Smith, The Science of Quantitative Information Flow (Information
Security and Cryptography). Cham, Switzerland: Springer, Springer
Nature, 2020, isbn: 978-3-319-96129-3. doi: 10.1007/978- 3- 319-
96131-6. [Online]. Available: http://www.scopus.com/inward/record.
url?scp=85091583903&partnerID=8YFLogxK (visited on 15/08/2024)
(cit. on p. 55).

[88] C. Barrett, P. Fontaine and C. Tinelli, The Satisfiability Modulo Theories
Library (SMT-LIB), www.SMT-LIB.org, 2016 (cit. on p. 55).

[89] C. Kwan and W. A. Hunt, “Automatic verification of right-greedy numer-
ical linear algebra algorithms,” in 2024 Formal Methods in Computer-
Aided Design (FMCAD), 2024, pp. 242–250. doi: 10.34727/2024/isbn.
978-3-85448-065-5_30 (cit. on p. 55).

[90] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random
testing of Haskell programs,” in Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, ser. ICFP ’00, New
York, NY, USA: Association for Computing Machinery, Sep. 2000, pp. 268–
279, isbn: 978-1-58113-202-1. doi: 10.1145/351240.351266. [Online].
Available: https://dl.acm.org/doi/10.1145/351240.351266 (visited
on 04/02/2025) (cit. on p. 55).

