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Abstract

Antibiotic resistance is increasing among pathogens, representing a serious
threat to public health. Bacteria often become resistant by acquiring mobile
antibiotic resistance genes (ARGs), which are disseminated via horizontal gene
transfer. To anticipate the emergence of new ARGs and limit their spread,
we must increase our knowledge about resistance genes that exist in different
environments and about their horizontal dissemination among bacteria. The
six papers presented in this thesis aim to provide an extensive characterization
of the resistome and an analysis of horizontal ARG dissemination. In Paper I, a
previously unseen diversity of genes giving resistance to aminoglycoside an-
tibiotics was identified, including 50 previously unknown mobile ARGs carried
by human pathogens. In Paper II, the abundance of ARGs, both well-studied
and computationally predicted, was estimated in different microbiomes, reveal-
ing a widespread presence of previously unknown ARGs across all analyzed
environments. In Paper III, a detailed characterization of the resistomes of
the human gut and wastewater microbiomes was performed, highlighting the
relationship between ARG prevalence in these microbial communities and po-
tential implications for human health. Papers IV and V present a phylogenetic
method to identify horizontal ARG transfer between evolutionarily divergent
bacteria, which was used to analyze inter-phyla ARG transfers, and combined
with machine learning to quantify the impact of different factors on horizontal
ARG dissemination. Finally, in Paper VI, the potential use of machine learning
to predict the dissemination of emerging ARGs was evaluated. The result-
ing models showed promise but need further refinement to inform clinical
decision-making. Together, the findings presented in this thesis increase our
understanding of how ARGs transfer between bacterial species and commu-
nities, highlighting the presence in anthropogenic microbiomes and genetic
compatibility as key factors associated with successful ARG dissemination.
Moreover, the results demonstrate the utility provided by data-driven methods
for improving surveillance and diagnostics of antibiotic resistance.
Keywords: antibiotic resistance, horizontal gene transfer, microbiome, hidden
Markov model, random forest, phylogenetic analysis
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1 Background

The discovery of antibiotics and their subsequent introduction into clinical
use during the early 20th century represents one of the most important his-
torical advances in human healthcare. Indeed, these compounds represent
one of the cornerstones of modern healthcare, as they have not only provided
the means for treatment and prevention of infectious diseases, but they have
also enabled the development of many contemporary medical and surgical
procedures [1]. The mid-20th century, sometimes referred to as the Golden
Age of Antibiotics, saw the discovery of numerous different antibiotics. These
mainly encompassed naturally occurring antimicrobials produced by bacteria
or fungi, although some compounds were instead manufactured synthetically
or semi-synthetically [2]. The interest in developing new antibiotics slowed
down significantly after the 1960s, however, with only two new classes of
antibiotics having been introduced since the end of the Golden Age [3]. As
a result, human society has continued to rely heavily on already established
antibiotics for clinical healthcare. Unfortunately, bacterial pathogens are grad-
ually becoming immune to the antimicrobial effects of these compounds, a
phenomenon known as antibiotic resistance. This poses an obvious threat to
human health, as it has the potential to make common infectious diseases more
difficult or even impossible to treat [4].

1.1 Antibiotic resistance

Antibiotic resistance refers to the ability of microbes to withstand the effects of
antimicrobial compounds at otherwise inhibitory concentrations. Effectively,
this means that a given antibiotic loses its potency to treat or prevent infec-
tions caused by bacteria resistant to that drug [5]. Resistance can arise as
a result of different evolutionary processes, which can generally be divided
into three categories: intrinsic, adaptive, and acquired resistance. The first,
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2 1. Background

intrinsic resistance, refers to an increased tolerance to specific antibiotics as
a result of some inherent biological property of a given bacterium. Here, the
most prominent example is the outer membrane of Gram-negative bacteria,
which is impermeable to many classes of antibiotics, resulting in an intrinsic
multidrug-resistant phenotype [6]. The second type of resistance is adaptive
resistance, which refers to the ability to modulate existing cellular functions
in response to antibiotic pressure to achieve transient antibiotic resistance.
This has, for example, been shown to result in high levels of resistance in the
pathogen Pseudomonas aeruginosa, however, the biological processes underlying
the emergence of these phenotypes are not well understood [7, 8]. Indeed,
most research has focused on the third type of resistance, acquired resistance,
which has greater permanence than adaptive resistance, and under the right
conditions can be rapidly disseminated among human pathogens [9].

Efflux pump

Antibiotic-modifying
enzyme

Antibiotic-degrading
enzyme

Modified antibiotic
binding site

Antibiotic I

Antibiotic II

Antibiotic III

Antibiotic IV

Multidrug-resistance
plasmid

Figure 1.1: Illustration of the main mechanisms encoded by antibiotic resistance genes.
These include enzymes that break down the antibiotic, enzymes that inactivate the anti-
biotic by altering their chemical structure, active efflux pumps that transport antibiotics
from the cytoplasm to the extracellular matrix, and enzymes that alter the target binding
site of the antibiotic.

In general, acquired antibiotic resistance is caused either by mutations in the
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bacterial chromosome as a result of adaptive evolution or through the acqui-
sition of antibiotic resistance genes (ARGs). Chromosomal mutations are an
important source of resistance in some bacterial pathogens. Here, a prominent
example is high-level resistance to fluoroquinolones which most often is a
result of mutations in the genes encoding the primary and secondary targets
of these drugs [10]. Mutations, however, are limited in their ability to spread
among bacteria, since they can only be transferred vertically between parent
and daughter cells. By contrast, ARGs can become mobile by transitioning from
the chromosomes of their original host bacteria onto mobile genetic elements
(MGEs), which are pieces of genetic material that can move independently
from the rest of the genome [11]. Once mobile, ARGs can be passed on from the
original host to distantly related cells through horizontal gene transfer (HGT).
Taking advantage of this, some bacteria have accumulated ARGs from different
sources over time into large genetic constructs that, when acquired, confer
resistance to many different classes of antibiotics [12].

To date, thousands of ARGs have been identified, each giving increased re-
silience to anything from a single antimicrobial compound to multiple classes
of antibiotics [13, 14]. Consequently, these genes collectively encode a wide
range of molecular mechanisms, which are illustrated in Figure 1.1. Broadly,
these mechanisms include: (1) reducing the drug’s access to the cell, either by
decreasing membrane permeability or through active efflux, exemplified by
the AcrAB-TolC and Mex multidrug efflux pumps in Gram-negative pathogens
[15]; (2) modifying the drug’s target, where a functional group or protein oc-
cupies the binding site of the antibiotic, such as is the case for Erm 23S rRNA
methyltransferases that confer resistance to macrolide, lincosamide, and strep-
togramin B antibiotics [16]; and (3) directly modifying the antibiotic, where
an enzyme chemically inactivates or degrades the drug, exemplified by the
beta-lactamase enzymes that hydrolyze beta-lactam antibiotics [17, 18]. Since
the introduction of antibiotics, ARGs conferring resistance to all classes of
clinically used antibiotics have emerged in human pathogens. Although some
of these are intrinsically part of the genomes of certain pathogens, most have
been acquired through HGT [14]. In fact, new ARGs are regularly discovered
in bacteria causing infections, demonstrating that the mobilization of resistance
determinants has not stagnated. However, the evolutionary origins of these
genes are still not well understood, which hampers our ability to prevent or
delay the establishment of new ARGs among pathogens [19].
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1.2 Horizontal gene transfer

Most clinically problematic ARGs today are mobile and can thus be shared
between bacteria through HGT. This, for example, allows these ARGs to move
between harmless commensal species and pathogens, even if they are only
distantly related. As a result, HGT is one of the main causes of the spread
of resistance within and between bacterial communities, and today the HGT
phenomenon is actively studied in relation to antibiotic resistance [20].

Conjugation

Transduction

Transformation

Figure 1.2: Illustration of the main horizontal gene transfer mechanisms. Natural
transformation, a process where DNA is "released" from one cell and eventually is taken
up and incorporated into the genome of another cell. Transduction, a process where
bacteriophages are used to transfer genes between two cells. Conjugation, a process
where a sex pilus is formed between two adjacent cells, and genetic material is passed
from the donor cell to the recipient.

As mentioned above, mobile genes are typically associated with and/or carried
by MGEs. There are many different MGEs associated with ARGs, including
conjugative elements and insertion sequences/transposons [21]. It is also not
uncommon for several MGEs to exist together as part of larger mobile genetic
constructs such as plasmids [22]. The movement of DNA between cells has
mainly been thought to occur through one of three mechanisms, illustrated in
Figure 1.2. These include (1) natural transformation, or uptake of free (non-cell
bound) DNA into the cell, (2) transduction, where the transfer is mediated by
bacteriophages, and, perhaps most importantly, (3) conjugation, whereby a
sex pilus is formed between adjacent bacteria through which the DNA moves
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from the donor cell to the recipient [23]. Conjugation requires a specific set
of genes to initiate transfer that are often located on conjugative plasmids,
together with other genetic material. Where transformation and transduction
can occur as side-effects of other biological processes, plasmid conjugation, by
comparison, is a more efficient and reliable way for the recipient to acquire
foreign DNA directly from the donor [24]. In some instances, conjugation also
enables the recipient to develop resistance towards multiple antibiotics through
a single HGT event, by acquiring a large multidrug-resistance plasmid [25]. It
should also be noted that HGT can also be mediated by other mechanisms [26].
Illustrating this, studies have shown that bacteria are able to transmit genetic
material through the use of membrane vesicles [27], nanotubes (tiny pilus-like
structures) [28], and phage-like gene transfer agents [29].

Although the main mechanisms associated with HGT have been relatively
well studied, much remains unclear about the effect of different factors on the
horizontal transfer of ARGs. This includes both genetic factors that would
make certain species more likely to engage in HGT, as well as environmental
factors, namely in what type of environment(s) horizontal ARG transfer is likely
to occur. Indeed, it is well known today that ARGs are ubiquitously present in
members of many different microbiomes [30], however, where these ARGs are
most likely to mobilize and spread from their original host remains unknown.
It is clear that we need to increase our knowledge about the dissemination of
ARGs through HGT to combat the spread of new forms of multidrug-resistant
pathogens.

1.3 Antibiotic resistance in the environment

While the evolutionary details of most ARGs remain unclear, it is known
that these genes existed well before humans started treating infections with
antibiotics. In fact, some ARGs are suggested to have first evolved billions of
years ago [31]. Since they first arose, ARGs have evolved and diversified over
long periods of time, which has resulted in the vast resistome, i.e., the complete
collection of ARGs carried by microorganisms, which can be observed today
[32].

In addition to the resistance determinants commonly encountered in pathogens,
the current resistome encompasses a genetic diversity that far exceeds what
has been observed in clinical settings to date. These diverse ARGs are found
mainly in the genomes of non-pathogenic bacteria that inhabit different envi-
ronments, including both external environments such as soil and water, and
host-associated environments such as human microbiomes [33]. Although the
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resistome evolves independently of human interference, the process has been
expedited by the excessive use of antibiotics by human society over the last
century. The increased concentrations of antibiotics in different environments
have provided enough selection pressure for resistance genes to develop, mo-
bilize, and transfer within and between bacterial communities at rates that
were likely not reached in the pre-antibiotic era [34, 35]. Furthermore, as these
different environments interact, for example, by humans eating animals or
by human excrement ending up in the ocean, mobile ARGs are able to flow
between different environments, as illustrated in Figure 1.3. Effectively, this
means ARGs originating in any environment have the potential to emerge in
pathogens and become clinical problems [30].

HOSPITAL

Humans Clinic

Animals Environment

Figure 1.3: Illustration of the flow of antibiotic resistance genes between humans,
animals, the environment, and the clinic.

To date, many studies have been performed with the aim of characterizing the
resistome [36, 37, 38]. In particular, the human gut and sewage microbiomes
have been extensively studied with regard to ARGs, due to the known presence
of common pathogens and the higher-than-average antibiotic selection pressure
associated with these microbiomes [39, 40]. Due to these favorable conditions
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for the proliferation of antibiotic resistance, previous studies have described
these environments as hotspots where ARGs are likely to emerge in pathogens
[33]. However, less emphasis has been placed on analyzing many other types of
environments. This has led to bias in the current sequence repositories, where
samples collected from external environments are highly underrepresented
[41]. To obtain a more complete understanding of how ARGs flow from non-
pathogens to pathogens, it is important that the genetic reservoir present in
external environments is not overlooked.

1.4 DNA sequence data

Genome sequencing is a fundamental part of any contemporary research on
microorganisms. The genome of every living organism on Earth is made up
of the same four nucleic acids: adenine (A), cytosine (C), guanine (G), and
thymine (T), and each organism maintains a copy of its genome in its cell(s).
The observable traits of each organism are then determined by the specific
sequence of nucleic acids encompassing their genome, where specific regions,
or genes, are transcribed into RNA and then translated into proteins [42]. In
this context, sequencing refers to the process of identifying the nucleic acid
sequence that makes up a given piece of DNA (or RNA) [43].

The first successful results of DNA sequencing were published by Holley et
al. in 1965, and analyzed a tRNA molecule isolated from yeast [44]. It would
take until 1995 for the first full bacterial genome to be sequenced [45], which
was followed by the first draft of the human genome in 2001 [46]. These
early advances in whole genome sequencing (WGS) were achieved using the
Sanger method, which, although highly accurate, is very costly and has low
throughput. Consequently, this method became mostly obsolete for WGS
purposes by the advent of next-generation sequencing (NGS) technologies in
the 2000s. These new methods greatly increased throughput by generating
millions of reads in parallel, and, as a result, the cost per sequencing read
decreased dramatically [43]. The generation of NGS data has become even less
expensive with time, as technology has been further refined, greatly increasing
the availability of DNA sequencing to the research community [47]. Thus, the
"third-generation" sequencing methods that debuted in the 2010s were not
aimed at further pushing the throughput. Instead, these techniques focused
on generating longer reads without the need for pre-amplification of the DNA
[48].
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Microbial
culturing

Genomic
DNA

DNA
sequencing

Genome
assembly

Figure 1.4: Flowchart depicting microbial whole genome sequencing. Cells are first
cultured in the lab, after which their DNA is extracted, sequenced, and assembled.

Today, vast amounts of WGS data have been generated and deposited in public
databases. Exemplifying this, the NCBI Assembly database of draft genomes
currently contains more than 2.5 million sequenced genomes from bacteria
alone [49]. By mining such data, we have been able to study biological phe-
nomena in a way that was not possible before the advent of DNA sequencing.
Indeed, many data-driven methods have been developed in recent years for
studying antibiotic resistance, which has significantly advanced our under-
standing of the topic [50].

1.4.1 Metagenomics

Since the inception of microbiology, we have relied primarily on culture-based
methods for the characterization of microbes. As the name suggests, these
methods require that the microorganism(s) of interest be cultivated in the labo-
ratory before they can be studied [51]. This is also true for WGS, as illustrated
in Figure 1.4. Although these methods have allowed for the characterization of
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e.g. thousands of bacterial species, the vast majority of microbes are unfortu-
nately not able to be cultured under standard laboratory conditions, and so they
remain elusive. In fact, to date, it has been estimated that we have discovered
no more than 1% of the total microbial diversity on Earth [52]. To mitigate this
problem and improve our understanding of the unknown microbiome, several
molecular methods have been developed that do not rely on culturing [53].
Among these methods, metagenomic sequencing is arguably the most notable.

In contrast to more conventional DNA sequencing methods that rely on iso-
lating the DNA of a specific organism before sequencing, metagenomic se-
quencing instead applies a more brute-force approach, sequencing all DNA
present in a given sample [54]. Generally, metagenomic sequencing is used for
one of two purposes: 1) to analyze the taxonomic composition of microbial
communities and 2) to estimate the abundance of different genes in microbial
communities. The first of these is most often achieved through a method called
amplicon sequencing. This method is based on the identification of specific
marker genes that are present in all microbes of a specific type (e.g., bacteria).
For a gene to serve as an effective marker, it must have highly conserved re-
gions for primer design (to enable PCR amplification before sequencing) and
highly variable regions for taxonomic identification. The most widely used
marker for bacteria is the 16S rRNA gene, which meets both criteria [55]. After
sequencing, the different 16S rRNA genes present in a sample can be clustered
at 97% identity into what are known as operational taxonomic units (OTUs).
In essence, each OTU represents a putative species, which can be assigned
a taxonomic affiliation based on reference sequences from databases. It has,
however, been suggested that the default 97% cut-off results in a merging of
species, which still leads to an underestimation of microbial diversity [56].
As an alternative to OTUs, methods have been developed to infer amplicon
sequence variants (ASVs) in a sample that can differ as little as one nucleotide
[57]. Conversely, this approach has been suggested to have the opposite prob-
lem, where the increased resolution results in the separation of a single genome
into multiple ASVs [58]. Nevertheless, amplicon sequencing has been shown to
provide a considerably more accurate view of microbial populations compared
to culture-based methods [59].

The other type of metagenomic sequencing is called shotgun sequencing. In con-
trast to amplicon sequencing, shotgun sequencing is completely non-targeted
and works by sequencing randomly from the pool of genetic information in a
microbial sample using high-throughput sequencing. The resulting reads can
then be used to assemble metagenomic contigs or mapped directly to a set of
reference genes, providing information about the genetic content present in
a given microbiome [54]. Since the popularization of metagenomics, several
massive initiatives have been carried out with the aim of characterizing the
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unknown microbiomes throughout the world. Examples include the Human
Microbiome Project [60] and the Tara Oceans project [61], which collectively
have produced over 100 TB of metagenomic sequencing data. Metagenomics
has also been widely used to study the resistome, the vast reservoir of antibiotic
resistance genes carried by bacteria [62, 63, 64], and this method has provided
new insights into the environmental dynamics of antibiotic resistance.

Together, the vast amounts of WGS and metagenomic data available from repos-
itories like NCBI [49] and MGNify [65] constitute a remarkable resource. By
leveraging this resource to develop data-driven methods for studying biologi-
cal phenomena, we have an unprecedented opportunity to increase our insight
into issues like antibiotic resistance. This could help shape our perspective and
develop solutions to the problems that human health is facing.



2 Aims

This thesis aims to extend our knowledge about the contents of the unknown
resistome, as well as deepen our understanding of the causes behind the
successful horizontal dissemination of antibiotic resistance genes (ARGs). This
information may prove vital for anticipating the emergence of new ARGs
and preventing their uncontrolled spread among pathogens. The six papers
that make up this work can broadly be divided into two parts, each of which
contributes via the following aims:

1. Characterization of the unknown resistome

a Identify new mobile resistance genes in pathogens and experimen-
tally validate their functionality (Paper I).

b Explore the resistome in different environments, including both
well-known (established) and computationally predicted (latent)
resistance genes (Papers II–III).

c Perform a specific investigation of the resistomes associated with
the human gut and wastewater microbiomes to identify the envi-
ronment(s) where clinically relevant ARGs are promoted (Paper
III).

2. Identification of patterns underlying horizontal ARG transfer

a Develop and apply a method to investigate the propensity of ARGs
to transfer between evolutionarily divergent bacteria (Papers IV–V).

b Estimate the influence of different genetic and environmental factors
on the horizontal transfer of ARGs (Paper V).

c Investigate the potential of machine learning for predicting the
future dissemination of novel ARGs (Paper VI).

11
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3 Computational analysis of
antibiotic resistance genes

This chapter provides a brief description of the main methods that were used
in the papers presented in this thesis.

3.1 Identification of ARGs in sequence data

A large number of antibiotic resistance genes (ARGs), conferring resistance
to all classes of antibiotics used for clinical infection treatment, is known to
circulate among human pathogens [66]. When new resistance genes emerge,
they are typically discovered after causing resistance in a clinical isolate, at
which point they likely already have spread widely among bacterial commu-
nities. For example, this was the case for the beta-lactamase NDM-1 and the
colistin resistance determinant MCR-1 [67, 68]. To overcome the drawbacks
of traditional surveillance, several computational methods have recently been
developed that can identify ARGs, including new variants, from whole genome
sequencing (WGS) and metagenomic sequencing data [50].

3.1.1 Identification of ARGs in whole genome assemblies

As new resistance genes have been discovered, their sequences have been col-
lected in databases such CARD [14] and ResFinder [13], which collectively con-
tain thousands of reference ARG sequences at the time of writing. The methods
used for the identification of ARGs in sequencing data are generally based on
these reference sequences. A widely used approach involves alignment-based
homology searches against one or more reference ARG databases using bioin-

13
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formatic tools such as BLAST or bowtie [69]. This relatively simple approach is
useful for annotating genes that are very similar to the known reference ARGs,
however, it fails to identify homologs that are less evolutionarily close to the
genes in the databases. Since much of the resistome consists of such homologs,
this means that many potentially problematic ARGs are overlooked [70].

To address this problem, more sophisticated methods have been developed,
which apply different computational frameworks for the prediction of resis-
tance genes. In general, these methods use the reference ARG databases to
create models that can also identify more distantly related homologs to the
reference genes based on similarities in gene sequence or protein structure [71].
One of the most well-established computational frameworks for gene predic-
tion is based on profile hidden Markov models (HMMs). These models are
built from multiple sequence alignments and can identify homologous genes
based on conserved genetic regions rather than overall sequence similarity
[72]. This allows for the discovery of previously unknown gene variants but
is restricted to the identification of genes that share an evolutionary history
with the reference genes used to build the models. One method that uses
profile HMMs is fARGene, which in addition to the prediction of ARGs in WGS
data also enables gene prediction in metagenomic data without the need for
prior assembly [70]. This method has repeatedly shown a high performance
for predicting functional new ARGs, in addition to their well-characterized
counterparts, from a variety of datasets [73, 74, 75], proving the reliability of
HMM-based ARG predictions.

More recently, methods have been developed that apply machine learning
algorithms for predicting ARGs. A prominent example is deepARG, which
takes a deep learning approach, and uses algorithms and models that can
discriminate between true ARGs and genes that contain some ARG-like regions
without conferring resistance [76]. Another example is PCM, a method that
uses machine learning to make predictions based on protein structure [77].
Similar to the HMM-based methods, the machine learning models are also
able to identify previously uncharacterized homologs but are unable to predict
ARGs associated with novel resistance mechanisms.

3.1.2 Identification of ARGs in metagenomes

In contrast to whole genome assemblies, shotgun metagenomic datasets consist
of fragmented DNA originating from many different organisms, which makes
the identification of specific genes more complicated [78]. To circumvent this, it
is possible to first assemble longer sequences, or even complete genomes, from
the metagenomic reads through a process called de novo assembly, however,
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this is computationally expensive and may become unfeasible when the data
grows large [79]. Furthermore, de novo assembly of mobile genetic elements,
where many clinically relevant ARGs are located, is highly difficult due to the
many repetitive regions that they typically contain [80]. Therefore, several
alignment-based methods have been developed that can be applied directly to
the raw metagenomic reads.

Arguably the simplest approach for identifying ARGs in metagenomes in-
volves aligning the reads against a curated ARG reference database such as the
aforementioned CARD [14] and ResFinder [13], using bioinformatic tools like
BLAST [81] or DIAMOND [82]. Here, strict alignment criteria must be used to
ensure a low false positive rate; however, this also comes at the cost of a high
false negative rate [83]. To amend this, more sophisticated methods specifically
designed to identify ARGs in metagenomes have been developed, such as
ARGs-OAP [84] and GROOT [85], which are limited to the identification of
ARGs already present in reference databases, as well as deepARG [76] and
fARGene [70], which can also identify novel ARGs. Here, fARGene is partic-
ularly notable as it is also able to reconstruct full-length genes directly from
metagenomic reads [70]. More recently, methods that do not rely on sequence
alignment have been developed, such as ARGNet, which applies deep neural
networks trained on reference sequences to classify ARGs in metagenomes
[83].

3.2 Phylogenetic analysis

When new genes are discovered, one of the main ways by which we are able
to understand them is by studying their evolutionary relationships with other,
similar genes. As we cannot directly observe their evolutionary history, we
instead infer it through computational phylogenetics. The aim of phylogenetic
analysis is to divulge the evolutionary relationships of genes or taxa through
the reconstruction of phylogenetic trees, representations of the evolutionary
tree computed from molecular sequences. Over time, a variety of increasingly
efficient and sophisticated methods have been developed to meet the demands
imposed by the increasing data volumes [86].

A phylogenetic tree is in essence a branching diagram that illustrates the
evolutionary relationships between biological sequences. When discussing
these diagrams, the observed sequences from which the tree was built are
termed leaves, positioned at the tips of the structure. The leaves are attached to
branches, which in turn are connected by nodes. Each node represents an inferred
common ancestor, and a clade refers to all leaves descending from a given node.
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The oldest of the nodes, from which all others descend, is denoted the root,
and can be inferred by the tree-building algorithm or deliberately placed based
on prior evolutionary assumptions [87] (Figure 3.1). The root provides the
tree with an evolutionary direction, but is not required for constructing a tree.
Unrooted trees, however, do not provide information about the evolutionary
trajectory of the leaves, only their relatedness [88].

Node

Evolutionary direction

Root

Branch

LeafC

A

B

Clade

Figure 3.1: A basic illustration of a phylogenetic tree, highlighting the standard nomen-
clature used to describe its different components.

Phylogenetic tree reconstruction methods can broadly be classified into two
categories: distance-based methods, such as neighbor-joining and least-squares,
and character-based methods, including maximum parsimony, maximum like-
lihood, and Bayesian algorithms. The distance-based methods, as the name
suggests, derive phylogenetic trees from the genetic distances between se-
quences, which are computed from a multiple sequence alignment. Under
the assumption that the sequences that can be observed today accurately re-
flect every historical genetic divergence event, the true evolutionary tree can
be reconstructed from the distances (or amount of dissimilarity between two
aligned sequences). The most popular distance-based phylogenetic analysis
method is the neighbor-joining algorithm [89].

Briefly, neighbor-joining works by first assuming an un-rooted, bifurcating tree
with N leaves. A pair of neighbors consists of two leaves connected via a single
interior node. The topology of the tree is determined by iteratively merging the
most similar neighbor pairs, forming new pairs at each iteration until a consen-
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sus topology is achieved. At each iteration, a distance matrix D is computed
from all pairwise distances between the leaves. For each pair of leaves a, b, the
matrix is then used to calculate the sum of branch lengths resulting from their
merging, based on least-squared estimates. The pair producing the smallest
sum are merged into a combined leaf (a, b). The distance between (a− b) and
another leaf c is given by

D(a−b)c =
1

2
(Dac +Dbc) (3.1)

which is used to generate a new distance matrix. At each iteration the number
of leaves N is reduced by 1, and the process is repeated until N = 3, when only
a single un-rooted tree topology remains [90].

While distance-based methods are simple and computationally efficient, the as-
sumptions they are based on are questionable at best. Indeed, genetic mutations
can be reversed over time, at which point the historic divergence is no longer ob-
servable. Consequently, these methods generally perform worse than the more
complex character-based methods such as maximum likelihood (ML)-based
and Bayesian methods, which derive the tree topology from probability-based
algorithms based on a predefined model of sequence evolution [91].

The ML-based methods aim to identify the topology that makes the observed
data most probable under a given substitution model. This involves two main
steps: first, the likelihood L(θ), where θ is an unknown parameter relating to
the substitution model parameters and branch lengths, is maximized for each
possible tree topology. Next, the topology producing the highest likelihood —
i.e., the tree that best explains the observed data — is identified and selected as
the most "correct" representation of the evolutionary history. Note, however,
that this topology is not guaranteed to accurately reflect the true evolutionary
trajectory of the sequences in question [89, 92]. If, for example, the substitution
model is poorly chosen, the performance of ML-based models will be negatively
impacted, which, in turn, can lead to wrongful conclusions [93]. Moreover,
most ML-based methods assume that mutations at each site and lineage happen
independently, and, consequently, that the likelihood is the product of the
probabilities observed at each site. This assumption, again, does not necessarily
align with the biological reality [94, 95].

Phylogenetic methods based on Bayesian statistics are closely related to ML-
based approaches. The Bayesian framework is based around the posterior
probability P(T|D), which represents the probability that a given tree topology T
is correct given the observed data D, the prior probability P(T), and a likelihood
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function P(D|T), where

P(T|D) =
P(T)P(D|T)

P(D)
. (3.2)

Although the posterior probability is simple to define, it is generally not feasible
to calculate analytically due to the high dimensionality of the tree topologies
and model parameters. As a result, algorithms such as Markov chain Monte
Carlo are usually applied to approximate the posterior instead [96, 97].

Like in many other areas of computational biology, additional methods for
phylogenetic analysis based on machine learning have also been developed in
recent years. These methods have proved to be highly flexible, however, the
advantages they provide over more traditional methods have yet to be fully
shown [98].

3.3 Detection of horizontal gene transfer from se-
quence data

As discussed in Chapter 1, horizontal gene transfer (HGT) is central to the
spread of antibiotic resistance. Consequently, when studying new ARGs it is of
high interest to identify those that have undergone HGT, especially if they have
transferred into pathogens where they pose a more immediate threat to human
health [99]. The most widely used strategy for detecting mobile genes involves
searching the genetic regions flanking the gene in question for mobile genetic
elements (MGEs) [39]. However, several computational methods have also
been developed to identify HGT directly from sequence data. These methods
can generally be divided into two categories: parametric and phylogenetic
methods [100].

Parametric methods for identifying HGT aim to find genetic regions that exhibit
significant deviations from the average characteristics of the host genome. Such
deviations suggest that the region originates outside of the genome and, thus,
has been acquired through HGT. Here, commonly analyzed characteristics
include nucleotide composition, codon bias, and structural features [101]. These
methods rely on the assumption that the genome of a given species has been
shaped by specific evolutionary pressures, resulting in each species having
developed a recognizable genomic signature. Genes that have been acquired
from different organisms are thus unlikely to conform to the structure of their
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new host genome [102]. The nucleotide composition of a genome is often
represented by its GC-content — the proportion of genomic DNA made up of
either guanine or cytosine — which can range between less than 20% to over
70% in bacteria [103]. However, while the GC-content can differ substantially
even among closely related species, it can also be very similar among distantly
related ones. As a result, this estimate has a relatively low resolution, and by
relying solely on GC-content some instances of HGT will not be detectable. A
more refined approach is based on analysis of codon frequencies, as genomes
with similar nucleotide composition can exhibit differences in their preferred
codon usage [104]. Compared to genomic GC-content, the codon bias is more
difficult to compute, but it can be modeled using methods such as Markov
chains [105].

The alternative approach for inferring HGT events is the phylogenetic ap-
proach. As the name implies, these methods rely on phylogenetic trees to
detect discrepancies that are not explainable by vertical evolution. Specifically,
when a gene has undergone HGT, the phylogenetic gene tree (describing the
gene’s evolutionary history), will conflict with the species tree (representing
the evolution of the host organisms). Instead, the transferred gene will be
displaced relative to other genes from its host species (Figure 3.2). Because
constructing large phylogenetic trees from complete genomes is generally not
feasible, species trees are usually derived from well-conserved housekeeping
or informational genes [106].

Species tree Gene tree

HGT

Figure 3.2: Illustration of a basic gene tree and corresponding species tree. Encircled
is an inconsistency between the two phylogenetic trees, which cannot be explained by
vertical evolution and is thus inferred as horizontal gene transfer (HGT).

Phylogenetic methods for detecting HGT can be further classified into two
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subcategories: explicit and implicit methods [100]. Explicit methods directly
compare gene trees and species trees, for example by applying statistical tests
at every site in the trees to identify significant disagreements [107]. However,
these methods can quickly become computationally demanding when the trees
grow larger. To circumvent this limitation, implicit phylogenetic methods can
be applied instead. Although based on similar principles as their explicit coun-
terparts, implicit methods do not rely on a fully constructed species tree. The
hosts’ evolutionary relationships are instead inferred from sequence similarity
or measures of the evolutionary distance of the host species [108]. While HGT
between evolutionarily divergent species can be inferred from taxonomy, trans-
fers between more closely related organisms may be more difficult to detect
[106]. In such cases, a more sensitive estimate of evolutionary distance can be
calculated from a pairwise sequence alignment using Maximum-Likelihood.
This estimate can then be evaluated using a statistical test (likelihood-ratio test)
to determine whether the observed divergence is significant enough to suggest
horizontal transfer [109].

3.4 Machine learning in bioinformatics

The vast expansion of biological sequence data over the past two decades has
created an unparalleled opportunity to increase our knowledge of biological
systems [47, 65, 110]. In order to take full advantage of this data, however,
there has been an ever-increasing need to develop new methods for analyzing
it. It is no wonder, then, that machine learning has been applied in many areas
within the field of bioinformatics to solve problems that would be difficult, if
not impossible, to solve using more traditional methods [111].

Machine learning is a broad term used to describe various algorithms that
can learn from data. Models created using these algorithms can be used to
identify patterns in the data that are too complex for the human eye to detect,
and, if trained correctly, apply what they have learned to make predictions
about new data [112]. To date, many machine learning algorithms have been
developed, ranging from simple, such as linear regression models, to highly
complex, such as the recently introduced large language models (LLMs), which
can encompass hundreds of billions of parameters [113, 114]. These algorithms
can generally be divided into two different categories based on the task they are
meant to solve: supervised learning, in which the model is trained on labeled
data, with the task of assigning a label (response variable) given a set of other
variables, and unsupervised learning, where models are trained to identify
patterns in unlabeled data [115].
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Figure 3.3: Workflow for training supervised learning models. The total input data is
split into training and test datasets. Training and cross-validation are performed using
the labeled training set, while the unlabeled test set is used to evaluate the final model.

Supervised learning is the most widely used form of machine learning, which
can be further divided into classification (categorical response variable) and
regression models [113]. The general approach to training supervised mod-
els is shown in Figure 3.3. Briefly, the total input data is split into a training
set and a test set. During the training phase, which generally also includes
cross-validation, the model is only learning the features of the training set,
including its response variable. After the training has concluded the model
is evaluated based on its ability to correctly assign response variables to ob-
servations from the test set, from which the labels have been removed. Here,
the evaluation of machine learning models can be based on several metrics
depending on the type of model. For classification models, popular options in-
clude accuracy (proportion of correct predictions), precision (proportion of true
positive predictions), sensitivity/recall (proportion of correctly predicted posi-
tive observations), and specificity (proportion of correctly predicted negative
observations) [116]. Conversely, popular metrics used to evaluate regression
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models include the R2 (proportion of variance in the response variable that
can be predicted by the predictor variables), as well as the mean absolute
error (MAE), the mean squared error (MSE), and the root mean squared error
(RMSE), all of which are based on the average distance between predicted and
actual values [117]. A properly trained model should be able to accurately
label the unseen test data. However, occasionally the training will result in the
model overfitting, i.e. learning too much of the noise and random fluctuations
present in the training data which does not generalize to other observations
[118].

As mentioned earlier in this chapter, machine learning has found applications
within genomics and phylogenetics; however, its general usefulness has ex-
panded to other areas of bioinformatics, including proteomics, transcriptomics,
metabolomics, and systems biology [111, 119]. Within these areas, machine
learning has been used for a large number of tasks, including classification, clus-
tering, prediction, identification of associations, groups, and deviations, and
visualization [120]. Illustrating this, machine learning has been successfully
used to increase our understanding of host-microorganism interactions for in-
fectious disease research and drug discovery, identify correlations between gut
microbiome composition and colorectal cancer, and predict antibiotic resistance
phenotypes in pathogens [112]. Arguably, however, the most significant appli-
cation of machine learning in a biological context to date has occurred within
the field of protein structure prediction, which was completely revolutionized
by the unveiling of AlphaFold2 in 2020 [121]. The AlphaFold2 algorithm takes
a deep learning approach to predict the three-dimensional structure of proteins
from their amino acid sequence, predicting protein structures with almost
experimental precision and far outperforming any competing software [122].
This biological application of machine learning was considered so significant
that it was awarded the 2024 Nobel Prize in Chemistry [123].

3.4.1 Random forest models

Among machine learning frameworks used for bioinformatic applications,
random forest (RF) models have become one of the more popular choices due
to their high accuracy, interpretability, and ability to handle complex, high-
dimensional data [124]. As the name suggests, RFs are based on an ensemble
(or "forest") of independent decision trees [125]. In these decision trees, each
individual node represents a logical test (called a split), and each leaf represents
a prediction (Figure 3.4a). For each observation, the outcome is determined by
traversing the tree from the root to the leaves, along a path that is determined
by its features [126]. Decision tree models have several desirable properties,
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including the fact that they are highly intuitive, however, their discrete nature
implies a high degree of prediction variance. This lack of robustness can be
overcome by combining M independent decision trees into an ensemble and
averaging their predictions [127] (Figure 3.4b).
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Figure 3.4: Illustration displaying the structure of tree-based machine learning models.
a Example of a basic decision tree. b Overview of the random forest architecture.

Originally introduced by Leo Breiman over 25 years ago, the RF algorithm is a
versatile ensemble method capable of handling both regression and classifica-
tion tasks. Its name reflects the incorporation of randomness in the construc-
tion of decision trees—specifically, through the random selection of feature
and sample subsets used to build each tree [128]. Given a random vector
X = (X1, ..., XN )T representing the input variables, or features, and a random
variable Y representing the response, we assume an unknown joint distribution
PXY (X,Y ). The training goal is to find a function f(X) that predicts Y , by min-
imizing the expected loss EXY (L(Y, f(X))), where L is a suitable loss function.
For ensemble models, the prediction function f(x) is formed by combining a
collection of base-learners h1(x), ..., hM (x). How these are combined depends
on the task, with regression using an average of the base learners

f(x) =
1

M

M∑
i=1

hi(x) (3.3)

while classification uses the consensus vote, i.e. the most frequently predicted
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class

f(x) = argmax
y∈Y

M∑
i=1

I(y = hi(x)). (3.4)

For RFs, each base learner hi(X,Θi), i = 1, ...,M is an individual decision tree,
where Θi represents an independent collection of features [129]. The number
of trees making up the ensemble, M, is, thus, one of the main hyperparameters
that should be considered when training an RF model, alongside the general
structure of the decision trees (i.e. how many variables are tested at each
node and the minimum number of observations required for each leaf) [130].
Importantly, RF models generally do not need to be combined with additional
cross-validation to optimize these hyperparameters, as an estimate of the
prediction error — called the "Out-Of-Bag" (OOB) error — is generated as
part of the training process. Briefly, each tree is generated using a random
bootstrap sample containing ∼ 63% of the data. After the model training is
complete, the OOB error is computed by averaging predictions made for each
observation using only the trees where that observation was not included in the
bootstrap sample. This estimate serves the same function as cross-validation,
as it provides an independent assessment of the performance, and can for
example be used to optimize the model parameters [125].

In bioinformatics, machine learning is often used not only for prediction but
also to gain insight into biological processes. Therefore, the interpretability of
the models used is often of high importance [124]. Here, random forests are
highly useful since they offer internal estimates of feature importance which
can be used to identify the most predictive feature(s) [128]. Various metrics can
be used for estimating the feature importance, but the default choice in many
software implementations is the so-called Gini importance [131]. When the
trees in an RF model are grown, the splitting, or variable(s) tested at each node,
is designed to maximize the decrease in impurity introduced by each split. For
classification, the impurity is typically measured as the Gini impurity:

Γ̂(t) =

K∑
k=1

ϕ̂k(t)(1− ϕ̂k(t)), (3.5)

where ϕ̂k(t) is the class frequency for class k in node t [132]. The Gini impor-
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tance of a predictor variable Xj is calculated as the average decrease in impurity
at each split formed by Xj across the forest [133]. Another widely used metric
is the permutation accuracy importance. This works by randomly permuting
the values of a predictor variable Xj , thereby disrupting its relationship with
the response variable Y . The model is then tasked with making predictions us-
ing the permuted Xj alongside the other unaltered predictors. The importance
of Xj is quantified as the decrease in prediction accuracy resulting from the
permutation, where a larger decrease suggests a stronger association between
Xj and Y [134].

Identifying the most important predictor variables is key to interpreting ma-
chine learning models such as RFs. However, feature importance does not
provide information about the marginal effects of these important variables
on the predictions made by the model. Instead, other methods are required to
extract this information, with arguably the most popular alternative being anal-
ysis of partial dependence (PD) [135]. This is a model-agnostic framework that
is generally used to produce low-dimensional visualizations of the prediction
function, so-called PD plots, which explain the relationship between the model
outcome and predictors of interest [136]. Briefly, the method works by fixing
the value of a predictor variable xj at some value v. The model is then tasked
with making predictions using xj = v, with all other variables retaining their
original values from the data, and the average prediction over all samples is
calculated as

f̂(xj = v) =
1

n

n∑
i=1

f(xj = v, xi,−j), (3.6)

where xi,−j represents all variables except xj for sample i. This is then repeated
multiple times using different values for v, and the results are typically visual-
ized as a plot showing the resulting f̂ against v [137]. By combining feature
importance with PD analysis, we can create highly interpretable machine learn-
ing models and, consequently, leverage such models to gain deeper insight
into biological processes.
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4 Summary of papers

This chapter summarizes the aims and findings of the six papers included in
this thesis.

4.1 Paper I

Antibiotic resistance genes (ARGs) conferring resistance to every major class of
antibiotics used to treat infections have been detected in bacterial pathogens.
This issue is exacerbated by the fact that new ARGs keep moving into the
clinic from external sources. Often, these are acquired through horizontal gene
transfer (HGT) from harmless commensal or environmental bacteria, which
are known to maintain a large diversity of ARGs [32]. Currently, the lack of
knowledge about the resistome, the complete collection of ARGs carried by
bacteria, makes it difficult to anticipate and manage new clinical ARGs. Indeed,
new ARGs are usually discovered only after they have become disseminated
among pathogens [138], at which point further spread is difficult to prevent. Pa-
per I, Extensive screening reveals previously undiscovered aminoglycoside resistance
genes in human pathogens, therefore, aimed to expand the knowledge about the
aminoglycoside resistome, and to demonstrate how large-scale computational
screening can be used for early detection of new ARGs acquired by pathogens
through HGT before they spread widely.

To do this, we first created and optimized nine profile hidden Markov models
(HMMs) — denoted model A to I — for identification of aac and aph genes, en-
coding aminoglycoside-modifying enzymes (AMEs). These models were then
used to screen ∼ 1 million public bacterial genomes for these resistance genes
using the software fARGene [70]. In total, this yielded 1,071,815 genes encoding
34,053 unique AMEs, divided into 7,612 AME families (<70% between-family
amino acid identity), a diversity of AMEs several times larger than previously

27
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described. Next, we evaluated the mobility of predicted genes on a large
scale to identify new AMEs that show evidence of being emerging in clinical
pathogens. We retrieved the genetic regions directly up and downstream of
all predicted ARGs and screened them for mobile genetic elements (MGEs),
including genes involved in plasmid conjugation, insertion sequences (ISs),
integrons, and co-localized mobile ARGs. This analysis revealed a total of 50
previously unknown AME families carried by pathogenic host species that
were also found to co-localize with MGEs (Figure 4.1).
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Figure 4.1: The number of AME families carried by pathogenic species that were
associated with different combinations of genes relating to mobile genetic elements
(MGEs), including conjugation systems, insertion sequences (IS), integrons, and/or
other known mobile antibiotic resistance genes (ARGs). The bars at the bottom indicate
the distribution of genes predicted by each of the nine models within each category. a
Families representing new AMEs and b families representing known AMEs. From Lund
et al. 2023 (Communications Biology. 2023 Aug 3;6(1):812). Licensed under CC-BY-4.0.

Moreover, genes from 21 of these 50 families were associated with clinical
isolates, showing that they have been able to move into pathogens undetected.
To confirm the functionality of our predicted ARGs, we selected 28 of the genes
associated with both pathogens and MGEs and expressed them in Escherichia
coli. When the resulting phenotypes were assessed through disk diffusion tests,
21 (86%) of the tested genes produced a resistant phenotype — of which 17
(61%) conferred resistance above the clinical breakpoint(s) and/or epidemio-
logical cut-off value(s) from EUCAST [139] — showing that our models were
able to accurately identify previously uncharacterized, potent resistance genes.
The results from this paper provide new insights into the aminoglycoside resis-
tome, and demonstrate the usefulness of computational screening as a tool for
identifying new ARGs as they are potentially emerging in pathogens.
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4.2 Paper II

When looking at the findings presented in previous studies, it becomes clear
that our current understanding of the resistome is highly limited [74, 75, 140].
Indeed, we still lack fundamental knowledge about the genetic diversity of
ARGs present in different environments that could potentially be acquired by
pathogens in the future. This makes it difficult to anticipate new ARGs as they
emerge in pathogens and, consequently, to develop effective strategies to man-
age the spread of new forms of resistance. In Paper II, Latent antibiotic resistance
genes are abundant, diverse, and mobile in human, animal, and environmental micro-
biomes, our objective, therefore, was to provide a more complete overview of
the abundance and diversity of ARGs in external and host-associated environ-
ments. To do this, we first constructed a large reference database encompassing
both well-known (here denoted as "established") and putative (here denoted
as "latent") ARGs from 17 different gene classes. In total, we included 572
established genes, which were obtained from the ResFinder database, as well
as 23,502 latent genes, which were identified by analyzing 427,495 bacterial
genomes with the fARGene software [74]. The abundance of these ARGs was
then estimated in 10,744 metagenomic samples, representing 20 environment
types (Figure 4.2).

ResFinder
(n ≈ 3,000)

fARGene
(n ≈ 75,000)

Established
(n = 572)

Latent
(n = 23,502)

Resistome

Figure 4.2: Overview of the analysis pipeline. To gain insight into the resistome,
we separated ARGs into two distinct groups: the established ARGs, consisting of
mobile ARGs that are already clinically relevant, and the latent ARGs, consisting of
computationally predicted "new" genes. Each group was carefully curated to encompass
genetically dissimilar ARGs. Subsequently, we searched for established and latent ARGs
within an extensive metagenomic database spanning diverse environments.

When analyzing the estimated gene abundances across the environments,
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we found stark contrasts between the abundance profiles associated with
latent and established ARGs (Figure 4.3). Latent ARGs were generally more
abundant than their established counterparts in all external environments
except wastewater, while host-associated environments were found to contain
a mix of both latent and established variants.
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Figure 4.3: Relative abundance of latent and established ARGs divided by gene class
and environment. Each gene class is represented by two rows: L for latent and E
for established. The labels Birds, Bovines, Mice, Pigs, Humans, and Infants denote
metagenomes from the corresponding digestive system. Respiratory system and Skin
only include human samples. The color intensity reflects the gene- and environment-
specific relative abundance, which was calculated based on the median of the relative
log-transform abundance over all samples from the environment. To make the genes
comparable, all values were normalized based on the environment with the highest
abundance. RPG is short for ribosomal protection gene. From Inda-Díaz et al. 2023
(Microbiome. 2023 Mar 8;11(1):44). Licensed under CC-BY-4.0.
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Based on the observed presence or absence of ARGs in different metagenomic
samples, we then estimated the pan-resistome (i.e. the complete collection of
ARGs present in any sample) and the core-resistome (i.e., the subset of ARGs
that were consistently present across samples) of each environment. Here,
we found that all pan-resistomes were dominated by latent ARGs, with the
pan-resistomes of external environments on average showing greater genetic
diversity than their host-associated counterparts. Furthermore, we found sig-
nificant overlaps between the core-resistomes of human and animal digestive
systems and wastewater, suggesting that the microbes that colonize these
environments are subjected to similar selection pressures.

Finally, to investigate the potential mobility of the latent core-resistome, we
extracted and annotated the genetic contexts of latent core-resistome ARGs
from whole-genome sequencing data in a similar manner as described for
Paper I. Here, we found that of the 29 latent ARGs that were included in the
core-resistomes of at least two different environments, 48% were located close
to a gene associated with MGEs, while 21% were co-localized with an estab-
lished ARG. Taken together, the results of this study show that latent ARGs are
ubiquitous in all analyzed environments, with a genetic diversity that far sur-
passes established variants, and have the ability to transfer horizontally within
and between environments. Thus, latent ARGs also need to be considered in
future studies to provide a more comprehensive view of the resistome and its
implications for human health.

4.3 Paper III

A key finding from Paper II was the significant similarities between the core-
resistomes of human gut and wastewater environments. Based on their fre-
quent exposure to antimicrobial compounds and their taxonomic composition,
these microbiomes have previously been suggested as hotspots for the spread
of antibiotic resistance [30, 33]. In Paper III, Community-promoted antibiotic
resistance genes show increased dissemination among pathogens, we therefore set
out to elucidate the connection between the prevalence of ARGs in human gut
and wastewater microbial communities, and their potential implications for
human health.

We used the same basic approach as outlined for Paper II to estimate the
prevalence of ARGs in metagenomes, however, we first updated our reference
ARG database to include 720 established ARGs and 33,224 latent ARGs. The
presence of each of these genes was estimated in a total of 6,664 metagenomic
shotgun samples, 5,630 of which represented the human gut and 1,034 of
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which represented wastewater. For each included ARG, we then calculated
the proportion of samples from each environment in which the gene was
present (≥ 3 matching reads). Based on these proportions, we then divided the
ARGs into four categories; co-promoted ARGs, which were present in ≥ 5% of
samples from both environments, non-promoted ARGs, which were present
in < 5% of samples from both environments (but not completely absent), and
human gut (HG)-promoted and wastewater (WW)-promoted ARGs, both of
which were present in ≥ 5% of samples from one type of environment but not
the other (Figure 4.4).

tet(O/W/O)-1

Status

tet(O/32/O)

tet(O/W/32/O)tet(O/32/O)

aac(6')-Ib7

Figure 4.4: Prevalence of antibiotic resistance genes (ARGs) in human gut and wastewa-
ter metagenomic samples. Labels are included for established ARGs that were present
in ≥ 25% of samples from either environment. The dashed lines show the classification
of the ARGs into four groups: Co-promoted (top right), human gut-promoted (top left),
wastewater-promoted (bottom right), and non-promoted (bottom left). From Lund et al.
2025 (Preprint).
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The co-promoted group mainly encompassed established ARGs with clinical
significance, while the other groups were instead dominated by latent genes,
though each category also included at least some established ARGs. By an-
alyzing the bacterial hosts carrying ARGs belonging to different promotion
categories, we found that the co-promoted genes were especially widespread.
Indeed, these genes were significantly overrepresented among ARGs identified
in multiple bacterial phyla, suggesting an increased potential for wide hori-
zontal dissemination. By contrast, WW-promoted ARGs were overrepresented
among ARGs identified in multiple classes within the same phylum (Pseu-
domonadota), showing that while these genes are promiscuous they are more
taxonomically restricted. Together, co-promoted and WW-promoted ARGs
were also overrepresented among established ARGs identified in multiple
important bacterial pathogens.

When analyzing the genetic contexts of the ARGs from the four different cat-
egories, we found that established co-promoted ARGs were more frequently
identified near broad host-range conjugative elements compared to HG- and
WW-promoted ARGs. This might explain the higher propensity of co-promoted
ARGs to transfer over long evolutionary distances. Moreover, we also estimated
the genetic compatibility (nucleotide composition dissimilarity) between the
established ARGs and genomes representing the included bacterial pathogens,
as well as typical residents of the human gut and wastewater bacterial com-
munities. Here, we again found that the co-promoted ARGs, on average, were
genetically more similar to these genomes than other established ARGs. This
suggests that these genes might be more easily assimilated by the members
of these microbial communities, including pathogens, which might further
facilitate their horizontal dissemination.

In summary, this paper represents a systematic investigation of the resistomes
found in the human gut and wastewater microbiomes. By identifying the
properties associated with genes promoted in different environments, we
were able to shed light on the correlations between prevalence in microbial
communities and transfer into common human pathogens. Together with
papers I and II, this represents an unprecedented insight into the resistome in
general, and the mobile resistome in particular.

4.4 Paper IV

The acquisition of foreign genetic material through HGT is one of the main ways
by which antibiotic resistance is spreading. In a single transfer event, a cell can
develop resistance to multiple antibiotics, which enables the rapid evolution
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of multidrug-resistant pathogens under appropriate selection pressure [141].
Furthermore, it has been shown that pathogens have repeatedly recruited ARGs
originating from evolutionarily distant bacteria [142]. Thus, the horizontal
transfer of ARGs across long evolutionary distances has played a key part in
the development of multi-resistance over time. However, while the negative
impact of horizontal ARG transfer between evolutionarily divergent bacteria on
human health is undeniable, the details regarding this process remain largely
unknown. To overcome the threat posed by increasing antibiotic resistance, it is
vital that we increase our knowledge about how ARGs move between different
bacteria.

Firmicutes

Actinobacteria
Chloroflexi

Verrucomicrobia

Ignavibacteriae

Bacteroidetes

Acidobacteria

Cyanobacteria

Proteobacteria

Figure 4.5: Network representation of the inter-phyla transfers between Proteobacteria,
Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, Acidobacteria, Verrucomicrobia,
and Bacteroidetes. From Parras-Moltó et al. 2024 (Preprint).

In Paper IV, The transfer of antibiotic resistance genes between evolutionarily distant
bacteria, we aimed to systematically analyze the transfer of ARGs between
bacterial phyla by identifying the associated taxonomic patterns (i.e., which
phyla are most frequently sharing ARGs) as well as the environments where
transfers are most frequently occurring. To identify instances of inter-phyla
ARG transfer, we implemented an algorithm based on phylogenetic analysis
that identified discrepancies between the phylogenetic trees reconstructed from
the predicted protein sequences from each gene class and the recorded host
taxonomy (the details behind this approach are described in Chapter 3.3). This
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algorithm was then applied to ARGs from 22 different gene classes predicted
by fARGene [70] in almost half a million publicly available bacterial genomes,
resulting in 661 identified inter-phyla transfers (IPTs). Here, Proteobacteria was
the phylum most frequently engaging in IPT, followed by Firmicutes and Aci-
dobacteria (Figure 4.5). Furthermore, our results revealed that Proteobacteria
have played a central role in the IPT of all ARG classes except Erm 23S rRNA
methyltransferases and tetracycline ribosomal protection genes (RPGs), which
were instead more strongly associated with Firmicutes. When increasing the
taxonomic resolution, we found Bacilli (Firmicutes) to be the class involved in
the highest number of IPTs, mainly together with Gammaproteobacteria, where
transfers mostly involved RPGs, and Epsilonproteobacteria, where transfers
mostly involved aminoglycoside-modifying enzymes (Figure 4.6).
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Figure 4.6: The most common transfers involving taxonomic classes from different
bacterial phyla, stratified based on the class of the transferred ARG. From Parras-Moltó
et al. 2024 (Preprint).

To investigate within what environments the observed IPTs were likely to
have occurred, we extracted the reported isolation sources of the bacterial
genomes carrying ARGs involved in IPTs. Here, we found that over half of
the genomes for which this information was available were isolated from the
human microbiome. Statistical analysis revealed that IPTs involving Mph
macrolide 2’-phosphotransferases, class B1/B2 and D beta-lactamases, and
tetracycline RPGs in particular were significantly overrepresented in the hu-
man microbiome. By contrast, IPTs involving aminoglycoside-modifying en-
zymes and class B3 beta-lactamases were significantly associated with external
environments, including soil and water. Interestingly, analysis of sequence
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similarities suggested that IPTs identified in the human microbiome were more
recent than those identified in external environments. Taken together, our
results provide new insights into the evolutionary process behind the accu-
mulation of ARGs in bacteria, which has been key for the development of
multidrug-resistant pathogens.

4.5 Paper V

In Paper V, Genetic compatibility and ecological connectivity drive the dissemination
of antibiotic resistance genes, we further developed the methodology from Paper
IV, with the aim of quantifying the extent to which different factors influence
horizontal ARG transfer over large phylogenetic distances (Figure 4.7). First, we
expanded the dataset to include ∼ 800, 000 bacterial genomes whose taxonomic
annotations were of sufficient quality. These genomes were again screened for
ARGs using fARGene, and instances where ARGs had undergone horizontal
transfer were identified based on phylogenetic analysis. However, compared
to the previous study, where we only studied inter-phylum transfers, we opted
to instead identify transfers between host bacteria with at least an order-level
taxonomic difference. In total, this analysis yielded 6,276 identified transfers
between distantly related host pairs.

For each identified transfer, data was collected representing the genetic incom-
patibility of the ARG and its host genomes, as well as the estimated environmen-
tal co-occurrence of donor and recipient genomes in different environments.
Briefly, genetic incompatibility was calculated based on the nucleotide com-
position dissimilarity (estimated as difference in 5mer distributions) between
the taxonomically distant host genomes, as well as between the transferred
ARG and host genomes, while co-occurrence was estimated by mapping the
genomes involved in the identified transfers onto a large 16S metagenomic
dataset including 20,816 metagenomes from five different environment types.
This data was supplemented with information on the cell envelope compo-
sition of the involved bacterial taxa, as well as the proportional difference in
size between host genomes, and used as input features to train random forest
models for prediction of horizontal ARG transfer.
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Figure 4.7: Overview of the analysis pipeline. Bacterial genomes were screened for
ARGs, and phylogenetic trees were built from the identified sequences. Horizontal
transfer was then inferred from the trees by detecting similar genes carried by evolution-
arily distant hosts. For each identified transfer, data describing genetic incompatibility
and co-occurrence in bacterial communities were collected and used to train random
forest models, from which the most influential factors were identified. Adapted from
Lund et al. 2025 (Nature Communications. 2025 Mar 16;16(1):2595). Licensed under
CC-BY-4.0.

In total, eight models were created, including one general and seven models
specific to different resistance mechanisms. Here, all models were trained
using a positive dataset consisting of observed transfers and a negative dataset
created by randomly permuting the leaves in the phylogenetic gene trees.
When evaluated based on performance, the final models displayed mean
areas under the receiver operating characteristic curve (AUROC) between
0.810–0.930, mean sensitivities between 0.803–0.902, and mean specificities
between 0.710–0.874, showing that they were able to accurately identify most
observed transfers while maintaining a low false positive rate.
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By combining feature importance analysis with partial dependence analysis, we
were able to identify the most influential factors for successful HGT of different
ARGs, as well as assess whether different factors generally had a positive or
negative effect on this process. Our results revealed that genetic incompatibility,
i.e. the nucleotide composition dissimilarity between genomes and/or between
genomes and ARGs, had the largest effect on all models (Figure 4.8), and
negatively affected the likelihood of horizontal ARG transfer. Similarly, a
pronounced negative effect was seen for hosts with different Gram staining
profiles, with different resistance mechanisms favoring transfer between either
Gram-negatives or Gram-positives. Finally, co-occurrence in any environment
was found to generally have a positive impact on horizontal ARG transfer,
however, co-occurrence in the human and wastewater microbiomes had the
strongest effect on the likelihood of transfer.

Figure 4.8: Relative importance of genetic and environmental factors for predicting the
horizontal transfer of antibiotic resistance genes. The bars show the mean +/- SD of the
importance of each factor to the accuracy of the general random forest model, based on
all observed transfers (n = 1, 565), over ten iterations. Permutation tests were used to
generate a p-value for each factor and iteration. ∗P < 0.01 across all model iterations.
From Lund et al. 2025 (Nature Communications. 2025 Mar 16;16(1):2595). Licensed under
CC-BY-4.0.
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From network analysis of the observed co-occurrence patterns, we found that
these were highly environment-specific. In particular, the human microbiome
displayed the greatest diversity of co-occurring promiscuous bacterial hosts. By
contrast, the observed co-occurrence of bacteria engaging in HGT in wastewater
was more taxonomically restricted, being dominated by Pseudomonadota, but
the co-occurrence levels were generally higher. Taken together, our findings
show that the difference in genetic composition of host bacteria and their
co-occurrence in microbial communities are two key factors that shape the
dissemination of ARGs among environmental, commensal, and disease-causing
bacteria. The results from this study also highlight the potential of predictive
models for early detection of emerging resistance determinants.

4.6 Paper VI

The results from Paper V clearly show that machine-learning models can be
trained to identify horizontal ARG transfer with high accuracy. In Paper VI, Can
we predict the spread of novel antibiotic resistance genes?, we aimed to further refine
the predictive power of these models and investigate the potential they have for
predicting horizontal transfer of emerging ARGs. To do this, we first updated
our dataset to encompass ∼ 1.6 million bacterial genomes, which were screened
for family-level horizontal ARG transfers. Using this expanded data, we were
able to create gene class-specific models using the XGBoost framework, where
we included additional features representing biological functions strongly
correlated with either the presence or absence of each included gene class in
bacterial genomes. The resulting 22 models generally displayed very high
performance, showing that our updated approach improved the capacity to
predict horizontal ARG transfer.

To simulate emerging resistance genes, we selected eight highly promiscu-
ous ARGs, including the aminoglycoside modifying enzymes AAC(6’)-Ib and
APH(3’)-Ia, the beta-lactamases NDM and KPC, the macrolide resistance genes
erm(B) and mph(A), and the tetracycline resistance genes tet(A) and tet(B), and
created new models where the transfers involving these ARGs had been ex-
cluded from the training data. These new models were evaluated based on
their performance on test data (30% of the input data split randomly), but
also in their ability to correctly classify the observations excluded from their
respective input data (Figure 4.9). While the performance on test data was
high for every model, the ability to predict the excluded genes varied greatly.
Interestingly, we noted that there was generally a higher degree of difficulty
associated with predicting inter-phyla transfers of an unseen ARG compared
to transfers within the same bacterial phylum. Illustrating this, when inter-
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phyla transfers were removed from consideration, the Mph [Mph(A) excluded]
model was able to correctly classify 95% of Mph(A) transfers (as opposed to
59% when phylum-level transfers were included).

Sensitivity SpecificityAUC

Evaluation

n

Evaluation 
(Excluded gene)

Sensitivityn

Model name

Figure 4.9: Performance of the selected models. For each model, transfers involving a
selected reference gene were excluded from the dataset before training. After training
the model, it was first evaluated based on test data (without the excluded reference
genes), and then again based on the excluded set of transfers involving the reference
gene. The left heatmap shows the results from the first round of evaluation, includ-
ing the area under the receiver operating characteristic curve (AUC), sensitivity, and
specificity, as well as the number of transfers in the test data (n) for each model. The
right heatmap shows the sensitivity produced from the second round of evaluation, as
well as the number of excluded transfers (n) for each model. From Lund et al. 2025
(Manuscript).

Next, we wanted to assess the predictive performance of each model when
applied to an independent dataset. To create such a dataset, we first selected
representative genomes for each of the 500 most common bacterial species in
the NCBI Assembly database. We then generated all possible pairs of species
whose taxonomic distance was at least at the family level and computed the
same features for these pairs as we previously did for the observed horizontal
transfers. Finally, we used each of the models described in the previous para-
graph to assess the horizontal transfer potential of their respective excluded
ARG for each combination of bacterial families. The results showed that all
models predicted a wide range of potential transfer events. Here, a substantial
amount of predicted connections involved documented hosts of the relevant
ARGs, which were validated via the data and a literature review. Each also
produced a wide range of novel predictions, a large portion of which involved
less well-studied bacterial taxa. Thus, while these predicted novel transfers
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likely included some false positives, the extent of this was difficult to assess.
Taken together, our results indicate that it is indeed possible to use machine
learning to predict the dissemination of emerging ARGs, at least to a certain
degree, but also that further development is needed to improve the reliability
of the models.
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5 Conclusions

Antibiotic resistance represents one of the greatest threats to the future of hu-
man health globally. To overcome this, we need to increase our knowledge
about how resistance is spreading, which is in large part driven by the hori-
zontal dissemination of antibiotic resistance genes (ARGs). Fortunately, recent
years have seen a vast expansion of biological sequence repositories, and this
data provides opportunities for obtaining new insights about the antibiotic
resistance phenomenon.

In this thesis, data-driven methods have been used to extend our knowledge
about the diversity of ARGs carried by bacteria, the prevalence of these genes
in different environments, and how they are disseminated among microbial
communities. The insights provided by Papers I–III, which represent an un-
precedented characterization of the resistome (or complete collection of ARGs
in bacteria), allow for a greater understanding of the environmental origins
and evolution of different resistance genes. Moreover, Papers I and II highlight
many examples of previously unknown (latent) ARGs that show evidence of
emerging in human pathogens. When considering that some of these latent
ARGs were shown to provide clinical levels of resistance in an E. coli host (Pa-
per I) and that some were identified in a range of different environments (Paper
II), it is clear that the latent resistome encompasses many genes that likely
constitute future clinical threats. As sequencing-based methods become more
widely used for molecular diagnostics of clinical infections, it is crucial that
antibiotic resistance profiling goes beyond the identification of only established
ARGs. To ensure accurate results and, by extension, appropriate treatment,
latent ARGs also need to be considered.

The presented findings also highlight the need for improved monitoring of
ARGs across environments. Indeed, Paper III shows that prevalence in the
human gut and wastewater microbiomes is strongly connected to widespread
dissemination among bacterial pathogens. Thus, it is essential to be aware of
new ARGs that become promoted in these environments, as such genes will

43
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likely have negative implications for human health. Exemplifying this, many
of the potentially emerging genes identified in Paper II were associated with
either human or wastewater microbial communities, though not both, suggest-
ing that these ARGs may not yet have achieved widespread dissemination
among pathogens. Nevertheless, many of these genes appear to have been
mobilized and transferred into pathogens undetected. This shows limitations
in contemporary surveillance programs for monitoring antibiotic resistance,
and highlights the potential of computational screening to detect potentially
dangerous new ARGs before they spread widely – something traditional micro-
biological methods have largely not been successful with. Early identification
of these genes will allow us to anticipate them as they appear in clinical settings
and react accordingly.

To better evaluate the risks associated with novel ARGs, it is crucial to estimate
their potential for dissemination through horizontal gene transfer (HGT). The
findings presented in Papers IV–VI, which represent a detailed investigation
into the patterns underlying the horizontal transfer of ARGs, increase the
knowledge about how ARGs are disseminated, which could facilitate such
risk assessment. Mainly, Paper IV shows that Proteobacteria act as a central
hub for inter-phyla transfer of ARGs from most gene classes. Moreover, strong
associations were identified between recent inter-phyla transfers and bacte-
ria isolated from the human microbiome. This aligns with the findings from
Papers II and III, again suggesting that these bacterial communities play an
important role in the dissemination of mobile ARGs. The importance of the
human and wastewater microbiomes is further supported by Paper V, where
co-occurrence in these environments was shown to increase the likelihood
of horizontal ARG transfer between bacterial orders. Thus, Papers II–V all
highlight anthropogenic microbiomes as high-risk environments for horizontal
ARGs dissemination, where an increased co-occurrence of potential host bac-
teria strongly increases the likelihood of successful horizontal ARG transfer.
Consequently, while external environments should not be overlooked, the
human gut and wastewater resistomes, including latent ARGs, should be of the
highest concern when designing strategies to combat the antibiotic resistance
crisis. The findings from Paper V, however, reveal that the factor contributing
most strongly towards successful horizontal ARG transfer was genetic incom-
patibility — or nucleotide composition dissimilarity — between the genes and
genomes involved in each transfer. The influence of genetic (in)compatibility is
also described in Paper III, highlighting this as a key component shaping the
dissemination of ARGs among environmental, commensal, and/or pathogenic
bacteria, with mobile genes likely having an increased host-range the less they
deviate from the genetic makeup of their potential hosts.

In Paper V, the model structure was further refined and used to identify novel
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ARGs with high dissemination potential. The results show that, while this is a
highly difficult task, it is not infeasible. Indeed, all presented models were able
to predict a majority of transfers involving simulated emerging ARGs, showing
that machine learning-based prediction of horizontal ARG dissemination is
a viable strategy to anticipate upcoming threats. Moreover, many of the pre-
dictions produced from an independently generated dataset were not present
in the data but were supported by the literature, showing that the models are
able to generalize beyond the training data. However, many of these predic-
tions could not be explained based on the available information, suggesting at
least some degree of false positives, and showing that further development is
needed before such models can support decision-making in clinical settings.
Nevertheless, the potential of data-driven methods for anticipating emerging
ARGs is clear, and, with further refinement, machine learning models could
become an important asset in the fight against antibiotic resistance.

5.1 Future research

This thesis has shown in several ways how data-driven methods constitute
an important asset for combating the spread of antibiotic resistance. Indeed,
by identifying potentially emerging ARGs in whole-genome sequencing data,
analyzing the resistome to identify high-risk environments for ARG dissemina-
tion using metagenomics, elucidating the evolutionary history of horizontally
transferred ARGs using phylogenetics, and identifying factors that strongly
influence the dissemination of ARGs using machine learning, this work demon-
strates the diverse applications of data-driven methods in this context. As
the amount of data generated is only expected to grow in the coming years,
new methods must be developed that take full advantage of the available
information to extract novel biological insights. Here, the recent popularization
of artificial intelligence frameworks like large language models presents an
exciting opportunity, as these could potentially help us better track mobile
gene sequences across genomes. Moreover, different algorithms or approaches
could prove to be a better fit for the application pioneered in Paper VI, which
needs to be explored in future research. In summary, the era of data that we
find ourselves in today presents an unprecedented opportunity to leverage
this information for overcoming problems facing human health. Therefore,
it is important that data-driven methods are developed that can supplement
traditional microbiological methods for monitoring the spread of antibiotic
resistance and for developing strategies to limit the spread of emerging ARGs.
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