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The IceCube Neutrino Observatory deployed 5160 digital optical modules (DOMs) on 86 cables,
called strings, in a cubic kilometer of deep glacial ice below the geographic South Pole. These
record the Cherenkov light of passing charged particles. Knowledge of the DOM positions is vital
for event reconstruction. While vertical positions have been calibrated, previous in-situ geometry
calibration methods have been unable to measure horizontal deviations from the surface positions,
largely due to degeneracies with ice model uncertainties. Thus the lateral position of the surface
position of each hole is to date in almost all cases used as the lateral position of all DOMs on a
given string. With the recent advances in ice modeling, two new in-situ measurements have now
been undertaken. Using a large sample of muon tracks, the individual positions of all DOMs on a
small number of strings around the center of the detector have been fitted.
Verifying the results against LED calibration data shows that the string-average corrections improve
detector modeling. Directly fitting string-average geometry corrections for the full array using
LED data agrees with the average corrections as derived from muons where available. Analyses
are now ongoing to obtain per-DOM positions using both methods and in addition, methods are
being developed to correct the recorded arrival times for the expected scattering delay, allowing
for multilateration of the positions using nanosecond-precision propagation delays.
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1. Introduction

The IceCube Neutrino Observatory is a neutrino detector instrumenting one cubic kilometer
of deep, glacial ice at the geographic South Pole [1]. It was built by drilling 86 holes of 60 cm
diameter each into the ice using a hot water drill [2]. Into each hole a cable holding 60 photosensors,
called Digital Optical modules (DOMs), was lowered and left to freeze in place. Each DOM is
capable of time-stamping the arrival time of individual photons, emitted as Cherenkov radiation
from passing charged relativistic particles, to within 2 ns uncertainty. The information available to
event reconstructions in turn only consists of the amount, arrival time and DOM positions of the
detected light.

To-date the detector geometry employed in simulation and reconstructions in almost all cases
assumes all DOMs of a string to have the same lateral position as the center of the surveyed drill
tower at the surface of the glacier. The depth of each string was initially measured by a pressure
sensor located at a known distance below the last DOM and later updated to an accuracy of 0.2 m
by inter-string timing measurements using LED calibration data [3].

Although gravity guided the drill to achieve near vertical holes, the unwinding of the drill hose
from its spool induced some small lateral movements. Since deployment, the overall detector has
been shifting by 10 m per year with respect to the underlying continent following the flow of the
embedding ice. However, we assume the relative detector geometry to stay unperturbed by this ice
movement. This assumption is justified over the time-scale of detector operation as the ice flow at
the location of IceCube is believed to be dominated by basal sliding instead of plastic deformation, as
inferred from inclinometer measurements[3] and acoustic sounding of a wet ice-rock interface [4].

The orientation of the drill head was recorded throughout the drilling process. The integrated
trajectories feature a maximum lateral deviation of 1.6 m averaged over the 51 holes for which this
data is still available. Comparing the calculated lateral positions for the downward and upward drill
movement, the average integrated error after a drill distances of 2500 m was calculated to roughly
1 m. Thus data from the drill head does not lend itself to improve on the detector geometry, but
only sets an expectation that deviations from the surface position should rarely exceed 2 meters.

Since deployment, several attempts to calibrate the DOM lateral positions using trilateration of
LED data [3] as well as muon tomography have been undertaken. These were not incorporated into
the default geometry as the studies were inconclusive, inconsistent or only applied to a small subset
of strings. Geometry studies are generally challenging as only small timing or intensity differences
are expected, and these are readily overwhelmed by systematic uncertainties associated with the ice
optical modeling.

Following a number of recent improvements to the ice optical modeling [5, 6], we present here
two new attempts at measuring statistically significant shifts from the surveyed surface positions.
The first method, described in section 2, employs a large set of muon tracks to find the most likely
positions of individual DOMs on a subset of 18 strings within the more densely instrumented center
of the detector. The second method, described in section 3, fits string-average corrections for all
strings of the detector to LED calibration data. For the overlapping set of strings, these two methods
for the first time achieve concordance as will be discussed in section 4.
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2. Muon-based method

Using muons from cosmic rays to calibrate the geometry has already been proposed and tried
with limited success in AMANDA[7]. While millions of muons give a high statistics sample, any
muon-based method comes with the disadvantage of relying on a reconstruction and are therefore
strongly affected by systematics.

With continuous improvements to the detector modeling and reconstructions, the prospects of
muon tomography have recently improved. The overarching idea of the latest iteration is to find
the DOM positions that yield the best goodness of fit in the description of the data with the muon
reconstructions.

Figure 1: Example progression of the likelihood
space for one geometry coordinate of one DOM as
more events are added. The average log likelihood
over events is shown to make the different samples
have comparable scale.

Figure 2: Per-DOM lateral positions as fitted for
string 44. Note the continuous development with
depth. For the top and bottom DOMs large biases are
systematically observed. Thus the 10 DOMs at the
top and at the bottom are excluded when calculating
the string-average position.

Fitting all three coordinates for all DOMs simultaneously would require the optimization of
over 15000 parameters which would be very computationally expensive. We may neglect the depth
coordinate z from the fit as it is already known to within 0.2m. We may also restrict ourselves to fit
the DOMs on one string at a time.

For this purpose the muon dataset is reconstructed without including data from the string in
question and all other strings at their default positions. This assumes that the non-optimized default
positions of the remaining strings do not on average bias muon reconstructions.

Next the optimal position for each DOM on the string is fitted separately. For each DOM the
probability of detecting the arrival times of the photons measured by this module is maximized as a
function of the DOM’s position assuming the previously reconstructed muon tracks. The expected
photon arrival times are estimated using spline tables[8]. While these at the moment do not allow
to encode the ice optical anisotropy [5], nor the updated layer undulations [6], they are otherwise
based on the a recent ice model version.

Figure 1 visualizes the evolution of the likelihood space for one coordinate of one example
DOM. As only few photons are detected per event, the likelihood curves for a single event are
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rather discontinuous with many local maxima. As the event statistics increase the likelihood curve
eventually becomes smooth, with a single clearly pronounced maximum. Because of modeling
errors carrying over from the initial reconstruction, Wilks’s Theorem[9] does not work for estimating
error contours [10] and instead bootstrapping [11] over the muon sample is utilized.

This method works well, without apparent systematic biases, in the center of the detector where
symmetries cancel some systematic effects for horizontal shifts. For this reason we restrict ourselves
to the 18 most central strings. When calculating the string-average position for comparison to the
LED flasher method, the top and bottom 10 DOMs on each string are excluded for the same reason.

3. LED flasher-based method

In addition to the photodetection hardware, each DOM is also equipped with 12 LEDs. These
are arranged in pairs equally spaced around the equator of the pressure vessel, with one LED pointing
horizontally outward into the ice and the the other LED pointing along anelevation angle of 48◦.
The LEDs emit light with a wavelength of 405 nm, with pulse durations configurable between 6 ns
and 70 ns and reach intensities of up to 1.2 · 1010 photons per pulse. During dedicated calibration
runs, LEDs from a selected DOM are pulsed, and the arrival times of photons received in all other
DOMs are recorded, in the process creating a light curve for each emitter-receiver pair of DOMs.
This data is usually employed to measure the ice optical properties by iteratively simulating photon
transport for different realizations of assumed ice model parameters, and comparing the resulting
light curves, with 25 ns binning, to calibration data through a log-likelihood (LLH) minimization
described in [12].

The same method is here employed to derive corrections to the default geometry, while keeping
the ice optical properties fixed. As the ice model can easily be changed during photon transport
simulation, we here employ a more recent ice model compared to the muon method, including the
latest birefringence-based explanation of the ice optical anisotropy [5].

As was the case for the muon-based method, not all DOMs are varied and fitted simultaneously.
Instead the fitting is performed one string at a time, with the other strings left at the default geometry
and currently only considering a single string-average correction for all DOMs on the string. In
contrast to the muon method, where the string to be calibrated receives light, the string to be
calibrated here acts as light emitter.

Figure 3 shows likelihood landscapes for two example strings, which have also been considered
in the muon-based method. Each circle represents one tested set of lateral corrections and is color
coded according to the distance of the likelihood value from the best-fit realization. The employed
likelihood [13] accounts for the vastly smaller photon statistics in simulation compared to the
experimental data. This induces fluctuations of the likelihood values compared to the expected
paraboloid. The statistics-only uncertainty contours as shown account for this fluctuation by fitting
a polynomial. As the likelihood does not conform to Wilks’ Theorem the Δ𝐿𝐿𝐻 values for a
given coverage have been calculated from the scatter observed by re-simulating one geometry
realization several times. The contour sizes primarily reflect the employed simulation statistics, but
are representative of the sensitivity of the analysis as a whole.
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Figure 3: Visualization of the flasher-based geometry correction method and comparison of the string-
average corrections for both methods, for two example strings. The grid of color dots shows the delta
likelihood value of a flasher fit for a given simulated displacement of the emitter string, and the associated
contours denote the statistical error. The red star and contour show the string-average correction of the
muon analysis, obtained by averaging the per-DOM displacements (gray stars). The red contour denotes the
statistical uncertainty on the mean.

In the provided examples both methods yield compatible results to within their claimed sta-
tistical uncertainty. The derived correction for string 35 is smaller than the hole diameter, while
DOMs on string 36 appear to be on average offset by 1.8 m.

4. Results

The map in Figure 4 provides a zoom into the central region of the detector, visualizing the
corrections as derived by the two methods with the overlapping set of strings. Generally a good
agreement between the methods is observed, in particular for the strings with the largest corrections.
Averaged over all strings the LED flasher method yields string-average lateral corrections of 1.0 m,
with the distribution shown in Figure 5. For the overlapping strings, the mean distance between
the fitted string position derived by the muon and LED flasher methods is 0.55 m. Regardless of
the individually derived statistical uncertainties, this may be considered the accuracy of the derived
corrections and highlights that on-average significant corrections are found.

Depth corrections have only been derived using the flasher method. As seen in the right panel
of Figure 5 these scatter around the previously derived depth and with a standard deviation of 0.3 m
confirm the claimed accuracy of the previous flasher-derived depth corrections.
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Figure 4: Geometry corrections in the DeepCore region of the IceCube footprint. Strings in the default
geometry are shown as circles with their number within. Vectors indicate the string-average geometry
corrections as deduced by the two analyses and oversized by a factor 30 for better presentation.

Figure 5: String-average corrections as derived by the flasher analysis compared to per-DOM corrections as
derived by the muon analysis. See text for details.

Without systematic biases to the geometry calibration one would assume the corrections to be
randomly oriented. The central panel of figure 5 shows a histogram of the azimuth directions of the
lateral corrections weighted by the overall magnitudes of the corrections. While in particular the
per-DOM corrections derived by the muon study strongly deviate from a uniform distribution, no
correlations to known preferential directions such as the ice flow direction are clearly evident.
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5. Conclusion and Outlook

Two calibration methods deriving corrections to the currently assumed IceCube detector geom-
etry, which for the lateral positions is simply based on the surface positions of the drill holes, have
been presented. These methods are in good agreement, despite using independent data and different
ice model assumptions. The derived string-averaged corrections are small (∼ 1 m), confirming the
excellent performance by the employed hot water drill. Per-DOM corrections have so far been
derived only using the muon method and remain under investigation.

While the concordance between methods is encouraging, further work is needed to assure the
robustness of the preliminary results. This in particular entails round-trip tests, where the newly
deduced geometry is used as a starting point and the fits are repeated. If, as assumed fitting individual
strings without updating the positions of the surrounding strings yields unbiased results, one would
expect on average no further corrections to be required. In addition systematics tests varying the ice
optical modeling employed in flasher simulation, introducing the new ice layer undulation maps and
potentially enabling direct hole ice simulation [14], may reveal yet unaccounted for biases inherent
to both methods. Changing the underlying ice model assumptions in the muon method requires
updated muon-spline-tables which are not readily available.

In parallel a new effort has been started to perform a purely timing-based trilateration analysis.
The LED flasher data are reprocessed with nanosecond binning to identify the least-scattered
photon for each neighboring receiver DOM and applying further Monte-Carlo-derived corrections
to account for the layered ice properties.
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