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Abstract: The pure spinor superfield formalism reveals that, in any dimension and with
any amount of supersymmetry, one particular supermultiplet is distinguished from all
others. This “canonical supermultiplet” is equipped with an additional structure that
is not apparent in any component-field formalism: a (homotopy) commutative algebra
structure on the space of fields. The structure is physically relevant in several ways; it
is responsible for the interactions in ten-dimensional super Yang–Mills theory, as well
as crucial to any first-quantised interpretation. We study the L∞ algebra structure that
is Koszul dual to this commutative algebra, both in general and in numerous examples,
and prove that it is equivalent to the subalgebra of the Koszul dual to functions on the
space of generalised pure spinors in internal degree greater than or equal to three. In
many examples, the latter is the positive part of a Borcherds–Kac–Moody superalgebra.
Using this result, we can interpret the canonical multiplet as the homotopy fiber of the
map from generalised pure spinor space to its derived replacement. This generalises and
extends work of Movshev–Schwarz and Gálvez–Gorbounov–Shaikh–Tonks in the same
spirit. We also comment on some issues with physical interpretations of the canonical
multiplet, which are illustrated by an example related to the complex Cayley plane, and
on possible extensions of our construction, which appear relevant in an example with
symmetry type G2 × A1.
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1. Introduction

The study of supersymmetric field theories has been a catalyst for many new and inter-
esting developments in mathematical physics over the last fifty years or so. Many of
these developments can now be understood as pointing at broader themes that are not
confined to the context of supersymmetric field theory. For example, the desire to under-
stand supersymmetric extensions of the Poincaré algebra geometrically, as structure-
preserving transformations of an appropriate “super-spacetime”, was a major impetus
behind much work in supergeometry. But the role of supergeometry and other super-
mathematics in physics is apparent in any theory with fermionic degrees of freedom,
whether supersymmetric or not. Another issue which is in principle independent of
supersymmetry, but which is unavoidable in the study of maximally supersymmetric
theories and especially supergravity theories, is the presence of on-shell symmetries:
a (super)symmetry acts on the critical locus of the action functional, but there is no
obvious way of extending the transformations defining this symmetry to the space of
all (off-shell) field configurations, and thus no obvious way of gauging the symmetry
with standard techniques. Precisely this issue led to the development of the Batalin–
Vilkovisky formalism, which deals with on-shell symmetries by replacing the space of
fields by (a specific model of) the derived critical locus and giving a homotopy action of
the on-shell symmetry on this space. The BV formalism, in turn, led to the introduction
of derived geometry and other homotopical methods into mathematical physics; these
techniques have become a fruitful and active area of modern research quite independently
of supersymmetry.

Pure spinor superfields were originally introduced in order to cope with both of the
aforementioned problems simultaneously, in the context of maximally supersymmetric
theories [1–3]. A major goal was to make supersymmetry “manifest”; the supersymme-
try transformations of the fields of the theory should be geometric in nature, and thus
the theory should be formulated in terms of superfields. Correspondingly, the action
of supersymmetry transformations should be strict. It was found that the pure spinor
superfield formulation of ten-dimensional super Yang–Mills theory naturally gives rise
to a superspace model of the derived critical locus, thus automatically reproducing the
Batalin–Vilkovisky approach to this theory. In modern language, the homotopy action
of supersymmetry on the standard BV theory arises via homotopy transfer.

While most of the literature on the formalism has to do with specific examples of
maximally supersymmetric theories, it has been realised in recent years that the scope
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of the formalism is much broader. Pure spinors provide a systematic technique to con-
struct off-shell superspace models of supermultiplets; in fact, any supermultiplet can be
obtained from a pure spinor superfield, and (in an appropriate sense) from a uniquely
determined one [4]. Here, too, ideas from derived geometry play an essential role: the
construction provides an equivalence of dg-categories between an appropriately defined
category of supermultiplets and the category of equivariant sheaves on (a derived replace-
ment of) the space of pure spinors. The equivalence is essentially a version [5] of the
general phenomenon of Koszul duality. (In general, some care is required in discussing
such equivalences. On general grounds, one has a fully faithful symmetric monoidal
embedding from quasi-coherent sheaves on the derived replacement to representations
of the supertranslation algebra; see [6, Theorem 2.4.1]. In our context, the remedy is that
a supermultiplet is not the same as a generic module over the supertranslation algebra;
such issues are not our focus in this paper, and we will ignore them in what follows.)

Koszul duality phenomena have various incarnations, and it has become increasingly
clear that they are of fundamental relevance to mathematical physics. For example, the
observables of a theory in the BV formalism are essentially the Koszul dual (Lie algebra
cochains) of the local L∞ algebra structure that the BV action defines on the fields
[7, just for example]. Building on this, Costello and Li [8] have pointed out that Koszul
duality should be relevant to the understanding of holographic dualities, generalising the
standard piece of the AdS/CFT dictionary which says that bulk fields should correspond
to boundary observables. For a recent survey of some other appearances of Koszul
duality in modern mathematical physics, see [9]. The mathematical literature on Koszul
duality is enormous, and we cannot give complete references here; for some selected
foundational work on Koszul duality, the reader might look at [10–15], just for example.

The instance of Koszul duality that will be relevant to us in this work is between
L∞ algebras and commutative differential graded algebras. However, it is important to
emphasise that we will not make reference to the standard story in the BV formalism
described above. Our application of Koszul duality will be, for those well-versed in the
BV formalism or the picture of field theories as formal moduli problems, the “wrong
way around”: we will study a hidden commutative algebra structure on the fields of
particular free supermultiplets, and relate this to an L∞ structure on the observables.

The commutative structure that is relevant for us is closely related to the commutative
structure on the ring S of functions on the space Y of generalised pure spinors. (It
is worth noting here that the term “pure spinor” is, in this context, in some sense a
historical accident: our notion encompasses the space of Maurer–Cartan elements in any
graded Lie algebra with support in degrees one and two, and therefore any graded ring S
defined as a quotient of formal power series by homogeneous quadratic equations.) The
pure spinor formalism constructs, in particular, a supermultiplet from any appropriately
equivariant sheaf on Y . As such, there is always a uniquely determined “canonical”
multiplet associated to the structure sheaf (the ring S itself). In examples of physical
relevance, the canonical multiplet is typically an important or well-known one: among
the list of canonical multiplets, one sees, for example, the eleven-dimensional and type
IIB supergravity multiplets; the Yang–Mills multiplets for minimal supersymmetry in
dimensions three, four, six, and ten; and the N = (2, 0) abelian tensor multiplet. In
each case, the commutative structure on S gives rise to a commutative structure on the
canonical multiplet.

This commutative structure has been understood and appreciated in examples. The
pure spinor formulation of interactions in ten-dimensional super Yang–Mills theory,
for example, uses a Chern–Simons-type action; just as in the BV approach to standard
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Chern–Simons theory, the multiplet comes equipped with a commutative structure, and
tensoring this with the gauge Lie algebra gives rise to the L∞ structure describing
the interacting BV theory. It is also relevant to first-quantised pure spinor models, in
particular the pure spinor superparticle [3]. Here, thefields of the theory in the target space
arise as observables of the worldline theory. We expect the commutative structure of
the canonical multiplet to be relevant to first-quantised descriptions in general, although
there are many subtleties and we do not pursue this here.

In order to understand the Koszul dual of this cdga, we need to pass to yet a larger
model of the multiplet in question. Although the standard pure spinor description is freely
resolved over superspace, it is not freely generated as a commutative algebra, because S
itself is not. We thus need to replace S by its Tate resolution [16], which resolves the ideal
defining S by a cdga that is freely generated over formal power series. In the language
of rational homotopy theory, we construct a Sullivan model for S; Sullivan algebras are
perhaps better known in the supergravity literature as “free differential algebras”, and
have appeared in various places in prior work, notably in the work of the Italian school
[17]. The Tate resolution of S can then be identified with the cochains of an L∞ algebra
t(∞), which arises via a sequence of iterated central extensions of the supertranslation
algebra t. t(∞) thus maps to t; the multiplet itself can be viewed as the homotopy fiber
of the corresponding map of formal moduli problems, and we prove that it is modeled
by the subalgebra of t(∞) supported in degrees greater than or equal to three.

In many of the examples we consider, the variety Y is a minimal orbit of the action of
the automorphisms of t on t1, and the algebra t(∞) itself can be understood as the positive
part of a Borcherds–Kac–Moody (BKM) superalgebra. The connection between such
algebras and functions on minimal orbits via Koszul duality was studied previously
in [18]. As such, our results can be also understood as a generalisation of that work.
The relevance of BKM algebras to supergravity theories, U -dualities, and exceptional
generalised geometry has been understood for some time (see, just for example, [19–21],
as well as [22]); it would be interesting to pursue connections to these other appearances
of similar algebraic structures, though we do not pursue this in any deep way here. We
hope to return to the question in future work.

We are not the first to study the Koszul duals of the algebras that appear in the pure
spinor formalism, though our setup is more general than has appeared in the literature so
far. The Tate resolution of the pure spinor constraint was considered in [23]—again, moti-
vated by issues related to first-quantised models—and continued in [24,25], in particular
from the point of view of partition functions/characters. In a series of fundamental papers
[26–28], Movshev and Schwarz studied constructions and proved results analogous to
ours in the example of ten-dimensional super Yang–Mills theory. (In ten-dimensional
minimal supersymmetry, the Yang–Mills multiplet is the canonical multiplet.) In [29],
Movshev went on to uncover many of the key structural features of the formalism, includ-
ing extensions to Yang–Mills theories with less supersymmetry, for which the canonical
multiplet is the off-shell (BRST, rather than BV) Yang–Mills multiplet. Building on this
body of work, an inspiring paper of Gorbounov–Schechtman [30] commented on the
connections to Tate resolutions of commutative algebras and ideas from rational homo-
topy theory, and further work of Gálvez–Gorbounov–Shaikh–Tonks [31] generalised the
ideas of Movshev–Schwarz to general Koszul algebras. In addition, an important paper
of Gorodentsev, Khoroshkin, and Rudakov [32] gave a clear exposition of constructions
and results entirely parallel to ours in the case of symmetric spaces. In this paper, with
applications to supersymmetric physics in mind, we generalise further to any canonical
multiplet; we do not require Koszulity, though we comment on the role it plays later on.
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We also note that the explicit study of the Tate resolution for the constrained spinors
used in D = 11 supergravity was initiated in [33], where some conjectures along the
lines of our results were formulated.

For the purposes of this work, we consider only canonical multiplets; we do not
address the situation where multiplets are obtained from non-scalar pure spinor super-
fields (sheaves other than the structure sheaf on Y , or non-free S-modules) in any detail.
Many of the statements should carry over to such multiplets, both in terms of modules
over the rings we consider and of their Koszul dual algebras. We save these considera-
tions for the future.

The organisation of the paper is as follows: Sect. 2 introduces some general concepts,
including the categories we are working in, issues related to gradings, and partition
functions. We briefly review relevant aspects of the pure spinor superfield formalism
and of Borcherds–Kac–Moody superalgebras. In Sect. 3 we introduce the Koszul dual
to the pure spinors. A main tool is the Tate resolution of the constraint on the “pure spinor”
λ. The resolution is a freely generated commutative dg algebra, and hence defines an
L∞ algebra structure on t(∞), the linear dual of the space of generators (shifted by one).
This L∞ algebra is the Koszul dual to pure spinors; note that, although the algebra S
is quadratic, this notion of Koszul duality coincides with the traditional quadratic one
only when the coordinate ring of pure spinor space is Koszul. By incorporating the
Tate resolution in the pure spinor superfield formalism, we obtain a freely generated
cdga resolving, not just S, but the canonical multiplet itself. We can then use homotopy
transfer to show equivalence of this cdga both to the standard version of pure spinor
superfield cohomology and to the Lie algebra cohomology of the subalgebra of t(∞) in
degrees three and above. We also discuss in some detail how t(∞) can be constructed
from the supertranslation algebra and the observables of the canonical multiplet by
the introduction of certain cocycles, and give an interpretation in terms of forms on
superspace, a more standard notion in the physics literature. In Sect. 4 we list and discuss
interesting structures, both on the mathematical, ring-theoretical, and on the physical
sides. Section 5 presents a large number of physical (and some less physical) examples,
illustrating our approach. Finally, in Sect. 6, our results are discussed, and some open
questions and future directions are pointed out.

2. Setup

2.1. Conventions. We begin by briefly setting up our conventions and quickly reviewing
some well-known material we will use in what follows. In particular, we fix conventions
for gradings and for the monoidal structure on the category in which we work, as well
as for partition functions (Hilbert and Poincaré series).

2.1.1. Notes on notation. We use the notation ∧ for the graded antisymmetric, and ∨
for the graded symmetric part of any tensor product. We often use signs to denote parity;
if V is a vector space, an element in −V is defined as an element in V with odd parity
(a fermion). Note that (−1)n ∨n V = ∧n(−V ). Given a vector space, the tensor algebra
on V is denoted T [V ], and Sym•(V ) denotes the (graded) symmetric algebra. The dual
of a vector space V is denoted V ; see below in Sect. 2.1.3 for comments on duals. An
irreducible highest weight module of a semi-simple Lie algebra is denoted R(μ), where
μ is the highest weight. If the module is labelled by a lowest weight, we use the notation
R(−μ). Representations and modules of finite-dimensional semi-simple Lie algebras
are sometimes denoted by the Dynkin label of μ, and sometimes by their dimension, in
bold.
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We will usually denote Lie algebras by Fraktur letters, but do not adhere to this
convention universally. Some exceptions are as follows: the free Lie algebra on a vector
space V is denoted F[V ]; the Borcherds–Kac–Moody superalgebra labeled by a Kac–
Moody superalgebra g and a dominant integral weight μ of g is denoted B(g, μ).
Semidirect sums of Lie algebras are indicated with the symbol �, with the algebra a
acting on its module b in a � b. Categories, where they appear, are in sans-serif type,
so that (for example) Ch denotes the category of cochain complexes. We will make
repeated use of homotopical arguments; when we refer to two objects as equivalent, we
mean equivalent up to homotopy in the category in which these objects live.

2.1.2. Setting the stage. Throughout the paper, we work in an appropriate monoidal
category of graded vector spaces over a field k of characteristic zero. For the purposes at
hand, one loses nothing by imagining that k = C throughout. An object of this category
is a bigraded vector space

V =
⊕

p,q

V p,q , (1)

with each graded component V p,q finite-dimensional, possibly equipped with a differ-
ential of bidegree (+1, 0). The monoidal structure uses the Koszul rule of signs, with
the parity of a homogeneous element in bidegree (p, q) being p + q mod 2. This cat-
egory was referred to as “lifted dgs vector spaces” in ref. [34]. One can alternatively
think of it as being the category of cochain complexes of graded vector spaces, where
the category GrVect of graded vector spaces is taken to be monoidal according to the
Koszul sign rule. We will sometimes have cause to refer to the subcategories GrVect±
of GrVect, consisting of objects with non-negative (+) or non-positive (−) grading;
similarly, GrVect> will refer to the subcategory of objects with grading bounded from
below. GrVect is a full subcategory of Ch(GrVect) by regarding an object as a cochain
complex concentrated in degree zero. We will also need the subcategory consisting of
cochain complexes in GrVect that are bounded from below (or above) in the internal
grading (the grading on GrVect) and bounded in cohomological degree in each inter-
nal degree. This category will be called Ch(GrVect>)b—but note that objects are not
necessarily bounded cochain complexes!

2.1.3. A comment on bigradings. The grading on an object in GrVect will be called the
“internal grading”, and the grading on a cochain complex will be called the “cohomolog-
ical grading”. In physical terms, cohomological grading should be thought of as ghost
number, and internal degree modulo two as intrinsic fermion parity (both with appro-
priate shifts). We will sometimes have cause to refer to the negatives of these gradings:
the negative of the cohomological degree will be called “homological degree”, and the
negative of the internal degree will be called the “weight degree”. Throughout, duals
reverse grading: that is,

(V )p,q = V−p,−q . (2)

As such, the dual of a cochain complex is also a cochain complex; our conventions are
cohomological throughout, so that every differential has degree +1. Duals are defined
to be the sum of the degreewise linear duals; note that this is not the linear dual in the
infinite-dimensional setting, but that the dual of a dual is the original object.
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The only important shift functor will be the shift functor on Ch(GrVect), which
preserves weight grading and shifts cohomological grading. For this shift functor, we
use square brackets; our convention is that

V [n]p,q = V p+n,q . (3)

Thus, for any object W of GrVect, W [n] denotes the cochain complex consisting of W
placed in degree −n.

The totalisation of the cohomological degree and the internal degree will be called the
“consistent” or “totalised grading”, as the parity of any homogeneous element is deter-
mined by this degree. V p,q is in consistent degree p+q. In later sections, we sometimes
have cause to refer to the bidegree of an element using the “Tate bidegree”, consisting
of consistent and weight degree, rather than cohomological and internal degree: when
we do this, we will use double parentheses, so that an element of bidegree (p, q) has
Tate bidegree ((p + q,−q)).

2.1.4. Homotopy Lie algebras and their cochains. No matter which algebraic structures
are being considered, we always work internally in GrVect. Thus a “cochain complex”
or “dg vector space” is an object of Ch(GrVect), a “commutative algebra” is a Z-
graded algebra which is graded commutative, and a “commutative dg algebra” is a
bigraded algebra, commutative with respect to the totalised grading, and equipped with
a differential of bidegree (1, 0).

An L∞ algebra (again internal to GrVect) is an object a of Ch(GrVect), equipped
with structure maps

μk : ∧ka → a (4)

of bidegree (2 − k, 0) satisfying all higher Jacobi identities. A “Lie algebra” is an L∞
algebra concentrated in cohomological degree zero: that is, a consistently Z-graded Lie
superalgebra.1

Given an L∞ algebra a, its Lie algebra cochains C•(a) are a cdga, freely generated
by a[−1]. We will write Sym•(V ) for the freely generated commutative algebra on an
elementV ofCh(GrVect), and Sym

•
(V ) for the completion with respect to the canonical

maximal ideal Sym>0(V ). The cochains are then the cdga

C•(a) = (Sym
•
(a[−1]), dCE), (5)

where the Chevalley–Eilenberg differential dCE is the sum of the maps μk over all k > 0.
If there are infinitely many nonvanishing L∞ operations, completion is essential; if not,
we can choose to work without completing. The Chevalley–Eilenberg differential has
bidegree (1, 0), and it squares to zero precisely when the μk define an L∞ structure. (If
a is the Lie algebra of a super Lie group A, then the generators a[−1] can be thought
of as left-invariant one-forms; completing means that we treat fermionic one-forms as
formal variables.)

1 In the sequel, we will have cause to consider strict minimal L∞ algebras—for which only the 2-ary
bracket is nontrivial—which are nevertheless supported in nontrivial cohomological degrees. These are, of
course, also (super) Lie algebras in the standard sense; we may abusively refer to them as such, but no confusion
should arise.
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2.1.5. Working equivariantly. In general, we will be interested not only in the category
GrVect, but also in an equivariant version GrVectG , where objects are graded vector
spaces equipped with an action of a reductive algebraic group G. (The reader will lose
nothing by imagining that k = C and that G is a complex Lie group.) Ch(GrVectG)

and other related objects are defined in the obvious way.

2.1.6. Partition functions. A useful tool for examining the structure of the objects we
will study (in particular, cdgas and L∞ algebras) is provided by partition functions
(characters). Let us quickly fix our conventions.

For G a reductive algebraic group as above, we let VectG denote the category of G-
representations, and Rep(G) denote the representation ring of G. An element of Rep(G)

is a formal integral linear combination of G-representations; sums are identified with
direct sums, and the ring structure arises from the tensor product in VectG . (In other
words, Rep(G) is the Grothendieck ring K0(VectG).)

A partition function can be meaningfully assigned to any object of Ch(GrVectG>)b.
Recall that, for such objects, the internal grading is bounded from below, and the homo-
logical grading is bounded in each internal degree. For such an object, the Euler char-
acteristic defines an assignment

χ : Ob
(

Ch(GrVectG>)b

)

→ K0(GrVectG>),
⊕

p

V p,• �→
∑

p

(−1)pV p,•. (6)

We can then further observe that K0(GrVectG>) = K0(VectG)((t)) = Rep(G)((t)), so
that the Euler characteristic can be viewed as the formal Laurent series with coefficients
in the representation ring constructed via this procedure. The Euler characteristic of
quasi-isomorphic cochain complexes agree, and direct sums and tensor products are
carried to addition and multiplication in Rep(G)((t)). In what follows, we will often use
⊕,�,⊗ for operations in this ring.

The partition function is essentially the Euler characteristic, as thus defined; however,
in our conventions for partition functions, we make a couple of adjustments. First off,
we prefer for the sign to reflect the consistent grading; therefore, we define

ZV (t) = χV (−t), V ∈ Ob
(

Ch(GrVectG>)b

)

. (7)

Secondly, we will have cause to study objects where the internal grading is bounded
from above. We maintain the convention that the partition function should be a formal
Laurent series in the variable t , rather than t−1; therefore, we define the partition function
of an object of Ch(GrVectG<)b by ZV (t) = χV (−t−1).

The partition function is thus an object that encodes the content in terms ofG-modules
at each weight degree; the weight degree is encoded as the power of a formal parameter t .
It should be noted that the partition function no longer keeps track of the cohomological
grading; it only carries information about the weight grading and the Koszul sign of the
G-modules.

2.1.7. TheHilbert and Poincaré series of a commutative ring S. According to the above,
the partition function takes values in the tensor product of the representation ring of G
and formal power series in t , and we write

ZS(t) =
∞

⊕

n=0

Snt
n . (8)
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Replacing Sn with dim(Sn) gives the Hilbert series.
Note that our definition of a partition function for S is its Hilbert series; this is to

be contrasted with the Poincaré series, which is often encountered in the theory of
commutative rings (see e.g.[35,36]), and which is based on a minimal (equivariant)
resolution L• of k in free S-modules:2

L• = · · · S ⊗ V−3 S ⊗ V−2 S ⊗ V−1 S
φ4 φ3 φ2 φ1 � k, (9)

where V i are objects of GrVectG , dim Vi = bi , V0 = k. The partition function (the
equivariant Poincaré series of S) is often defined in the literature as

PS(t) =
∞

⊕

i=0

V−i t
i . (10)

The corresponding numerical Poincaré series is then
∑∞

i=0 bi t
i .

The complex L• computes the Koszul dual Ext•S(k, k) of S in associative algebras. (In
general, Ext•S(k, k) has an A∞ structure; when S is commutative, this can be identified
with the enveloping algebra, in the sense of Baranovsky [37], of the L∞ Koszul dual we
consider in this paper.) Since the complex resolves k in free S-modules, we can compute

Ext jS(k, k) = HomS(L
j , k) = Vj . (11)

This implies a relationship between PS(t) and ZS(t). In order to see this relationship, we
need to rearrange the terms in this partition function to make it adhere to our conventions
above. In particular, we need to take the Euler characteristic; however, this does not
correspond to setting t = −1 in the above definition, since it does not properly account
for gradings. S is graded, so that L• is bigraded, and the resolution differential φ has
(consistent) bidegree ((1, 0)). To be concrete, we can split each V i as V i = ⊕Ni

w=i V i,w,
where V i,w carries weight degree w and Ni is a finite number. L• is now an object of
Ch(GrVectG−)b, so that, following the above convention, we should define

P̃S(t) := ZExt•S(k,k)(t) =
∞

⊕

i=0

Ni
⊕

w=i

V i,w(−1)i tw. (12)

Because L• is a resolution of k, we can then compute the total partition function of
the complex as ZS(t)⊗ P̃S(t) = ZL•(t) = 1. Thus ZS(t) = (P̃S(t))−1. S being a Koszul
algebra is equivalent to all deg(φi ) = 1 [36]. Then the sum over w in (12) contains a
single term w = i , and ZS(t) = (PS(−t))−1.

2.1.8. Partition functions of enveloping algebras. Let a be a Lie algebra in positive
internal degrees, containing the module Rn (of Der(a), see Sect. 2.2.1) at internal degree
n, where fermionic generators are counted with a minus sign. The partition function
(always twisted by fermion number) of the universal enveloping algebra U (a) is

ZU (a)(t) =
∞

⊗

n=1

(1 − tn)−Rn . (13)

2 This resolution is in a certain sense dual to the Tate resolution of S, see Sect. 3.2.4.
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Here we use the shorthand (1 − tn)−Rn for the partition function of bosons at degree n
in the module Rn ,

(1 − x)−V =
∞

⊕

n=0

∨nV xn , (14)

which is practical since it obeys the usual multiplication rules for powers. In particular,
its inverse is the partition function for a fermion in V ,

(1 − x)V =
dim V
⊕

n=0

(−1)n ∧n V xn . (15)

The corresponding Hilbert series is obtained by replacing modules with their dimensions.
If a is L∞, but not strictly Lie, U (a) as such is not well defined. The right hand side
of (13) is still meaningful, and has the interpretation as the partition function for the A∞
structure on Sym•(a) as defined by Baranovsky [37], which is the proper generalisation
of U (a) to L∞ algebras. This will be taken as the meaning of U (a) in the following. It
of course still agrees with the conjugate inverse of the partition function of the complex
C•(a), see Sect. 3.2.3.

2.2. (Generalised) supertranslations. In this section, we set up the general scenario in
which we would like to work. While our constructions are inspired by applications in
supersymmetric field theory, and our examples will all be taken from this setting, we
emphasise that the superalgebras we consider need not be limited to just supertranslation
algebras of physical interest.

2.2.1. The supersymmetry algebra. Let t be a Lie algebra, supported in internal degrees
one and two. It follows immediately that t is a central extension of the odd abelian Lie
algebra t1 by t2:

0 → t2 → t → t1 → 0. (16)

We will think of t as a physical supertranslation algebra: it will act by translation sym-
metries on flat superspace, and these symmetries preserve ghost number since t is con-
centrated in cohomological degree zero.

Let Der(t) be the Lie algebra of bidegree-preserving endomorphisms of t that are
derivations of the bracket. (This is the Lie algebra of the group Aut(t) of bidegree-
preserving automorphisms of t.) Since t0,0 = 0, there are no bidegree-preserving inner
derivations, and we can extend the Lie algebra by placing Der(t) in degree zero if we
like.

(In physical terms, the result would be the super-Poincaré algebra, including Lorentz
and R-symmetry as well as a generator for scale transformations, the grading generator.)
In general, though, we will focus just on the algebra t, while insisting that all constructions
are equivariant for the Lie algebra Der(t), or perhaps more generally for some chosen
subalgebra thereof (though we will not make such choices in what follows).
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2.2.2. Superspace. Given a Lie algebra t of this form, we can construct a corresponding
superspace in the following fashion: We consider the supergroup T = exp(t). Since t is
two-step nilpotent, T ∼= t as (graded) vector spaces. As usual, T acts on itself on the left
and on the right. Both the left- and right-invariant vector fields are isomorphic to t and
define two commuting copies of t inside of Vect(T ). These are the operators typically
called Qα and Dα in the physics literature.

2.2.3. Pure spinor space and its coordinate ring. We consider now the Lie algebra
cochains of t. SinceC•(−) is a contravariant functor, the above short exact sequence (16)
determines a diagram

k → C•(t1) → C•(t) → C•(t2) → k (17)

of cdga’s, in which the first and last terms have zero differential. The first map in this
sequence witnesses C•(t) as an algebra over the polynomial ring

R = C•(t1) = Sym•(t1[−1]), (18)

graded so that its generators sit in bidegree (1,−1). We will often denote these generators
with the symbol λ, so that R = k[λ]. The second map shows that, as a graded commu-
tative algebra over R, C•(t) is freely generated by t2[−1], which we will represent by
odd generators v in bidegree (1,−2).

One sees immediately that C•(t), with respect to the consistent (totalised) grad-
ing, is the (cohomologically, thus negatively, graded) Koszul complex associated to
the sequence of dim(t2) quadratic elements of R that are determined by the structure
constants. The zeroth cohomology, with respect to the consistent grading, is thus the
ring

S = R/〈λ2〉 (19)

of functions on the space of Maurer–Cartan elements in t, where λ2 denotes some
expression quadratic in λ corresponding to the generators of t2. (Since the differential
on t is trivial, Maurer–Cartan elements are just elements Q ∈ t1 satisfying [Q, Q] = 0.)
We define this space, the “Maurer–Cartan set” or “nilpotence variety” or “generalised
pure spinor space”, to be3

Y = Spec S. (20)

Since S is graded (defined by homogeneous quadratic equations in the polynomial ring
R), Y admits a k× action; it is the affine cone over the projective scheme

P(Y ) = Proj S. (21)

The weight grading corresponding to the standard k× action, with respect to which
generators of R are placed in degree 1, is the negative of the internal grading.

3 For non-experts: the spectrum Spec S of a ring S is its set of prime ideals. One can think of a maximal
ideal as the collection of those functions on Y that vanish at a specific point λ0 in pure spinor space. This
ideal is generated by the monomials λ−λ0. More generally, prime ideals can be thought of as those functions
vanishing on particular algebraic subsets, defined by the equations that generate the ideal. The spectrum can
be equipped with the Zariski topology, in which closed sets are algebraic subsets, as well as a sheaf of local
functions for which S is the global sections. We will freely make use of this correspondence between spaces
and rings in what follows.
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2.3. The (generalised) pure spinor superfield formalism.

2.3.1. Multiplets. The pure spinor superfield formalism associates, to any Der(t)-
equivariant C•(t)-module, a “multiplet” for t, which is a supersymmetry-equivariant
sheaf on the body of the supermanifold T (the normal bosonic spacetime). In fact, the
formalism defines an equivalence of categories, so that every supermultiplet admits a
unique description in terms of an equivariant C•(t)-module (or, equivalently, in terms
of an equivariant sheaf on the classifying space Bt = SpecC•(t)). We briefly review
the relevant aspects here; for details and further background, we refer to the literature
[1,34,38,39]. We note that, in the physics literature, the term “supermultiplet” is usually
understood, depending on context, to mean an indecomposible representation module of
the supersymmetry algebra, either on fields (in the case of a local supermultiplet) or on
particles (which are unitary irreducible representations of the Poincaré group, finitely
many of which combine into a unitary irreducible representation of the super-Poincaré
group). In the presence of a free action, the Hilbert space of the free field theory of a
field multiplet is the Fock space on a corresponding particle multiplet. Our definition
of the term captures the notion of a field multiplet, but only includes those gauge trans-
formations or equations of motion that are necessary for supersymmetry to close in an
appropriate off-shell formalism (either BRST or BV).

2.3.2. Commutative/Lie Koszul duality kernel. The formalism works using a kernel
which is a slight variant of the usual Koszul duality kernel. By a “kernel” in this context,
we mean a free resolution of the ground field k in bimodules over the algebra and its
Koszul dual; for Koszul duality in associative algebras, this is the object L• discussed
in Sect. 2.1.7.

For our purposes in this paper, only Koszul duality between the commutative and Lie
operads is relevant. In this case, the kernel can be made more explicit using the Chevalley–
Eilenberg cochains. The usual kernel for commutative/Lie Koszul duality is K0(t) =
U (t) ⊗k C•(t), equipped with the scalar, square-zero, acyclic differential that arises
from the identity element in t ⊗ t acting using both module structures simultaneously,
and considered as a differential graded (C•(t),U (t))-bimodule. The equivalence of
categories then associates to a U (t)-module N the C•(t)-module N ⊗U (t) K0(t), and
similarly to a C•(t)-module M the U (t)-module K0(t) ⊗C•(t) M . The algebras U (t)
and C•(t) are then said to be Koszul dual; in this special case, where no higher brackets
are present, (the enveloping algebra of) a dg Lie algebra is dual to a dg commutative
algebra. In general, the Koszul dual of a freely generated cdga is an A∞ algebra that
can be understood as the enveloping algebra (in the sense of Baranovsky [37]) of an L∞
algebra, of which the original cdga is the Chevalley–Eilenberg cochains. We are thus free
to speak about a duality between (homotopy) commutative and Lie (or L∞) algebras,
and we will do this in what follows. We comment in more detail on this in Sects. 3.1.1
and 3.2.1 below.

2.3.3. The pure spinor functor. To obtain multiplets via the (generalised) pure spinor
formalism, we replace U (t) in the kernel by the sheaf C∞(T ) of smooth functions on
superspace, which (like U (t) itself) is a U (t)-bimodule via the left and right actions
discussed in Sect. 2.2.2. Concretely, the kernel takes the form

K (t) = C∞(T ) ⊗k C
•(t) = C∞(T )[λ, v], (22)
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with a differential given by the formula

D = v
∂

∂x
+ λ

(

∂

∂θ
− θ

∂

∂x

)

+ λ2 ∂

∂v
. (23)

In fact, this kernel is just the de Rham complex of the superspace T , but expressed in an
unusual (right-invariant) frame. Note that

�•(T ) = C∞(T )[dx, dθ ], ddR = dx
∂

∂x
+ dθ

∂

∂θ
. (24)

The two are related via the map of commutative algebras that sends dθ �→ λ and
dx �→ v − λθ . (This is in fact a cochain-level isomorphism of cdga’s.) There is a
(U (t),C•(t))-bimodule structure: U (t) acts by the left-invariant vector fields

Q = ∂

∂θ
+ θ

∂

∂x
, (25)

and the C•(t)-module structure arises via the identification

C•(t) ∼= �•(T )T ⊂ �•(T ). (26)

Given an Der(t)-equivariant C•(t)-module 	, the multiplet is constructed by tensoring
overC•(t) with 	; we will denote the functor that associates a multiplet toC•(t)-modules
by A•(−), so that

A•(	) = K0(t) ⊗C•(t) 	. (27)

The inverse functor that witnesses this as an equivalence of dg-categories is given by
taking the derived t-invariants of a multiplet—in other words, by considering C•(t, E)

for any multiplet E .

2.3.4. Canonical multiplets. Recall that the ring S = R/〈λ2〉 of functions on the space
of square-zero elements in t arises as H0(t). Since C•(t) is non-positively graded, there
is a quotient map

C•(t) → H0(t) = S (28)

of commutative differential graded algebras, witnessing S as a C•(t)-module. (Via this
map, any S-module is a C•(t)-module; the resulting multiplets are the ones that can
be described by the standard, rather than “derived”, pure spinor superfield formalism.)
We can thus consider the multiplet associated to S for any supertranslation algebra t.
This multiplet is uniquely determined just by the datum of the supertranslation algebra,
and we will correspondingly call it the canonical multiplet. In examples of physical
relevance, the canonical multiplet tends to play a central role in supersymmetric physics:
the list includes the eleven-dimensional and type IIB supergravity multiplets; Yang–Mills
multiplets for minimal supersymmetry in dimensions three, four, six, and ten; and the
N = (2, 0) tensor multiplet in six dimensions.

Explicitly, the multiplet is given by

A•(S) =
(

C∞(T ) ⊗k S,D = λαDα = λ

(

∂

∂θ
+ θ

∂

∂x

))

. (29)
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One sees the usual differential of the pure spinor superfield formalism, for a scalar pure
spinor superfield, appearing. (Where possible without ambiguity, we will leave indices
and contractions implicit.) The cohomology of the canonical multiplet is (a sheaf of)
A∞ algebras on the spacetime; in what follows, we will denote (the global sections of)
this cohomology by M , and the minimal model of the local observables of the canonical
multiplet by M .

Of course A•(S) is a multiplet for t, with a strict local t-module structure at the
cochain level. However, there are additional important pieces of structure: A•(S) has a
cdga structure (in particular, a graded commutative multiplication), inherited from the
product structure on S. We furthermore know that A•(S) is an S-algebra: there is an
obvious map of cdga’s

S → A•(S), (30)

which embeds S along the constant functions on T . Lastly, any multiplet that is associated
to an S-module (so a “non-derived” pure spinor superfield) naturally acquires an A•(S)-
module structure. The commutative structure is an important and often overlooked piece
of data, which (just for example) gives rise to the interactions of ten-dimensional super
Yang–Mills theory, simply via tensoring with the gauge algebra. In this paper, we will
dedicate ourselves to studying this structure (and its Koszul dual) in detail.

2.4. Borcherds–Kac–Moody superalgebras. As we will see, the Lie superalgebra t =
t1 ⊕ t2 can in some interesting cases be considered as a subspace (subquotient) of a
Borcherds–Kac–Moody (BKM) superalgebra. Here we recall the general definition. We
will assume k = C in this subsection.

2.4.1. Construction by generators and relations. Let B be a real-valued symmetrisable
(r × r)-matrix with non-positive off-diagonal entries and let J be some subset of the
index set I labelling rows and columns. We say that B is a Cartan matrix of a BKM
superalgebra if each i ∈ I satisfies one of the following three conditions:

(i) Bii = 2, i /∈ J and Bi j ∈ Z for all j ∈ I ,
(i i) Bii = 1, i ∈ J and Bi j ∈ Z for all j ∈ I ,

(i i i) Bii ≤ 0.

Let S be a set of 3r generators ei , fi , hi for any i ∈ I , where ei , fi are odd for i ∈ J , and
all other generators are even. The BKM superalgebra B(B) associated to B (together
with the set J ) is the Lie superalgebra generated by S modulo the Chevalley relations

[hi , e j ] = Bi j e j , [ei , f j ] = δi j h j ,

[hi , f j ] = −Bi j f j , [hi , h j ] = 0 (31)

and the Serre relations

(ad ei )
1−2Bi j /Bii (e j ) = (ad fi )

1−2Bi j /Bii ( f j ) = 0 if Bii > 0 and i �= j ,

[ei , e j ] = [ fi , f j ] = 0 if Bi j = 0 . (32)

Let B ′ be the matrix obtained by multiplying row i by some εi > 0, so that B ′
i j = εi Bi j ,

and let B(B ′) be the Lie superalgebra constructed in the same way, but with B replaced
with B ′ in the construction. It then follows from the relations that the algebras B(B)

and B(B ′) are isomorphic, with an isomorphism given by hi ↔ εi hi and ei ↔ εi ei ,
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the other generators unchanged. Therefore, we may equivalently work only with the
symmetrised Cartan matrix (obtained as B ′ by choosing εi such that B ′

i j = B ′
j i ) as no

information about the algebra get lost in the symmetrisation.
Here we will only consider the special cases of BKM algebras where each i ∈ I in

fact satisfies one of the following two conditions:

(i) Bii = 2, i /∈ J and Bi j ∈ Z for all j ∈ I ,
(i i i)′ Bii = 0, i ∈ J and Bi j ∈ Z for all j ∈ I .

The whole matrix is thus integer-valued, with non-positive integers as off-diagonal
entries. When B in addition is symmetric, we may visualise the data contained in the
Cartan matrix by a Dynkin diagram consisting of r nodes and, for each pair of nodes
(i, j), a number of lines between them, which is equal to −Bi j . In order to distinguish
between the two cases for the diagonal entries, the node i is painted “grey” in case (i i i)′,
which means that it is drawn as ⊗, but left “white” in case (i).

If J = ∅, then the resulting BKM superalgebra is a Kac–Moody algebra. If J consists
of only one element, then we choose a numbering of rows and columns, or of nodes in
the Dynkin diagram, such that J = {0}. We thus have B00 = 0, and the entries Bi j with
i, j > 0 form the Cartan matrix of a Kac–Moody algebra g (possibly finite-dimensional),
whose Dynkin diagram is obtained by removing the grey node. The off-diagonal entries
Bi0 are non-positive integers, which constitute the Dynkin labels of the negative of a
dominant integral weight μ of g. Assuming that the BKM superalgebra is of this type, it
can thus be characterised by the pair (g, μ) equally well as by the Cartan matrix. Given
such a pair of a Kac–Moody algebra g and a dominant integral weight μ of g, we denote
the corresponding BKM superalgebra by B(g, μ), or sometimes only by B(g), when
the choice of μ is understood or unimportant. (As discussed above, we can set Bi0 = B0i
without loss of generality.)
2.4.2. Characters. Any BKM superalgebra B(g, μ) has a consistent Z-grading where
the subalgebra g has degree 0 and the generators e0 and f0 have degree 1 and −1,
respectively. It has a subalgebra of the form t0 ⊕ t1 ⊕ t2 ⊕ · · · , where t0 = g and t1
is a lowest weight module R(−μ) of g generated by e0. From t1 all subspaces tk with
k ≥ 1 can be constructed from the free Lie algebra F(t1) generated by t1 by factoring
out the ideal generated by the Serre relation [e0, e0] = 0. Since the weight of [e0, e0]
is −2μ, the subspace t2 is a module ∨2R(−μ) � R(−2μ) of g. Considering the full
BKM superalgebra B(g, μ), there are also corresponding modules at negative degrees
with R−p = Rp.

Suppose that both B and the Cartan matrix of g are non-degenerate. Then there is a
unique element �̃0 in the weight space of B(g, μ) which is orthogonal to the simple
roots of g and has coefficient 1 corresponding to the grey node in the basis of simple
roots. For any p ≥ 1, the subspace tp of B(g, μ) is spanned by root vectors for which
the corresponding roots belong to a subset p of the root system  of B(g, μ). Let
Rp be the corresponding g-module, let |Rp| be the number of weights in it (counting a

weight with multiplicity m as m distinct weights) and set t = e−�̃0 . Then,

∏

β∈p

(1 − e−β)mult β =
|Rp |
∑

k=0

(−1)kχ(∧k R p)t
kp ,

∏

β∈p

(1 + e−β)−mult β =
|Rp |
∑

k=0

(−1)kχ(∨k R p)t
kp , (33)
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where χ(R) denotes the character of a g-module R. Following the notation introduced
in Sect. 2.1.8, we can write this as

∏

β∈p

(1 ± e−β)∓mult β = χ
(

(1 ± t p)∓Rp
)

. (34)

As shown in [18], it then follows from the Weyl–Kac denominator formula for BKM
algebras [40–43] that

∞
⊗

p=1

(1 − t p)(−1)p R p =
∞

⊕

q=0

R(qμ)tq . (35)

This provides a method of recursively computing the modules Rp, and also suggests
that they can be obtained by the Tate resolution described in Sect. 3.1.3. This will be
explained in Sect. 3.2.2. For details, we refer to [18].

2.4.3. Extensions. Given a BKM superalgebra B(g, μ) it is often interesting to study the
BKM superalgebra obtained by replacing the grey node in the Dynkin diagram with a
chain of d white nodes, followed by a grey node. We will denote this BKM superalgebra
by B(g, μ)(d), where (d) may also be replaced by d plus signs (and μ still denotes a
weight of g, corresponding to the first white node added in the extension. Let g(d) be the
Kac–Moody algebra obtained by adding only the d white nodes (d ≥ 1). Whenever there
is an m such that g(m) is an affine Kac–Moody algebra, a symmetry Rp = R(m−d)−p

appears in B(g, μ)(d) for p = 1, . . . ,m − d − 1 [44,45]. To some extent, B(g, μ)(d)

may also be defined for negative d in a natural way [44]. The above statement may
then be phrased as Rp = R1−d−p for p = 1, . . . ,−d in B(g, θ)(d) for d < 0, finite-
dimensional g and θ being the highest root of g (so that R1 in B(g, θ) is the adjoint of
g and g(1) = g+ is the untwisted affine extension of g).

3. Koszul Duals to Pure Spinor Algebras

3.1. The L∞ Koszul dual to S. In this section, we always work with respect to the
consistent (totalised) grading on C•(t), thus regarding R as concentrated in total degree
zero. Unless otherwise specified, cohomological degree will mean cohomological degree
in the Tate resolution, i.e., consistent degree. We will, however, also make use of the
weight (internal) grading; recall from §2.1.3 above that these together define the “Tate”
bigrading.

3.1.1. Commutative/Lie Koszul duality and multiplicative resolutions. In §2.3.2 above,
we have recalled that a graded Lie algebra is Koszul dual to the commutative dg algebra
consisting of its Chevalley–Eilenberg cochains. This duality extends to a duality between
(the free resolutions of) the operads controlling algebra structures of this type, so that
homotopy commutative algebras are dual to homotopy Lie (L∞) algebras. We have also
seen how this works in practice: given an L∞ algebra, one simply examines its cochains;
to go in reverse, one considers freely generated commutative dg algebras, and observes
that the differential is dual to an L∞ structure on the dual of the space of generators,
shifted by one. All higher Jacobi identities are contained in the requirement that the
differential square to zero.

A generic commutative algebra is, of course, not freely generated, and one may ask
how to understand its Koszul dual. The key observation is that any such algebra can be
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resolved by a freely generated commutative dg algebra, for which the Koszul dual is
defined by the above procedure. For algebras S that are quotients of a commutative ring
R, one can construct a free resolution of S by a freely generated differential R-algebra
by iteratively adjoining new generators to kill cohomology in each degree [16]; this is
known as the Tate resolution.

If R is a polynomial ring, the Tate resolution will also be a free minimal cdga over k,
and will therefore be the Lie algebra cochains of an L∞ algebra with zero differential,
defined on the dual of the set of generators. Since the differential is zero, this L∞ algebra
is the minimal model of the corresponding L∞ structure. (Note, however, that the Tate
resolution need not be a minimal resolution in R-modules; the resolution differential can
contain terms of order zero in λ.) We are interested in understanding this L∞ algebra.
In general, the Tate resolution will not be finitely generated as an R-algebra, so that
its Koszul dual will not be finite-dimensional; it will, however, be of finite dimension
in each graded piece. Because we use cohomological grading conventions (so that the
differential has consistent degree +1), the Tate resolution, like any projective resolution,
is concentrated in non-positive degrees.

3.1.2. Complete intersections and supersymmetry. We have seen that H0(t) = S =
O(Y ), and that C•(t) is a freely generated commutative differential graded R-algebra in
non-positive degrees. If (and only if)Y is a complete intersection,C•(t) is a multiplicative
free resolution of S over R. In general, though, C•(t) will not define a resolution, due
to the presence of higher cohomology. In a certain sense, the intuition that theories with
more supersymmetry are “easier to deal with” is related to the fact that Y is necessarily a
complete intersection if a sufficient number of supercharges are present. Theories such
as ten-dimensional Yang–Mills theory and eleven-dimensional supergravity occupy a
fertile middle ground, where Y fails to be a complete intersection—and is therefore
algebrogeometrically more interesting—but still has certain good algebraic properties.
For example, in both examples mentioned, S is a Gorenstein ring. We comment more
on algebraic properties of the relevant rings in Sect. 4 below.

3.1.3. The Tate resolution in detail. The Tate resolution is constructed iteratively, by
killing cohomology degree by degree, as illustrated in Table 1. To resolve the quotient
S = R/〈λ2〉 of a polynomial ring R over R, we begin with R, and then construct a freely
generated cdga by adding (anticommuting) generators of degree −1 that are mapped
by the differential to the generators of the ideal. (Since the differential is a derivation,
it is uniquely specified by giving its action on generators.) Note that, in the examples
at hand here, the resulting cdga is just C•(t), as recalled above. The degree in the Tate
resolution is to be identified with the consistent degree from Sect. 2.2.3; we will discuss
the bigrading further in what follows. In physical terms, what we are doing is to create
the BRST differential for the constraint on λ.

It may then be that H−1(t) is non-zero. When this occurs, we go on to choose a set
of generators for the module H−1(t), and adjoin new generators to the cdga in degree
−2 that are mapped by the differential to the generators of H−1(t). We thus obtain a
new cdga which has no cohomology in degree −1. The Tate resolution is constructed
by successively adding new generators in this way to kill all cohomology in negative
degrees, producing a multiplicative free resolution of S over R in the limit.

We will number the stages of the Tate resolution so that, at stage k, generators in
(consistent) degree −k are added, resulting in a freely generated cdga whose cohomology
is correct in degrees 0 ≥ d > −k. Thus, the first stage is C•(t), the second stage adds
generators to kill H−1(t), and so on. (R itself is stage zero of the resolution.)
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Both R and S are graded by weight, hence the Tate resolution is bigraded by the con-
sistent degree and the weight degree, with parity determined by the consistent degree.
The differential has Tate bidegree ((1, 0)). Thus the resolution will be a weight-wise
resolution of each weighted piece of S. The generators adjoined at stage one will have
weight two (as they kill quadratic constraints). At higher stages the nontrivial coho-
mology classes will in general be distributed among different weight degrees. H−1 will
decompose with respect to the weight as H−1 = ⊕∞

q=3 H
((−1,q)), where each non-zero

H ((−1,q)) = Hq−1,−q is spanned by monomials with one generator in degree ((1, 2)) and
q − 2 generators of R. At each stage k we adjoin generators of degree −k with weight
equal to the weight of the corresponding nontrivial cohomology class H ((−k+1,q)). There
is a lower bound to the weight degree at each stage; strictly greater than the minimum
of the weights of the generators introduced at stage k − 1. This is because at each stages
the non-zero cohomology will always contain at least one generator from the last stage
[46]. The minimal thing one could do would be to have one such generator and one
generator of R. We denote the minimum of the weight of generators at stage k by ωk
(set ω−1 = 0).

3.1.4. Iterated central extensions. Each stage of the Tate resolution defines a new freely
generated cdga, which is a relative Sullivan algebra over the cdga of the previous stage.
We can apply Koszul duality to each stage independently to get an L∞ structure at each
stage; each stage is then a central extension of the previous one.

Let us denote the space of generators introduced at stage k by Wk , which is a direct
sum over the weights:

Wk =
⊕

q>ωk−1

W((−k,q)). (36)

At stage k, the complete set of generators is denoted W(k) = ⊕k
n=0 Wn , with W(0) =

t1[−1]. The complex is then the symmetric algebra Sym•(W(k)), which is the cochains
of an L∞ algebra t(k) = W(k)[−1]. Thus, t(0) is the abelian odd Lie algebra t1, t(1) = t,
and t(k) is an L∞ algebra supported in consistent (totalised) degrees 1 ≤ d ≤ k + 1. We
also define tk+1:=Wk[−1].

At stage k, we thus have the sequence

k → C•(t(k−1)) → C•(t(k)) → C•(tk+1) → k (37)

of cdgas, which arises from the dual short exact sequence of L∞ algebras

0 → tk+1 → t(k) → t(k−1) → 0. (38)

This sequence witnesses t(k) as an L∞ central extension of t(k−1) by tk+1. At the end of
the day, we have an inverse system

˜t

· · · t(k+1) t(k) t(k−1) · · ·
(39)

of which˜t is the inverse limit lim←− t(k).
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Table 1. The Tate resolution depicted in the bigrading. Weight degree is on the horizontal axis and cohomo-
logical degree on the vertical

The arrows represent the differential. The modules of R are decomposed into modules of Der(t) where Ri( j) is
the module appearing at weight degree i and cohomological degree j . However, since there is never a module
Ri( j) with i = 1, 2, 3 and j �= 1, we omit the index (1) in these cases

We recall that t has an internal and a cohomological degree. One might ask what the
internal and cohomological degrees of these new generators are. We recall the notation
from above that ti for i = 1, 2, is in cohomological and internal degree (0, i), respec-
tively. The internal degree is minus the weight degree, and the cohomological degree
is the sum of the consistent degree and the weight degree. The k-brackets, which have
Tate bidegree ((2 − k, 0)) will hence have bidegree (2 − k, 0). From this construction,
it is clear that˜t maps canonically to any stage t(k), and in particular to t. This quotient
map determines a short exact sequence

0 → n →˜t → t → 0, (40)

where n is the subalgebra of ˜t in internal degrees greater than or equal to three. An
analogous sequence

0 → n(k) →˜t → t(k) → 0 (41)

can be defined for any stage of the Tate resolution by taking n(k) to be the kernel of the
relevant map. In the dual picture, the cochains of any t(k) (and in particular, C•(t) itself)
map to the Tate resolution. This observation will be important in what follows.

3.2. Koszulity, minimal orbits, and special classes of rings.

3.2.1. Quadratic algebras and quadratic Koszul duality. Since S is a quadratic algebra,
it fits into the framework of Koszul duality theory as originally developed for quadratic
algebras [10]. Let � = t1[−1] be the space of generators λ of R, and T (�) denote the
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tensor algebra on this vector space. We define I = dCE t2[−1] ⊂ ∨2� ⊂ �⊗2 We
observe that

S = T (�)/〈∧2� ⊕ I 〉 (42)

is a quadratic presentation for this algebra. ItsquadraticKoszul dual is defined in standard
fashion to be

S⊥ = T (�[−1])/〈I⊥[−2]〉, (43)

where I⊥ ⊂ (�)⊗2, is the space of linear functions on �⊗� which vanish on I ⊕∧2�.
As it must vanish on ∧2�, it is a subspace of ∨2� It consists of all irreducible repre-
sentations of Der(t) in the symmetric square of �, other than the copy of t2 determined
by the structure constants.

It should be noted that the general definition of quadratic algebras does not force
the constraints to contain the full skew symmetric product ∧2�. However, as we are
interested in the Koszul duality between commutative and Lie algebras, this is the the
class we will discuss.

Whenever the constraints cover the full skew symmetric product the Koszul dual
algebra is the universal envelope of the free Lie algebra on �[−1] = t1 modulo I⊥.
Indeed, in our case we have that

S⊥ = T [t1]/〈I⊥[−2]〉 � U
( F[t1]
〈I⊥[−2]〉

)

. (44)

In the context of quadratic algebras and Koszul duality, there is a certain class called
Koszul algebras. These exhibit different remarkable homological properties. One prop-
erty, of interest to us, concerns resolutions of the quadratic algebra S. If and only if a
symmetric quadratic algebra S is Koszul, the Chevalley-Eilenberg cochains of the Lie
algebra associated to the quadratic Koszul dual S⊥ provides a multiplicative free resolu-
tion of S. Thus our notion of Koszul duality coincides with the original notion whenever
the algebras in question are Koszul. Indeed, if the quadratic algebra S is Koszul, then
S⊥ will be isomorphic to U (˜t).

3.2.2. The Koszul dual of the coordinate ring of a minimal orbit. A special class with
quadratic Koszul duality is provided by functions on minimal orbits. Let λ ∈ S1 where
S1 = R(μ) is some highest weight module of Der(t), and S = Sym•(S1)/〈R2〉, where
R2 = ∨2S1 � R(2μ). Then the n-th power of λ ∈ S1 ⊂ S will be in the representation
Sn = R(nμ), and S is identified as functions on the minimal orbit of S1 under Der(t).
S is Koszul [47], and the dual Lie superalgebra is the positive part B+ (with regard to
the grading with respect to the grey node) of a BKM superalgebra constructed from
the above data as in Sect. 2.4 [18]. This duality is suggested by the partition function
equality (35). According to [36], the Koszul property of S follows already from the
partition function identity, given that S⊥ = T [−R(−μ)]/〈R(−2μ)〉 is the universal
enveloping algebra of B+.

3.2.3. Koszul duality at the level of partition functions. Identifying −Rn as the module
of the dual 1-forms, and the coalgebra differential as the BRST operator for the quadratic
constraint, we get (see Sect. 2.1.8)

⊕∞
n=1(1 − tn)Rn = ZS(t), i.e.,

ZS(t) ⊗ ZU (˜t)(t) = 1 . (45)



Canonical Supermultiplets and Their Koszul Duals Page 21 of 56 127

(We could have chosen to express partition functions on both sides as series where the
power of the formal parameter is the same degree, e.g. internal degree, and then let the
conjugation also include reversion of the degree. This would have lead to less attractive
expressions for e.g. ZS , containing (non-standard) negative powers.) Note that parity is
included in the definition of the sign for Rn , unlike in (35). The relation can be interpreted
as a denominator formula for˜t.

3.2.4. The dual of the Tate resolution. The Tate resolution, as presently described, is dual
to the resolution of k in free modules of S, briefly discussed in Sect. 2.1.7. While the Tate
resolution works in the complex C•(t̃) and expresses the equality ZC•(˜t)(t) = ZS(t),
the resolution in Sect. 2.1.7 works on a complex C ′ with ZC ′(t) = (ZS(t))−1. Thus,
ZC•(˜t)(t) = (ZC ′(t))−1. It is well known that one can equip ExtS(k, k) with an A∞
algebra structure, which is the universal enveloping algebra of an L∞ algebra l [48].
We observe (see Sect. 2.1.8) that l can be identified with the L∞ algebra˜t. The degree
adjustments made in Sect. 2.1.7 make l and˜t agree in the bigrading.

3.2.5. Minimal orbits and Gorenstein rings. We recall, for future reference, that a
Noetherian local ring R with residue field k and Krull dimension n is Gorenstein if

Ext•R(k, R) = k[−n].
A Noetherian commutative ring is Gorenstein when its localization at every maximal
ideal is a Gorenstein local ring.

A Noetherian local ring R with residue field k and Krull dimension n is Cohen–
Macaulay if and only if

ExtiR(k, R) = 0, ∀i < n.

(In other words, the depth and the dimension are equal.) A Noetherian commutative ring
is Cohen–Macaulay when its localization at every maximal ideal is a Cohen–Macaulay
local ring. It is clear that every Gorenstein ring is Cohen–Macaulay. Both of these
properties are relevant in the context of the pure spinor superfield formalism: via results
of [49], the Koszul homology of a local ring is equipped with a perfect pairing if and
only if the ring is Gorenstein. The Cohen–Macaulay property is related to the existence
of an antifield multiplet that is describable at the level of the non-derived pure spinor
formalism. For details, we refer the reader to [34].

One family of interesting Gorenstein rings, including some important examples in
the context of the pure spinor formalism, are (the coordinate rings of closures of) certain
minimal orbits. By work of Panyushev, the coordinate ring of the closure of the min-
imal orbit in the highest-weight module R(μ) is Gorenstein when μ is a fundamental
weight [50, §3.4, Corollary 2]. Panyushev further analyzes conditions characterizing
“Gorenstein weights”, and we refer to that paper for more details. One can give an
alternative proof of the result for minimal orbits in fundamental highest-weight modules
using Serre duality and the Borel–Weil–Bott theorem for Proj S.4 See also [32,51] for
important related work.

We thus have a subclass of rings S which are Koszul, the Koszul duals being BKM
algebras, with the additional property that S is Gorenstein. Gorenstein rings are par-
ticularly interesting in the context of pure spinor spinor superfield theory, since they

4 We gratefully thank the anonymous referee for pointing this out.
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provide a pairing which can be thought of as a Calabi–Yau-form on Y [34,52]. If in
addition the codimension is odd, this pairing gives rise to a field-antifield pairing in the
Batalin–Vilkovisky (BV) framework [34]. The examples in Sect. 5.2.1, 5.2.2 and 5.3.3
have this property, the latter without being a minimal orbit.

3.3. The Koszul dual of the canonical multiplet.

3.3.1. A resolution of A•(S) by a freely generated cdga. Like any pure spinor mul-
tiplet, A•(S) is freely resolved as a sheaf over superspace. As we pointed out above
in Sect. 2.3.4, it also carries a natural commutative algebra structure. However, A•(S)

is not freely generated as a (graded) commutative algebra, just because S itself is not.
It is interesting and profitable to further resolve A•(S) by a freely generated cdga.

In fact, we have already seen how to do this, at least implicitly. Since we know, by
construction, that C•(˜t) resolves S, we can apply the pure spinor functor to C•(˜t),
thereby considering the cdga

˜A• = A•(C•(˜t)) = (

C∞(T ) ⊗k C
•(˜t), ˜d = D + dCE

)

. (46)

By Sect. 3.1.4, there is a C•(t)-module structure on C•(˜t). We recall that the differential
takes the form

˜d = v
∂

∂x
+ λ

(

∂

∂θ
+ θ

∂

∂x

)

+ λ2 ∂

∂v
+ · · · , (47)

where the additional terms come from the brackets at higher levels in˜t. This construc-
tion realises a proposal in [23]. From the first-quantised perspective, our construction
produces the complete BRST system for covariant quantisation of the Berkovits super-
particle. We expect analogous considerations to be relevant to other pure spinor sigma
models, and plan to make this concrete in future work.

3.3.2. The multiplet is H•(n). Recall that we have the cofiber diagram

C•(t) C•(˜t) ∼= S

k C•(n)

(48)

of cdgas, where n is the subalgebra of˜t defined by (40). Recalling from above that
the multiplet associated to an algebra S carries an S-algebra structure, obtained by
embedding S along the constant functions on the superspace T , we can obtain a similar
diagram by applying the functor A to the top row:

C•(t) C•(˜t) ∼= S

�•(T ) ∼= k ˜A• ∼= A•(S).

(49)

Comparing the two diagrams suggests that one might find an equivalence between
A•(S) and C•(n), witnessing both as pushouts of the same system. In the next sections,
we will demonstrate explicitly that this is in fact the case: the canonical multiplet can
be identified with the cochains of n, and as such with the homotopy fiber of the map of
formal moduli problems˜t → t.
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Theorem 3.1. There is a homotopy equivalence of cdgas between A•(S) and C•(n).
In particular, the cohomology M of the canonical multiplet is given by the Lie algebra
cohomology of n.

Proof. The proof proceeds by constructing a roof diagram

˜A•

A•(S) C•(n)
(50)

of quasi-isomorphisms of cdgas. In Propositions 3.2 and 3.3 below, we show that each
map in (50) is an equivalence, so that ˜A• is homotopy equivalent both to the pure spinor
multiplet A•(S), and to the cochains of n ⊂˜t. The theorem follows immediately. ��

3.3.3. The equivalence of ˜A• and the multiplet. We will here construct the left-hand
map in (50), proving the equivalence between ˜A• and the standard pure spinor multiplet
A•(S).

Proposition 3.2. The pure spinor multiplet A•(S) is homotopy equivalent to ˜A•. That
is, there exists a deformation retract

(A•(S),D) (˜A•, ˜d)
i ′

p′
h′ .

Proof. The proof will make use of the homological perturbation lemma. The differential
on ˜A• splits into

˜d = D + dCE , (51)

where dCE is the differential on C•(˜t), and D = v ∂
∂x + λ ∂

∂θ
+ λθ ∂

∂x . D can be seen as a
deformation of dCE . As a commutative algebra

˜A• = C∞(T ) ⊗ C•(˜t). (52)

Taking cohomology with respect to dCE we get

H•(C∞(T ) ⊗ C•(˜t), dCE
) = C∞(T ) ⊗ S, (53)

which is the underlying algebra of A•(S). It is always possible to construct a deformation
retract from any complex to its cohomology [53].

(A•(S), 0) (˜A•, dCE )
i

p
h .

For any consistent degree k we can choose a decomposition ˜Ak = Bk ⊕Hk ⊕d−1
CE B

k+1,
where Bk = dCE ˜Ak−1 ⊂ Ak , denotes the space of boundaries of dCE . The homotopy h
has consistent degree −1 and is zero on Hk ⊕d−1

CE B
k+1 and identifies Bk with d−1

CE B
k−1

[53]. This means that the image of h will always contain elements from stages higher
than or equal to 1. Hence, all higher A∞ products, except for the binary one, on A•(S)

are trivial as the product of anything with something which is nontrivial under h will be
zero under p.
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The deformation D of dCE induces, by homotopy transfer of D∞ structures [54], a
new homotopy retract.

(A•(S),D′) (˜A•, ˜d)
i ′

p′
h′ .

where the new maps are constructed as perturbation series. In particular

p′ = p ◦
∞
∑

n=0

(Dh)n,

D′ =
∞
∑

n=0

p(Dh)nDi.

(54)

The induced differential is the ordinary pure spinor differential. The first term is

pDi = p

(

v
∂

∂x
+ λ

∂

∂θ
+ λθ

∂

∂x

)

i = p

(

λ
∂

∂θ
+ λθ

∂

∂x

)

i, (55)

as v is by construction zero under p. Thus we retrieve the original pure spinor differential
as the first approximation.

The higher approximations are zero; because of the construction of h, we have that the
image Di(q(x, θ, λ)), of a polynomial q(x, θ, λ) ∈ A•(S), will only be nonzero under
h for elements that are exact with respect to dCE . (We assume that q is homogeneous
with respect to the splitting chosen above.) If it is exact it will be replaced by some
element wk from a stage k > 0. The image under D of this will either be zero or still
contain elements from higher stages than 0. All these are zero under p. Thus, all higher
corrections to D′ are zero, and we get that the induced differential is just the standard
pure spinor differential. By the same argument, we can also conclude that there will be
no higher approximations to p, and hence, no higher products induced on A•(S), except
for the binary one.

The convergence of the other series (those defining h′ and i ′) presents no problems.
We are working in C∞(T )⊗C•(˜t), which can be thought of as the formal series algebra
on˜t∨[−1] valued in smooth functions on superspace. C•(˜t) is graded by weight, and
dCE is of weight zero; we can choose the unperturbed homotopy data, and in particular
h, to also be homogeneous of weight zero. We can extend the weight grading to define
a filtration on C∞(T ) ⊗ C•(˜t) by placing functions on superspace in weight zero. The
perturbation is compatible with this filtration, and indeed D has filtered weight +1. Thus
the term h(Dh)k in the series defining h′ has filtered weight +k, and only finitely many
terms contribute to the action of h′ on a homogeneous element at any fixed weight. ��

3.3.4. ˜A• is equivalent to C•(n). We complete the proof of Theorem 3.1 by constructing
the right-hand map in (50). To check that this is an equivalence, we will perform a
homotopy transfer from ˜A• to C•(n).
Proposition 3.3. ˜A• and C•(n) are homotopy equivalent as cdgas.
Proof. Let ˜d = d0 + d1, where d0 = λ ∂

∂θ
+ v ∂

∂x , with d2
0 = 0, is the part of the

differential encoding the 1-bracket described by the arrows in Table 2, and d1 the rest.
d1 is not nilpotent, but for the moment seen as a deformation of d0. The transfer will
then be from (C∞(T ) ⊗ C•(t) ⊗ C•(n), d0) to (C•(n), 0) (the cohomology of d0).
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We need an operator h which is the “inverse” or adjoint of d0, h ∼ θ ∂
∂λ

+ x ∂
∂v

, maybe
with some factor depending on the degree of homogeneity, which is irrelevant for the
argument. The projection and inclusion of this first little transfer are simply the naive
ones,

i : φ �→ φ ,

p : φ �→ φ , (λ, v) �→ 0 , (θ, x) �→ 0 , (56)

where φ ∈ n is denoted by the same letter on both sides. This defines a strong deformation
retract

(C•(n), 0) (˜A•, d0)
i

p
h . (57)

The transferred A∞ structure on C•(n) will only be the binary one induced by the
product on ˜A•. All higher products will vanish as the product of anything with something
nontrivial under h will be zero under p. Furthermore, following the result of [54], the
retract allows us to, for any deformation of d0, transfer the total differential to C•(n), so
that we get another retract

(C•(n), d ′) (˜A•, d0 + d1)
i ′

p′
h′ . (58)

The actual projection, inclusion, h and differential are then constructed as a pertur-
bation series. The A∞ structure on C•(n) will again only be the binary one, by the same
argument as in Proposition 3.2.

The new differential d ′ is given as a sum of terms

d ′ =
∞
∑

n=0

p(d1h)nd1i . (59)

The term at n = 0 gives back the differential on C•(n). For n > 0, h picks up terms with
λ or v and converts them to θ or x . These variables are untouched by remaining d1’s
(except for the term that state that they transform under supertranslations), and any such
terms finally vanish under p. In other words, there is no zig-zag landing in C•(n), since
d1 goes out of C•(n) but never into it from outside (this applies to the whole complex);
n is a subalgebra. ��

3.3.5. The multiplet as a homotopy fiber. While we have formulated the results of the
above section in terms of cdgas, we can of course also work with the Koszul dual L∞
algebras. The diagram dual to (48) is

t ˜t

0 n

(60)
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Table 2. Generators in double grading of the L∞ algebra (˜A•)! with coalgebra differential ˜d

The arrows indicate the only 1-brackets

The diagram Koszul dual to (49) is

t ˜t

0 (˜A•)!
(61)

As already demonstrated above, n is (a model of) the Koszul dual to ˜A•. But it is
interesting to observe that ˜A• is a freely generated cdga, so that there is an apparent
model for its Koszul dual, defined on the linear dual of its generating set. This model
(˜A•)! is, in fact, isomorphic (as a cochain complex) to the (suspended) mapping cone of
the canonical morphism˜t → t; the standard superspace coordinates can be interpreted
as the generators of the Chevalley–Eilenberg complex coming from the shifted copy of t.
We sketch the structure of the resulting algebra in Table 2. The suspended mapping cone
is a well-known model for the homotopy fiber; the relevant L∞ structure was studied in
[55].

This gives us a pleasing interpretation of the geometric origin of the canonical multi-
plet. If we think of it as the affine dg scheme SpecC•(n), it is the homotopy fiber of the
map from Spec S to SpecC•(t)—that is, the map from the ordinary pure spinor space
to its derived replacement.

We note that there is a map

A•(S) → C∞ (T ) (62)

from the canonical multiplet to functions on superspace. The spectrum of the canonical
multiplet is thus, in a precise sense, also an extension of the normal notion of superspace:
just as the body of any supermanifold maps to the supermanifold, the normal superspace
T maps to Spec A•(S). Any non-derived pure spinor superfield can be thought of as a
sheaf over Spec A•(S), and it is the geometry of this space that underlies many construc-
tions in pure spinor superfield theories.

(The reader may be concerned about the use of smooth functions on superspace in our
context, as constructions in homotopy transfer often involve formal series. However, as
remarked in the proofs of Propositions 3.2 and 3.3, the relevant series actually terminate
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in our examples, and no series involving the coordinate x appear. Indeed, the essential
ingredient of our construction is nothing other than the Poincaré lemma in disguise: the
sheaf of smooth de Rham forms is equivalent to the sheaf of locally constant functions.)

3.3.6. Filtrations and the Hochschild–Serre spectral sequence. Recall the short exact
sequence (41) of L∞ algebras from above:

0 → n(k) →˜t → t(k) → 0, (63)

where n(k) is the ideal subalgebra of˜t consisting of all generators added after stage k. (In
particular, n = n(1).) We can consider the two-step filtration defined by assigning weight
zero to n(k) and weight one to the remaining generators. (We remark that this is not a
grading on˜t—but it is a subfiltration of the filtration defined by the consistent grading.)
The fact that the quotient algebra for k = 1 is precisely the supertranslation algebra t
with which we started will be significant in the sequel, in particular due to the fact that
we will be interested in considering the t-multiplet associated to C•(˜t). However, we
will see examples where higher values of k seem to appear naturally (see Sect. 5.5).

To any such short exact sequence of Lie algebras, one can associate a Hochschild–
Serre spectral sequence which abuts to the Lie algebra cohomology of˜t. This spectral
sequence is constructed by filteringC•(˜t) as induced from the two-step filtrationn(k) ⊂˜t.
In the case k = 1, the E2 page of this spectral sequence is

E2 : H•(t, H•(n)) ⇒ E∞ = H•(˜t) � S. (64)

But we know that derived t-invariants are the inverse functor to the pure spinor functor
A•(−)! Therefore, the E2 page of the spectral sequence is identified with the Koszul
dual of the U (t)-module H•(n). But we know—via the identification of H•(n) with
A•(S) above—that this Koszul dual is S. Our result above can thus be understood as the
assertion that the Hochschild–Serre spectral sequence collapses at E2 in this instance.

3.4. From t � F[M] to˜t. The purpose of this section is to obtain as much concrete
information about the resolution˜t as possible, including explicit forms of its brackets.

In general one cannot expect to arrive at a point where one has complete understanding
of what˜t looks like, and what its brackets are. We will see however, by establishing some
idea of how the multiplet “fits” into n (to be more precisely defined), that it is in some
cases possible to get a complete understanding of what the algebra is. One should again
mention the class of Koszul algebras, if the ring S is found to be S Koszul, then the
“traditional” Koszul dual algebra will be the universal envelope of the Lie algebra˜t.

Another class of models, partly overlapping with the one above, is characterised by
the property that the subalgebra n will be freely generated by the shifted dual of the
multiplet. All models describing (canonical multiplets of) standard supersymmetry fall
in this class. This is the topic of the present section. We will soon give conditions for when
n = F[M[−1]], which we will write F[M] for compactness, the shift in cohomological
degree being understood.

3.4.1. n is freely generated in a large class of models. We now wish to establish a
result which tells us that n in many cases is in fact a strict Lie algebra (i.e., with only a
2-bracket), and moreover, that it is freely generated by the dual of the multiplet.

We note that n is a minimal (i.e., without 1-bracket) L∞ algebra in (internal) degrees
greater than or equal to three. We can filter C•(n) by assigning filtration degree one to
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the generators n. This assignment determines a grading on C•(n) which is not preserved
by the differential. However, the associated decreasing filtration is. Indeed, since n is
minimal, the differential strictly increases the filtration degree.

We will make use of the following lemma.

Lemma 3.4. Let a be a minimal L∞ algebra in positive internal degrees. Then there is
a well-defined subspace H (1)(a) of H•(a), defined by having representatives linear in
a[−1]. H (1)(a) is dual to a minimal generating set of a.

Proof. Call the space of linear cochainsC (1)(a) � a[−1]. No element inC (1)(a) is exact,
since the 1-bracket vanishes. Thus there is a subspace H (1)(a) ⊂ H•(a) consisting of
linear cohomology (represented by classes in C (1)). Furthermore, H (1)(a) ⊂ a[−1] is
a subspace. Closedness means that the dual generator does not appear as the bracket of
any generators; in fact, the dual map a → H (1)(a)[−1] identifies the shifted dual of
H (1) with a/[a, a], and thus (noncanonically) with a minimal generating set of a. ��

In fact, positive internal grading together with the requirement of equivariance under
Der(t) ensures that the minimal generating set can be chosen uniquely, at least in our
examples. The cochains dual to elements of lowest internal degree necessarily belong to
H (1)(a). Reasoning by increasing internal degree sequentially identifies H (1)(a)[1] as
dual to the set of generators that do not arise as brackets of generators at lower degrees;
Schur’s lemma identifies these uniquely with particular Der(t)-modules.5 Thus, H (1)(a)
is dual to (a shift of) this minimal generating set of a. In particular, we have a wrong-way
map that identifies H (1)(a)[−1] with a subspace of a.

Given a minimal generating set V ⊂ a, we can introduce a new filtration on the
L∞ algebra a itself. This filtration is by “generation number” γ , defined by assigning
γ = 1 to the generating set V = H (1)(a)[−1]. (V [−1] thus has γ = −1.) We extend
the definition by requiring that any 2-bracket carries generation number 0; this would
be a grading in the strict case, but it can a priori be violated by higher brackets.

Proposition 3.5. Let a be a minimal L∞ algebra in positive internal degrees. Then a is
a freely generated (strict) Lie algebra if and only if H•(a) = k ⊕ H (1)(a).

Proof. One direction is immediate. Indeed, the cohomology of any free Lie algebra
F[V ] is

H (n)(F[V ]) =

⎧

⎪

⎨

⎪

⎩

k, n = 0
V [−1], n = 1
0, n ≥ 2.

(65)

(This follows by observing that Lie algebra cohomology is the cohomology of the
algebra U (a), which—as an associative algebra—does not depend on the grading; the
enveloping algebra of a graded Lie algebra is just the tensor algebra T [V ], equipped
with a grading that can be forgotten.) The other direction follows from the observa-
tion that C•(a) provides a free multiplicative resolution of the ring k ⊕ V [−1] =
Sym•(V [−1])/ Sym2(V [−1]), where V [−1] = H (1)(a). The ring k⊕V [−1] is Koszul,
and its Koszul dual Lie algebra, the cochains of which provide a free multiplicative
resolution (the Tate resolution) is just F[V ] (see Sect. 5.1.1, item (3)). Minimal free
multiplicative resolutions are unique, hence a ∼= F[V ]. ��

5 One might worry that Der(t) could be too small to ensure splittings of this kind. In particular, it could be
abelian. In every example we study in the sequel, Der(t) is a nonabelian reductive Lie algebra, and no issues
arise.
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An immediate corollary is:

Corollary 3.6. If M[−1] is a generating set of n (i.e., M[−1] = H (1)(n)), then n is the
freely generated (strict) Lie algebra F[M[−1]], and˜t is freely generated from internal
degree 3.

Note that the homological degrees of the elements in n do not need to be zero, even
if n is a strict Lie algebra, which is seen in many of the examples in Sect. 5. If M resides
in a single homological degree, generation is proportional to homological degree. The
concept of generation is strictly needed only when this is not true, which is typically the
case in supergravity models due to the presence of super-Killing vector cohomology in
the ghost sector. See e.g. the example of D = 11 supergravity in Sect. 5.3.3.

For the sake of testing the limits, we will also give an example, Sect. 5.4, where the
Tate resolution does not give a˜twhich is freely generated from degree 3; the cohomology
will then also have “unphysical” support in negative ghost number. This example violates
the assumptions in Proposition 3.5 in the following way. S is Koszul and hence˜t is a
strict Lie algebra. The multiplet has support in H1(n) and H2(n). Since n is a strict Lie
superalgebra, only the dual of H1(n) can be a generating set. Relations for brackets on
these generators are responsible for the appearance of H2(n).

3.4.2. Extracting themultiplet from ZS(t). Useful information can be extracted from the
partition function by discarding the first or the first two factors in the product form (13).
This is because they cancel against the partition functions for θ and x , see Sect. 3.3.4.

Extracting the first level in ZS as ZS(t) = (1 − t)R1 P(t) (note that R1 is negative)
provides a minimal free resolution, an additive resolution in terms of functions of an
unconstrained spinor, i.e., in R. Such resolutions are always finite by Hilbert’s syzygy
theorem [56]. The numerator is thus polynomial, and is read as the zero-mode coho-
mology, i.e., the cohomology of λ ∂

∂θ
. The interpretation is a list of component fields

(including all ghosts, antifields etc.), which is the origin of the tables with arrows in the
examples. The arrows indicate the possible action of bosonic derivatives after homotopy
transfer to component fields [34].

One can go one step further and consider the partition function for the canonical
multiplet A•(S);

ZA•(S)(t) = ZC∞(T )(t) ⊗ ZS(t). (66)

(Of course, C∞(T ) does not have a well-defined partition function; to reason in this
way, we will have to work formally, replacing smooth functions on the body of T by
formal power series k[[x]].) We know that the partition function of S is the same as
the partition function for the Tate resolution of S (this is a general fact about partition
functions/characteristics; they are the same for complexes and their cohomology), so we
can replace ZS(t) with ZC•(˜t)(t)

ZA•(S)(t) = ZC∞(T )(t) ⊗ ZC•(˜t)(t) = Z
˜A•(t)

= (1 − t)−R1(1 − t2)−R2(1 − t)R1(1 − t2)R2 ⊗ ZC•(n)(t),
(67)

where R1 and R2 are the Der(t)-representations of t1 and t2, respectively. On the right
hand side we are left with the partition function for the cochains of n. We can make a
further substitution, and replace ZA•(S)(t) with the partition function for its cohomology.
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But the cohomology of A•(S) is the physical multiplet M , together with a copy of the
constants in degree 0. We end up with the equation6

1 − ZM (t) = ZC•(n)(t). (68)

Hence, extracting both level 1 and level 2 from ZS(t), will reveal the partition function
for the multiplet ZS(t) = (1 − t)R1(1 − t2)R2(1 − ZM (t)). (The initial 1 represents
constant cohomology, which by our conventions is not part of the multiplet.) Note that
this implies

ZU (n)(t) = 1

1 − ZM (t)
, (69)

which agrees with the partition function ZT [M](t) of the tensor algebra of M , which is the

universal enveloping algebra of the freely generated algebra on M , U (F[V ]) = T [V ].
Note, however, that this does not show that n = F[M], since the partition function
forgets about cohomological degree.

3.4.3. The procedure. We now restrict to the case when we know n = F[M]. We will
demonstrate how˜t can be obtained by starting with the semidirect sum t � F[M], and
then introducing brackets in order to kill the unwanted cohomology. We use the fact that
we know˜t as a vector space, and rely heavily on the existence of the resolution. We also
use important pieces of the brackets: the supertranslation algebra, the transformation
of M as a module of supertranslations, which lifts by tensor product to F[M], and
the Lie superalgebra brackets of F[M]. In this way we keep track of entire t-modules.
Concretely, if a t-cocycle η appears in the Tate resolution, the module structure tells
us that η will be the part of a t-module mη, of which η is the part of lowest weight
degree, and the η can be extended to a cocycle taking values in this module. In the
examples of Sect. 5, concrete expressions are given for various (low) degrees. This does
not present a problem of existence, since we know that the Tate resolution exists and
contains modules of the supertranslation algebra.7 Instead of performing a stepwise Tate
resolution (by internal degree or the stages of Sect. 3.1.3), introducing new variables
killing cohomology at each step, we want to deform the differential s in a way that “ties
together” the structure on the given vector space in order to eliminate cohomology, at
the same time using the module structure inside F[M]. Denote a = t � n = t � F[M].
Linear (infinitesimal) deformations will belong to H•(a, a), and in fact only to H•(a, n).

3.4.4. The differential. The corresponding differential is written as s = s0 + s1, where
s0 encodes the supertranslation algebra and the supertranslation transformations of the
modules in F[M], and s1 encodes the brackets of n = F[M]. Then, s is the coalgebra
differential of the Lie superalgebra a. Note that

s2
0 = 0 , s2

1 = 0 , s0s1 + s1s0 = 0 (70)

(the structure constants of F[M] are supertranslation invariant).

6 The minus sign in front of ZM (t) is arbitrarily chosen so that it will be cancelled by the parity of a
fermionic pure spinor superfield �, which is the case at hand when the constant mode of � represents the
highest ghost of a connection which is an odd form, as in D = 10 super-Yang–Mills theory and D = 11
supergravity. If the connection on which the superfield is based is an even form, the multiplet will come out
with reversed parity. This just means that the pure spinor superfield in those cases should be chosen to be
bosonic.

7 This is true regardless of n being free on M .
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3.4.5. The connecting cocycle. We note that stage 2 in the Tate resolution (see Table 1)
introduces the element in M of lowest weight degree to kill the corresponding cohomol-
ogy. Denote this supertranslation cohomology η ∈ H p(t), it provides the “seed” of the
cocycle. It generates stage 2 of the Tate resolution. It can be lifted to supertranslation
cohomology ω0 ∈ H p(t, M) taking values in the module M , of which η is the part
of lowest weight degree. In the bigrading of the Tate resolution depicted in Table 1, η

appears somewhere on the stage 2 line and at cohomological degree p, consequently
at weight degree p + 2. The t-module mη ⊆ M , in which η sits at the lowest weight
degree, stretches to the right in the Table, to higher weight degrees. The cocycle ω0 will
of course still contain a finite number of terms.

This introduces a certain p-bracket between supertranslation generators, [DA1, ...,

DAp ] ∈ M , dually encoded in the differential as a term ω0 = cA1 ...cAp ∂

∂ψ A1 ...Ap , ψ ∈ M ,

where cA, A = (α, a), are supertranslation coalgebra 1-forms, cα = λα , ca = va .
(We can formally think of the ψ’s thus obtained as dual to closed superspace p-forms
FA1...Ap with Fα1...αp = 0; it is no coincidence that the “connecting cocycle” for models
containing a p-form field strength is a p-cocycle, see Sect. 3.5.)

3.4.6. The deformation from the double complex. The supersymmetric cocycle ω0 does
not yet provide an element of H p(a, a), since only {s0, ω0} = 0. We can now use that
fact that (70) provides a double complex. Since s0 acts within the supermultiplets, and
s1 has the schematic form s1 ∼ ww ∂

∂w
, where w denotes 1-forms in n[−1], s0 does not

change the number of w’s, while s1 increases it by 1. We can therefore find the linear
deformation ω = ω0 + ω1 + . . . + ωq in H p(A, n), for some q ≤ p, by solving descent
equations

{s0, ω0} = 0 ,

{s0, ω1} + {s1, ω0} = 0 ,

. . .

{s0, ωq} + {s1, ωq−1} = 0 ,

{s1, ωq} = 0 . (71)

The part ωi is dual to a p-bracket where i entries are in n and p − i are supertranslation
generators.

We used supertranslation cohomology as the starting point ω0 for the solution to the
descent equations. The end point, ωq , represents cohomology of s1. However, a freely
generated algebra has no cohomology higher than H1, in any module [57]. (It is also
straightforward to see that a non-vanishing H1 is supported in generation 1.) We can
easily observe that q > 0, since {s1, ω0} �= 0. Therefore, q = 1. (Strictly speaking,
there is a representative with q = 1.)

Explicit forms for ω = ω0+ω1 are of course highly model-dependent. This completes
the linear deformation, yielding p-brackets [DA1, . . . , DAp ] and [DA1, . . . , DAp−1 , φ].
It is interesting to note that it suffices to know the latter bracket for φ ∈ M , i.e., generation
1. The cocycle condition states that ω1 encodes an outer derivation on n = F[M], so
knowledge of its action on generation 1 specifies the full action on n.

3.4.7. Non-linear deformation. So far, we have considered linear deformations. The
next question is to ask if ω2 = 0, or if the (2p − 1)-identity requires the introduction
of a (2p − 2)-bracket dual to ω′ with ω2 + {s, ω′} = 0, and so on. From the examples
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we consider below, it seems that ω2 = 0 for non-gravitational models, although we
do not have a proof. In D = 11 supergravity, there is indeed a “slight” violation of
ω2 = 0—the 5-identity requires a 4-bracket (which may not be too surprising, since the
theory contains a 4-form field strength).

3.5. Superspace formulation.

3.5.1. Closed forms from pure spinor superfield cohomology. It is well established (see
for example [38]) that scalar pure spinor superfields � describe gauge theories (for
connections of some form degree) on superspace, and reproduce closed superspace forms
(field strengths) as gauge invariant cohomology. The component of � at appropriate
cohomological degree (ghost number) is identified as the lowest-dimensional superspace
connection component, i.e., � = λαAα for a gauge connection, � = 1

2λαλβ Aαβ for
a 2-form connection, etc., while the leading λ-independent component represents the
leading scalar ghost.

We have seen this picture emerging also in Sect. 3.4, where the connecting cocycle
ω0 has a dual interpretation as a closed superspace p-form,

[DA1, . . . , DAp ] = FA1...Ap . (72)

This is however not a standard way to introduce field strengths, except when p = 2.
Note that the interpretation is quite formal; the right hand side of (72) is not the field
strength, but a certain set of basis elements (generators) for the dual of the multiplet M .

3.5.2.˜t and interactions. It is a remarkable observation that when p = 2, e.g. in D =
10 super-Yang–Mills theory [26,28], this deformation leads to a deformation of the
supertranslation algebra which is isomorphic to the superalgebra of gauge covariant
derivatives D(A) = D+A together with the free algebra on the multiplet of the superspace
field strengths. The free generation mimics the decoration of an abelian field strength with
gl∞ Chan–Paton factors, so any Cayley–Hamilton relations for specific gauge groups
are absent; this is a “master algebra”. The same interpretation holds for any example with
a BKM superalgebra which is freely generated from internal degree 3, among which are
our examples in Sect. 5.2.

The most remarkable property of this phenomenon is the fact that, although the posi-
tive BKM superalgebra˜t is a “linear” structure in the BV sense—it is the algebra which
is responsible for the appearance of the linear supermultiplet—it encodes precisely the
information that deforms the linear multiplet to an interacting one. It is therefore an
interesting question to ask what the corresponding non-linear structure on the super-
translations and the supermultiplet means when p > 2.

3.5.3. Higher forms. Let us now consider arbitrary values of p. Even if the geometric
meaning of (72) remains somewhat unclear8 for p > 2, the deformation has one more
part, namely ω1, encoding the bracket [DA1, . . . , DAp−1 , X ], X ∈ F[M]. When p > 2,
there is no way to incorporate the connection in a gauge covariant derivative. It is possible,
however, to do an analogous thing for a multi-derivative, and write

[DA1, . . . , DAp−1 , X ] = [AA1...Ap−1 , X ] (73)

8 We thank Christian Sämann for communication on this issue.
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Table 3. Generators in the double grading of˜t, extended with connections, for a model with a superspace
2-connection.

Only the generating set of F[M] is displayed

for some suitable interpretation of the bracket on the right hand side. If this bracket
obeys the Jacobi identity together with the bracket on t � F[M], the (p + 1)-identity

[[DA1 , . . . , DAp ], X ] + p[D[A1 , . . . , DAp−1 , [DAp], X ]]
+ p[D[A1, [DA2 , . . . , DAp], X ]] +

p(p − 1)

2
[[D[A1, DA2 ], DA3 , . . . , DAp], X ] = 0

(74)

(sign factors omitted) is automatically satisfied, thanks to [DA, DB] = −TABC DC and

FA1...Ap = pD[A1 AA2...Ap] +
p(p − 1)

2
T[A1A2

B A|B|A3...Ap] . (75)

This is not too surprising, since what we are effectively demanding is that the p-bracket
with one field is an outer derivation of F[M], see Sect. 3.4.

The question is then how to define the 2-bracket of (73). Concerning the action of
supertranslations, it is obvious that the multiplet M , the gauge invariant multiplet, can be
continued to the left (lower internal degree) to include the components of the superspace
connection. When p = 2, Aα and Aa occur in the same position as Dα and Da , and the
deformation is obtained by considering the sums, the gauge covariant derivatives. When
p ≥ 3, the connections will appear at homological degree p−2, same as M . The algebra
n = F[M] can be extended to lower internal degrees. 2-brackets with elements in the
new positions will indeed then be derivations of F[M], which are outer since the new
elements are outside F[M]. The concrete realisation will be highly model-dependent,
but exists by definition. A schematic picture is given in Table 3 for a model with p = 3,
like the models in the examples of Sects. 5.3.1 and 5.3.2.

The algebra n = F[M] is now extended to n, which as a vector space is b ⊕ n,
where b is spanned by the potentials. Elements in b act as outer derivations on n. In
the examples, in particular Sects. 5.3.1 and 5.3.3, we will come back to the question
whether further outer derivations at higher homological degree are obtained by repeatedly
applying elements in b, and formulate conjectures essentially stating that this happens
in supergravity but not otherwise.

3.5.4. Interpretation. An interpretation of the non-linear structure on the multiplet in
terms of self-interaction seems difficult for higher gauge symmetries (p ≥ 3). Indeed,
to be physically sensible it would demand a model where the pure spinor superfield
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carries dimension 0, i.e., where internal degree and physical dimension agrees, up to
some conventional proportionality constant (unless, of course, the interactions involve
a dimensionful constant). This happens when p = 2, where the leading ghost is dimen-
sionless, but not necessarily in models with higher gauge fields. In D = 11 supergravity
it does not hold. In other words, self-interactions should, at least naïvely, involve some
modification of the 2-bracket [Dα, · ]; this can then be understood as a deformation of
the pure spinor superspace differential D = λαDα . This does not exclude that relations
like (72) can be given a deeper geometric meaning. We will see that a certain such mod-
ification actually occurs in D = 11 supergravity, and it can be seen as a sourcing of the
physical multiplet by the Killing ghosts.

4. Properties of the Ring S and the Multiplet M

There are a number of interesting properties that the pure spinor ring may or may not
have in different cases, and similarly for the multiplet. We will list some of them. Even
if they ultimately all are properties of S, statements about M distinguish themselves in
being statements about n =˜t≥3.

Properties of S

A Y is the closure of a minuscule minimal G-orbit (see Sect. 3.2.5);

B Y is the closure of a (set of) minimal G-orbit(s);

C S is a complete intersection;

D S is Gorenstein;

E S is Cohen–Macaulay;
F S is Koszul.

For a discussion of the relevance of some of the properties of the ring S to physical
constructions involving the corresponding multiplet, we refer to [34]. Some of the con-
structions there, in particular the construction of cotangent BV theories in examples
where the canonical multiplet is off-shell, were anticipated in [29].

Implications between these properties are as follows:

A C

B D

F E
Properties of the multiplet

G M has support only in (cohomological) degree 1;

H M has support in a single degree;
I M has ∞-dimensional support in at most one degree;
J n is freely generated;
K n has a (non-abelian) freely generated subalgebra.

The implications between these statements are:
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G

H

I J

K
The dashed arrow is conjectural. All examples we have encountered obey it. The example
withG2×SL(2) in Sect. 5.5 has a non-freenwith a free subalgebra when the conventions
otherwise used in the paper are adopted, in particular with the definition n =˜t≥3. In this
case it turns out to be well motivated to instead choose n =˜t≥4, the conjectural arrow
would then be I ��� J .

It is striking how few implications can be made from a property in one group to one
in the other. A trivial exception is the vanishing of the multiplet being equivalent to S
being a complete intersection. In particular, the physically motivated “good” property of
free generation is difficult to relate to standard “good” properties of rings. For example,
Gorenstein or Koszul are about the “best” properties one can demand from a ring. They
are typically properties of some well behaved physical examples, such as D = 10 super-
Yang–Mills, Sect. 5.2.1. Indeed, Gorenstein is necessary for a BV action without the
introduction of a separate dual multiplet. Supergravity models are never Koszul, but
SYM models are. On the other hand, rings with both these properties, as the E6 model
of Sect. 5.4, may display pathological behaviour from a physical point of view, such as
infinite-dimensional cohomology in more than one ghost number.

Avramov [35] made a very general conjecture about free subalgebras in Noetherian
local rings. In our context it implies arrows E ��� K ��� F . To our knowledge, the

conjecture has neither been proven or falsified. All our examples satisfy condition K
(except for D = 4, N = 4, where n is trivial, see Sect. 5.1.2). We have among our
examples, Sect. 5.4, a minimal orbit under E6, thus defining a BKM superalgebra.
Property A holds, implying properties E and F . Condition K also holds, since
B(E5,�1)≥3, which is freely generated, is contained in B(E6,�1)≥3 [44]. However,
the whole of n is not freely generated in the E6 case unlike the other examples considered
below.

The properties of the different examples of Sect. 5 are listed in Table 4, in order of
appearance in Sect. 5.

5. Examples

In all examples with physical multiplets below, Sects. 5.2–5.5, we use the notation and
method for deriving the bracket structure of˜t introduced in Sect. 3.4. We also use a
convention where 1-forms dual to bosonic and fermionic generators commute, a slight
violation of our general conventions which can be changed to anticommutator by trivial
sign changes.

5.1. Trivial examples.
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Table 4. Properties of S and M in the examples

A B C D E F G H I J K
D = 4, N = 4 No No Yes Yes Yes Yes — — — — —
D = 10, N = 1 Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes
SL(5) Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes
D = 6, N = 1 No Yes No No Yes Yes Yes Yes Yes Yes Yes
D = 4, N = 1 No Yes No No No Yes Yes Yes Yes Yes Yes
D = 6, N = (2, 0) No No No No Yes No No Yes Yes Yes Yes
D = 4, N = 2 No No No No Yes No Yes Yes Yes Yes Yes
D = 11 No No No Yes Yes No No No Yes Yes Yes
E6 Yes Yes No Yes Yes Yes No No No No Yes
G2 × SL(2) No No No No No No No No Yes No Yes

Note that many “Yes” in group A - F does not guarantee the same in group G - K , and vice versa

Table 5. Zero-mode cohomology for D = 4, N = 4 SYM

5.1.1. Generic classes of trivial examples

(1) Let t1 and t2 be any vector spaces, and take t to be abelian. Then S = R is just a
polynomial ring, and S⊥ = U (t1) is the exterior algebra on t1 (with shifted, bosonic,
parity).

(2) Consider any complete intersection, defined by a regular sequence of quadratic
elements fi ∈ R. This determines an algebra of the form t by taking the Chevalley–
Eilenberg differential to be d(ai ) = fi . The partition function is ZS(t) = (1 −
t)R1(1−t2)R2 , and˜t = t. The multiplet is empty; pure spinor superfield cohomology
is de Rham cohomology.

(3) Let t2 = ∧2t1. These are the first two degrees of F[t1]. Then S is empty from degree
2. The partition function is ZS(t) = 1 + S1t = 1 − R1t , and˜t = F[t1].

(4) Let t1 = −k, t2 = k, with the bracket given by tensor product. This is a special case
of both (2) and (3). The partition function is ZS(t) = 1 + t = (ZF[−k])−1.

5.1.2. D = 4,N = 4 super-Yang–Mills. This example is trivial in the sense that it falls
under item (2) above, S is a complete intersection, and˜t = t. D = 4 is the highest
dimension where this happens for maximally supersymmetric Yang–Mills theory. The
zero-mode cohomology then trivially becomes the de Rham complex in D = 4.

In Table 5 and all subsequent tables of zero-mode cohomology, the λ expansion is
vertical and the θ expansion horizontal. In the present case the multiplet is empty; there
is no local cohomology. Nevertheless, this pure spinor superfield can be used “minimally
coupled” with a field describing the gauge-covariant multiplet based on the scalars, so
that the equations of motion identify the field strength of the gauge connection in Table 5
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Fig. 1. Dynkin diagram for B(D5,�5)

with the one in the scalar multiplet [58]. There is a natural (contragredient) extension of
˜t to non-positive levels, which is the superconformal algebra su(4|4).

5.2. Physical examples with BKM superalgebras. The dual BKM superalgebras appear-
ing in this subsection are all freely generated from internal degree 3. They all correspond
to multiplets concentrated in a single ghost number. In all cases, the Koszul duality is
the standard quadratic one. The algebras˜t are isomorphic to algebras of gauge covariant
derivatives and field strengths. As we will see, the examples in Sects. 5.2.1, 5.2.3 and
5.2.4 are related to the exceptional Lie algebras E8, E7 and E6, respectively.

5.2.1. Ten-dimensional minimal supersymmetry. This is the standard example for pure
spinor superfield theory, possessing all the good properties that allow for a supersym-
metric BV theory of Chern–Simons type [1–3,26,28,30]. S is a Gorenstein ring of odd
codimension (5). Of particular interest for us is the construction of the Koszul dual alge-
bra˜t, which we know is the BKM superalgebra B(D5,�5) (Fig. 1) [18], and which
Movshev and Schwarz [26,28] showed is isomorphic to the superalgebra of superspace
gauge covariant derivatives and field strengths of (interacting) super-Yang–Mills theory.
We will rephrase that construction in the framework of the present paper. The algebra is
free from internal degree 3.

The partition function is

ZS(t) =
∞

⊕

n=0

(0000n)tn

= (1 − t)−(00001) ⊗
(

(00000) � (10000)t2 ⊕ (00010)t3

� (00001)t5 ⊕ (10000)t6 � (00000)t8
)

= (1 − t)−(00001) ⊗ (1 − t2)(10000)⊗
[

(00000) �
∞

⊕

i=0

(

�(i0010)t3+2i ⊕ (i1000)t4+2i
)]

,

(76)

where the Dynkin labels are given in the order indicated by the numbering of the nodes
in the Dynkin diagram in Fig. 1.

The first form of the partition function in (76) expresses that the pure spinor variety is a
minimal orbit, the second gives the zero mode cohomology and the third the multiplet, the
on-shell D = 10 super-Yang–Mills fields in a derivative expansion. From the exponents
of the first two factors in the the third form we can read of the D5 representations
R1 = (00010) and R2 = (10000), corresponding to t1 and t2. Below (Table 6), these are
denoted by their dimensions in bold, R1 = 16 and R2 = 10. Continuing the factorisation,
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Table 6. Zero-mode cohomology for D = 10 SYM

we would get R3 = 16 and R4 = 45 (the adjoint). The fact that R1 = R3 and R2 = R2
agrees with the general symmetry described in Sect. 2.4.3, considering B(D5,�5) as
B(E8, θ)(−3).

The supertranslation algebra is encoded in the differential s0,

s0v
a = (λγ aλ) . (77)

The action on the on-shell multiplet is encoded in

s0ψα = 0 ,

s0 fab = −(λγabψ) ,

s0ψaα = vaψα + (γ bλ)α fab − (γ -trace) ,

· · · (78)

Note that here, as in all subsequent examples, we are representing the multiplet by basis
elements in the coalgebra. These basis elements are in the modules conjugate to the ones
of the component fields. Also, there is no x-dependence; derivatives of the fields in the
multiplet are represented as separate elements. The coalgebra element corresponding
to a derivative of the spinor ∂a�

α is ψaα . The third relation in (78) states among other
things that on the algebra side [Da, �

α] = �a
α , where γ a

αβ�a
β = 0.

As detailed in Sect. 3.4, the action of t on M , specified by s0 above, is naturally
extended to F[M]. Together with s1, the differential on C•(F[M]), s0 + s1 is the differ-
ential on C•(t � F[M]).

The connecting cocycle is ηα = va(γaλ)α . It is closed thanks to the identity
(λγaλ)(γ aλ)α = 0, which is trivially true thanks to ∨316 �⊃ 16. It is lifted to a super-
symmetric cocycle ω0 ∈ H2(t, M) as

ω0ψα = va(γaλ)α ,

ω0 fab = vavb . (79)

The construction precisely mimics the deformation of Dα ∈ t1, Da ∈ t2 to gauge
covariant derivatives by including connections AA, A = (α, a) and demanding Fαβ = 0.
Then, (79) is dual to [DA, DB] = FAB . This is the standard superspace procedure for
introducing interaction in super-Yang–Mills theory. Here, the same algebra is responsible
for defining the states in the linear theory. There is of course also an ω1, defined as in
Sect. 3.4, which makes ω = ω0 + ω1 a cocycle in H2(t � F[M], F[M]). The first
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Fig. 2. Dynkin diagram for B(A4, �2)

example of a term in ω1 acts on ψα,β , which is the generation 2 element at weight
degree 6 with s1ψα,β = ψαψβ . One then gets9

ω1γ
αβ
a ψα,β = 16

9
vb fab − 20

9
λαψaα . (80)

This encodes the sourcing of the gauge field by the fermions, the dual form of the first
term being

[Db, Fab] = 1

2
γaαβ [�α,�β ] (81)

(with some normalisation constant). Seen from the perspective of gauge covariant deriva-
tives the occurrence of such terms is obvious; repeated action of covariant derivatives
gives curvatures, this one arises from the Jacobi identity of the formally undeformed
γ a
αβ [Da, �

β ] = 0 with a Dα . We can think of the algebra as a master algebra for
super-Yang–Mills theory with any gauge group, so that all fields are decorated with
(invisible) gl∞ Chan–Paton factors. The absence of Cayley–Hamilton relations for finite-
dimensional gauge groups corresponds to the free generation.

5.2.2. SL(5), or twisted eleven-dimensional, supersymmetry. The formulation of this
multiplet was given in [31,59]. It appears as a twisting of D = 11 supergravity [60].

S is a Gorenstein ring of odd codimension (3). It is the algebra of functions on a cône
over the Grassmannian Gr(2, 5) of 2-planes in 5 dimensions, a minimal SL(5) orbit.
Therefore, the Koszul dual Lie superalgebra is B(A4,�2), see Fig. 2.

The partition function is

ZS(t) =
∞
⊕

n=0

(00n0)tn

= (1 − t)−(0010)
(

(0000) � (1000)t2 ⊕ (0001)t3 � (0000)t5
)

= (1 − t)−(0010) ⊗ (1 − t2)(1000) ⊗
[

(0000) �
∞
⊕

i=0

(

�(i001)t3+2i ⊕ (i100)t4+2i
)]

.

(82)

where the Dynkin labels are given in the same order as in the preceding example, and
the zero-mode cohomology is illustrated in Table 7.

The first form expresses the pure spinor variety as a minimal orbit, the second gives
the zero mode cohomology and the third the multiplet. It contains a fermionic divergence-
free vector and a closed 2-form. This is the (parity-reversed) content of the superalgebra

9 The seemingly strange number 16
9 is a consequence of 1) decomposing the derivative of F as [Da , Fbc] =

(DF)(11000) − 2
9 ηa[b[Dd , Fc]d ], and 2) the Fierz decomposition [�α, �β ] = 1

16 γ
αβ
a γ a

γ δ[�γ , �δ] + . . .
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Table 7. Zero-mode cohomology for the SL(5) model

E(5, 10). In fact, B(A4,�2) is freely generated from internal degree 3 by the coadjoint
module of E(5, 10) [59].

Supertranslations are expressed as

s0v
m = 1

8
εmnpqrλnpλqr ,

s0ψm = 0 ,

s0 f
mn = 1

2
εmnpqrλpqψr ,

s0ψ
m
n = vmψn + λnp f

mp − (trace) ,

· · · (83)

The connecting cohomology from the supertranslation algebra to the module is ηm =
λmnv

n . It is extended to the supersymmetric cocycle ω0 as

ω0ψm = λmnv
n ,

ω0 f
mn = vmvn . (84)

The lowest term in ω1 is

ω1ψm,n = 2λp(mψ p
n) , (85)

where ψm,n is the generation 2 coalgebra element with s1ψm,n = ψmψn . Unlike the
D = 10 SYM example, Sect. 5.2.1, there is no room for a v f term; the field strength
Fmn only satisfies a Bianchi identity which remains homogeneous.

Similar constructions are certainly possible also for BKM superextensions of “En”,
n < 4, and may be related to other exceptional Lie superalgebras, e.g. E(3, 6).

5.2.3. Six-dimensional minimal supersymmetry. The degree 0 automorphism group is
SL(4) × SL(2), and we use standard Dynkin labels. Let λ ∈ (001)(1) = (4, 2). Since

∨2(001)(1) = (002)(2) ⊕ (010)(0) = (10, 3) ⊕ (6, 1) , (86)

the pure spinor constraint defines a minimal orbit, and the Koszul dual algebra˜t is the
positive-degree part of a BKM superalgebra, with the Dynkin diagram of Fig. 3.

The diagram is drawn this way in order to distinguish the BKM superalgebra
from the finite-dimensional superalgebra sl(2|4) (the latter has a Cartan matrix with
sign changes across the grey node). In the same way as the BKM superalgebra in
Sect. 5.2.1 was described as B(E8, θ)(−3) this BKM superalgebra can also be described
as B(E7, θ)(−3). S is not Gorenstein, but Cohen–Macaulay.
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Fig. 3. Dynkin diagram for B(A3 ⊕ A1, �3 + �4)

Table 8. Zero-mode cohomology for D = 6, N = 1 SYM

Fig. 4. Dynkin diagram for the BKM superalgebra associated to D = 4, N = 1 SYM

It is well known that the superspace gauge theory with this supersymmetry yields the
off-shell multiplet, with a triplet of auxiliary fields. This is of course reproduced by the
pure spinor superfield formalism [61,62]. The partition function is

ZS(t) =
∞

⊕

n=0

(00n)(n)tn

= (1 − t)−(001)(1) ⊗
(

(000)(0) � (010)(0)t2 ⊕ (100)(1)t3 � (000)(2)t4
)

,

(87)

from which the off-shell multiplet of Table 8 is read. Obviously, extracting also degree
2 from the partition function gives the multipet in the same way as in Sect. 5.2.1, but
without equations of motion in the absence of antifields. (The antifields sit in a separate
pure spinor superfield in the module (000)(2) [62].)

The procedure for going from t � F[M] by introduction of the connecting cocycle
parallels the one in Sect. 5.2.1, so we will not display it in detail. Again, the BKM
superalgebra, which is freely generated from internal degree 3, is isomorphic to the
algebra of gauge covariant superspace derivatives and field strengths.

5.2.4. Four-dimensional minimal supersymmetry. The R symmetry is U (1). We denote
modules by su(2) ⊕ su(2) Dynkin labels (or dimensions in boldface) with u(1) charge
as subscript. Let λ ∈ (1)(0)−1 ⊕ (0)(1)1 = (2, 1)−1 ⊕ (1, 2)1. The partition function
yields the zero-mode cohomology of Table 9. The multiplet is off-shell, including the
auxiliary scalar field.

The ring S is not Cohen–Macaulay, due to the pure spinor variety consisting of two
components. This makes the construction of the anti-field multiplet more subtle [34].

The procedure for constructing the BKM superalgebra as an extension of the super-
translation algebra follows the same lines as in Sects. 5.2.1 and 5.2.3, and has the same
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Table 9. Zero-mode cohomology for D = 4, N = 1 SYM

Table 10. Zero-mode cohomology for the D = 6, N = (2, 0) model

superspace interpretation. Accordingly, the BKM superalgebra with Dynkin diagram
in Fig. 4 could be denoted B(E6, θ)(−3), indicating that it is “three steps away” from
B(E6, θ), where in turn changing the grey node to a white one would give the affine
extension of E6. However, this case is different compared to the previous ones in that
we get two grey nodes in the last step of the “oxidisation” procedure going back from
B(E6, θ) to B(E6, θ)(−3) [44]. Also, from the point of view of this procedure, it is
natural to connect the grey nodes by a double line without arrows, meaning that both the
corresponding off-diagonal entries in the Cartan matrix are equal to −2. However, any
negative integer would give the same algebra at positive degrees, as discussed in [63].
Only when both positive and negative degrees are considered, different choices for the
Cartan matrix give different algebras. In [63] this algebra was studied in further detail.

5.3. Examples involving higher brackets.

5.3.1. Six-dimensional N = (2, 0) supersymmetry. The R-symmetry is so(5). We use
a notation with D = 6 Pauli matrices γ a and so(5) gamma matrices σ i acting on 16-
component spinors of so(6) ⊕ so(5). γ a and σ i commute. The symmetric products of a
spinor are (λγ aλ), (λγ aσ iλ) and (λγ abcσ i jλ). Therefore, the pure spinor variety is not
a minimal orbit.

The supertranslation algebra is dual to Eq. (88) and the zero-mode cohomology is
illustrated in Table 10.

s0v
a = (λγ aλ) . (88)

Supertranslations on the on-shell supermultiplet M of linear observables are encoded
in
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s0φ
i = 0 ,

s0ψ
α = (σiλ)αφi ,

s0gabc = (λγabcψ) ,

s0φa
i = vaφ

i − (λγaσ
iψ) ,

s0ψa
α = vaψ

α + (σiλ)αφa
i +

1

4
(γ bcλ)αgabc − (γ -trace) ,

. . . (89)

Higher components represent x-derivatives of on-shell component fields, from which
their transformations follow.

The supersymmetric cocycle ω0 in H3(t, M) is

ω0φ
i = −1

2
(λγ aσ iλ)va ,

ω0ψ
α = 1

4
(γ abλ)αvavb ,

ω0gabc = vavbvc + dual . (90)

ω0 encodes the 3-bracket between three supertranslation generators, [DA, DB, DC ]. It
is not a cocycle in H3(t � F[M], F[M]), but the starting point of one. We know that
the full 3-cocycle is ω = ω0 + ω1. We have not solved for the complete explicit form of
ω1. Its first term is

ω1φ
i, j = (λγ aσ (iλ)φa

j) − 1

6
δi j (λγ aσkλ)φa

k − 1

6
δi j ca(λγaψ) , (91)

where φi, j is the coalgebra element dual to [i , j ], s1φ
i, j = φiφ j . Note that knowl-

edge of [DA, DB,] for  in M gives information of the 3-bracket with one entry in
the full F[M]. They form a set of outer derivations of F[M].

So far, we have constructed a linear deformation of s as a 3-bracket differential ω.
Will ω represent a “total deformation”, i.e., is also ω2 = 0, or will a 4-bracket (and
possibly higher) be generated? Obviously, ω2

0 = 0. An identity {ω0, ω1} = 0 would
correspond to a 5-identity [D[A, DB, [DC , DD, DE]]] = 0. A quick inspection of the
elements in the third generation of F[M] gives at hand that this identity holds—the
content of so(6) ⊕ so(5) modules at the respective internal degrees does not allow any
non-zero result of the 5-identity. Thus, there is no 4-bracket [DA, DB, DC , DD]. The
only possibility would be a 4-bracket [DA, DB, DC ,] compensating for a possible
non-vanishing of ω2

1, and 4-brackets with more than one entry in F[M] vanishing by the
same argument as for the 3-bracket.

Let us rephrase the above in the superspace formulation of Sect. 3.5. We would then
let [DA, DB, DC ] = GABC and [DA, DB,] = [BAB,],  ∈ F[M], for super-
space forms G = dB. A 4-bracket would correspond to [DA, DB, DC , DD] = HABCD ,
[DA, DB, DC ,] = [CABC ,]. The 5-identity with all D’s now reads (modulo unim-
portant numerical coefficients) dH + [B,G] = 0, where antisymmetrisation (wedge
product) is understood in the second term. It is consistent with the 5-identity with one
element in F[M], which translates to [H +dC + [B, B],] = 0. Note that the “fields” in
the multiplet carry the opposite statistics compared to a physical multiplet—for example,
Gabc = gabc is fermionic in the coalgebra—so the bracket in the last formula is non-
trivial. We have not checked that it actually vanishes. This requires at least a few more



127 Page 44 of 56 M. Cederwall, S. Jonsson, J. Palmkvist, I. Saberi

Table 11. Zero-mode cohomology for the D = 4, N = 2 dualised hypermultiplet

levels of the action of the outer derivations than given in (91). The supposed absence
of any meaningful 4-form observables in the physical multiplet leads us to believe that
[B[AB, BCD]] = 0 (as an outer derivation), a statement that should be possible to prove
with some more work. In Sect. 5.3.3, we will see an example where both 3- and 4-forms
indeed are present, and where the 4-bracket arises precisely by the mechanism sketched
here.

We conjecture that the 3-bracket ω is a total deformation, and that dCE = s + ω.
The multiplet is conformal. It is straightforward to check that in all steps in our

construction the t-module property is lifted to a superconformal module property, where
the superconformal algebra is the contragredient extension of t to non-positive levels,
osp(8|4).

5.3.2. Four-dimensional N = 2 supersymmetry The multiplet obtained from a scalar
pure spinor superfield with N = 2 supersymmetry in D = 4 is not a super-Yang–Mills
multiplet, but a version of the hypermultiplet where one scalar is dualised to a 2-form.
This is an off-shell multiplet. Fields, and generators at all levels in the algebra, transform
under so(4)⊕ su(2)⊕u(1) � su(2)⊕ su(2)⊕ su(2)⊕u(1). We use SL(2, C) notation
for the first two su(2)’s. The physical fields are a real 2-form B with fields strength G in
(2, 2, 0)0, a triplet of real scalars  in (1, 1, 3)0 (represented as an antihermitean (2×2)-
matrix) and a complex spinor �αi , �α̇

i in (2, 1, 2)1 ⊕(1, 2, 2)−1. In addition, there is an
auxiliary complex scalar field H, H in (1, 1, 1)2 ⊕ (1, 1, 1)−2. Subscripts denote u(1)

charge. Elements in the coalgebra are denoted by the corresponding lowercase letters.
The dual to the supertranslation algebra is Eq. (92) and the zero-mode cohomology

is illustrated in Table 11.

s0v
α̇α = λ

α̇
iλ

αi . (92)

The supertranslation transformations of the cogenerators in the multiplet are encoded
in

s0φ
i
j = 0 ,

s0ψ
αi = φi

jλ
α j ,

s0φ
α̇α,i

j = vα̇αφi
j + λαiψ

α̇
j − ψαiλ

α̇
j ,

s0g
α̇α = λ

α̇
iψ

αi + ψ
α̇
iλ

αi ,

s0h = εαβεi jλ
αiψβ j ,

s0ψ
α̇α,βi = vα̇αψβi + φα̇α,i

jλ
β j +

1

2
gα̇αλβi − gα̇βλαi + εαβεi jλ

α̇
j h .

. . . (93)
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Table 12. Zero-mode cohomology for D = 11 supergravity

The action of the supersymmetric 3-cocycle is

ω0φ
i
j = iλαivαα̇λ

α̇
j ,

ω0ψ
αi = iλβivβα̇vα̇α ,

ω0g
α̇α = − i

2
vα̇βvββ̇vβ̇α , (94)

where vαα̇ = −εαβεα̇β̇vβ̇β .

The explicit form of the outer derivation ω1 on F[M] can be found for the lowest
internal degrees. The rest of the construction, in particular the argument leading to
a conjecture about the absence of a 4-bracket, goes along the exact same lines as in
Sect. 5.3.1.

5.3.3. Eleven-dimensional supersymmetry This example is fundamentally different
from the non-gravitational examples, due to the presence of cohomology also in the
ghost sector, represented by super-Killing vectors on Minkowski superspace.

The algebra n is still freely generated by the dual of the multiplet. In order to show
this, we need to establish that the whole dual multiplet is a (minimal) generating set of
n. Brackets must respect the double grading (see Table 13). The only possible type of
relation would be of the type [k, k] = φ. This is not allowed by tensor products of the
so(11) modules appearing. (In addition, if such relations had been present, they would
give rise to cohomology of n at cohomological degree 4, which is outside the multiplet.)
All cohomology is in generation 1, and n is freely generated according to Proposition 3.5.

S is a Gorenstein ring of odd codimension (9). Since ∨2(00001) = (10000) ⊕
(01000)⊕ (00002), Y is the closure of an intermediate (non-minimal) orbit. The tangent
cône at the singular locus, the minimal orbit, is Gr(2, 5), so the Gorenstein property
essentially follows from the Gorenstein property in Sect. 5.2.2. Some properties of S
have been examined in refs. [24,64,65], and the supersymmetric pure spinor BV field
theory was constructed in refs. [64,66]. In [33], an investigation of the Tate resolution
was initiated in increasing internal degree (up to degree 8), leading to conjectures, some
of which will be verified presently.

Factoring out degree 1 in the partition function for S gives Table 12. Factoring out
also degree 2 yields the linear multiplet:
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Table 13. Generators in the double grading of˜t for D = 11 supergravity. Internal degree is on the horizontal
axis and homological degree on the vertical. Only the generating set of F[M] is displayed. Note the symmetry
around degree (3, 1

2 )

ZS(t) = (1 − t)−(00001) ⊗ (1 − t2)(10000)

⊗
[

(00000) ⊕ (10000)t4 � (00001)t5 ⊕ (01000)t6

�
∞

⊕

i=0

(

(i0010)t8+2i � (i1001)t9+2i ⊕ (i2000)t10+2i
)]

. (95)

On the algebra side, let k be the (dual) Killing supermultiplet at internal degrees
4, 5, 6, and p the (dual) physical multiplet at degrees ≥ 8. We have M = k ⊕ p as a
vector space. The supertranslation algebra is encoded in the coalgebra differential

s0λ
α = 0 ,

s0v
a = (λγ aλ) . (96)

We let s0 be the coalgebra differential of t � (k ⊕ p). Thus,

s0ka = 0 ,

s0kα = (γ aλ)αka ,

s0kab = (λγabk) − 2v[akb] . (97)

and10

s0φabcd = 0 ,

s0φabα = 1

2
(γ cdλ)αφabcd − (γ -trace) ,

s0φab,cd = 1

2

(

(λγabφcd) + (λγcdφab)
) − [abcd] ,

s0φa,bcde = vaφbcde + 3(λγa[bcφde]) − ([abcde] + trace) ,

· · · (98)

10 The concrete expression for the formation of a γ -traceless 2-form-spinor X̃ from the tensor product of a
2-form and a spinor is X̃ab = Xab + 2

9 γ[aγ c Xb]c − 1
90 γabγ

cd Xcd .
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Here, ka , kα and kab are Killing ghosts for translations, fermionic translations and rota-
tions, while φabcd , φabα and φab,cd are the (linearised) 4-form, gravitino field strength
and Weyl tensor of the physical supergravity multiplet.

When the Tate resolution is examined by internal degree, a minor surprise arises
at degree 9. There it turns out that the 2-bracket needs to be modified. The multiplet
M = k⊕p is still freely generating n, but the action of the supertranslation generators on
the multiplet is modified. Here, we do the construction by arity of brackets, so we start
with this deformation. It turns out that there is a 2-cocycle deformation of t � F[M] as
defined above. As a cocycle of the supertranslation algebra, it belongs to H1(t, p⊗∧2k),
and allows for a deformation of the 2-bracket [t, φ]: t⊗p → ∧2k landing in generation 2
of F[k]. Let us use ν for the corresponding term in the coalgebra differential, and denote
the generation-2 basis elements as k with double indices. Up to a scaling, the complete
expression for ν is

νka,b = 0 ,

νka,α = 1

10
(γ bcdλ)αφabcd − 1

60
(γa

bcdeλ)αφbcde ,

νkα,β = 1

16
γ abcd
αβ (λγabφcd) +

1

24
γ abc
αβ vdφabcd ,

νka,bc = 9

4
(λγaφbc) − 3

2
(λγ[bφc]a) +

1

4
vdφabcd ,

νkab,α = −10

39
(γ cdeλ)αφ[a,b]cde − 5

156
(γ[acde f λ)αφb],cde f +

21

26
(γ cdλ)αφab,cd

+
6

13
vc(γcφab)α − 6

13
vc(γ[aφb]c)α ,

νkab,cd = 6((λγ[aφb],cd) + (λγ[cφd],ab)) +
10

13
veφe,abcd . (99)

In the last term, φa,bcα is “the derivative of the gravitino field strength”, the degree 11
element with sφa,bcα = vaφbcα + . . .. The action of ν on F[M] is defined by tensor
product.

This means that F[M] now has become an indecomposible t-module. The differential
we need to modify by higher brackets is s = s0 + ν + s1 on t � F[M]. Here, s0 + ν

represents the deformed action of t on the module F[M]. The normalisation of ν is
irrelevant as long as it is non-zero, we choose the one of (99). There is still a bicomplex
with differentials s0 + ν and s1, which can be used to find higher brackets, always with
at most one entry in M , by descent equations as in Sect. 3.4.6.

We continue by investigating the 3-bracket. The connecting 3-cocycle ω0 is dual to
a bracket [t, t, t]: ∧3t → k. It is straightforwardly constructed:

ω0ka = (λγabλ)vb ,

ω0kα = 1

2
(γabλ)αvavb ,

ω0kab = 0 , (100)

Then, ω1, dual to a 3-bracket [t, t, M], is found through the descent equations. Due to

the presence of ν, it will consist of two parts, ω′: [t, t, k] ∈ p and ω′′: [t, t, k] ∈ k
(2)

,
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where k
(2)

means second generation, i.e., [k, k] in F[M]. They are given by the concrete
expressions

ω′φabcd = 2(λγ[abλ)kcd] +
1

12
(λγabcd

e f λ)kef − 4

3
v[a(λγbcd]k) − 1

6
ve(λγabcdek) ,

ω′φabα = 1

2
(γ cλ)αvckab − (γ cλ)αv[akb]c + vavbkα − (γ -trace) ,

ω′φab,cd = −1

2
(vavbkcd + vcvdkab) − ([abcd] + trace) , (101)

and

ω′′ka,b = 2(λ(a
cλ)kb)c − 1

6
ηab(λγ cdλ)kcd

− 2v(a(λγb)k) +
1

3
ηabv

c(λγck) ,

ω′′ka,α = 4

15
λαvbkab +

1

10
(γ bcλ)αvakbc +

7

15
(γ bcλ)αvbkac

− 1

15
(γa

bλ)αvckbc +
1

60
(γa

bcdλ)αvbkcd

+
4

15
vavb(γ

bk)α − 1

30
vbvc(γa

bck)α ,

· · · (102)

The relative coefficient between ω′ and ω′′ is fixed by the normalisation of ν.
This is the structure of the 3-bracket, as a linear deformation. Since D = 11 super-

gravity contains a physical 4-form field strengths, one may expect this to be reflected in
the presence of some 4-bracket. This indeed happens. We need to check the 5-identities
with two 3-brackets. With the explicit forms above, the result is that there is a single
non-vanishing 4-bracket [t, t, t, t], namely [Da, Db, Dc, Dd ] = Habcd . There will of
course also be some 4-brackets [t, t, t, M]. Note that we do not reproduce the standard
closed superspace 4-form of D = 11 supergravity. Our 4-bracket does not arise as a
linear deformation (a cocycle), but from a failure of the 3-bracket to be a finite defor-
mation. In the superspace language of Sect. 3.5 and the end of Sect. 5.3.1, the Bianchi
identity of our 4-form will be sourced by the Killing multiplet as dH = [B,G]. We
conjecture that higher brackets are absent through arguments analogous to the ones in
Sect. 5.3.1, but have not been able to prove this.

We do not know how to interpret the non-linear structure. It can not be understood
in terms of physical fields, since the dimensions are wrong. Remember that the pure
spinor superfield � for D = 11 supergravity carries ghost number 3 and inverse length
dimension −3. In terms of the algebra (see Table 13), the physical multiplet would fit
at negative internal degrees, while maintaining the symmetry around internal degree 3,
leading to a structure similar to a tensor hierarchy algebra. We comment on such possible
prolongations in the Discussion, Sect. 6.

5.4. E6 supersymmetry. This example distinguishes itself from the lower-dimensional
examples in the E series (Sects. 5.2.1 and 5.2.2) in that the BKM superalgebra
B(E6,�1), with Dynkin diagram given in Fig. 5, is not freely generated from internal
degree 3. This can be checked explicitly, the deviation starting at internal degree 9.
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Fig. 5. Dynkin diagram for B(E6, �1)

Table 14. Zero-mode cohomology for the E6 model.

Table 15. Cohomology of n for the E6 model

The corresponding minimal orbit is defined by the equations resulting from 27 ⊂
Sym2(27). S is a Gorenstein ring of even codimension (10). The pure spinor variety
is a cône over the Cayley plane OP2, which is a minimal E6 orbit. The zero-mode
cohomology is depicted in Table 14. Some Dynkin labels are

27 = (

00
0
001

)

, 78 = (

00
1
000

)

, 351 = (

01
0
000

)

,

351′ = (

20
0
000

)

, 650 = (

10
0
001

)

, 2925 = (

00
0
100

)

.

The indicated differential operators should all be present.
The multiplet in this example is unconventional in that it lies in different cohomo-

logical degrees (ghost numbers). Recall that the multiplet consists of H•(n), where
n = B(E6,�1)≥3 is the subalgebra of B(E6,�1) at internal degrees ≥ 3. We have
not solved it completely. It contains infinite-dimensional t-modules in H1 and H2, and
probably nothing else.

We notice that the appearance of H2 from weight degree 9 is a direct consequence of
a relation in the brackets between generators freely generated by elements dual to H1.
The conditions in Prop. 3.5 are not satisfied. Interpreted physically, such cohomology
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implies the pathological situation that there are “physical” states with ghost number −1,
if ghost number 0 is assigned to H1.

Note that the multiplet is agnostic to which resolution we choose to form the algebra
˜t. Any resolution gives the same cohomology H•(n). Presently we have chosen˜t =
B(E6,�1). This gives the Tate resolution, which is the minimal free multiplicative
resolution. Other, non-minimal, resolutions yield the same result, but will necessarily
have a differential containing 1-brackets. Among them should be one based on F[M].

The part of the multiplet at cohomological degree 1 can be formulated quite explicitly
in terms of solutions to differential equations as follows. Consider a “gauge potential”
AM in 27, and a “spinor” field � in 78. The gauge symmetry is δ�AM = ∂M�, so
FMN = ∂M AN −∂N AM in 351 is invariant, and fulfills a Bianchi identity ∂[MFN P] = 0
in 2925. In addition it obeys an equation of motion in 650. This implies that ∂F ∈
(0|00011)⊕(1|00000). Repeated use of the Bianchi identity and the equations of motion
imply that

∂ pF ∈
⎧

⎨

⎩

(

00
0
01p

)

, p = 0 , p ≥ 2 ,

(

00
0
011

) ⊕ (

00
1
000

)

, p = 1 ..

(103)

The “spinor” has equations of motion ∂�|351 = 0 and ∂2�|351′ = 0. Repeated use of
these equations yields

∂ p� ∈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

00
1
00p

)

, p = 0 , p ≥ 3 ,

(

00
1
001

) ⊕ (

00
0
001

)

, p = 1 ,

(

00
1
002

) ⊕ (

00
0
010

)

, p = 2 .

(104)

This agrees with Table 15, and we have checked that the pattern continues, with no other
modules in H1(n), at least up to weight degree 25. An proof using partition functions
should be straight-forward. Note that the appearance of multiple derivatives (momenta)
as

(

00
0
00p

)

is consistent with a condition p × p = 0 where × denotes the Freudenthal

product 27 × 27 → 27, forcing momenta to lie on a cône over the Cayley plane,
thus providing a field theoretic realisation of the particle model of [67]. The additional
modules that we have found in H•(n) are all at cohomological degree 2. The leading
ones are given in Table 16, meaning, for example, that since

(

00
0
100

)

appears at weight

degree 9, the modules
(

00
0
10p

)

are also present at weight degree 9 + 2p (at least for
p = 0, 1, 2, 3) although not written out in the table.

The supertranslation algebra has the differential

s0v
M = cMN PλNλP , (105)

where c is the symmetric invariant tensor of E6. We can choose a normalisation where
cMPQcN PQ = δMN . Part of the supertranslation transformations are encoded in

s0 f
MN = cPQ[MλPψQ

N ] (106)

ψ and f being the coalgebra elements dual to � and F . There is a cocycle η ∈ H2(t),
represented by η = P(78)

M
N

,P
QλQvP , P(78) being the projector on 78 in 27 ⊗ 27.
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Table 16. Further cohomology of n for the E6 model

Weight degree Leading E6-module in H2(n)

9
(

00
0
100

)

10
(

00
1
010

) ⊕ (

00
0
002

) ⊕ (

01
0
001

)

11
(

00
0
020

) ⊕ (

00
1
001

) ⊕ (

01
1
000

) ⊕ (

10
0
002

)

12
(

00
0
011

) ⊕ (

00
0
100

) ⊕ (

01
0
010

) ⊕ (

10
1
001

)

13
(

00
1
010

) ⊕ (

10
0
011

) ⊕ (

01
0
001

) ⊕ (

10
0
100

)

14
(

00
0
020

) ⊕ (

01
1
000

) ⊕ (

10
0
002

) ⊕ (

11
0
001

) ⊕ (

10
1
010

)

15
(

01
0
010

) ⊕ (

10
0
020

) ⊕ (

10
1
001

) ⊕ (

11
1
000

) ⊕ (

20
0
002

)

Its closedness is trivial, since the symmetric product ∨327 does not contain 78. It is
straightforward to extend η to ω0 ∈ H2(t, M1), where M1 is the restriction of the
multiplet to H1(n). Then, this supersymmetric cocycle takes the form

ω0ψM
N = P(78)

M
N

,P
QλQvP ,

ω0 f
MN = avMvN (107)

for some coefficienta, which is uniquely determined by {s0, ω0} f MN = 0, since λ2v is in
∨227⊗27, which contains a single 351. We have not continued the explicit construction
to involve also the higher cohomology.

5.5. G2 × SL(2) supersymmetry. This is an example which turns out to go beyond our
original assumption of a 2-graded supertranslation algebra. However, unlike the example
of Sect. 5.4, it is likely to have a physical interpretation related to supergravity, and the
Koszul dual algebra is likely to be freely generated from internal level 5.

Consider a construction as above with structure group G2 × SL(2), and t1 and t2
spanning the modules (7, 2) = (10)(1) and (7, 1) = (10)(0) respectively. The “pure
spinor” λia is constrained by σ abcεi jλ

i
bλ

j
c = 0. This does not define a minimal orbit,

since ∨2(7, 2) = (7, 1) ⊕ (14, 1) ⊕ (1, 3) ⊕ (27, 3), and only the first one, representing
superspace torsion, is demanded to vanish.

The partition function of S is

ZS(t) = (1 − t)−(10)(1)
[

(00)(0) − (10)(0)t2 + (00)(1)t3

+ ((01)(0) + (10)(0)) t4 − ((10)(1) + (00)(1)) t5 + (00)(2)t6

− ((20)(0) + (00)(0)) t6 + ((01)(1) + (10)(1)) t7

− ((10)(2) + (00)(0)) t8 + (00)(3)t9] . (108)

When we construct˜t through a Tate resolution, an interesting pattern arises, which has no
counterpart in the previous examples. At degree 3, killing the cohomology λai va (which

is closed since σ abcλiaλ
j
bλ

k
c = 0), there is a fermionic generator Di . It is not part of a

multiplet. This completes the generators at homological degree 0. So far, we have the
differential

d3 = σ abcεi jλ
i
aλ

j
b

∂

∂vc
+ λiav

a ∂

∂ξ i
. (109)
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The next cohomology (of d3) to be killed is at degree 5, and comes through a 3-bracket,
so the generators carry homological degree 1. Its concrete form is

ωi = ε jkλ
i
aλ

ajξ k +
1

4
σ abcλiav

bvc (110)

(where we have used a normalisation where σ 124 = 1 and cyclic). It forms the beginning
of a finite-dimensional supermultiplet similar to the Killing supermultiplet of D = 11
supergravity, and spans degrees 5, 6, 7 and 8. An infinite-dimensional supermultiplet at
homological degree 2 begins at internal degree 10.

Whether one asks for it or not, one is lead to a supertranslation algebra spanning
three levels, of the form

[Da
i , D

b
j ] = σ abcεi j Dc , (111)

[Da
i , Db] = δab Di , (112)

and all other brackets 0, of which the multiplets will form modules (but we may expect a
deformation of the action of supertranslations as in Sect. 5.3.3). The finite-dimensional
module is indeed the coadjoint of this supertranslation algebra extended by g2 ⊕ a1
at degree 0, which points towards supergravity. The physical fields in the infinite-
dimensional module are probably off shell.

We will leave the details of this case for future examination. In particular, R. Eager
suggested to us that one might look for a connection to a twisting of type IIB supergravity;
it would be interesting to explore this possibility or other potential physical roles of this
algebra further.

6. Discussion

We have investigated Koszul duality in the context of (generalised) supersymmetry,
defined as any superalgebra consistently residing in degrees 1 and 2. In particular, the
relation between the coordinate rings of constrained (generalised) spinor spaces (“pure
spinor spaces”) and the supermultiplet is established. We rely on Koszul duality defined
by the Tate resolution of the quadratic constraints. This definition agrees with the tradi-
tional notion of Koszul duality (“quadratic Koszul duality”) when the Koszul dual is (the
universal enveloping algebra of) a Lie superalgebra, but leads to L∞ algebras without
1-brackets in other cases.

The results are elucidating, in the sense that the rôle of the multiplet as part of the
Koszul dual algebra becomes clear. On the other hand, we are left with some seemingly
difficult problems, see Sect. 4, of relating good mathematical properties of the ring to
good physical properties of the multiplet, and thus of giving clear mathematical criteria
for when a coordinate ring defines a physically acceptable model.

This conundrum is illustrated by the question: How does one know, given a Dynkin
diagram and an integral dominant weight, if the BKM superalgebra is freely generated
from some level? Or even, in non-BKM settings, whether the Koszul dual of the coordi-
nate ring of the closure of some non-minimal orbit has this property? Apart from the E6
examples, there are numerous other BKM superalgebras that are not freely generated
from internal degree 3: B(Dn,�n) (n ≥ 6), B(E7,�1), B(F4,�4), … It should be
noted however, that the subalgebras at degree ≥ 3 in these cases still contain freely
generated algebras since, for example, B(E5,�1)≥3 is a subalgebra of B(E6,�1)≥3
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[44], and thus they do not provide counterexamples to the conjecture C10 of [35] con-
cerning the existence of non-abelian free subalgebras. We have not been able to find
an E6-equivariant freely generated subalgebra in B(E6,�1), and strongly suspect that
there is none.

One major motivation for the present investigation was the appearance of algebras
encoding the interactions of D = 10 SYM theory already in the algebraic structure
of the non-interaction theory. As we have seen, this is generic for models describing
gauge theory (with 1-form connections). We have not come much further in suggesting
similar interpretations when the models describe higher form gauge fields, although the
deformation of the 2-bracket in the algebra of D = 11 supergravity looks interesting.

Many multiplets are not found as cohomology in a scalar pure spinor superfield, but
rather in a field transforming in some g-module. The field is then subject to additional
“shift symmetry” [58,68–71]. Equivalently, they belong to sections of sheaves over the
pure spinor space [34,72] other than the structure sheaf of the scalar functions. We have
not dealt with such multiplets here, but expect that Koszul duality carries over in the sense
that the dual object becomes a module of the Koszul dual algebra˜t presently considered,
and that the appropriately defined such duality can be interpreted as a character formula
for such˜t-modules, in the same way as the duality treated here can be seen as providing
a denominator formula for the dual superalgebra.

The use of the complex ˜A•, with the differential ˜d , is attractive in that it, unlike
the standard pure spinor superfield complex A•(S), contains the full de Rham operator
on superspace. One may then hope for a version of pure spinor superfield theory for
supergravity which is more geometrical than the standard one. The formalism could
also open for new ways of constructing negative ghost number operators (such as the
famous “b-ghost” [73]), with or without non-minimal variables [74].

Which rôles do extensions (prolongations) to negative internal degree play? For
BKM superalgebras, there are typically different such extensions, contragredient or of
tensor hierarchy algebra type [75–77]. When a theory is conformal, it makes sense to
extend to negative levels so that the superconformal generators appear at internal degrees
−2,−1, 0, 1, 2; in other cases it is difficult to tell which extension is more natural. One
interesting observation is that the multiplet M may appear at negative levels, and with the
correct dimension (proportional to internal degree), even if M appears at shifted internal
degree. This applies e.g. to D = 11 supergravity, where there seems to be a symmetry in
˜t under conjugation and reflection in internal degree 3, and many other algebras display
similar symmetries. This shift and symmetry is reflected in the fact that the pure spinor
superfield has dimension −3. It is fascinating that this type of behaviour persists beyond
the BKM setting. This would suggest the existence of a tensor hierarchy-like extension
of the L∞ algebra to negative levels which is empty at degree −1, contains the physical
4-form at degree −2, etc. Filtered deformations of such an algebra along the lines of refs.
[78,79] may provide a way towards pure spinor superfield formulation of supergravity
in non-flat backgrounds.

There is a striking similarity of the algebraic structures underlying supersymmetry,
studied in the present paper, and those appearing in extended geometry [22,80–83],
tensor hierarchy algebras [75–77,84–86]. Already in their original applications to gauged
supergravity [87,88], the tensor hierarchy algebras seem to know about supersymmetry
in the sense that the representation constraint on the embedding tensor predicted by the
algebra agrees with the one coming from supersymmetry [89]. The algebraic constraint
is in turn a consequence of the Serre relation complementary to a minimal orbit in
the related BKM superalgebra, and the symmetric section constraint in the associated
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extended geometry transform in the same representation as this Serre relation. Is there
a deeper connection?
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