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Abstract: Monitoring and classifying cognitive workload in real time is vital for optimizing human–
machine interactions and enhancing performance while ensuring safety, particularly in industrial
scenarios. Considering this significance, the authors aim to formulate a cognitive workload mon-
itoring system (CWMS) by leveraging the deep gated neural network (DGNN), a hybrid model
integrating bi-directional long short-term memory (Bi-LSTM) and gated recurrent unit (GRU) net-
works. In our experimental setup, each of the four virtual users is equipped with a Raspberry Pi
Zero W module to ensure efficient data transmission, thereby enhancing the reliability and efficacy of
the monitoring process. This seamless monitoring framework utilizes the constrained application
protocol (CoAP) and the Things Board platform to evaluate cognitive workload in real time. The
most popular EEG benchmark dataset, the STEW is utilized for workload classification in this study.
We employ the short-time Fourier transformation (STFT) to extract frequency bands corresponding to
users in both high and low cognitive workload modes. The proposed DGNN models achieve a perfect
accuracy of 99.45%, outperforming every previous state-of-the-art model. We meticulously monitored
critical parameters, including latency, classification processing time, and cognitive workload levels.
This research demonstrates the importance of continuous monitoring for increasing productivity and
safety in industries by introducing a novel method of real-time cognitive workload monitoring. The
implementation codes for each experiment are documented and made available for reproducibility.

Keywords: human–machine interface; mental workload; cognitive workload monitoring system;
deep gated neural network; electroencephalogram; brain–computer interface applications

1. Introduction

Cognitive workload is a global issue, alongside the ongoing advancements of the
industrial revolution, where new technologies are continually emerging [1]. Industry 4.0
marked a transition from traditional manufacturing methods to digital manufacturing [2],
driven by innovations like advanced robot arms [3], industrial Internet of Things (IIoT) [4],
artificial intelligence (AI) [5], and cloud computing [6]. These innovations generate a
significant amount of data [7] and contribute to a disruptive workplace process, which has
become a new source of stress [8]. Industry 5.0, in contrast to its predecessor Industry 4.0,
heralds a new era of smooth integration between cutting-edge technology and human–
machine interactions [9]. This integration aims to enhance production and efficiency,
emphasizing the significance of improving human–machine interactions to boost overall
performance [10,11].

In this context, implementing a new cognitive workload monitoring system (CWMS)
incorporating deep gated neural network (DGNN) and industrial Internet of Things (IIoT)
technologies is essential. This system tracks and classifies cognitive workloads in real
time, thereby improving the performance and safety of human–machine interactions. The
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CWMS holds significance in multiple industrial contexts where human-robot collaboration
is pervasive [12–15]. Cognitive workload, encompassing mental exertion [16] across vari-
ous functions such as memory [17], decision-making [18], attention [19], perception [20],
problem-solving [21], and information processing [22], serves as a foundational element.
Continuous monitoring and real-time analysis of workload levels are essential for improv-
ing efficiency [23], reducing errors [24], and addressing safety concerns [25], especially in
critical industrial environments.

A spectrum of cutting-edge technologies contributes to the assessment of cognitive
workload. Electrocardiography (ECG) monitors the heart’s electrical activity [26], pro-
viding valuable data on physiological stress levels. Eye-tracking captures gaze patterns,
offering insights into visual attention and cognitive processing [27]. Facial expression
analysis deciphers real-time emotional states [28], and task performance analysis evaluates
metrics related to specific activities [29]. Functional near-infrared spectroscopy (fNIRS),
measures changes in blood oxygen levels [30], revealing neural activity associated with
cognitive workload. Among all these methods, electroencephalography (EEG) stands out
for its effectiveness [31], providing a detailed understanding of cognitive processes with
real-time monitoring, non-invasiveness, and portability. Also, these methods leverage
machine learning [32], and deep learning [33] algorithms for autonomous identification
and classification of cognitive states.

A critical aspect that requires attention is the underexplored intersection of cognitive
workload assessment, IIoT, and advanced neural network methodologies for real-time
workload monitoring and analysis. There is a lack of comprehensive studies harnessing the
combined potential of EEG, IIoT, and refined neural network methods. This creates a gap in
developing efficient and accurate cognitive workload monitoring systems that are capable
of handling the challenges posed by industrial interactions [1]. In our current study, we aim
to bridge this identified gap by focusing on EEG signals for real-time cognitive workload
classification and monitoring. Our approach introduces the DGNN model, comprising
a dual-layer architecture that incorporates both Bi-LSTM [34] and GRU [35] networks,
providing a state-of-the-art framework for cognitive workload classification. The DGNN
methodology harnesses the STEW dataset [36], including data from both low and high
cognitive workload modes for training and evaluation. The model achieves a remarkable
accuracy of 99.45%. Moreover, the article initiates the development of a real-time cognitive
workload monitoring system though an experiment that integrates IIoT gateways, the
constrained application protocol (CoAP) [37], an AI server, and the Things Board open-
source IoT platform for live data monitoring [38]. In this experiment, four virtual users
participate, each connected to the AI server, which employs the DGNN model for real-
time cognitive workload analysis via IIoT gateways using CoAP. Additionally, the CWMS
provides real-time data on parameters such as latency, classification processing time, and
cognitive workload levels.

This paper offers the following contributions:

1. This study introduces a novel deep gated neural network (DGNN) designed for
classifying workloads in real-world scenarios using EEG data.

2. The proposed approach achieves superior performance in classifying various workload
levels compared to previous studies.

3. This study presents a distinctive cognitive workload monitoring system (CWMS) that
combines IIoT gateways, CoAP, and an AI server for real-time monitoring and analysis
of workload parameters.

The subsequent sections of this article are organized as follows. Section 2 presents a
detailed analysis of current studies on the categorization of cognitive workload. Section 3
provides an explanation of the materials and methods used in the study. This includes the
preprocessing of EEG data, the design of the DGNN model, and the implementation of
the real-time CWMS. In Section 4, the results of both the proposed method and CWMS
are presented, along with a thorough analysis. Section 5 provides the conclusion, while
Section 6 pertains to the future works.
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2. Literature Review

Electroencephalography (EEG) is recognized as a physiological index that is capable of
continuously measuring cognitive load [39]. However, EEG signals exhibit characteristics
such as weakness, noise, and non-stationarity among subjects, making the identification
of robust features a persistent challenge [40]. Traditional methods for cognitive workload
classification from EEG data encompass various analytical techniques and feature extraction
methods. These include statistical tests, validating differences among features by examining
changes in power within specific frequency bands, and time–domain features, such as
amplitude, latency, and waveform morphology, providing insights into the temporal
characteristics of EEG signals [41–43]. Additionally, power spectral density analysis reveals
the distribution of power across frequency bands [44], aiding in the inference of workload
variations. Event-related potentials (ERPs) reflect the brain’s neural responses to stimuli or
events, with the analysis of ERP amplitude and latency elucidating cognitive processing and
workload demands [45]. EEG signals are also segmented into different frequency bands,
including delta, theta, alpha, beta, and gamma [46], with the activity within these bands
providing information about cognitive workload levels, particularly in the gamma band,
known for its role in higher cognitive functions [47]. Furthermore, traditional classification
methods such as support vector machines (SVM) [48], k-nearest neighbors (kNN) [49], and
naive Bayes classifiers [50] have been widely employed for cognitive workload classification
based on EEG data.

Significant advancements have been made in understanding cognitive workload us-
ing EEG, using machine learning approaches to make valuable contributions towards its
assessment. Machine learning algorithms apply features learned from a training dataset to
perform tasks such as classification or regression [51]. On the other hand, deep learning is
a specific subclass of machine learning that constructs models based on neural networks,
such as convolutional networks or long short-term memory networks. Unlike traditional
machine learning, deep learning models have the capability to learn complex patterns and
representations directly from raw data, eliminating the need for manual feature extrac-
tion [52,53]. With automated feature learning, deep learning models can achieve a high
recognition accuracy by training directly on raw datasets, allowing for more efficient and
accurate cognitive workload classification [53].

In exploring the landscape of cognitive workload detection, several studies have
contributed significant insights leveraging machine learning approaches. Momeni et al.
(2019) [54] utilized extreme gradient boosting (XGB) algorithms to detect cognitive work-
load, showing promising results in drone control simulation experiments. Ramírez-Moreno
et al. (2021) [55] emphasized the feasibility of short-calibration methods for mental fatigue
modeling through biometric signals. Moreno et al. (2021) focused on mental fatigue and
human–machine interactions, while Zanetti et al. (2021) [56] addressed job execution sup-
port using wearable EEG devices. Cao et al. (2022) [57] introduced a novel framework
using hybrid EEG-fNIRS and bivariate functional brain connectivity (FBC) features for
workload classification. Additionally, Liu et al. (2023) [58] developed a real-time system for
identifying pilots’ cognitive workload levels using a wireless EEG headset, contributing to
EEG-based methodologies for real-time assessments in aviation. Despite achieving a lower
accuracy rate compared to previous studies, Liu et al.’s research provides valuable insights
into cognitive workload assessments in aviation contexts.

Studies using deep learning approaches include Sharma et al. (2021) [59], who devel-
oped a cascade one-dimensional convolution neural network (1DCNN) and bidirectional
long short-term memory (BLSTM) model for binary and ternary classification of mental
workload (MWL). Dolmans et al. (2021) [60] proposed a deep neural network (DNN) that
flexibly makes use of multiple modalities, including galvanic skin response, functional
near-infrared spectrograms, and eye movements, to classify perceived mental workload
(PMWL) accurately on a seven-level workload scale. Afzal et al. (2023) [61] proposed a
bi-directional gated network (BDGN) for cognitive workload classification in Industry 5.0
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settings, integrating LSTM and GRU and demonstrating promising results in a simulated
environment. The reviewed recent studies are summarized in Table 1.

Table 1. Summary of the performance of previous studies reviewed.

Year Dataset Proposed Methodology Metric Metric Value Reference

2019 Lab experiment Extreme gradient boosting Accuracy 86% [54]

2021 Lab experiment Multiple linear regression Accuracy 88% [55]

2022 STEW Random forest model Accuracy 83.6% [56]

2022 Technical
University Berlin Support vector machine Accuracy 83% [57]

2023 Lab experiment K-nearest neighbor Accuracy 87.57% [58]

2021 STEW
One-dimensional

convolution neural
network

Accuracy 95.36% and 96.77% [59]

2021 Lab experiment Deep neural network Accuracy 98% [60]

2023 STEW Bi-directional gated
network Accuracy 98% [61]

While existing studies have made strides in cognitive workload detection using EEG
and traditional methods, they often face challenges with lower classification accuracies
and a lack of real-time monitoring capabilities. These limitations hinder their suitability
for advanced industrial settings. Furthermore, there is a notable gap in the literature
regarding the development of a unique real-time cognitive workload monitoring system
tailored specifically for such environments. This study aims to address these shortcomings
by introducing a novel approach that achieves a higher accuracy and enables real-time
monitoring using advanced technologies like the Things Board platform and IIoT.

3. Materials and Methods

This section introduce a cognitive workload monitoring system that is designed specif-
ically for industrial applications utilizing EEG signals. The focal point of our approach is
the proposed deep gated neural network (DGNN), an innovative recurrent neural network
(RNN) architecture. The simultaneous task EEG workload (STEW) dataset, sourced from
the IEEE database [62], is selected as the source of raw EEG data. This dataset under-
went preprocessing to ensure data integrity and optimal conditions for achieving a high
classification accuracy. Furthermore, we performed correlation and frequency domain
analyses. Our system’s robustness is augmented by the integration of industrial Internet
of Things (IIoT) gateways, the constrained application protocol (CoAP), and the Things
Board platform. Figure 1 illustrates the proposed cognitive workload monitoring frame-
work, showcasing the system’s workflow, interconnected components, and data flow that
underpin the system’s functionality.
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Figure 1. The proposed cognitive workload monitoring framework.

3.1. The STEW Dataset

Wei Lun Lim et al. [62] curated this freely accessible dataset, which comprises raw EEG
data collected from 48 subjects engaged in a multitasking workload experiment utilizing the
SIMKAP multitasking test at Nanyang Technological University. The brain activity of the
subjects during rest was recorded prior to the commencement of the test and is also included
in the dataset. The STEW dataset offers insights into brain activity during both rest and task
execution states. Each subject contributed 19,200 samples for each state, captured using the
Emotiv EPOC device, featuring 14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4. The device operates at a sampling frequency of 128 Hz.

During the experiment, each task-specific session lasted for 3 min per subject. The
participants engaged in activities such as comparing the numbers in two windows, crossing
out matching numbers, and simultaneously answering accompanying questions. Following
each stage, the participants rated their perceived cognitive workload on a scale of 1 to 9.
Figure 2 provides an overview of the STEW dataset, detailing the experimental setup, data
collection process, and the structure of the dataset.
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Figure 2. Overview of STEW dataset.

3.2. Data Preprocessing

EEG signals are inherently noisy due to various artifacts introduced during recording,
such as eye movements, muscle activity, and head movements. Removing this noise,
therefore, becomes a crucial step in the analysis. We have cleaned the raw data and applied
a band-pass filter to retain frequencies within the 0.5 to 80 Hz range. In this analysis,
the rest mode is considered as the low mode, and task execution is considered as the
high mode. The initial data collection time was 3 min, but the first 15 s and the last 15 s
were removed by the STEW data team to mitigate inter-task effects. Ratings for subjects
5, 24, and 42 were unavailable and were provided using an average method. Following
segmentation, the EEG data were annotated with subjective workload ratings assigned by
the participants, categorized into three levels: low (ratings 1–3), average (ratings 4–6), and
high (ratings 7–9). For classification purposes, the EEG data from low- and high-workload
subjects were merged into two files, each containing 921,600 rows and 15 columns. The
first 14 columns represent Emotiv 14 channels EEG data, while the last column represents
workload ratings considered as labels. Figure 3a,b showcases the workload ratings assigned
by the participants in both low and high modes.

Figure 3. (a,b) Participants’ workload ratings in low and high modes.
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3.3. EEG Channels Correlation Analysis

In this analysis, the correlation between EEG channels was computed separately
for the low and high workload modes. This approach provides understanding into the
interrelationship and synchronization of neural activity across different brain regions
during different workload conditions [63]. By examining these correlation patterns, we can
gain better insight into how cognitive workload affects brain dynamics and connectivity.
Figure 4 shows the heat map of the correlation analysis of the channels transmitting low
mode data. Strong positive correlations are evident between channels 6 and 7, channels
8 and 9, and channels 11 and 12, indicating robust synchronization during periods of
high cognitive demand. Moderately positive correlations are observed among channels
2, 4, 8, 9, 10, 11, 12, and 13, suggesting substantial connectivity and interactions between
these channels under similar conditions. Weaker positive correlations are found between
channels 1, 2, 3, 7, 10, and 13, highlighting lesser but notable degrees of connectivity among
these channels. Conversely, negative correlations are observed between Channels 3, 5, 6,
8, 11, and 12, indicating regions where activity patterns are divergent or inversely related
during a low workload.

Figure 4. EEG channels correlation heat map (low mode).

Figure 5 represents the heat map of the correlation analysis of the channels transmit-
ting high-mode data. Channels 7 and 6 demonstrate a robust synchronization, highlighting
a strong interaction between these channels. Additionally, channels 8 and 9 exhibit a very
strong correlation, indicating highly similar activity patterns. Moderate to high positive
correlations are observed among channels 2, 4, 8, 9, 10, 11, 12, and 13, suggesting signifi-
cant interconnected activity. Channels 11 and 13 show notable synchronization patterns.
Conversely, some channels exhibit weak to moderate positive correlations, while others
display negative correlations, indicating varying degrees of interaction and divergence
in activity. These findings provide a comprehensive view of how different EEG channels
interact under high-workload conditions, shedding light on both synchronized regions and
areas with contrasting activity patterns.
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Figure 5. EEG channels correlation heat map (high mode).

3.4. Short-Time Fourier Transformation

We conducted a short-time Fourier transform (STFT) analysis to investigate the time-
varying frequency characteristics and power distribution of EEG data. A notable advantage
of utilizing STFT is its suitability for analyzing non-stationary EEG signals [64]. Unlike
conventional Fourier analysis methods, which assume signal stationarity throughout, STFT
breaks down the signal into smaller, overlapping windows. This approach is particularly
beneficial for EEG data, as it accommodates the dynamic nature of brain activity, which
can vary significantly over time due to shifts in cognitive states.

The equation for the short-time Fourier transform (STFT) is as follows:

x(τ, f ) =
∫ ∞

−∞
x(t)w(t− τ)e−i2π f tdt (1)

where x(τ, f ) is the STFT of the signal x(t) at time τ and frequency f .
x(t) is the input signal.
w(t) is the window function.
τ represents time.
f represents time.
Initially, the raw EEG data of subject 1 for both low and high workload modes were

acquired, and all 14 channels were selected for subsequent analysis. With a sampling
frequency of 128 Hz, the data were processed to capture frequency bands with the frequency
ranges mentioned in Table 2.

The resulting visualizations depicted the power spectrum distribution across different
frequency bands for both low mode and high mode conditions. Specifically, Figure 6a,b
illustrate the frequency band visualization of subject 1 in the both low mode and high mode.
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Figure 6. (a,b) Subject 1 frequency power spectrum (low mode vs. high mode).

Table 2. Captured frequency bands.

Band Frequency Range

Delta 0.5–4 Hz
Theta 4–8 Hz
Alpha 8–13 Hz
Beta 13–30 Hz

Gamma 30–80 Hz

3.5. Data Preparation

The inherent structure of most natural data often proves inadequate for optimal model
training due to its complexity and variability. To address this, our study represents EEG
signals in the form of a matrix, which is considered a best practice for handling such
multidimensional data. EEG data underwent preprocessing to remove noise and artifacts,
ensuring that the signals were clean and reliable for further analysis. Following this, Z-
score normalization was performed to standardize the data, bringing all the values into a
common scale with a mean of zero and a standard deviation of one.

For the experiments, an 80/20 train–test split was employed, where 80% of the data
were allocated for training the model and 20% were allocated for testing its performance.
Additionally, 12.5% of the training data were set aside for validation purposes, allowing
for an independent evaluation during the training phase. This resulted in a data split of
70% for training, 20% for testing, and 10% for validation. Considering all 48 participants
in the analysis, the dimensions of the input data fed into the model were (921600, 15) for
the low workload mode and (921600, 15) for the high workload mode. This extensive
dataset ensures that the model has sufficient examples to learn from, ultimately enhancing
its ability to generalize and perform well on unseen data.

3.6. Deep Gated Neural Network Model

The deep gated neural network (DGNN) is meticulously designed to achieve precise
cognitive workload classification by effectively processing EEG data through a layered
architecture. It begins with an input layer, followed by two bidirectional long short-term
memory (Bi-LSTM) layers, each equipped with 64 and 32 units, respectively, ensuring com-
prehensive temporal understanding of the EEG data. Subsequently, the model integrates
two gated recurrent unit (GRU) layers, each with 64 and 32 units, enhancing the network’s
capacity to capture both short and long-range dependencies within the data. The output
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layer employs a Softmax activation function to categorize predictions into three workload
levels: low, average, and high. Figure 7 represents the architecture of the DGNN, detailing
the sequence of layers and the number of neurons in each layer.

Figure 7. Deep gated neural network architecture.

The detailed formulation of the deep gated neural network (DGNN) is pivotal for
accurately capturing and processing the complex temporal dependencies within EEG data,
thereby enabling precise classification of cognitive workload levels.

1. First bi-directional LSTM layer:

→
ht = LSTM(xt,

−−→
ht−1 ) (2)

Here, xt represents the input EEG data at time step t, and
−−→
ht−1 is the hidden state.

The forward pass captures the temporal dependencies in the forward direction.

←
ht = LSTM(xt,

←−−
ht+1 ) (3)

In the backward pass,
←−−
ht+1 is the hidden state from the next time step. This captures

the temporal dependencies in the reverse direction.

ht =

[→
ht,
←
ht

]
(4)

The hidden states from both the forward and backward passes are concatenated to
form the final hidden state, ht for the first Bi-LSTM layer. This provides a comprehensive
representation of EEG data by considering information from both directions.

2. Second bi-directional LSTM layer

→
ht

(2)
= LSTM(

→
ht,
−−→
ht−1

(2)

) (5)

Here,
→
ht is the output from the first Bi-LSTM layer at time step t, and

−−→
ht−1

(2)

is the
hidden state from the previous time step in the second Bi-LSTM layer’s forward pass.

←
ht

(2)
= LSTM(

←
ht,
←−−
ht+1

(2)

) (6)
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Similarly,
←
ht is the output from the first Bi-LSTM layer, and

←−−
ht+1

(2)

is the hidden state
from the next time step in the second Bi-LSTM layer’s backward pass.

ht
(2) =

[
→
ht

(2)
,
←
ht

(2)
]

(7)

The final hidden state ht
(2) for the second Bi-LSTM layer is obtained by concatenating

the forward and backward hidden states. This ensures that the network has a robust under-
standing of the temporal patterns in the EEG data from both directions across two layers.

3. First GRU layer:

h(GRU1)
t = GRU(h(2)t , h(GRU1)

t−1 ) (8)

Here, h(2)t is the output from the second Bi-LSTM layer at time step t, and h(GRU1)
t−1 is

the hidden state from the previous time step in first GRU layer. The GRU layer captures de-
pendencies in the data while being computationally efficient and addressing the vanishing
gradient problem.

4. Second GRU layer:

h(GRU2)
t = GRU(h(GRU1)

t , h(GRU2)
t−1 ) (9)

Here, h(GRU1)
t is the output from the first GRU layer at time step t, and h(GRU2)

t−1 is the
hidden state from the previous time step in the second GRU layer. This layer further refines
the temporal representations, capturing more complex patterns.

5. Output layer:

y = So f tmax (W. h(GRU2)
t + b) (10)

In the output layer, the final hidden state h(GRU2)
t from the second GRU layer is passed

through a dense layer with a Softmax activation function. Here:
W : weight matrix;
b : bias vector;
y : output probabilities for each class (low, average, high workload).
The Softmax activation function ensures that the model’s output represents a probabil-

ity distribution, enabling clear classification of cognitive workload levels.
The training process of the model is crafted to ensure not just efficiency but also

robustness in its learning. The model is trained using the categorical cross-entropy loss
function and optimized using the Adam optimizer. During the training process, the
model undergoes 50 epochs, with a batch size of 32, effectively learning and reaching
convergence. The Adam optimizer utilizes a default learning rate of 0.001, ensuring stable
and efficient training dynamics. Additionally, dropout layers are incorporated to prevent
overfitting, and 5-fold cross-validation is utilized to ensure robust model evaluation. Upon
completion of training, the performance evaluation of the DGNN model is conducted
using a set of metrics. The confusion matrix offers a clear overview by comparing the
actual workload levels (low, average, high) with the model’s predictions. In addition, we
use fundamental evaluation metrics like accuracy [65], precision [66], recall [67], and F1
score [68] to thoroughly evaluate the model’s ability to accurately classify workload levels.

3.7. Cognitive Workload Monitoring System

The DGNN model is deployed on an Ubuntu server (version 20.04) as part of the
cognitive workload monitoring experiment (CWME). The experiment involves four virtual
users, represented by laptops, whose EEG data is transmitted wirelessly to Raspberry Pi
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Zero W modules. These modules, selected for their affordability, compactness, and wireless
capabilities, establish connections via Wi-Fi to receive real-time EEG data. Each virtual
user sends their EEG data to their designated Raspberry Pi module, which functions as a
gateway. Operating on a legacy 32-bit OS installed on a 32 GB memory card, these modules
transmit live data to the Ubuntu server. While these modules can serve multiple virtual
users simultaneously, in this scenario, each module is dedicated to serving a single virtual
user. The DGNN model undertakes critical classification tasks, leveraging its advanced
neural network architecture for efficient analysis.

The Ubuntu server takes responsibility for processing cognitive workload data and
transmit it to Things Board for live monitoring. As a monitoring platform, Things Board
presents various parameters such as latency, DGNN classification time, and workload type.
To efficiently manage historical data, integration with a PostgreSQL database is employed
due to its support for unstructured information. Figure 8 illustrates this four-layer process
within a unified framework, showcasing the seamless flow of data from virtual users to the
monitoring interface.

Figure 8. Multi-layer cognitive workload monitoring framework.

Communication across the layers is facilitated by the constrained application protocol
(CoAP). It follows a pattern where data move from virtual users (Layer 1) to Raspberry
Pi modules (Layer 2) in a one-to-one manner. Then, the data move from the Raspberry Pi
modules to the Ubuntu server with the deployed DGNN model (Layer 3), which operates
in a many-to-one fashion. Finally, the data are sent from the Ubuntu server to the Things
Board module (Layer 4) in a one-to-one manner.

4. Results and Analysis

This section presents the results obtained from the proposed deep gated neural net-
work (DGNN) and compares them with existing studies. Additionally, it includes the
results from real-time monitoring in the cognitive workload monitoring system (CWMS).
The Jupyter Lab tool was utilized for analysis due to its powerful interactive computing
capabilities, and the proposed DGNN model was designed using the Python program-
ming language.

4.1. The Results Obtained from the DGNN Model

The DGNN model integrates bidirectional long short-term memory (Bi-LSTM) and
gated recurrent unit (GRU) architectures to analyze EEG data efficiently. The Bi-LSTM
and GRU components within the DGNN framework enable comprehensive analysis of
temporal dependencies and intricate patterns within EEG signals. Bi-LSTM excels in
capturing long-term dependencies, while GRU enhances the model’s ability to learn from
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sequential data efficiently. Our findings showcase a remarkable achievement in cognitive
workload classification. The DGNN model demonstrates an impressive accuracy rate
of 99.45%, as depicted in Figure 9a. The accuracy curve, spanning 50 training epochs,
reveals a consistent improvement. In contrast, Figure 9b illustrates the curve of loss values,
depicting a continual decrease as the model iteratively learns from the training data. These
figures provide a clear visualization of the model’s performance dynamics, underscoring
its robustness and efficacy in cognitive workload classification. This suggests promising
applications in practical industrial settings. It can enhance safety protocols, optimize task
allocation, and improve overall productivity and worker well-being.

Figure 9. (a,b) Deep gated neural network model accuracy and loss.

The confusion matrix serves as a crucial tool for evaluating the accuracy and reliability
of cognitive workload level predictions. In Figure 10, the confusion matrix of our DGNN
model showcases significant achievements in workload classification. Specifically, the
model accurately classified 93,807 instances as ‘0’ for ‘low workload levels’. Furthermore,
it correctly identified 98,229 instances as ‘1’ for ‘medium workload levels’, demonstrat-
ing its effectiveness in recognizing moderate cognitive workload levels. Moreover, the
model achieved precise classifications in 172,444 instances as ‘2’ for ‘high workload levels’,
indicating its proficiency in accurately identifying instances of high cognitive workloads.

These findings underscore the importance of the confusion matrix in revealing how
effectively the DGNN model handles different workload levels. By quantifying its classifi-
cation outcomes, we gain valuable insights into the strengths and areas for improvement
of the model, ultimately contributing to the enhancement of cognitive workload assess-
ment techniques.

The classification metrics, as presented in Table 3, provide a detailed evaluation of the
model’s ability to accurately classify cognitive workload levels based on the STEW EEG
dataset. These metrics includes precision, recall, and F1 score values for each workload
category, including low, average, and high. With precision scores of 1.00 for low workloads
and 0.98 for the average and high workload categories, the model demonstrates a high
accuracy in identifying instances belonging to specific workload levels. Moreover, recall
scores of 1.00 for low workloads and 0.98 for the average and high workload categories
indicate the model’s ability to capture a high proportion of the actual instances within each
workload level. The F1 score values further confirm the model’s balanced performance
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across all workload categories, with values of 1.00 for low workloads and 0.98 for the
average and high workload categories.

Figure 10. Confusion matrix of DGNN model.

Table 3. Classification metrics.

Labels Precision Recall F1 Score

Low 1.00 1.00 1.00
Average 0.98 0.98 0.98

High 0.98 0.98 0.98

In our study, we conducted a comparative analysis of our proposed DGNN model
with existing studies in cognitive workload classification, encompassing various method-
ologies including machine learning and deep learning approaches. This analysis involved
evaluating the methodologies employed in these studies and comparing their achieved
accuracy rates.

The existing methodologies in these studies included techniques such as XGBoost
(XGB), multiple linear regression (MLR), random forests (RFs), support vector machines
(SVMs), k-nearest neighbors (KNN), 1D convolutional neural networks (1D CNNs), deep
neural networks (DNNs), and bidirectional gated networks (BDGNs). Previous research
has demonstrated lower accuracy rates and methodologies that may not fully address the
evolving needs of cognitive workload classification. However, the DGNN model stands
out prominently in this analysis, showcasing the highest accuracy among the compared
studies. Specifically, our model achieves an impressive accuracy rate of 99.45% in accurately
classifying cognitive workload levels using EEG data. Figure 11 represents the plotted
comparison of state-of-the-art results from Table 1, illustrating the superior performance of
our DGNN model relative to these existing methodologies.
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Figure 11. Plotted comparison of state-of-the-art results from Table 1.

4.2. Cognitive Workload Monitoring System

The real-time monitoring of the CWMS is evaluated using the Things Board platform,
allowing us to track various parameters, including end-to-end latency, model classification
processing time, and cognitive workload levels. The Raspberry Pi Zero W gateways
efficiently manage data transmission between the EEG device and the AI server without
significant delays, ensuring smooth operation. These modules are essential in this setup
due to their cost-effectiveness, making them ideal for large-scale experiments involving
multiple users and allowing for scalable deployments. Their small size ensures easy
integration into experimental setups, particularly with wearable EEG devices, keeping
the setup portable and unobtrusive. Additionally, the built-in Wi-Fi functionality enables
seamless wireless communication between the virtual users and the Ubuntu server. The
Things Board platform provides a user-friendly interface for visualizing and analyzing the
results, with real-time tracking capabilities crucial for monitoring the system’s performance.

Our experiment involved five laptops, with four representing virtual users and one
for the live monitoring and classification results. Additionally, four Raspberry Pi Zero W
gateways are used to facilitate data transmission between the EEG device and the AI server.
To accommodate the connectivity and power needs of Raspberry Pi modules, a single Wi-Fi
router and power cables are used. Figure 12 illustrates the experimental setup, depicting
the interconnected components.

A set of monitoring data is presented, where each figure comprises three distinct
graphs and a table representing the data from four gateways. In our scenario, each gateway
serves only one virtual user; thus, the four gateways correspond to four virtual users.
The first graph in each figure displays end-to-end latency, providing insights into the
transmission delays. The second graph showcases AI model classification processing time,
indicating the duration taken for cognitive workload assessment. Lastly, the third graph
delineates workload levels, where 0 signifies a low workload level, 1 denotes an average
workload level, and 2 indicates a high workload level. The corresponding table in each
graph offers a direct representation of workload classification.

Figure 13 displays the information from gateway-001 on Things Board. We observe
the latest latency recorded as 237 ms, indicating the time taken for data transmission. The
classification processing time is noted as 4621.21 ms, reflecting the duration for cognitive
workload assessment. Additionally, the workload levels are showcased separately, provid-
ing a comprehensive overview of the system’s performance. This detailed visualization
aids in identifying potential issues and optimizing the network’s efficiency.
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Figure 12. Cognitive workload classification monitoring experiment.

Figure 13. Gateway-001 cognitive workload monitoring data graphs.
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Figure 14 presents the monitoring data from gateway-002 on Things Board, encompass-
ing three critical graphs and a comprehensive table. The first graph indicates an end-to-end
latency of 459 ms, a metric that measures the time taken for the data to travel from the
virtual user to the server and back, reflecting the network’s efficiency. Higher latency
can adversely affect user experience, particularly in real-time applications. The second
graph showcases the classification processing time, recorded at 6717.97 ms, which is signifi-
cantly higher than that of gateway-001, suggesting potential variability in computational
load or hardware performance across different gateways. The third graph delineates the
workload levels for gateway-002, distinguishing between low (0), average (1), and high (2)
workload levels.

Figure 14. Gateway-002 cognitive workload monitoring data graphs.

Figure 15 displays the data from gateway-003 on Things Board, following the same
structure as the previous figures but with distinct performance characteristics. The latest
recorded latency for gateway-003 is 196 ms, which is notably lower than that of gateway-
002, indicating a more efficient data transmission process and enhancing the responsiveness
of applications relying on this gateway. The classification processing time for gateway-
003 is measured at 3849.74 ms, which is substantially shorter compared to gateway-002.
This suggests that gateway-003 may have more efficient processing capabilities or less
computational load at the time of measurement. The workload levels graph for gateway-
003 shows the distribution of cognitive workload levels, providing a visual representation
of the virtual user’s cognitive load.
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Figure 15. Gateway-003 cognitive workload monitoring data graphs.

Figure 16 represents the monitoring data from gateway-004 on Thing Board, showcas-
ing its unique performance metrics. The latest latency recorded for gateway-004 is 132 ms:
the lowest among all four gateways. This minimal latency suggests that gateway-004
provides the most efficient data transmission, which is critical for applications requiring
real-time data processing.

The classification processing time for gateway-004 stands at 2866.82 ms, which is also
the shortest among the four gateways. This efficiency in processing indicates a robust
performance in cognitive workload assessment, potentially due to better hardware or lower
concurrent computational demands. The third graph in Figure 16 illustrates the workload
levels for gateway-004, continuing the pattern of distinguishing between low, average, and
high workload levels. The table in this figure offers a clear and concise representation of
the workload classifications, aiding in performance evaluation and decision-making.

We have proposed a system that enables continuous data transmission, real-time
classification, and effective monitoring of results by integrating the DGNN model with
Raspberry Pi, CoAP, and Things Board. While we have utilized the STEW dataset in this
study, validating our model with real human participants is crucial. We plan to recruit
healthy participants from the university, adhering to ethical guidelines and obtaining
informed consent. EEG data will be collected during cognitive tasks, and the system’s
performance will be evaluated based on classification accuracy, sensitivity, specificity, and
response time.
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Figure 16. Gateway-004 cognitive workload monitoring data graphs.

5. Conclusions

This study introduces a novel approach for cognitive workload classification using
EEG signals and advanced deep learning techniques. Leveraging the STEW dataset, com-
prehensive preprocessing and correlation analyses were conducted, followed by detailed
short-time Fourier transformation analysis to extract relevant features. Our proposed deep
gated neural network (DGNN) model, integrating Bi-LSTM and GRU layers, achieved an
impressive accuracy of 99.45%. Precision, recall, and F1 score metrics further validated the
efficacy of our model in effectively classifying cognitive workload across distinct categories.
A comparative analysis with existing methodologies underscores the superior performance
and robustness of the DGNN model in this domain.

To validate the proposed approach, this study conducted the cognitive workload
monitoring experiment (CWME), deploying the DGNN model on a classification server.
The deployment leveraged Raspberry Pi Zero W modules as gateways, employing the
constrained application protocol (CoAP) for efficient data transfer to the Things Board
monitoring platform. Things Board facilitated real-time visualization and analysis of
critical parameters such as end-to-end latency, AI model classification processing time,
and workload levels, providing actionable understandings into system performance. This
setup enhances operational efficiency by enabling prompt cognitive workload assessments,
supporting dynamic decision-making processes. The proposed research provides practical
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solutions for managing cognitive workload in industrial settings amidst ongoing digital
transformation and automation [69].

The successful implementation and validation of the DGNN model in real-time cogni-
tive workload monitoring hold significant implications for various fields, particularly in
industrial settings. By accurately assessing cognitive workload levels using EEG signals,
organizations can proactively manage workforce health and safety. This approach enables
timely interventions to mitigate cognitive fatigue, thereby reducing the risk of errors and
accidents in high-risk environments. Moreover, the ability to monitor workload levels in
real-time fosters adaptive work environments, potentially enhancing overall productivity
and employee well-being.

Despite the promising results achieved in this study, transitioning from virtual users
to real human participants poses several significant challenges. Variability in EEG signal
quality and ensuring participant comfort with wireless headsets are critical considerations
that can impact data accuracy and participant engagement. Adhering to study protocols
and ethical guidelines for EEG data collection is essential to maintain data integrity and
participant trust. Additionally, the wide cost range of wireless EEG devices, spanning
from 150 to 30,000 USD, and the variability in battery life (3 h to 10 h) present financial
constraints and usability issues that must be carefully managed [70,71].

6. Future Works

While this study has laid a solid foundation for real-time cognitive workload monitor-
ing using EEG signals and advanced deep learning techniques, several avenues for further
research and development are essential to enhance the applicability and effectiveness of
our approach in practical settings. A crucial next step involves validating our proposed
deep gated neural network (DGNN) model with real human participants. While virtual
users provide valuable insights, incorporating real-world factors such as individual EEG
variations, stress levels, and environmental influences will enhance the model’s robust-
ness and applicability across diverse work environments. Longitudinal studies involving
diverse participant groups will be essential to evaluate the model’s performance under
varying cognitive workload conditions over extended periods.

Improving the usability of wireless EEG headsets represents another significant av-
enue for future research. Current limitations, such as discomfort during prolonged wear
and restricted mobility, need to be addressed through innovative ergonomic designs and
lightweight materials. Enhancing headset ergonomics to minimize discomfort and fatigue,
alongside optimizing sensor placement for better signal quality, will be crucial for facilitat-
ing long-term, real-world deployment. Future research should focus on scaling the DGNN
model to accommodate multiple users concurrently and evaluating its performance under
diverse operational conditions and noise levels. Assessing the system’s robustness and
reliability across different industrial contexts will be essential for broader adoption and
practical implementation.

Additionally, integrating real-time alarm systems into our monitoring platform using
tools like Things Board offers an opportunity to enhance responsiveness to cognitive
workload fluctuations. Implementing proactive alert mechanisms based on workload
classifications will empower timely interventions and adaptive decision-making, thereby
improving operational efficiency and safety in dynamic settings. Addressing the challenges
ahead will be crucial for fully realizing the potential of our approach in practical, real-
world applications.
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