
Thesis for The Degree of Licentiate of Philosophy

Some results in synthetic homotopy
theory

David Wärn

Department of Computer Science and Engineering
University of Gothenburg | Chalmers University of Technology

Gothenburg, Sweden, 2025

Some results in synthetic homotopy theory

David Wärn

© David Wärn, 2025
except where otherwise stated.
All rights reserved.

ISSN 1652-876X

Department of Computer Science and Engineering
Division of Computing science
University of Gothenburg | Chalmers University of Technology
SE-412 96 Göteborg,
Sweden
Phone: +46(0)31 772 1000

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2025.

Some results in synthetic homotopy theory
David Wärn

Department of Computer Science and Engineering
University of Gothenburg |Chalmers University of Technology

Abstract

Synthetic homotopy theory is a relatively new approach to homotopy theory
based on a variant of Martin-Löf type theory called homotopy type theory.
A central theme of synthetic homotopy theory is the study of identity types,
or path spaces, which describe the ways in which two elements of the same
type can be equal. This thesis consists of two works in the field of synthetic
homotopy theory which shed some light on the nature of identity types.

The first and most significant consists of a precise and useful description
of identity types of pushouts by what we call the zigzag construction. This
can equivalently be seen as a description of the free ∞-groupoid on a graph of
spaces. The zigzag construction notably has no exact classical counterpart and
should be of interest also outside of type theory. In type theory, it provides a
solution to a long-standing open problem in synthetic homotopy theory, namely
the problem of showing that the suspension of a 0-type is 1-truncated.

The second consists of an elementary treatment of stabilisation in spaces.
This is the phenomenon that pointed types admit unique deloopings once
they are sufficiently connected and truncated, and that pointed maps admit
unique deloopings under similar conditions. This allows us to construct types
with specified identity types. In particular we present a new description of
Eilenberg–MacLane spaces.

Keywords

Type theory, homotopy theory, homotopy type theory, synthetic homotopy
theory

i

List of Publications

This thesis is based on the following publications:

[Paper I] D. Wärn, Path spaces of pushouts
To be submitted.

[Paper II] D. Wärn, Eilenberg–MacLane spaces and stabilisation in homo-
topy type theory
Journal of Homotopy and Related Structures (September 2023), Volume
18, pages 357–368.

iii

Acknowledgment

I would like to thank my colleagues at the Logic & Types unit, past and present,
for years’ worth of helpful discussions. In particular, the first paper in this
thesis owes a great deal to discussions with my co-supervisor Christian Sattler,
and the second paper owes a great deal to my supervisor Thierry Coquand.

v

Contents

Abstract i

List of Publications iii

Acknowledgement v

I Summary 1

1 Introduction 3
1.1 Type theory . 5

2 Summary of included papers 11

Bibliography 13

II Appended Papers 17

Paper I - Path spaces of pushouts

Paper II - Eilenberg–MacLane spaces and stabilisation in homo-
topy type theory

vii

Part I

Summary

1

Chapter 1

Introduction

Around 2006, a surprising link was established between two seemingly unrelated
subjects: homotopy theory and type theory. Type theory as we know it
today was introduced by Swedish logician and philosopher Per Martin-Löf
in order to provide a foundation for constructive mathematics, a foundation
which simultaneously functions as a programming language suitable for use in
computer proof assistants. Homotopy theory on the other hand is a rapidly
evolving branch of mathematics with roots in topology, based on the idea of
replacing the notion of sets with that of spaces, objects also known as ∞-
groupoids or anima. The connection between these two fields was anticipated
by work of Hoffman and Streicher [9] and Awodey and Warren [2], and made
precise in foundational work of Voevodsky [26, 12], resulting in a flavour of type
theory known as homotopy type theory (HoTT). HoTT attracted significant
attention in connection with a Special Year held at the Institute for Advanced
Study in 2012–2013. The IAS Special year was a collaborative endeavour
resulting in a book explaining the fundamental ideas of HoTT, usually referred
to as the HoTT book [25].

The basic objects of type theory are types, and types in HoTT are to be
thought of as spaces. By combining perspectives from type theory, constructive
mathematics, and classical homotopy theory, HoTT is a source of new ideas.
Of particular relevance for us is the line of research dubbed synthetic homotopy
theory. The type-theoretic approach to homotopy theory is called synthetic,
as opposed to analytic, because it treats spaces (types) as primitive objects,
without ever asking what a space is. The answer would in any case be com-
plicated and, arguably, unenlightening. By abstracting away the details of
how spaces are represented – technicalities like Quillen model categories and
the combinatorics of simplicial objects – the promise of synthetic homotopy
theory is to get to the conceptual heart of homotopy theory. At the same time,
synthetic homotopy theory offers semantic generality. Just as an argument
in group theory can be instantiated in any group, i.e. in any model of the
first-order theory of groups, an argument in synthetic homotopy theory can be
instantiated in any model of HoTT. A model of HoTT can be thought of as
providing an exotic notion of ‘space’. A particular class of models of interest

3

4 CHAPTER 1. INTRODUCTION

are given by ∞-topoi [19, 24].

Most work in synthetic homotopy theory can however be characterised
as reproducing classical results in a synthetic setting. Examples include the
proof that the loop space of the circle is Z [17], the long exact sequence on
homotopy groups associated with a fibre sequence [25], the Seifert–Van Kampen
theorem [11], the Freudenthal suspension and Blakers–Massey theorems [10],
the existence of Eilenberg–MacLane spaces [16], the Mayer–Vietoris sequence [6],
the Serre spectral sequence [8], the James construction [4], and the computation
of π4(S

3) [18]. These are interesting and non-trivial results, but they have been
well-understood since around the middle of the last century. It is natural to ask
if synthetic homotopy theory provides value beyond reproducing old results.

There are many possible answers to this question and we do not have space
to discuss all the merits of HoTT. One commonly cited point is that HoTT has
the benefit of amenability to formalisation. Indeed this is a major selling point of
Martin-Löf type theory, variants of which have been implemented in interactive
theorem provers including Coq, Agda, and Lean. An interactive theorem prover,
or proof assistant, is a piece of software that helps its user write mathematical
proofs in a formal language, while checking the correctness of the proof. Since
HoTT builds on Martin-Löf type theory, it is also suitable for formalisation in
such proof assistants, and indeed all the results in synthetic homotopy theory
mentioned above have been formalised. Formalisation of mathematics offers
various benefits including ease of collaboration and increased trust in proofs.
In principle one could also formalise homotopy theory ‘analytically’, but in
practice such developments encounter technical difficulties and are still far
behind their synthetic counterparts.

Still, one would hope for HoTT to lead to proofs of new results of relevance
to mainstream homotopy theory. Perhaps the most frequently cited example
of this is the synthetic proof of the Blakers–Massey theorem. The original
Blakers–Massey theorem is a statement about connectivity in the classical
setting of spaces. This was since generalised in different directions: from a
connectivity statement to more general statements about ‘cellular inequalit-
ies’ [7], and separately to connectivity statements in the more general setting
of ∞-topoi [21]. The synthetic perspective resulted in a new, simpler proof
which simultaneously generalised the previous ones, to get a statement about
modalities (corresponding to cellular inequalities) in ∞-topoi [1].

The main contribution of this thesis is a vastly more informative refinement
of the Blakers–Massey theorem which we call the zigzag construction. The
setup is the following. Given a span of spaces B ← A → C, one can form
the (homotopy) pushout D, and then the pullback B ×D C, which comes with
a map A → B ×D C. We can thus think of A as a (coarse) approximation
to B ×D C, and the Blakers–Massey theorem describes the accuracy of this
approximation. The zigzag construction on the other hand provides an exact
description of B ×D C, via a sequence of approximations starting from A.
One recovers a strong form of the Blakers–Massey theorem as a corollary, by
analysing how the approximations evolve. The zigzag construction is a novel
construction of relevance to mainstream homotopy theory, while originating
in synthetic homotopy theory and using many ideas from there. Its closest

1.1. TYPE THEORY 5

classical counterpart is the James construction, which is closely related to the
zigzag construction but less widely applicable.

The second contribution of this thesis consists of some results on delooping
in synthetic homotopy theory. In particular we establish some results in the
direction of stabilisation, which is the phenomenon that deloopings are unique
in certain situations.

1.1 Type theory

In this section we give a brief, informal, and opinionated introduction to
Martin-Löf type theory. For a more precise description, we refer to [22].

The starting point for dependent type theory is the idea that whenever we
speak of a mathematical object, we should already have in mind what type
of object it is. For example 4 is a natural number, and sin is a function from
real numbers to real numbers. If A is a type, we write a : A to express that
a is an object of type A. Object is not the standard terminology; one use
various words like term, element, point, or inhabitant (of a given type) to evoke
various intuitions. Referring to ‘elements’ of a given type suggests that we
think of types as collections of things, much like sets in set theory, but there
is an important distinction between the two. In set theory, the elementhood
relation x ∈ y is a mathematical statement that can be proved or disproved.
In type theory, we speak of a typing judgement a : A which belongs to the
grammar of type theory.

Many constructions in mathematics are parametrised by some element of
a given type. We write x : A ⊢ y : B to express that whenever we have some
element x of type A, then we also have an object y of type B, whose definition
may depend on x. We can thus think of y as some construction parametrised
by x. In dependent type theory, we also allow the type B to depend on x : A,
written x : A ⊢ B(x) Type. In natural language, we say that B is a type family
over A. That which comes before the turnstile ⊢ is called a context, and it
can contain an arbitrary finite (possibly empty) sequence of variables, like
x : A, y : B(x), z : C(x, y) ⊢ D(x, y, z) Type. Importantly, all the rules of type
theory are valid in arbitrary contexts.

Type formers

We assume certain type formers that allow to construct new types from old
ones. For example, given a type family B over A, we can form the Π-type
(x : A)→ B(x), traditionally denoted Πx:AB(x). Elements of (x : A)→ B(x)
are thought of as dependent functions from A to B. That is, given an element
f : (x : A)→ B(x) and an element a : A, we can form an element f(a) : B(a).
This is referred to as an elimination rule for the Π-type, since it explains
how we can use its elements. Conversely, there is also an introduction rule,
which explains how to form elements of a Π-type: given an element y : B(x)
parametrised by an arbitrary x : A, or more formally x : A ⊢ y : B(x), we
have an element λx.y : (x : A) → B(x). More colloquially, we sometimes

6 CHAPTER 1. INTRODUCTION

write x 7→ y in place of λx.y. The elimination rule (function application) and
the introduction rule (lambda abstraction) are related by a computation rule,
expressing that (λx.y)(a) coincides with the result of substituting x for a in y.

The computation rule is expressed in terms of judgmental equality. Given
elements a, b : A of the same type, we write a ≡ b for the judgment expressing
that a and b are equal ‘on the nose’. Like the typing judgment a : A, the
judgment a ≡ b belongs to the grammar of type theory; it is wholly distinct
from the usual mathematical notion of equality.

However, type theory does also have a way of dealing with mathematical
equality, which plays a central role in HoTT. It is expressed using identity types.
The formation rule for identity types says that given a type A with elements
a, b : A, we may form a type a = b. Importantly, we can only talk about the
type a = b when we know that a and b have the same type; it does not make
sense to compare elements of different types. An element of a = b is thought
of as an identification of a and b. The introduction rule for identity types
says that every element is equal to itself: for any a : A we have an element
rfla : a = a. The elimination rule expresses that rfla is the only element of the
identity type. Naively, one might expect this to mean that for any p : a = b, we
have that p = rfla. But there’s a problem with this: p has type a = b whereas
rfla has type a = a so it does not make sense to ask if they can be identified.
Instead, the elimination rule says the following. Suppose we have an element
a : A, and a type family P (b, p) that depends on b : A and p : a = b. Assuming
we have a term d : P (a, rfla). Then for any b : A, p : a = b, we have a term
J(P, d, b, p) : P (b, p). The computation rule says that J(P, d, a, rfla) can be
identified with d. In the context of HoTT, this elimination rule is referred to
as (based) path induction.

The identity type is an example of an (indexed) inductive type, since it is
freely generated by some elements (namely rfla). Another important example
of an inductive type is the type N of natural numbers. It is freely generated
by an element 0 : N together with successors, x : N ⊢ S(x) : N. In HoTT,
one also makes use of higher inductive types. A higher inductive type is freely
generated by some elements and some identifications between elements. For
example, given types A, B with a type family R(a, b) parametrised by a : A
and b : B, we may form the pushout, denoted A ⊔R B. This is freely generated
by elements a : A ⊢ inl(a) : A ⊔R B and b : B ⊢ inr(b) : A ⊔R B together with
identifications:

a : A, b : B, r : R(a, b) ⊢ glue(r) : inl(a) = inr(b).

Other basic type formers include the empty type, the unit type, and Σ-types.
The empty type 0 (also written ∅) has no introduction rule – it is meant to
have no elements. The corresponding elimination rule is as general as possible:
given an element x : 0 and any type A we have an element emptyrec(x) : A.

The unit type 1 has a very simple introduction rule, which says that 1 has an
element ⋆ : 1. The elimination rule expresses that ⋆ is the only element: for any
type family P over 1, p : P (⋆) and x : 1, we have an element unitrec(p, x) : P (x),
with unitrec(p, ⋆) = p. This can equivalently be expressed by saying that x = ⋆
for any x : 1.

1.1. TYPE THEORY 7

There are different ways of presenting Σ-types, also called dependent pair
types, but the idea is the following. Given an type A and a type family B over
A, we can form a type (a : A)× B(a), traditionally written Σa:AB(a).1 The
introduction rule for Σ-types says that given elements p : A and q : B(a) we
have an element (p, q) : (a : A)×B(a). One further has some rules expressing
that all elements of (a : A)×B(a) are in some sense of this form.

Equivalences, propositions, and sets

An important notion in type theory is that of invertible maps, or equivalences.
Given a function f : A→ B we could say that f is invertible, or an equivalence,
when we have a function g : B → A inverse to f in the sense that g(f(a)) = a
for all a : A and f(g(b)) = b for all b : B. It is often important to internalise
this notion, to define a type isEquiv(f) whose elements are witnesses that
f is invertible. To this end one has to be a bit more careful: one defines
isEquiv(f) to be the Σ-type consisting of g, h : B → A together with functions
p : (x : A)→ g(f(x)) = x and q : (y : B)→ f(h(y)) = y. Importantly, all the
type formers above can be shown to respect equivalences in an appropriate
sense. We write A ≃ B for the type (f : A→ B)× isEquiv(f).

Following Voevodsky, a type is said to be contractible if it is equivalent to
the unit type. A type X is said to be a proposition if all its identity types
a = b with a b : X are contractible; this expresses that X has at most one
element. A type is said to be a set , or 0-truncated, if all its identity types are
propositions. In ordinary, non-homotopical mathematics, everything would be
a set in this sense. The homotopical nature of type theory is made possible
because we don’t ask that all types be sets.

Universes and the identity types of N
The elimination rule for N expresses that N is freely generated by 0 : N and
S : N→ N. This in particular means that given another type X with elements
0X : X and SX : X → X, we obtain a function N → X out of N. One often
needs a similar way to define type families over N. To solve this, and similar
problems, it is very often helpful to assume that some kind of universes are
available.

In any situation where we have a type A with a type family B over A, we
can think of B as an A-indexed collection of types. In other words, we can
think of A as a ‘collection of types’, the type corresponding to (or ‘encoded by’)
an element a : A being B(a). When we think of a type family as a collection
of types, we often use the term universe to refer to this situation. Naively, we
might hope to have a ‘type of all types’, i.e. a type U with a type family El over
U such that for any type A, we have a corresponding element codeA : U with
A equivalent to El(codeA). This is asking for too much and leads to a paradox
familiar from set theory. Instead, what one can reasonably ask for is universes

1This notation evokes an analogy between types and numbers, where Σ is analogous
to summation

∑n
i=0 ai. We prefer to avoid this notation since the practice of putting

complicated expressions in subscripts scales poorly.

8 CHAPTER 1. INTRODUCTION

‘big enough for any given purpose’. For example, given a finite list of type
families Bi over Ai, for i = 0, . . . , n, we can ask for a universe containing each
of the given collections of types. Often we also want to ask that the resulting
universe is closed under some collection of type formers. Given a universe, i.e. a
type family El over U, we say that types of the form El(A) (or types equivalent
to types of this form) are U-small. Given a universe U, we can thus define
families of U-small types over N by induction, since they are simply maps of
types N→ U.

A major theme of HoTT is that of describing identity types. For example,
we have the following description of identity types m = n where m,n : N:

• 0 = 0 is contractible, i.e. equivalent to the unit type 1.

• 0 = S(n) and S(n) = 0 are empty, i.e. equivalent to the empty type 0.

• S(m) = S(n) is equivalent to m = n.

The proof of the claim above involves first defining a type family P : N→ N→ U
recursively using the rules above and then arguing that P (m,n) is equivalent
to m = n, essentially by showing that P has the universal property of the
identity type. This method of proof is called encode-decode. There are similarly
canonical descriptions of identity types of the empty type, the unit type,
Σ-types, and Π-types2.

Identity types of higher inductive types and descent

The situation becomes more subtle once one starts to look at identity types of
higher inductive types. For example, we can construct a (homotopical) circle
S1 by gluing two points along two parallel paths. Formally, this is represented
by a pushout 1 ⊔2 1, where 2 denotes a type with exactly two elements. Let
us pick a base point b : S1 (e.g. inl(⋆)). One can describe S1 as being freely
generated by the element b : S1 and an identification loop : b = b (given by
glue(0) · glue(1)−1). One expects that the ‘loop space’ b = b is equivalent to
the type of integers. Indeed any integer n : Z should determine a loop b = b
given by composing loop with itself n times.

In order to use the encode-decode method sketch above, we need a method
for defining type families over S1. To see what this might look like, first note
that given a type family P over S1, we in particular have a type P (b). The
identification loop : b = b induces a self-equivalence P (b) ≃ P (b).3 It turns
out that the right result to ask for is that any type B with a self-equivalence
e : B ≃ B determines a type family over S1, whose fibre over b is B and such
that the self-equivalence of the fibre induced by loop corresponds to e. This
principle is referred to as descent for S1.

2The characterisation of identity types of Π-types says that if f, g : (a : A) → B(a), then
f = g is equivalent to (a : A) → f(a) = g(a). This is called function extensionality and
should be treated as a basic assumption of type theory.

3This is an instance of a general fact that given a type family P over A and elements
a, b : A with an identification h : a = b, we obtain an equivalence P (a) ≃ P (b). This general
fact is proved directly by path induction.

1.1. TYPE THEORY 9

Let us now consider what happens if we try to prove descent using universes.
To construct a type family over S1, we would define a function P : S1 → U to
some universe U. This we can do using the elimination rule for S1: to define P ,
we have to give an element B : U with a self-identification B = B. Being asked
to produce an self-identification B = B seems a bit much when all we should
need is a self-equivalence El(B) ≃ El(B). This is where univalence, formulated
by Voevodsky, comes in.

We say that a type family El over U is univalent if we have the following
equivalence for all A,B : U.

(A = B) ≃ (El(A) ≃ El(B)).

Thinking of U as a collection of types, this expresses the idea that U contains
‘at most one’ copy of each type, which is where the word univalent comes from.

Univalence is precisely the property we need in order to prove descent using
elimination into a universe. More precisely, to prove descent for S1 it suffices
to assume that every type is contained in a univalent type family. In general
the characterisation of identity types of higher inductive types is intimately
tied to descent, and hence indirectly to univalence.

In particular, given descent for S1 one can show that its loop space is the
type Z of integers. For a proof of this, as well as some more discussion of
identity types of pushouts, we refer to [15].

10 CHAPTER 1. INTRODUCTION

Chapter 2

Summary of included
papers

Path spaces of pushouts

The motivation for this work is the problem of describing identity types (or
path spaces) of pushouts. Explicitly, given types A, B with a type family
R(a, b) parametrised by a : A and b : B, how to describe identity types like
inl(x) = inr(y), inl(x) = inl(x′), inr(y) = inr(y′) with x, x′ : A and y, y′ : B?
The exists a considerable body of earlier work on aspects of this problem in
HoTT. For example, the Seifert-van Kampen theorem gives a description of
0-truncated identity types [11], the identity types of S1 are known exactly, as
well as identity types of pushouts along a monomorphism [23]. Kraus and von
Raumer gave a universal property for identity types in any pushout [15], but
the recursive nature of this description makes it a priori difficult to analyse.
An important problem, dating back to the HoTT book, was to show that the
identity types of 1 ⊔X 1 are 0-truncated if X is 0-truncated [13]. Some partial
results were known [14], but prior to this work the general problem was wide
open with experts suspecting that the desired result might not be provable in
HoTT.

The contribution of this work is a construction, which we call the zigzag
construction, which gives a precise and definitive description of identity types of
pushouts. Unlike Kraus and von Raumer’s description, the zigzag construction
is non-recursive (in a technical sense), which makes it amenable to analysis.
In particular we use it to prove a generalised Blakers–Massey theorem and to
show that the identity types of 1 ⊔X 1 are 0-truncated if X is 0-truncated.

Since we expect the zigzag construction to be of interest also outside type
theory, we have written this paper in categorical, or diagrammatic, language,
with the hope that it can be understood by type theorists and homotopy
theorists alike.

11

12 CHAPTER 2. SUMMARY OF INCLUDED PAPERS

Eilenberg–MacLane spaces and stabilisation

A central concept in algebra is the notion of a group, which can be understood
as an algebraic representation of the symmetries of some object. In a type-
theoretic setting, when we talk of an object x, we should have in mind that x
has some type, call it X. In this case the symmetries of x should (according to
the structure identity principle) correspond to identifications x = x. We say
that x = x is the loop space of X and that X is a delooping of x = x. It is
natural to turn this into a definition: an (∞-)group is something which has
the structure of a loop space x = x. This leads to a synthetic perspective on
group theory which is explored in an upcoming book project [3].

An important phenomenon in the theory of∞-groups is that of stabilisation.
This is the phenomenon that pointed types which are sufficiently connected
and truncated admit unique ∞-group structures (deloopings). Algebraically,
stabilisation can be understood as coming from the fact that the data of a
group structure on a pointed type (A, e) involves an H-space structure, i.e. a
map µ : A×A→ A with compatible identifications (a : A)→ µ(a, e) = a and
(a : A)→ µ(e, a) = a, subject to further coherences. By wedge connectivity the
type of H-space structures on (A, a) is contractible if A is sufficiently connected
and truncated.

Stabilisation results have been proven in HoTT using the Freudenthal
suspension theorem [5]. The purpose of this paper is to revisit these results
using more direct methods, avoiding the use of higher inductive types. We
present in particular descriptions of deloopings of types and maps. This gives an
elementary type-theoretic account of how, in favourable situations, a delooping
of (A, a) can be understood as the type of A-torsors. This can be compared
with ∞-categorical accounts [19, Theorem 7.2.2.26][20].

Bibliography

[1] Mathieu Anel, Georg Biedermann, Eric Finster and André Joyal. “A
generalized Blakers–Massey theorem”. In: Journal of Topology 13.4 (2020),
pp. 1521–1553 (cit. on p. 4).

[2] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of
identity types”. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society 146 (2009), pp. 45–55 (cit. on p. 3).

[3] Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas and Daniel
R. Grayson. Symmetry. https://github.com/UniMath/SymmetryBook
(cit. on p. 12).

[4] Guillaume Brunerie. “The James Construction and π4(S
3) in Homotopy

Type Theory”. In: Journal of Automated Reasoning 63 (2 2019), pp. 255–
284 (cit. on p. 4).

[5] Ulrik Buchholtz, Floris van Doorn and Egbert Rijke. “Higher groups in
homotopy type theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. 2018, pp. 205–214 (cit. on
p. 12).

[6] Evan Cavallo. “Synthetic Cohomology in Homotopy Type Theory”. MA
thesis. Carnegie Mellon University, 2015 (cit. on p. 4).

[7] Wojciech Chachólski, Jérôme Scherer and Kay Werndli. “Homotopy
excision and cellularity”. In: Annales de l’Institut Fourier. Vol. 66. 6.
2016, pp. 2641–2665 (cit. on p. 4).

[8] Floris van Doorn. “On the Formalization of Higher Inductive Types and
Synthetic Homotopy Theory”. PhD thesis. Carnegie Mellon University,
2018. url: https://arxiv.org/abs/1808.10690 (cit. on p. 4).

[9] Martin Hofmann and Thomas Streicher. “The groupoid interpretation of
type theory”. In: Twenty-five years of constructive type theory (Venice,
1995). Ed. by Giovanni Sambin and Jan M. Smith. Vol. 36. Oxford Logic
Guides. New York: Oxford University Press, 1998, pp. 83–111 (cit. on
p. 3).

13

14 BIBLIOGRAPHY

[10] Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata and Peter
LeFanu Lumsdaine. “A Mechanization of the Blakers-Massey Connectivity
Theorem in Homotopy Type Theory”. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, 565–574.
doi: 10.1145/2933575.2934545 (cit. on p. 4).

[11] Kuen-Bang Hou (Favonia) and Michael Shulman. “The Seifert-van Kampen
Theorem in Homotopy Type Theory”. In: 25th EACSL Annual Confer-
ence on Computer Science Logic (CSL 2016). Ed. by Jean-Marc Talbot
and Laurent Regnier. Vol. 62. Leibniz International Proceedings in Inform-
atics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016, 22:1–22:16. doi: 10.4230/LIPIcs.CSL.2016.22
(cit. on pp. 4, 11).

[12] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model
of Univalent Foundations (after Voevodsky). 2018. arXiv: 1211.2851
[math.LO] (cit. on p. 3).

[13] Nicolai Kraus and Thorsten Altenkirch. “Free Higher Groups in Homotopy
Type Theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’18. ACM, July 2018, 599–608. doi:
10.1145/3209108.3209183. url: http://dx.doi.org/10.1145/
3209108.3209183 (cit. on p. 11).

[14] Nicolai Kraus and Jakob von Raumer. “A rewriting coherence theorem
with applications in homotopy type theory”. In: Mathematical Structures
in Computer Science 32.7 (Aug. 2022), 982–1014. issn: 1469-8072. doi:
10.1017/s0960129523000026. url: http://dx.doi.org/10.1017/
S0960129523000026 (cit. on p. 11).

[15] Nicolai Kraus and Jakob von Raumer. “Path Spaces of Higher Inductive
Types in Homotopy Type Theory”. In: 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 2019, pp. 1–13. doi:
10.1109/LICS.2019.8785661 (cit. on pp. 9, 11).

[16] Daniel R. Licata and Eric Finster. “Eilenberg-MacLane spaces in homo-
topy type theory”. In: Proceedings of the Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). CSL-LICS ’14. Vienna, Austria: Association for
Computing Machinery, 2014. doi: 10.1145/2603088.2603153 (cit. on
p. 4).

[17] Daniel R. Licata and Michael Shulman. “Calculating the Fundamental
Group of the Circle in Homotopy Type Theory”. In: 2013 28th Annual
ACM/IEEE Symposium on Logic in Computer Science. 2013, pp. 223–232.
doi: 10.1109/LICS.2013.28 (cit. on p. 4).

[18] Axel Ljungström and Anders Mörtberg. Formalising and Computing the
Fourth Homotopy Group of the 3-Sphere in Cubical Agda. 2024. arXiv:
2302.00151 [math.AT]. url: https://arxiv.org/abs/2302.00151
(cit. on p. 4).

BIBLIOGRAPHY 15

[19] Jacob Lurie. Higher topos theory. Princeton University Press, 2009 (cit. on
pp. 4, 12).

[20] Thomas Nikolaus, Urs Schreiber and Danny Stevenson. “Principal ∞-
bundles: general theory”. In: Journal of Homotopy and Related Structures
10.4 (June 2014), 749–801. issn: 1512-2891. doi: 10.1007/s40062-014-
0083-6 (cit. on p. 12).

[21] Charles Rezk. “Toposes and homotopy toposes”. 2005. url: https:
//rezk.web.illinois.edu/homotopy- topos- sketch.pdf (cit. on
p. 4).

[22] Egbert Rijke. Introduction to Homotopy Type Theory. 2022. arXiv: 2212.
11082 [math.LO]. url: https://arxiv.org/abs/2212.11082 (cit. on
p. 5).

[23] Christian Sattler and Andrea Vezzosi. “Partial Univalence in n-truncated
Type Theory”. In: Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’20. Saarbrücken, Germany: Asso-
ciation for Computing Machinery, 2020, 807–819. isbn: 9781450371049.
doi: 10.1145/3373718.3394759. url: https://doi.org/10.1145/
3373718.3394759 (cit. on p. 11).

[24] Michael Shulman. All (∞, 1)-toposes have strict univalent universes. 2019.
arXiv: 1904.07004 [math.AT]. url: https://arxiv.org/abs/1904.
07004 (cit. on p. 4).

[25] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https://
homotopytypetheory.org/book, 2013 (cit. on pp. 3, 4).

[26] Vladimir Voevodsky. “A very short note on the homotopy λ-calculus”.
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_

files/Hlambda_short_current.pdf. 2006 (cit. on p. 3).

