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The Galactic Center (GC) region has long been subject to intense interest within the astrophysics
community. At the GC, a strong radio source has been detected and identified as the super-massive
black hole, Sgr. A*, which significantly affects the dynamics of the GC region within 300 parsecs.
Many interesting astrophysical objects, including supernova remnants, high-mass X-ray binaries,
pulsar wind nebulae, among others, have been found in this region. These objects are expected to
produce high energy neutrinos, possibly in a transient manner, which can potentially be observed
with the IceCube Neutrino Observatory. Due to the geographical location of the IceCube Neutrino
Observatory, a large amount of cosmic-ray muons reduces IceCube’s sensitivity in the southern
sky, where the GC is located. Thus, a dedicated event selection is performed to reduce this
background and optimize the sensitivity. In this talk, we present this event selection in the GC
region with IceCube data using classical and machine learning methods. This new dataset will be
used to perform a time-dependent search for single flares at the GC.
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1. Introduction

The IceCube Neutrino Observatory is a particle detector designed to detect neutrinos. It is
built deep within the ice of the South Pole to observe the cosmos. The IceCube detector consists
of 5160 digital optical modules (DOMs). The 86 cables holding the DOMs are arranged in the
form of a hexagonal grid 1.5 to 2.5 kilometers deep in the ice. Neutrinos interact with the nuclei in
the ice and rock. Such interactions create particle cascades from the hit nuclei as well as charged
particles such as electrons, muons, and taus. Smaller particle showers produced by the leptons
along their way emit Cherenkov radiation. The DOMs collect photons and turn them into electrical
signals. The collected information is used to reconstruct properties of the incoming event, for
example the energy, direction, length, and flavor. This analysis starts from selecting events using
the reconstructed information to reduce background. The selection uses 12 years of data focusing
on the GC region. Traditional and machine learning methods were used in this selection. A final
event rate of 50.47 mHz is obtained for this selection.

With the recent evidence for a signal of astrophysical neutrinos from the Galactic Plane [1],
the emission from the GC becomes particularly interesting. The GC is a region that promises high
activity based on the detection of a PeVatron in the GC [2] and the presence of a supermassive black
hole (SMBH) at the position of Sgr A* [3]. SMBHs can be sources of flare-like emission of cosmic
rays and their secondaries, neutrinos and gamma-rays. This motivates our search for a single flare
from the GC with the created dataset. Previous analyses in IceCube used similar methods to find
time-dependent clustering of neutrino events in the direction of the blazar TXS 0506+056 [4] [5].
This time-dependent analysis focuses on the GC as a point source to search for potential bursts of
neutrino events in this dense region. In the following sections, we present the methods and results
of the event selection and time-dependent point source analysis for the GC.

2. Motivation

The existing IceCube datasets are mostly looking at the whole sky or southern sky optimized for
an energy spectrum of 𝐸−2.0. These event selections are not sensitive at the GC region, and there are
not enough lower energy signal events for an analysis with a soft energy spectrum. Hence, we want
to start from the same point as previous event selections and develop a better event selection for the
GC region analysis that improve upon the issues mentioned above. This selection includes events
in the GC declination (−28.936𝑜) ±10𝑜 and the whole right ascension range. Because the dataset
focuses on a smaller region of the sky, a higher event rate can be tolerated. Comparing to other
IceCube datasets, the Gamma-Ray Follow-Up (GFU) dataset [6] has an event rate of 0.530 mHz
per steradian and the Point Source Tracks (PS Tracks) dataset [7] has an event rate of 0.313 mHz
per steradian. This selection can lead to a final event rate two orders of magnitude higher. The high
event rate of the GC dataset offers an opportunity to search for flares with shorter time windows.
The selections are made to optimize the time-independent point source sensitivity at the GC with
an energy spectrum of 𝐸−2.7.
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3. Event Selection

The principal challenge of any neutrino telescope is the large amount of atmospheric muons and
neutrinos produced in cosmic ray interactions in the atmosphere. The amount of these background
events detected by IceCube is about ten orders of magnitude higher than the astrophysical neutrinos.
Therefore, the goal of event selection is to reduce the background in the dataset to increase its
sensitivity to astrophysical sources. For the event selections applied in this dataset, the actual
collected data are used as background in the first two steps because at this stage, data are largely
dominated by background events. In the last step, we replace the background by the simulated
Monte Carlo background events. Simulated Monte Carlo signals are used throughout the event
selection. In each step, the same cuts are applied to both backgrounds and signals to test the dataset
sensitivity.

3.1 Pre-cuts

The pre-cuts are applied to reduce the event rate and select high quality events. The cuts
applied are: 1. remove events that fail direction reconstructions, 2. remove events that have angular
resolutions higher than 4.5 degrees, 3. remove events that hit less than 18 DOMs in the detector, 4.
remove events with a reconstructed length less than 250 meters. These cuts reduced the background
by 53.5% and signal by 24%.

3.2 BDT Classifier

The BDT model is an ensemble learning method that combines weak learning tree models
into a strong learning tree. The advantage of using a BDT is it trains fast and reduces bias. The
model used is XGBoost with 150 estimators and a maximum depth of 6. The BDT classifier
here classifies atmospheric muons and atmospheric neutrinos (background) versus astrophysical
neutrinos (signal). The top features that contribute to the model are the agreement between two
different direction reconstructions, the percentage of the event contained in the detector, and the
number of hit DOMs 15 ns before the strong pulse is detected (background muon bundles are
likely to have more early hit DOMs comparing to single neutrinos). The score ranges from 0 to
1, indicating the degree to which an event exhibits background-like properties (0) or signal-like
properties (1). The distribution of BDT scores for signal and background events is shown in
Figure 1. As expected, a larger ratio of background events receive low scores. Please note that
this plot shows the probability density of the two categories independently. As a result, it does not
provide a comparison of the relative ratio of signals and backgrounds under the same score. A cut
is made at BDT score = 0.025 where all events scored below that are removed. This cut removes
85.2% of background events and 22.1% of signal events.

3.3 BDT Regressor

The background rate has been largely reduced after the previous BDT classifier cut. The last
step using a BDT regressor is to reduce the inclusion of muon bundles. Muon bundles are generated
in the first interactions of a primary cosmic ray in the Earth’s atmosphere. Muons lose energy
and produce charged particles that generate Cherenkov light in the IceCube detector. Since the
muon bundles comprise numerous low-energy muons that simultaneously enter the detector, the
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Figure 1: These plots show the distribution of BDT scores for background and signal events. The right plot
is a zoomed-in plot of the left. The score, ranging from 0 to 1, indicates the probability of an event being a
background versus signal (0 being more background-like and 1 being more signal-like).

Cherenkov light produced by those muons in the detector is comparable to a single high-energy
muon from an astrophysical neutrino interacting with the ice. Hence, muon bundles are often
misinterpreted as high-energy events during reconstruction. Due to their higher likelihood of being
a signal, high-energy events make a larger contribution to source searches. Thus, it is necessary to
identify and minimize the presence of muon bundles within the dataset.

The method for distinguishing between muon bundles and single muons is based on the energy
loss pattern observed in the detector. In the case of single muons, their energy loss is primarily
characterized by significant stochastic fluctuations. On the other hand, muon bundles exhibit a
relatively continuous energy loss pattern. The variable Stochasticity is introduced here to quantify
the level of stochasticity in the energy loss process. There are several ways to calculate Stochasticity.
The main idea is to divide the detector into several sections and compare the energy loss in each
section to a linear fit of the loss. Figure 2 shows the distribution of Stochasticity calculated with the
equation

Stochasticity =
1
√

2
· ( 𝑓 𝑓 𝑖𝑡 −

1
2
· log10(PeakOverMedian)), (1)

where 𝑓 𝑓 𝑖𝑡 is the linear fit of the energy loss and PeakOverMedian is the maximum divided by
median energy loss in each bin. The figure compares the distribution of this variable in different
energy ranges. Muon bundles have high energy and lose energy more smoothly, meaning muon
bundles are high energy events with a low Stochasticity. The shape of the Stochasticity distribution
for signal events remain similar across different energy ranges, but the background events at high
energy tend to have low Stochasticity, indicating they are likely to be muon bundles.

Due to the objective of reducing high-energy background events, it is essential to approach the
cut in a cautious manner. A straight cut using the Stochasticity calculated in Equation 1 deteriorates
the sensitivity. Here, we introduce a BDT regressor to optimize the cut. Besides Equation 1, there
are six other ways to calculate Stochasticity. The total of seven Stochasticity calculations are used
as training features of the BDT regressor, predicting the singleness of each event. A high-energy
event with a low singleness score is more likely to be a muon bundle. Figure 3 shows the singleness
predicted by the BDT regressor versus event energy. The peak at around 0.5 in singleness is where
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Figure 2: Stochasticity (Equation 1) distribution of background and signal in different energy ranges.

Figure 3: These two plots are 2D histograms of the singleness predicted by the BDT regressor versus energy.
The left plot shows background distribution and the right shows signal. Events in the upper left corner
(log10 𝐸 > 4.5 and 𝑠𝑖𝑛𝑔𝑙𝑒𝑛𝑒𝑠𝑠 < 0.4) are removed from the dataset.

the initial guess was seeded at for the BDT model. Certain events do not proceed to subsequent
branches of the decision tree and consequently result in a final prediction based on the initial guess.
A cut is made to remove events with log10 𝐸 > 4.5 and 𝑠𝑖𝑛𝑔𝑙𝑒𝑛𝑒𝑠𝑠 < 0.4. This cut removes 34.1%
of background and 12.4% of signal.

4. Neutrino Flare Search

The GC’s dynamics are largely determined by the presence of the central SMBH, present at the
position of Sgr A* [3]. Centers of Galaxies have early-on been identified as possible accelerators
for cosmic rays. The detection of diffuse gamma-ray emission in the Galaxy up to 100 TeV photon
energy indicates the presence of a PeVatron in the GC region [2]. SMBHs are in general predicted
to be a source of short-term flares of high-energy emission, for instance through a tidal disruption
event. We therefore propose a flare search for the GC region. For IceCube, a 1 degree region (in
diameter) covers around 140 parsec diameter region near the GC. Due to an angular resolution limit
of around 1.7 degrees in this dataset, it is hard to study the details and specify candidates in the GC.
Hence, this analysis focuses on a generalized untriggered flare search at one point (GC), searching
for the most significant flare with the dataset created above. Untriggered searches look for all
potential flares and are not associated with any specific source lightcurves from multi-wavelength
observations.
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4.1 Analysis Method

The analysis uses an unbinned maximum likelihood method. This method includes a signal
probability distribution function (PDF) to describe the signal distribution and a background PDF to
describe the background distribution.

Similar to a time-integrated analysis, the hypothesis tested here is that there is a source located
at 𝑥𝑠 with a spectral index 𝛾 and signal strength (number of neutrino events expected in the final
data sample) 𝑛𝑠. A weighted sum of the signal and background PDFs can be obtained to describe
the probability of the 𝑖th event coming from the GC:

𝑃𝑖 =
𝑛𝑠

𝑁
𝑆𝑖 + (1 − 𝑛𝑠

𝑁
)𝐵𝑖 , (2)

where 𝑆𝑖 and 𝐵𝑖 are the signal and background PDFs respectively. The full signal PDF is

𝑆𝑖 = 𝑃
𝑠𝑝𝑎𝑐𝑒

𝑖
( |®𝑥𝑖 − ®𝑥𝑠 |, 𝜎𝑖) · 𝑃𝑒𝑛𝑒𝑟𝑔𝑦

𝑖
(𝐸𝑖 , 𝜃𝑖 , 𝛾) · 𝑃𝑡𝑖𝑚𝑒

𝑖 . (3)

The spacial PDF 𝑃
𝑠𝑝𝑎𝑐𝑒

𝑖
is a Gaussian function of | ®𝑥𝑖 − ®𝑥𝑠 | (the space angular difference between

each event 𝑖 and the source location) and the angular error estimation 𝜎𝑖 . The energy PDF 𝑃
𝑒𝑛𝑒𝑟𝑔𝑦

𝑖

is a function of the event energy 𝐸𝑖 , declination 𝜃𝑖 , and the assumed energy spectral index of the
source 𝛾. The Gaussian time PDF is given by

𝑃𝑡𝑖𝑚𝑒
𝑖 =

1
√

2𝜋𝜎𝑡

· exp− (𝑡𝑖 − 𝑡0)2

2𝜎2
𝑡

, (4)

where 𝑡0 and 𝜎𝑡 are the mean and width of the burst and 𝑡𝑖 is the event time of the 𝑖th particle.
Similarly, the background PDF is given by

𝐵𝑖 = 𝑃
𝑠𝑝𝑎𝑐𝑒

𝑖
(𝜃𝑖 , 𝛼𝑖) · 𝑃𝑒𝑛𝑒𝑟𝑔𝑦

𝑖
(𝐸𝑖 , 𝜃𝑖) · 𝑃𝑡𝑖𝑚𝑒

𝑖 . (5)

The space PDF 𝑃
𝑠𝑝𝑎𝑐𝑒

𝑖
describes the background event distribution. For a time-independent

analysis, it can be simply described using declination 𝜃𝑖 because the exposure for all right ascension
directions is averaged out from the rotation of the Earth. However, an azimuth correction needs
to be applied to the space PDF for time scales shorter than one day, which is why 𝑃

𝑠𝑝𝑎𝑐𝑒

𝑖
also

includes the local azimuth 𝛼𝑖 . The energy PDF 𝑃
𝑒𝑛𝑒𝑟𝑔𝑦

𝑖
is determined from the energy estimator

distribution, which is dependent on the declination 𝜃. A uniform efficiency over time is assumed
for background, so the time PDF here 𝑃𝑡𝑖𝑚𝑒

𝑖
= 1. Since this analysis is time-dependent, in addition

to the space and energy PDFs, a Gaussian time PDF is included to account for the time dependence
in 𝑆𝑖 and 𝐵𝑖 [8]. The time PDF is used to identify clusters of signal like events that stand out from
background fluctuations in the time regime. The likelihood is the product of the probabilities of
each event 𝑃𝑖 , which is described as Equation 2. This likelihood favors short flares because there
are more independent ways to choose the burst time for short flares comparing to long flares. We
introduce a marginalization factor to penalize short flares, which leads to a new likelihood function:

𝐿 (𝑛𝑠, 𝛾, 𝜎𝑇 , 𝑇0) =
∏

𝑃𝑖 ∼
√

2𝜋𝜎𝑡

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

· 𝐿 (𝑛𝑠, 𝛾, 𝜎𝑇 , 𝑇0), (6)
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Figure 4: This is a time series plot near the best fit flare. The events are shown as blue lines. The heights
of the lines indicate the ratio between the signal probability (Equation 3) and the background probability
(Equation 5) of each event. The x-axis shows MJD in days. The dashed black curve is the best fit Gaussian
flare with a mean at 𝑇0 = 58470.42 and a width of 𝜎𝑇 = 0.063. The height of the curve is arbitrary.

with𝑇𝑚𝑎𝑥 and𝑇𝑚𝑖𝑛 being the maximum and minimum livetime of the dataset. Finally, a test statistic
(TS) can be obtained from the likelihood ratio test [9],

𝑇𝑆 = −2 log(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝜎𝑇

· 𝐿 (𝑛𝑠 = 0)
𝐿 (𝑛𝑠, 𝛾, 𝜎𝑇 , 𝑇0)

), (7)

where 𝐿 (𝑛𝑠 = 0) is the null hypothesis indicating there is no significant time-dependent clustering
of events within the search window. The signal hypothesis is a time-dependent single-flare Gaussian
time profile at all times within the livetime with a flare width up to half of the livetime. The best-fit
parameters were found by searching around the parameter spaces to maximize the TS. A maximum
TS is searched for during the 12-year time window.

4.2 Results

No significant clustering of events was observed in the time regime for this analysis. The final
best-fit values are: 1. 𝛾 = 2.75 2. 𝑛𝑠 = 2.44 3. 𝑇0 = 58470.42 MJD 4. 𝜎𝑇 = 0.063 Days. The time
series of events and the best fit Gaussian flare is shown in Figure 4. A Gaussian fit flare is shown
at mean = 𝑇0 with a width = 𝜎𝑇 . This best fit flare has a 𝑇𝑆 = 0. This analysis sets a threshold of
𝑆/𝐵 > 1000 to only include events that contribute more to the point source search at the GC.

Since no significant flare has been found here, we calculate the upper limit with a 90%
confidence level with the following procedure: First, obtain a background TS distribution by
randomizing the data in right ascension (simulate background fluctuations) 100,000 times and
calculate the TS of the best-fit flare of each randomization. Then, inject a Gaussian flare by
injecting signal events that are generated from a Monte Carlo simulator to a 𝑇0 with a width of
𝜎𝑇 . We then perform 500 trials of randomization and obtain a TS distribution of the injected
signal. Finally, we keep injecting signal events until 90% of the TS is higher than the median of
the background TS. Figure 5 shows the upper limit for different time windows assuming spectral
indices of 𝛾 = 2.0, 2.5, 2.7.
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Figure 5: Upper limits for single flare at the GC with different flare widths assuming energy spectral indices
𝛾 = 2.0, 2.5, 2.7.

5. Conclusion

This analysis uses a newly created GC dataset to search for a single flare at the GC. The final
data rate of this event selection is 50.47 mHz, which is approximately two orders of magnitude
higher compared to other similar datasets in IceCube. This provides an opportunity to search for
short flares since short time windows can be considered as background-free regions. This single
flare search is focused at the GC as a point-like source. No significant time-dependent clustering
of events was observed in this analysis. We obtain the upper limits of various time windows with
the assumption of energy spectrum 𝛾 = 2.0, 2.5, and 2.7. Further analyses like a point source scan
near the GC and extended source scan at different extensions can be done using this dataset.
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