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A B S T R A C T

Existing vibration and buckling analysis models for the partial-composite beam/column elements are restricted 
to a limited number of constituting layers. This is due to the escalated complexity of the governing equations 
with an increase in the number of layers. The present study formulates the stability and vibration problems of 
columns and beams composed of any number of identical constituting layers, incorporating the effects of 
interlayer partial-interaction imperfection. A Timoshenko/Engesser-hypothesis-based partial-composite (TEPC) 
model is developed and a novel analytical solution scheme is implemented into the extracted governing dif-
ferential equations. As a result, efficient conversion coefficients are introduced, converting the well-known 
classical Euler column buckling and beam vibration formulae to those of multilayer elements having inter-
layer partial-interaction imperfection based on the TEPC model. The validity of the proposed approach is verified 
through comparison with available experimental data and the conducted 3-D FEA. It is shown that the most 
significant reduction in the predicted buckling capacity of partial-composite multilayer columns, when tran-
sitioning from the EBPC model to TEPC, occurs for the columns with the highest interlayer interaction. 
Furthermore, it is shown that the influence of interlayer interaction level on the Euler-to-Timoshenko/Engesser 
conversion coefficients becomes less pronounced as the number of constituting layers increases.

1. Introduction

Layered composite structural elements are omnipresent in a broad 
range of modern engineering applications, from marine structures and 
underwater vehicles [1–3], aviation and aerospace structures [4–7] to 
infrastructure and advanced building structures [8–10]. This wide-
spread application is due to their superior mechanical properties and 
performance [11]. However, inevitable imperfections, arising from 
production to implementation [12], play a crucial role in the function-
ality and reliability of composite structures [13], resulting in degraded 
mechanical behavior and performance.

Imperfections in layered composite elements may be geometrical 
(such as initial deflection and out-of-straightness [14–17], geometrical 
gaps and waviness/wrinkles in the layers [12,18,19], layers thickness 
variation [20,21], and loading eccentricity and boundary condition 

imperfections [22–24]), or of material and constructional type (e.g., 
cracks and partial delamination [25–27], interfacial bonding defects 
such as incomplete/uneven/poor bonding, or interfacial shear slip 
[28–35], etc.).

The influence of interfacial bonding imperfection on the mechanical 
behavior of layered structures has been studied extensively by many 
researchers, modeling imperfect bonding behavior using linear spring- 
like models [36–38] or based on nonlinear elastic/elastoplastic/visco-
elastic models [33,39,40] in computational simulations. A commonly 
referred theory in structural applications for studying the effects of a 
specific type of interfacial imperfection, in the form of interlayer partial- 
composite interaction (e.g., in layered timber composites), is known as 
the “partial-composite” theory [41–44]. This theory captures the inter-
layer partial interaction in the form of relative slip via a shear spring-like 
model. It should be noted that the present study is primarily focused on 
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this specific type of imperfection. Consequently, any other forms of 
interfacial bonding imperfections are beyond the scope of this article.

In laminated timber composite structures, various types of mechan-
ical connectors, such as bolts, nails, dowels, and screws, or adhesives, 
are applied to keep the integrity of the structures. As a consequence, 
their structural behavior and performance may deviate from those of 
perfect ideal composites due to the relative interlayer slips. Initial efforts 
to formulate such an imperfect partial-interaction complex mechanical 
behavior may be attributed to Stüssi, Switzerland, 1947 [45], Rzha-
nitsyn, Russia, 1948 [46], Granholm, Sweden, 1949 [47], Newmark 
et al., USA, 1951 [48], and Pleshkov, Russia, 1952 [49], who indepen-
dently developed the governing static equations for the timber com-
posite beams with partial interaction. For a detailed literature 
background on the partial-composite theory, readers are referred to 
[41].

The vast majority of the research studies related to the layered partial 
composites in the literature focus on different aspects of two-layer- and, 
to a lesser extent, three-layer structures. Static bending analysis of two- 
layer partial-composite beams was performed by Faella et al. [50] and 
Ranzi et al. [51], respectively, based on analytical solutions and a finite 
element model. Jurkiewiez et al. [52], and Ranzi and Bradford [53] 
developed a numerical and an analytical model for the time-dependent 
behavior of two-layer composite beams with partial interaction imper-
fection, respectively. Girhammar and Pan [41] and Girhammar [42] 
introduced the governing differential equations and general analytical 
solutions for the first- and second-order static analyses of two-layer 
partial-composite beams and beam-columns on the basis of the Euler- 
Bernoulli kinematics assumptions. Xu and Wu [54] generalized the 
first-order analyses by taking into account the influences of rotary 
inertia and shear deformations according to the Timoshenko hypothesis 
and the Engesser’s approach for each layer with the same rotation. 
Schnabl and Planinc [55] investigated the buckling of two-layer Timo-
shenko beams, including the extensibility effect and the differential 
shear assumptions of Haringx’s theory (i.e., the possibility of having 
different rotation kinematics for each layer). Santos and Silberschmidt 
[56] introduced an equilibrium-based finite element formulation for the 
static analysis of Timoshenko partial composites. Ecsedi and Baksa [57] 
developed an analytical model to analyze the deformation and stresses 
in two-layer composite beams with partial interaction imperfection 
based on the Timoshenko kinematics and assuming the same cross- 
sectional rotation in the two layers.

With regard to the vibration and dynamic analyses of two-layer 
composite elements having interfacial partial-interaction imperfection, 
readers are referred to the research by Girhammar et al. [44] for the free 
and forced in-plane vibrations, Challamel [58] for the lateral-torsional 
vibration, and Challamel et al. [59] for the out-of-plane vibration 
problems. He and Yang [60] implemented a higher-order beam theory 
for dynamic analysis of two-layer composite beams with partial inter-
action. Regarding research on the application of the partial-composite 
theory to buckling and stability problems, a series of research works 
by Challamel and Girhammar [61–63] can be pointed out for, e.g., the 
linear in-plane and lateral-torsional buckling, and the geometrically 
nonlinear post-buckling analyses of two-layer partially-bonded imper-
fect columns based on the uniform and the differential shear deformable 
kinematics assumptions. Similar to [61], Le Grognec et al. [64] also 
investigated the in-plane buckling of two-layer partial-composite beams, 
considering the Engesser’s differential shear model and obtained similar 
results. The problem of thermal buckling of two-layer shear deformable 
beams with interlayer partial interaction imperfection was treated by 
Komijani et al. [65].

Despite several research in the literature addressing different aspects 
of the structural mechanic behavior of two-layer partial composites, less 
attention has been drawn to those having a higher number of consti-
tuting layers. A key reason is that the governing equations of the partial- 
composite theory are dependent on the number of constituting layers 
and, therefore, their complexity dramatically increases when the 

number of constituting layers is raised. For the research on three-layer 
partial-interaction composites, readers are directed to the recent 
research studies by Atashipour and his co-workers [66,67] for the 
structural bucking of shear deformable columns, and the heavy columns 
under varying axial compressive loads; Nguyen et al. [68] and Sun et al. 
[69] for the dynamic based on an analytical approach and a finite 
element (FE) model; and Lin et al. [70] for the static and vibration 
response and analyses using an FE technique. Also, Atashipour et al. 
[71] studied the weak shear web effects of a deep timber element in 
bending by modeling it as a three-layer composite beam with equivalent 
partial-bonding imperfection.

Due to the complexity of the governing equations of the multilayer 
structures with the interlayer partial interaction imperfection, the 
amount of published research in the literature for multilayer composites 
is limited, where they mostly suffer from a lack of general analytical 
solutions. Heinisuo [72] introduced an FE formulation for some partic-
ular three- and five-layered beam elements with some limitations on the 
shapes and properties of the cross-section; nevertheless, numerical in-
stabilities were reported. Krawczyk and his co-workers [73,74] devel-
oped a layerwise geometric nonlinear FE scheme for multilayer beams 
with partial interaction. Ranzi [75] also presented an FE formulation on 
the basis of the weak form and Euler-Bernoulli kinematic assumptions 
for the multilayer beams with partial interaction imperfection. Sousa Jr 
and da Silva [76] studied the static behavior of the general case of 
multilayered composite beams with interlayer slip based on analytical 
formulations and a numerical finite element solution approach. Also, 
based on Timoshenko’s kinematic assumptions, Keo et al. [77] presented 
a shear-deformable finite element formulation for multilayered beams in 
partial interaction. Recently, Adam et al. [78] studied moderately large 
vibrations of partial-composite layered beams using a semi-analytic 
solution for the symmetrically layered three-layer beams, and using 
Galerkin and Ritz numerical methods for a higher number of layers. 
Häggbom [79] derived the linear buckling governing differential 
equations of multilayer Euler columns with identical constituting layers 
and derived an analytical solution for the simply-supported members. 
Ylinen [80], reconsidered the same problem using the same methodol-
ogy, and obtained an alternative analytical formula. The methodology of 
Häggbom [79] and Ylinen [80] is based on the reduction of the coupling 
system of differential equations for the N-layer beam problem in a mixed 
spatial differential-difference equation. Assuming a trigonometric solu-
tion of the deflection in the longitudinal direction gives a difference 
equation to be solved in the transversal direction. The same methodol-
ogy was used by Bolotin [81] (see also Bolotin and Novichkov [82]) who 
also solved a difference equation for the static bending of multilayered 
plates with N identical layers. Recently, Peng et al. [83] analytically 
investigated the static bending of multilayered beams and plates under 
distributed load for N equivalent layers. Also, Shen et al. [84] studied 
the bending of multilayered beams with equivalent layers, using an 
equivalent approximate continuous beam model.

To the best of the authors’ knowledge, no exact analytical solutions 
and efficient explicit formulae for the buckling and vibrations of 
multilayer columns/beams having interlayer partial-interaction imper-
fection are available in the literature without limitation with respect to 
the number of constituting layers. To fill this apparent void, the present 
work is conducted to provide exact analytical solutions for buckling and 
vibrations of N-layer shear-deformable partial-composite columns/ 
beams for the first time. Accordingly, explicit buckling and vibration 
formulae are introduced in an efficient simple form without any 
approximation or limitation with respect to the number of constituting 
layers. An Euler-Bernoulli- (EBPC) and a Timoshenko/Engesser- 
hypothesis-based partial-composite (TEPC) model are developed to 
formulate the stability and vibration problems of columns and beams 
composed of any number of identical constituting layers, incorporating 
the effect of interlayer partial interaction imperfection. The governing 
differential equations of motions and boundary conditions are extracted 
using the extended Hamilton’s energy principle, and an exact analytical 
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solution scheme is implemented to solve the buckling and vibration 
problems for different boundary conditions. As a result, efficient con-
version coefficients are introduced in terms of some dimensionless group 
of parameters and the number of constituting layers, generalizing the 
well-known classical Euler- and Timoshenko buckling and vibration 
formulae to those of multilayer columns and beams incorporated the 
interlayer imperfect interaction effects. The coefficients are general in 
nature and are developed in terms of the “effective lengths” to capture 
different classical end conditions. Some important conclusions are 
drawn based on the presented numerical results.

2. Problem definition and fundamental assumptions

Consider a multilayer beam/column composed of N identical layers 
of thickness hℓ, width b and length L, as shown in Fig. 1. The origin of the 
coordinate axis z is located at the in-depth centroid of the full-composite 
section (cg,∞), and the zero-x- axis is located at one end of the multi-
layer (along the longitudinal direction), as indicated in Fig. 1.

Also, the distance between the centroid of the i-th layer (i.e., cg, i) to 
that of its adjacent is denoted by di/(i+1) which is obviously equal to hℓ 
due to the identical geometry of the layers. The subscript ’i + 1’ refers to 
the layer at the bottom of the i-th layer.

We employ the partial-composite theory in conjunction with both the 
Euler-Bernoulli- and the Timoshenko/Engesser shear models for each 
sub-element layer to incorporate the effect of interfacial bonding 
imperfection in the structural buckling and vibration analyses. The ki-
nematics of the present partial-composite multilayer model according to 
the shear deformable Timoshenko/Engesser hypothesis is illustrated in 
Fig. 2.

Obviously, the assumed kinematics is degraded to that of the EBPC 
model by disregarding the shear strains γ, as well as neglecting the ro-
tary inertia effects from the dynamic deformations.

In Fig. 2, VS,i/(i+1) (i = 1, 2,3, ...N − 1) is the interlayer shear force 
due to the partial interaction between the layers ’i’ and ʹi + 1ʹ. Also, Mi, 
NF,i and Vi (i = 1, 2,3, ...,N) are the internal bending moment, internal 
axial- and shear forces acting on the i-th layer, respectively. γ is the in- 
plane shear strain, and φ is the rotation due to the displacements in 
the layered beam/column elements and the additional shear strains, 

according to the Timoshenko/Engesser kinematics.
The interlayer shear force VS,i/(i+1) of the deformed multilayer 

element is correlated to the relative slip at the interface Δui/(i+1), 
generated as a result of the transverse displacements of the adjacent 
layers by the slip modulus k based on a linear shear spring model as [85]: 

VS,i/(i+1) = kΔui/(i+1) = k(ui+1 − ui + hℓwʹ), (i = 1,2, 3, ...,N − 1) (1) 

For the case of buckling problem, the total external axial compressive 
load, P0 =

∑N
i=1Pi, is assumed to be shared between all the layers, acting 

via their cross-sections’ centroid, as shown in Fig. 2. Obviously, no pre- 
buckling state requires that the shared load between the layers be pro-
portional to their axial stiffnesses, i.e. in a general state, 

P1/EA1 = P2/EA2 = ... = Pi/EAi = ... = PN− 1/EAN− 1 = PN/EAN (2) 

where Pi (i = 1, 2,3, ...N) is the load share carried by the i-th layer. It is 
noteworthy that this is a realistic assumption and valid until the bifur-
cation moment and buckling occurrence (see Challamel and Girhammar 
[61]). As the layers are assumed to be identical, their material properties 
are the same (Eℓ and Gℓ are the Young’s and shear moduli of each layer). 
Therefore, according to the fundamental assumption by Eq. (2), the axial 
compressive load will be identically distributed between the layers; i.e.: 
Pi = P0/N = Pℓ (i = 1,2, ...,N).

The total axial stiffness, EA0, shear stiffness, GA0, the total flexural 
rigidity of a layered beam/column with zero interlayer interaction (non- 
composite), EI0, are thus given as 

EA0 =
∑N

i=1
EAi = N(EAℓ) (3a) 

KsGA0 =
∑N

i=1
KsGAi = N(KsGAℓ) (3b) 

EI0 =
∑N

i=1
EIi = N(EIℓ) (3c) 

In Eq. (3b), Ks is the shear correction factor, a coefficient to compensate 

Fig. 1. Coordinate system and geometric configuration of the N-layer beam/column structural element with interfacial bonding imperfection.
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for the error due to the assumption of constant through-depth shear 
strains based on first-order shear deformation kinematics and is nor-
mally taken as 5/6 for the solid rectangular cross-sectional elements 
[11,86]. Furthermore, Iℓ in Eq. (3c) is the second moment of area of each 
individual layer. The flexural rigidity of a multilayer element with ideal/ 
perfect bonding and full-composite interaction at its interlayers (i.e., 
integrated cross-section), EI∞, is obviously given by 

EI∞ =
∑N

i=1

(
EIi + d2

cg/iEAi

)
= N3(EIℓ) (4) 

Also, the mass per unit length of a layered element, as well as the mass 

moment of inertia of a non-composite and full-composite beam/column 
element for dynamic effects are defined as 

ρA0 =
∑N

i=1
ρAi = N(ρAℓ) (5a) 

ρI0 =
∑N

i=1
ρIi = N(ρIℓ) (5b) 

ρI∞ =
∑N

i=1

(
ρIi + d2

cg/iρAi

)
= N3(ρIℓ) (5a) 

Fig. 2. Kinematics of the present partial-composite multilayer model based on the Timoshenko/Engesser hypothesis (degraded to the Euler-Bernoulli-based model by 
disregarding the shear strains γ and the rotary inertia).
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where ρ is the mass density of the constituting material of the layers.

3. Multilayer partial-composite model based on the Euler- 
Bernoulli hypothesis

We treat the problem of buckling and vibrations of multilayer com-
posite columns and beams with interlayer partial-interaction imperfec-
tion, composed of identical layers, first, according to an Euler-Bernoulli- 
kinematic-based partial-composite model and introduce simple 
formulae based on an exact analytical solution approach for the devel-
oped governing differential equations.

3.1. Governing differential equations and classic end conditions of the 
model

For the structural problem described in the previous section, the 
kinetic energy of the system, T, as well as the total potential energy in 
terms of the elastic strain energy, Ustr., and the energy of the external 
buckling loads, Uext., can be expressed in the form: 

(Ustr. + Uext.)[u1, u2, ..., ui, ..., uN− 1, uN,w]

=

∫ L

0

{
1
2

N(EIℓwʹ́2) +
1
2

EAℓ
∑N

i=1
u 2́

i

+
1
2
∑N− 1

i=1
k(ui+1 − ui + hℓẃ )

2

−
1
2

N(Pℓw 2́) + Pℓ
∑N

i=1
ú i

}

dx

(6a) 

T[u1, u2, ..., ui, ..., uN− 1, uN,w]

=

∫ L

0

{
1
2

ρAℓ
∑N

i=1
u̇2

i +
1
2

N(ρAℓẇ2
)

}

dx
(6b) 

where the displacement components w and ui indicate the transverse 
displacement of the multilayer and the axial displacement in the i-th 
layer, respectively. The over-script dots denote partial derivatives with 
respect to time t. It should be pointed out that the third energy term in 
Eq. (6a) is the potential energy due to the relative shear slips at the 
interlayers (see Eq. (1)), while the last energy term is due to the 
contribution of the interlayer shear slips to the energy of the external 
compressive loads.

Employing the extended Hamilton’s energy principle [87] as 

δ
∫ t2

t1
(T − Π)dt = 0 (7) 

in which Π = Ustr. +Uext. is the system’s total potential energy, in 
conjunction with Eq. (6a,b) yields the set of governing differential 
equations of motion and buckling of an N-layer beam/column, incor-
porating the effect of each layer’s longitudinal mass inertia in addition 
to the transverse vibration effects, in the form: 

EAℓuʹ́
1 + k(u2 − u1 + hℓwʹ) + Pʹ

ℓ = ρAℓü1, (i = 1)
⎧
⎨

⎩

EAℓuʹ́
i + k(ui+1 − 2ui + ui− 1) + Pʹ

ℓ = ρAℓüi,

i ∈ {2,3, ...,N − 1}

EAℓuʹ́
N − k(uN − uN− 1 + hℓwʹ) + Pʹ

ℓ = ρAℓüN, (i = N)

EI0w(4) − khℓ
∑N− 1

i=1

(
uʹ

i+1 − uʹ
i + hℓwʹ́)+ (P0wʹ)́ + ρA0ẅ = 0

(8) 

Moreover, at any end of the column/beam element, the geometric/ 
natural boundary conditions require the specification of: 

either δu1 = 0 or EAℓuʹ
1 + Pℓ = 0

either δu2 = 0 or EAℓuʹ
2 + Pℓ = 0

...

either δui = 0 or EAℓuʹ
i + Pℓ = 0

...

either δuN− 1 = 0 or EAℓuʹ
N− 1 + Pℓ = 0

either δuN = 0 or EAℓuʹ
N + Pℓ = 0

either δw = 0 or EI0wʹ́ʹ − khℓ
∑N− 1

i=1
(ui+1 − ui + hℓwʹ) + P0wʹ = 0

either δwʹ = 0 or wʹ́ = 0
(9) 

An exact solution scheme is implemented in the following for the 
buckling and vibration problems.

3.2. Exact solution approach for the buckling problem

3.2.1. Simply-supported columns
The set of boundary conditions of a layered simply-supported column 

according to the present Euler-Bernoulli-hypothesis based partial- 
composite (EBPC) model is deduced from Eq. (9) as 

uʹ
1

⃒
⃒
x=0,L = uʹ

2

⃒
⃒
x=0,L = ... = uʹ

i

⃒
⃒
x=0,L = ... = uʹ

N− 1

⃒
⃒
x=0,L = uʹ

N

⃒
⃒
x=0,L = −

P0

EA0

w|x=0,L = wʹ́ |x=0,L = 0
(10) 

An admissible solution for three-layer simply-supported partial- 
composite columns, corresponding to the critical buckling mode and 
“exactly” satisfying all the end conditions, was proposed in [66]. An 
extension of the displacement field can be formulated here as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

ui = −
Pℓ

EAℓ
x + Uicos

πx
L
,

i ∈ {1,2, ...,N}

w = Wsin
πx
L

(11) 

Evidently, the identical normal strains at both ends of the beam, based 
on the boundary conditions (10), gradually deviate from one layer to 
another at their inner points due to the shear interaction at the upper 
and/or bottom interfaces, resulting from the transverse displacements of 
the partial-composite elements (see Eq. (11)).

Substituting the shape functions (11) into Eq. (8) yields 

[1 + 1/(Nk)]U1 − U2 − (h/N)W = 0
{

Ui+1 − [2 + 1/(Nk)]Ui + Ui− 1 = 0,

i ∈ {2,3, ...,N − 1}

[1 + 1/(Nk)]UN − UN− 1 + (h/N)W = 0

UN − U1 + (h/N)

[

(N − 1) +
1

12k

(
1 − P0/P0

E,SS

)]

W = 0

(12a-d) 

where P0
E,SS = π2EI0/L2 is the classical Euler buckling formula for a 

simply-supported (SS) non-composite column (i.e., columns in which 
the layers are stacked on one another with zero interlayer interaction). 
Moreover, for generality and convenience, Eq. (12) was presented in 
terms of some essential dimensionless parameters in the present ana-
lyses, namely, the dimensionless thickness, h, and dimensionless inter-
layer slip parameter, k, in the form: 
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h = π hTot.

L
= Nπ hℓ

L

k =
1
π2

kL2

EA0
=

1
Nπ2

kL2

EAℓ

(13) 

The set of linear second-order difference Eq. (12b) (N − 2 equations) is 
fulfilled via an exact solution in the form [88] (see Appendix A for 
details): 
{

Ui = Acoshiθ + Bsinhiθ,
i ∈ {1,2,3, ...,N}

(14) 

Upon substitution of the solution (14) into the set of Eq. (12b), and using 
the standard hyperbolic angle addition/subtraction formulae, the 
following equation is deduced 

{1/(Nk) + 2(1 − coshθ)}(Acoshiθ + Bsinhiθ)
= {1/(Nk) + 2(1 − coshθ)}Ui = 0

(15) 

The nontrivial condition for the above equation (i.e., Ui ∕= 0) is to set: 

θ = cosh− 1
[1 + 1/(2Nk)] (16) 

The θ parameter (also defined in Appendix A) obviously depends on the 
number of layers and the dimensionless interlayer slip parameter. 
Satisfaction of the remaining governing equations, i.e. Eqs. (12a,c-d) is 
pursued through the following nontrivial solution:  

It is easy to show that the solution of Eq. (17) for the critical buckling 
load can be presented after replacing Eq. (16) and performing some 
manipulations in the following compact form: 

P
P0

E,SS
= 1+ 12k

(

N −
tanhNθ/2
tanhθ/2

)

(18) 

where P0
E,SS = π2EI0/L2 is the classic Euler bucking formula for a non- 

composite column comprised of N non-interacting layers.

3.2.2. Cantilever (clamped-free) columns
For a cantilever partial-composite column composited of N layers 

which is built-in at its lower end and is unrestrained against lateral/ 
shear forces at its upper end where the compressive load is applied, the 
boundary conditions from Eq. (9) can be extracted as 

at Clamped end (x = 0):
u1|x=0 = u2|x=0 = ... = ui|x=0 = ... = uN− 1|x=0 = uN|x=0 = 0
w|x=0 = 0
wʹ|x=0 = 0

(19a-c) 

at Free end (x = L):

uʹ
1

⃒
⃒
x=L = uʹ

2

⃒
⃒
x=L = ... = uʹ

i

⃒
⃒
x=L = ... = uʹ

N− 1

⃒
⃒
x=L = uʹ

N

⃒
⃒
x=L = −

P0

EA0

wʹ́ |x=L = 0

EI0wʹ́ʹ − khℓ
∑N− 1

i=1
(ui+1 − ui + hℓwʹ) + P0wʹ

⃒
⃒
⃒
⃒
⃒
x=L

= 0

(19d-f) 

The last of the above boundary equations for the column’s free end (i. 
e., Eq. (19f)) is related to the zero-shear force condition. To treat this 
boundary equation, we refer to the last of the system’s governing 
equation (8) for the buckling problem (i.e., in the absence of the time- 
dependent terms), and rewrite it, by expanding the series, as 

EI0w(4) − khℓ
(
uʹ

N − uʹ
1
)
+
[
P0 − (N − 1)kh2

ℓ
]
wʹ́ = 0 (20) 

Integrating Eq. (20) once with respect to x will result in an identical 
equation to the boundary equation (19f) in which the integration con-
stant must set to be zero. Recalling the boundary equations (19d,e) for 
the free column-end condition, the second and third terms of Eq. (20) 
will obviously vanish at x = L and consequently, it requires that the 
following conditions be satisfied for a free end: 

w(4)
⃒
⃒
x=L = 0 (21) 

Thus, the boundary Eq. (19f) can be replaced with Eq. (21) for a free end. 

A possible buckling shape function for the columns displacement com-
ponents that exactly satisfies the described cantilever columns’ bound-
ary conditions may be introduced as (see [66]): 
⎧
⎪⎪⎨

⎪⎪⎩

ui = −
Pℓ

EAℓ
x + Uisin

πx
2L

,

i ∈ {1,2,3, ...,N}

w = W
(

cos
πx
2L

− 1
)

(22) 

Substituting the buckling shape function by Eq. (22) into the governing 
Eqs. (8) and using the definition of dimensionless thickness, h, and 
dimensionless interlayer slip parameter, k, from Eq. (13), yields 

[2 + 1/(2Nk)]U1 − 2U2 + (h/N)W = 0
{

Ui+1 − [2 + 1/(4Nk)]Ui + Ui− 1 = 0,

i ∈ {2,3, ...,N − 1}

[2 + 1/(2Nk)]UN − 2UN− 1 − (h/N)W = 0

2(UN − U1) − (h/N)

[

(N − 1) +
1

48k

(
1 − P0/P0

E,CF

)]

W = 0

(23) 

in which P0
E,CF = π2EI0/(4L2) is the classic Euler bucking formula for a 

non-composite cantilever (clamped-free) column composed of N non- 
interacting layers.

The set of Eqs. (23b) can be fulfilled in a similar manner via the 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

cosh2θ −

(

1 +
1

Nk

)

coshθ sinh2θ −

(

1 +
1

Nk

)

sinhθ
1
N

h
(

1 +
1

Nk

)

coshNθ − cosh(Nθ − θ)
(

1 +
1

Nk

)

sinhNθ − sinh(Nθ − θ)
1
N

h

coshNθ − coshθ sinhNθ − sinhθ
1
N

h

[

(N − 1) −
1

12k

(
P

P0
E,SS

− 1

)]

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 (17) 
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solution approach given in Eq. (14). Introducing Eq. (14) into Eq. (23b) 
and performing some mathematical operations, the coefficients Ui in the 
displacement field (22) will be determined as 
⎧
⎨

⎩

Ui = Acosh
{
icosh− 1

[1 + 1/(8Nk)]
}

+ Bsinh
{
icosh− 1

[1 + 1/(8Nk)]
}
,

i ∈ {1,2, 3, ...,N}

(24) 

in which A and B are two constant coefficients. Satisfying the remaining 
Eqs. (23a,c,d) in a nontrivial solution in conjunction with Eq. (24) will 
result in a determinant equation, where the solution can be represented 
as follows 

P
P0

E,CF
= 1 + 12ke

(

N −
tanhNθe/2
tanhθe/2

)

:

θe = cosh− 1
[1 + 1/(2Nke)]

(25) 

where the effective dimensionless thickness, he, and interlayer slip 
parameter, ke, are defined as 

he = π hTot.

Le
= Nπ hℓ

Le

ke =
1
π2

kL2
e

EA0
=

1
Nπ2

kL2
e

EAℓ

(26) 

and Le = 2L is the “effective buckling length” for a cantilever (clamped- 
free) column. Obviously, P0

E,CF is the classic Euler buckling formula for 
the mentioned end conditions [42,89]: 

P0
E,CF =

π2EI0
L2

e
, Le = 2L (27) 

3.2.3. Other classical boundary conditions
The solution presented in the previous subsections can be applied to 

other classical boundary conditions in terms of the effective buckling 
length. Based on Eq. (9), the set of boundary conditions for a clam-
ped–clamped (CC) multilayer partial-composite Euler column can be 
given as 

u1|x=0 = u2|x=0 = ...ui|x=0 = ... = uN− 1|x=0 = uN|x=0 = 0
uʹ

1

⃒
⃒
x=L = uʹ

2

⃒
⃒
x=L = ... = uʹ

i

⃒
⃒
x=L = ... = uʹ

N− 1

⃒
⃒
x=L = uʹ

N

⃒
⃒
x=L = − P0/EA0

w|x=0,L = wʹ|x=0,L = 0
(28) 

and for a clamped-sliding column (CS): 

u1|x=0 = u2|x=0 = ...ui|x=0 = ... = uN− 1|x=0 = uN|x=0 = 0
uʹ

1

⃒
⃒
x=L = uʹ

2

⃒
⃒
x=L = ... = uʹ

i

⃒
⃒
x=L = ... = uʹ

N− 1

⃒
⃒
x=L = uʹ

N

⃒
⃒
x=L = − P0/EA0

w|x=0 = wʹ|x=0,L = {wʹ́ʹ − [khℓ/(EI0)](uN − u1)} |x=L = 0
(29) 

Admissible displacement fields for the above end cases can be consid-
ered as follows [66], 

For CC case:
⎧
⎪⎪⎨

⎪⎪⎩

ui = −
Pℓ

EAℓ
x + Uisin

2πx
L

,

i ∈ {1,2, 3, ...,N}

w = W
(

cos
2πx
L

− 1
)

(30a) 

For CS case:
⎧
⎪⎪⎨

⎪⎪⎩

ui = −
Pℓ

EAℓ
x + Uisin

πx
L
,

i ∈ {1,2,3, ...,N}

w = W
(

cos
πx
L

− 1
)

(30b) 

It is noteworthy that the considered particular displacement solution by 
Es. (30a) exactly fulfills all the boundary conditions of a CC case ac-
cording to Eq. (28) except the axial conditions at x = L (i.e., uí

⃒
⃒
x=L =

− P0/EA0). However, as the generalized kinematic boundary conditions 
are fulfilled in the clamped–clamped case, an analytical solution based 
on the considered displacement field is still valid and yields slightly 
upper-bound, but accurate, buckling results compared to an exact 
numerical-based solution. In this regard, readers are referred to [61] for 
a comparative study and discussion on the buckling of two-layer CC 
columns when the mentioned axial natural boundary conditions are not 
fulfilled, in comparison with the exact numerical solutions in [55].

It should also be clarified that the proposed displacement functions 
by Eq. (30b) for a clamped-sliding (CS) multilayer partial-composite 
Euler column exactly satisfy all the boundary conditions, including the 
last of Eq. (29) which is related to free-shear force at the unguided 
sliding upper end (x = L). This is true and valid, as the value of axial 
displacement in compression at the sliding end is equal for all layers due 
to the geometric constraints of a sliding end while the lower end is 
clamped; consequently, the term (uN − u1) in the mentioned boundary 
equation vanishes.

Pursuing similar solution procedure introduced in the previous 
subsections in conjunction with the displacement field Eqs. (30a,b) for 
the clamped–clamped (CC) or clamped-sliding (CS) columns reveals that 
the obtained buckling formulae in terms of the “effective buckling length” 
are still valid and applicable for different end cases (Le = L for a simply- 
supported (SS) or clamped-sliding (CS), Le = 2L for clamped-free (CF), 
and Le = 0.5L for clamped–clamped (CC)). Evidently, the solution pre-
sented in this paper is not applicable to a clamped-pinned case. How-
ever, the effective length Le = 0.7L may provide a good approximation 
for such a case (see Atashipour et al. [66]).

3.3. A note on the partial-composite buckling formulae

The buckling formulae in the previous sections can also be expressed 
in a generalized more efficient form as 

PImp.
E = ηpc− 0P0

E (31) 

where PImp.
E is the critical buckling load of imperfectly-bonded layered 

partial-composite columns, in terms of that of the classical non- 
composite Euler columns, P0

E. Also, ηpc− 0 is a dimensionless coefficient, 
converting the classical Euler buckling equation for an N-layer non- 
composite (zero-interaction) column to that of a partial-composite 
(PC) column, and is given in the following exact form (see Appendix B 
for details): 

ηpc− 0 = 1 + 12ke

(

N − νe
(1 + νe + 2Nke)

N
− (2Nke)

N

(1 + νe + 2Nke)
N
+ (2Nke)

N

)

:

νe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 4Nke

√
(32) 

and ke is given by Eq. (26). Obviously, the classical Euler buckling load 
for layered columns with non-composite interlayer interaction is 
expressed as 

P0
E =

π2EI0
L2

e
(33) 
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where Le is the “effective buckling length”, defined for different end con-
ditions as described in the previous sections.

The buckling equation (31) can be redefined with respect to the 
buckling of perfect columns having full-composite interaction between 
the layers and, therefore, having fully integrated sections (i.e., perfect 
bonding at the interlayers). This can be represented as 

PImp.
E = ηpc− ∞P∞

E (34) 

in which the dimensionless conversion coefficient ηpc− ∞, is a reduction 
factor (taken a value between zero and unity), recasting the classical 
Euler buckling equation for an N-layer ideal “full-composite” column to 
that of a partial-composite (PC) column, and is correlated to ηpc− 0 as 
ηpc− ∞ = ηpc− 0/N2.

The Euler critical buckling loads of full-composite columns in terms 
of the effective buckling length, Le, are given as [42,89]: 

P∞
E =

π2EI∞

L2
e

(35) 

The conversion coefficient ηpc− 0 by Eq. (32) (as well as and ηpc− ∞) can be 
further simplified for any specific number of constituting layers, as 
presented in Table 1.

3.4. Exact solution approach for the vibration problem

A general solution can be developed for the linear vibration response 
of N-layer beam elements with partial-composite imperfection at the 
layers’ interfaces based on the EBPC model introduced in the previous 
sections.

The structural system’s displacements are assumed here to vary 
harmonically with respect to the time variable, t, using the separation of 
variables method, as follows 
⎧
⎨

⎩

ui(x, t) = ũi,n(x)ejωnt ,

i ∈ {1,2, ...,N}

w(x, t) = w̃n(x)ejωnt , j =
̅̅̅̅̅̅̅
− 1

√

(36) 

where ωn = 2πfn is the n-th vibration mode’s natural angular frequency 
of the layered beams. Substituting Eq. (36) into the set of governing 
differential equations (8), in the absence of any external loads, yields 

EAℓũʹ́ 1,n +
(
ρAℓω2

n − k
)
ũ1,n + kũ2,n + hℓkw̃ʹn = 0, (i = 1)

⎧
⎪⎨

⎪⎩

kũi+1,n + EAℓũʹ́ i,n +
(
ρAℓω2

n − 2k
)
ũi,n + kũi− 1,n = 0,

i = 2,3, ...,N − 1

EAℓũʹ́
N,n +

(
ρAℓω2

n − k
)
ũN,n + kũN− 1,n − hℓkw̃ʹ

n = 0, (i = N)

EI0w̃(4)
n − khℓ

∑N− 1

i=1

(

ũʹ
i+1,n − ũʹ

i,n + hℓw̃ʹ́
n

)

− ρA0ω2
nw̃n = 0

(37) 

In the following, we treat the classical simply-supported end case and 
next generalize it to serve as a flexible solution, covering different end 
conditions.

With inspiration from the solution conducted in sub-section 3.2.1, an 
admissible displacement field for the vibration modes of a simply- 
supported beam that exactly satisfies the boundary constraints (10) is 
considered here in the form: 
⎧
⎨

⎩

ũi,n =
(

Ãncoshiθn + B̃nsinhiθn

)
cosλnx,

i ∈ {1,2, ...,N}

w̃n = W̃nsinλnx, (λn = nπ/L)

(38) 

and Ãn and B̃n are constant coefficients. The set of Eqs. (37b) can be 
exactly satisfied and vanish upon substitution of the proposed solution 
(38), if we set: 

θn = cosh− 1
[

1 +
1

2Nk
(n2 − ω2

n)

]

(39) 

where the dimensionless frequency ωn is defined as 

ωn =
1
π L

̅̅̅̅̅̅̅̅
ρ/E

√
ωn (40) 

and any other previously-defined dimensionless parameters (see Eq. 
(13)) are valid and applicable in this section as well.

Table 1 
The buckling formulae for the Euler-Bernoulli-hypothesis-based partial-composite layered columns with a specific number of constituting layers, deduced from Eq. 
(32) (α = Nke).

No. of columns constituting layers (N)

N = 1 N = 2 N = 3 N = 4

ηpc− 0 1 1 + 8α
1 + 2α

1 + 9α
1 + α

1 + 13α + 32α2

1 + 4α + 2α2

ηpc− ∞ 1 1 + 8α
4 + 8α

1 + 9α
9 + 9α

1 + 13α + 32α2

16 + 64α + 32α2

 N = 5 N = 6 N = 7 …

ηpc− 0 1 + 12.6α + 25α2

1 + 3α + α2
1 + 16α + 65α2 + 72α3

1 + 6α + 9α2 + 2α3
1 + 15.3α + 54α2 + 49α3

1 + 5α + 6α2 + α3
…

ηpc− ∞ 1 + 12.6α + 25α2

25 + 75α + 25α2
1 + 16α + 65α2 + 72α3

36 + 216α + 324α2 + 72α3
1 + 15.3α + 54α2 + 49α3

49 + 245α + 294α2 + 49α3
…
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Substituting the solution (38) in conjunction with Eq. (39) into the 
remaining three equations (37a,c,d), and applying a non-trivial solution 
by collecting the coefficients of displacement factors Ãn, B̃n and W̃n will 
result in the following determinant equation  

This will result in a transcendental characteristic equation whose roots 
are the natural frequencies for different vibration modes as 

1 +

(
N2

n2h
2
k

ω2
n −

n2

12k
− N

)
tanhθn/2

tanhNθn/2
= 0 :

θn = cosh− 1
[

1 +
1

2Nk
(n2 − ω2

n)

] (42) 

As will be demonstrated in Section 5, the effect of the beam layers’ 
longitudinal mass inertia on the vibration of partial-composite beams is 
negligible in comparison with those of transverse vibration effects. 
Therefore, an approximate but accurate solution for the vibration fre-
quencies can be represented in closed form as 

ωn,E,SS =
nh

2
̅̅̅
3

√
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n2 + 12k
(

N −
tanhNθn/2
tanhθn/2

)√

:

θn = cosh− 1[1 + n2/(2Nk)
]
,

(n = 1,2, ...)

(43) 

A remark on other classical conditions is given in Appendix C.

3.5. A note on the partial-composite vibration formulae

For generality and convenience in modal dynamic applications, we 
introduce the natural frequencies of a flexible N-layer partial-composite 
beam in the form of a modified classical Euler-Bernoulli beam vibration 
formula as 

ωImp.
n,E = κpc− 0ω0

n,E, (n = 1,2, 3, ...) (44) 

where ω0
n,E is the n-th vibration mode’s natural frequency of an Euler- 

Bernoulli beam with “zero-composite interaction” at its interlayers; i. 
e. [44], 

ω0
n,E =

n2π2

L2
e

̅̅̅̅̅̅̅̅
EI0
ρA0

√

(45) 

and κpc− 0 is the conversion factor, replicating the natural frequencies of 

an N-layer beam with partial-composite interaction at its constituting 
layers’ interfaces, and is expressed in the form (similar procedure to 
what presented in Appendix B): 

κpc− 0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
12ke

n2

(

N −
ce

n
(n2 + nce + 2Nke)

N
− (2Nke)

N

(n2 + nce + 2Nke)
N
+ (2Nke)

N

)√
√
√
√ :

ce =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n2 + 4Nke

√
(46) 

where n and N are the layered element’s vibration mode number and the 
number of layers, respectively, as indicated previously. Also, the 
dimensionless interlayer partial-interaction modulus ke is given by Eq. 
(26). Obviously, the effective eigenmode length, Le, can be chosen to 
reflect an appropriate end case; see subsection 3.4.2. It is noteworthy 
that κpc− 0⩾1, and the lower-bound unity reflects a case in which the 
frictionless layers lay one another without any interaction.

Eq. (44) can be reformulated to capture the vibration frequencies of 
N-layer partial-composite beams in terms of those of the classical Euler- 
Bernoulli’s beam with perfect bonding and full-composite interaction in 
between the layers, ω∞

n,E, as 

ωImp.
n,E = κpc− ∞ω∞

n,E, (n = 1,2, ...) (47a) 

ω∞
n,E =

n2π2

L2
e

̅̅̅̅̅̅̅̅
EI∞

ρA0

√

(47b) 

It is easy to show that the conversion coefficient κpc− ∞ can be expressed 
as κpc− ∞ = κpc− 0/N.

For a layered beam with a specific number of constituting layers, 
conversion coefficients ηpc− 0 and ηpc− ∞ can be expressed in a simple 
condensed form by performing mathematical manipulations on Eq. (54), 
as given in Table 2.

Table 2 
The vibrations frequency formulae for the Euler-Bernoulli’s partial-composite beams composed of a specific number of constituting layers, directly deduced from Eq. 
(46) (α = Nke).

No. of columns constituting layers (N)
N = 1 N = 2 N = 3 N = 4

κpc− ∞ 1 1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + 8α
n2 + 2α

√
1
3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2 + 9α
n2 + α

√
1
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n4 + 13n2α + 32α2

n4 + 4n2α + 2α2

√

 N = 5 N = 6 N = 7 …

κpc− ∞ 1
5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n4 + 12.6n2α + 25α2

n4 + 3n2α + α2

√
1
6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n6 + 16n4α + 65n2α2 + 72α3

(n4 + 4n2α + α2)(n2 + 2α)

√
1
7

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n6 + 15.3n4α + 54n2α2 + 49α3

n6 + 5n4α + 6n2α2 + α3

√
…

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

cosh2θn −

[

1 +
1

Nk
(
n2 − ω2

n
)
]

coshθn sinh2θn −

[

1 +
1

Nk
(
n2 − ω2

n
)
]

sinhθn
n
N

h
[

1 +
1

Nk
(
n2 − ω2

n
)
]

coshNθn − cosh(Nθn − θn)

[

1 +
1

Nk
(
n2 − ω2

n
)
]

sinhNθn − sinh(Nθn − θn)
n
N

h

coshNθn − coshθn sinhNθn − sinhθn
n
N

h
[

(N − 1) +
1
12

1
k

(

n2 −
3

h
2(2N/n)2ω2

n

)]

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0

(41) 
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4. Partial-composite model based on Timoshenko/Engesser 
hypothesis

In this section, we introduce exact buckling and vibration formulae 
for multilayer columns and beams that consist of any arbitrary number 
of layers, incorporated the interfacial bonding imperfection effects 
based on the partial-composite theory in conjunction with the Timo-
shenko/Engesser kinematic hypothesis (see Fig. 2).

4.1. Governing differential equations and classic end conditions

The structural system’s total potential energy (in terms of the elastic 
strain energy, Ustr., and the potential energy of the external compressive 
buckling loads, Uext.) and the kinetic energy, T, related to the described 
model in Section 2 can be defined as follows, 

(Ustr. + Uext.)[u1, u2, ..., ui, ..., uN− 1, uN,w,φ]

=

∫ L

0

{
1
2

N(EIℓφ 2́) +
1
2

EAℓ
∑N

i=1
u 2́

i

+
1
2

N
[
KsGAℓ(φ + ẃ )

2
]

+
1
2
∑N− 1

i=1
k(ui+1 − ui − hℓφ)2

−
1
2

N(Pℓw 2́) + Pℓ
∑N

i=1
ú i

}

dx

(48a) 

T[u1, u2, ..., ui, ..., uN− 1, uN,w,φ]

=

∫ L

0

{
1
2

ρAℓ
∑N

i=1
u̇2

i +
1
2

N(ρAℓẇ2
) +

1
2

N(ρIℓφ̇2)

}

dx
(48b) 

which clearly includes the bending, normal, and shear strain energies of 
each layer, the translational and rotational dynamic energies of all 
layers, the energy associated with the work done by the axial 
compressive external loads for both in-plane- and transverse displace-
ments, as well as the energy stored at the layers’ interfaces corre-
sponding to the imperfect bonding between the layers and their 
subsequent partial interaction behavior. Also, Ks is the shear correction 
factor, as mentioned earlier (see Section 2). It is noteworthy that any 
other parameters and functions in Eq. (48) are defined in Sections 2 and 
3.1.

Applying the extended Hamilton’s variational energy principle to 
Eqs. (48a,b), the set of N+2 governing differential equations of the 
model are obtained in the form: 

EAℓuʹ́
1 + k(u2 − u1 − hℓφ) + Pʹ

ℓ = ρAℓü1, (i = 1)
⎧
⎨

⎩

EAℓuʹ́
i + k(ui+1 − 2ui + ui− 1) + Pʹ

ℓ = ρAℓüi,

i ∈ {2,3, ...,N − 1}

EAℓuʹ́
N − k(uN − uN− 1 − hℓφ) + Pʹ

ℓ = ρAℓüN, (i = N)

EI0φʹ́ + hℓk
∑N− 1

i=1
(ui+1 − ui − hℓφ) − KsGA0(φ + wʹ) = ρI0φ̈

KsGA0(φ + wʹ)́ − (P0wʹ)́ = ρA0ẅ

(49) 

and at any end of the partial-composite beam, the boundary conditions 
require the specification of: 

either δu1 = 0 or EAℓuʹ
1 + Pℓ = 0

either δu2 = 0 or EAℓuʹ
2 + Pℓ = 0

...

either δui = 0 or EAℓuʹ
i + Pℓ = 0

...

either δuN− 1 = 0 or EAℓuʹ
N− 1 + Pℓ = 0

either δuN = 0 or EAℓuʹ
N + Pℓ = 0

either δw = 0 or KsGA0(φ + wʹ) − P0wʹ = 0
either δφ = 0 or φʹ = 0

(50) 

In the following, a generalized solution approach is implemented to the 
model’s governing equations with application to both stability, and 
modal dynamic and vibration problems.

4.2. Exact solution approach for the buckling problem

It can be shown that the concept of the effective length is valid here 
analogously to what was presented in the previous sections based on 
EBPC hypothesis. Thus, for the generality of the formulation and brevity, 
we proceed with the simply-supported case with the effective length Le. 
From Eq. (50), it can be deduced that the boundary conditions related to 
a simply-supported (SS) case are given as 

uʹ
1

⃒
⃒
x=0,L = uʹ

2

⃒
⃒
x=0,L = ... = uʹ

i

⃒
⃒
x=0,L = ... = uʹ

N− 1

⃒
⃒
x=0,L = uʹ

N

⃒
⃒
x=0,L = −

P0

EA0

w|x=0,L = φʹ|x=0,L = 0
(51) 

A set of admissible inverse solutions, which capture the critical buckling 
mode and exactly satisfy all the end conditions (51), can be considered 
in terms of the effective length Le, as 
⎧
⎪⎨

⎪⎩

ui = −
Pℓ

EAℓ
x + Uicos

πx
Le
,

i = 1, 2, ...,N

φ = Φcos
πx
Le

w = Wsin
πx
Le

(52) 

Substituting the above set of shape functions into Eqs. (49) in the 
absence of dynamic terms, and using some effective dimensionless group 
of parameters yields 

[1 + 1/(Nke)]U1 − U2 + (hℓΦ) = 0
{

Ui+1 − [2 + 1/(Nke)]Ui + Ui− 1 = 0,

i = 2,3, ...,N − 1

[1 + 1/(Nke)]UN − UN− 1 − (hℓΦ) = 0

(UN − U1) −

[

(N − 1) +
1

12ke
+ N2Ks

G

h
2
eke

]

(hℓΦ) − NKs
G

heke
W = 0

12N3Ks
G

h
3
e

(hℓΦ) +

(

12N2Ks
G

h
2
e

−
P0

P0
E,e

)

W = 0

(53) 

where the dimensionless thickness, he, and dimensionless interlayer 
slip parameter, ke, are given by Eq. (26), and the dimensionless shear 
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modulus G = G/E.
It can be proven that the set of governing Eqs. (53b) can be exactly 

satisfied if we set the axial displacement coefficients Ui in Eq. (52) to be: 
⎧
⎨

⎩

Ui = Acosh
{
icosh− 1

[1 + 1/(2Nke)]
}

+ Bsinh
{
icosh− 1

[1 + 1/(2Nke)]
}
,

i ∈ {1,2, 3, ...,N}

(54) 

Satisfying the remaining Eqs. (53a,c-e) through a non-trivial solution for 
the coefficients of the displacement components vector [A, B, Φ, W]

T, 
after substitution of the solution (54), will result in the following 
determinant-form characteristic equation:  

where θe is defined by the last of Eq. (25). It can be shown that the 
exact solution of the characteristic Eq. (55) for the critical buckling load 
of an N-layer partial-composite Timoshenko/Engesser column can be 
presented in a compact form as 

P
P0

E,e
=

(

12N2Ks
G
h

2
e

)[

1 + 12ke

(

N −
tanhNθe/2
tanhθe/2

)]

(

12N2Ks
G
h

2
e

)

+

[

1 + 12ke

(

N −
tanhNθe/2
tanhθe/2

)] (56) 

in which the equivalent dimensionless thickness he and interfacial slip 
modulus ke are defined by Eq. (26), and the parameter θe is given by the 
last of Eq. (25).

4.3. A note on the partial-composite buckling formulae based on 
Timoshenko/Engesser partial-composite (TEPC) model

The buckling formulae introduced in the previous section for the N- 
layer columns with bonding imperfection at their interlayers, can be 
expressed in a simple efficient form as 

PImp.
T = ψT− Eηpc− 0P0

E : P0
E = π2EI0/L2

e (57) 

where PImp.
T is the critical buckling loads of a Timoshenko/Engesser- 

based multilayer columns with imperfect bonding at their layers’ in-
terfaces; ψT− E is a coefficient enhancing the previously developed Euler- 

based buckling formula of an N-layer partial-composite column to that 
of shear deformable TEPC model. Rearranging Eq. (56) from the previ-
ous section, the coefficient ψT− E can be represented in a simple form as 

ψT− E =

[

1 +
ηpc− 0

12N2KsG*

]− 1

(58) 

where 

G* = G/h
2
e =

1
π2

G
E

L2
e

h2
Tot.

(59) 

As described in Section 3.3, the dimensionless coefficient ηpc− 0 in the 

above equations converts the classical Euler buckling formula for an N- 
layer non-composite (zero-interaction between the layers) column (i.e., 
P0

E = π2EI0/L2
e ) to that of a partially-composite (PC) column. It is 

reminded that the definition of the factor ηpc− 0 is given by Eq. (32) (see 
also Table 1 in Section 3.3). For the definition of the dimensionless 
parameters he and he in terms of the “effective buckling length” Le, 
(capturing different end conditions as described in Sections 3.2), see Eq. 
(26). Moreover, the shear-to-Young’s modulus ratio G = G/E.

The simple buckling equation (57) can also be redefined with respect 
to the buckling of perfect columns with full-composite interaction at the 
interlayers as 

PImp.
E = ψT− Eηpc− ∞P∞

E : P∞
E = π2EI∞/L2

e (60) 

As described in Section 3.3, the dimensionless coefficient ηpc− ∞ converts 
the classical Euler buckling equation for an N-layer “full-composite” 
column to that of a partial-composite (PC) column and is given as 
ηpc− ∞ = ηpc− 0/N2.

4.4. Exact solution approach for the vibration problem

An exact analytical solution is developed here for the linear vibration 
problem of N-layer beams with interlayer partial interaction imperfec-
tion based on the previously developed TEPC model in Section 4.1. 
Assuming harmonic motions, the displacement- and rotation compo-
nents of the structural system can be described as 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

cosh2θe −

(

1 +
1

Nke

)

coshθe sinh2θe −

(

1 +
1

Nke

)

sinhθe − 1 0

(

1 +
1

Nke

)

coshNθe − cosh(Nθe − θe)

(

1 +
1

Nke

)

sinhNθe − sinh(Nθe − θe) − 1 0

coshNθe − coshθe sinhNθe − sinhθe −

(

N2Ks
G

h
2
eke

+ N +
1

12ke
− 1

)

− NKs
G

heke

0 0 12N3Ks
G

h
3
e

(

12N2Ks
G

h
2
e

−
P

P0
E,e

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 (55) 
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⎧
⎨

⎩

ui(x, t) = ũi,n(x)ejωnt ,

i = 1, 2, ...,N

φ(x, t) = φ̃n(x)ejωnt ,

w(x, t) = w̃n(x)ejωnt , j =
̅̅̅̅̅̅̅
− 1

√

(61) 

in which ωn = 2πfn is obviously the n-th vibration mode’s natural 
angular frequency of the beam. Substituting Eq. (61) into the governing 
equations (49), in the absence of the external axial compressive loads 
yields 

EAℓũʹ́
1,n +

(
ρAℓω2

n − k
)
ũ1,n +kũ2,n − hℓkφ̃n =0

⎧
⎪⎨

⎪⎩

kũi+1,n +EAℓũʹ́ i,n +
(
ρAℓω2

n − 2k
)
ũi,n +kũi− 1,n =0,

i= 2,3, ...,N − 1

EAℓũʹ́
N,n +

(
ρAℓω2

n − k
)
ũN,n +kũN− 1,n +hℓkφ̃n =0

EI0φ̃ʹ́
n +
(
ρI0ω2

n − KsGA0
)
φ̃n +hℓk

∑N− 1

i=1

(

ũi+1,n − ũi,n − hℓφ̃n

)

− KsGA0w̃ʹ
n = 0

KsGA0

(

φ̃n + w̃ʹ
n

)ʹ
+ρA0ω2

nw̃n =0

(62) 

In the following, we treat the vibration problem of the layered beam 
element with the classical simply-supported end conditions, and next, 
generalize the solution to be served for different end conditions.

Similar to the previous solutions, we conduct a generalized vibration 
solution in terms of the effective length to cover different classical end 
conditions. A set of admissible shape functions for the displacement- 
field components of a vibrating simply-supported beam, that exactly 
satisfies the boundary conditions (51), is considered here as 

Fig. 3. The parallel rows of mechanical connectors are modeled here as parallel chains of shear springs connected in series between each pair of adjacent 
stacked layers.

Table 3 
The imperfect partial-composite (interlayer slip) modulus, measured in [92] for 
three different connector materials, and via two different approaches: the direct 
double shear joint test (kDirect), and the beam test method (kBT).

Connector kDirect kBT

Rubber 3.62 MPa 4.83 MPa
Polyethylene 18.96 MPa 26.2 MPa
Nylon 620.53 MPa 1034.2 MPa

Table 4 
Comparison of the fundamental natural frequencies (f = ω/(2π) [Hz]) of a three-layer partial-composite beam made of aluminum layers, with three different types of 
discrete mechanical connectors, predicted via the present approaches (N = 3: three-layer; n = 1; fundamental frequency) and those experimentally measured from 
vibration tests, reported in [92].

Approach Connectors material
Rubber Polyethylene Nylon

Vibration test [92] 5.35 ± 0 7.25 ± 2 12.9 ± 1
Present (f Imp.

n,E (kDirect)) * [Diff (%)] † 5.30 [-1.0 %] 6.68 [-7.8 %] 13.25 [2.7 %]

Present (f Imp.
n,E (kBT)) * [Diff (%)] † 5.43 [1.4 %] 7.17 [-1.0 %] 13.73 [6.4 %]

Present (f Imp.
n,T (kDirect)) ** [Diff (%)] † 5.30 [-1.0 %] 6.68 [-7.8 %] 13.25 [2.7 %]

Present (f Imp.
n,T (kBT)) ** [Diff (%)] † 5.43 [1.4 %] 7.17 [-1.0 %] 13.73 [6.4 %]

* Euler-Bernoulli-based partial-composite (EBPC) model (Eq. (44)).
** Timoshenko/Engesser-based partial-composite (TEPC) model (Eq. (67)).
† Percentage discrepancy relative to the test data: |(present - test data [92])/test data [92]|×100(%).
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⎧
⎨

⎩

ũi,n =
(

Ãncoshiθn,e + B̃nsinhiθn,e

)
cosλn,ex,

i = 1, 2, ...,N

φ̃n = Φ̃ncosλn,ex

w̃n = W̃nsinλn,ex, λn,e = nπ/Le

(63) 

Also, Ãn and ̃Bn are constant coefficients of the axial displacements of the 
beam’s n-th vibration mode, and Φ̃n and W̃n are those for the rotations 
and transverse displacements, respectively. The set of Eqs. (62b) van-
ishes upon substitution of the solution (63), if we set: θn,e =

cosh− 1[1 + (n2 − ω2
n)/(2Nke)

]
. The dimensionless frequency, ωn, is 

defined according to Eq. (40). It is noteworthy that any other previously 
defined dimensionless parameters are also valid and applicable here. 
Satisfying the remaining four differential equations (62a,c-e) through 
substitution of the defined displacement and rotation relationships (63) 
and using the definition of θn,e in the form of a non-trivial solution yields:  

Rearranging the above determinant equation and performing some 
algebraic operations, the following exact vibration characteristic equa-
tion is obtained for the natural frequencies of the multilayer partial- 
composite beams based on the shear deformable TEPC model: 

1 +
5
6

(
6N2Ksω2

5ke
(
n2Ksh

2
e − ω2/G*

) −
N
5

coshθn,e − N

)
tanhθn,e/2

tanhNθn,e/2
= 0 :

θn,e = cosh− 1
[

1 +
1

2Nk
(n2 − ω2

n)

]

(65) 

Apparently, due to the nonlinearity of Eq. (65), it is mathematically 
difficult to present a closed-form solution. However, the statement 
regarding the negligible effect of the constituting layers’ longitudinal 
mass inertia on the natural frequencies and vibration behavior of partial- 

composite beams in the previous sections is valid. Therefore, an 
approximate but accurate vibration formula based on the TEPC model 
can be deduced, similar to what presented for the Euler-based partial- 
composite beams in the previous sections, as follows, 

ωn,T,e =
nhe

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
KsG* +

N2

ke

[
1
6 N(5 + coshθn,e) −

tanh(Nθn,e/2)
tanh(θn,e/2)

]− 1
√ , (n = 1,2, ...)

(66) 

in which θn,e = cosh− 1[1 + n2/(2Nke)
]
.

4.5. Partial-composite vibration formulae based on the TEPC model

The formulae developed in the previous section for the vibration 
modes’ frequencies of N-layer shear deformable beams having partial 
interaction imperfections at their interlayers can be rearranged and 

presented in a simple efficient form as 

ωImp.
n,T = ζT− Eκpc− 0ω0

n,E, (n = 1, 2, 3, ...) (67) 

where ωImp.
n,T is the n-th mode’s natural frequency of the imperfectly- 

bonded layered beam element based on the established Timoshenko/ 
Engesser N-layer partial-composite model. While the coefficient κpc− 0 

(given by Eq. (46), also Table 2) converts the classical Euler-Bernoulli 
vibration formula for an N-layer non-composite (zero-interaction be-
tween the layers) beam (i.e., ω0

n,E = (n2π2/L2
e )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EI0/(ρA0)

√
) to that for a 

partially-composite (PC) beam, as discussed in Section 3.5, the factor 
ζT− E enhances it to that based on the shear deformable TEPC model. 
Utilizing Eq. (66), ζT− E can be represented in the following simple form: 

Table 5 
Comparison of the first six natural frequencies (f = ω/(2π) [Hz]) of a cantilever two-layer beam (CF end conditions) made of glass layers bonded together by the 
polyvinyl butyral (PVB) elastomeric polymer, predicted via the present approaches (N = 2: three-layer; n = 1, 2, ...,6; the first six frequencies).

Approach Mode sequence
1st 2nd 3rd 4th 5th 6th

GEM * [93] 65.02 299.65 750.35 1405.44 2279.31 3370.18
FEM **[94] 64.93 299.31 749.73 1404.53 2277.97 3368.32
Present (f Imp.

n,E ) † 62.55 [3.7 %] 291.05 [2.8 %] 736.94 [1.7 %] 1398.41 [0.4 %] 2278.48 [0.0 %] 3377.89 [0.3 %]

Present (f Imp.
n,T ) †† 62.52 [3.7 %] 290.96 [2.8 %] 736.44 [1.8 %] 1396.68 [0.5 %] 2273.96 [0.2 %] 3368.04 [0.0 %]

† EBPC model (Eq. (44)); [% diff.] w.r.t. FEM [94] are given in parentheses.
†† TEPC model (Eq. (67)); [% diff.] w.r.t. FEM [94] are given in parentheses.
* Galerkin element method.
** Finite element method.

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

[
1

Nke

(
ω2

n − n2) − 1
]

coshθn,e +cosh2θn,e

[
1

Nke

(
ω2

n − n2) − 1
]

sinhθn,e + sinh2θn,e − 1 0

cosh(Nθn,e − θn,e)+

[
1

Nke

(
ω2

n − n2) − 1
]

coshNθn,e sinh(Nθn,e − θn,e)+

[
1

Nke

(
ω2

n − n2) − 1
]

sinhNθn,e 1 0

coshNθn,e − coshθn,e sinhNθn,e − sinhθn,e
1

12ke

(
ω2

n − n2) −
KsG

h
2
eke

N2 − N+1 −
KsG
kehe

nN

0 0 −
KsG
kehe

nN
1
ke

(
ω2

n − KsGn2)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=0
(64) 
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ζT− E =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
n2κ2

pc− 0
12N2KsG*

√ (68) 

in which the dimensionless shear-effect parameter G* is defined by Eq. 
(59) in terms of the effective length Le, capturing different end cases (see 
Appendix C). It is obvious from Eq. (68) that ζT− E⩽1 (equals unity when 
the shear rigidity approaches infinity), meaning that the natural fre-

quencies of the layered beams predicted from the TEPC model are 
slightly lower than those based on the EBPC model due to the shear ri-
gidity and, consequently, higher stiffness of the layered structures based 
on the EBPC theory.

5. Numerical results

In this section, numerical results and discussion are conducted based 
on the developed Euler-Bernoulli- (EBPC) and Timoshenko/Engesser- 
based partial-composite (TEPC) models and the introduced solutions 
for the problems of buckling and vibrations of multilayer columns/ 
beams having bonding imperfection at their layers’ interfaces. The nu-
merical results are presented in a dimensionless format based on the 
group of dimensionless parameters defined in Section 4 for the sake of 
their generality. Also, a comprehensive comparative study is carried out 
and the validity and reliability of the approach is verified.

5.1. A note on methods for determining the partial-composite modulus

An accurate determination of the partial-composite/slip modulus k is 
essential to accurately predict and analyze the vibration and buckling 
results and behavior of imperfect partial-composite structural elements. 
This can be pursued via the known standard experimental approaches 
such as the double shear joint test, full-scale beam three-point bending 
test and comparison with the static partially composite beam theory (see 
[41]), etc. Alternatively, simple conventional formulae may be used; e.g. 
for the partial adhesive bonding layer [90]: 

k = Gadh
b

hadh
(69) 

in which Gadh and hadh are the shear modulus and the thickness of the 
adhesive layer, respectively, and b is the width of the layered element. 
Eq. (69) can be accommodated with a correction coefficient of 
(Aeff/Aint), where Aeff is the effective area of interlayer bonding, and 
Aint = bL indicates a full interlayer area. Obviously, in the case of the full 
interlayer area covered by the adhesive layer, the partial adhesive ratio 
Aeff/Aint equals unity. For the case of discrete mechanical connectors, 
the partial-composite modulus can be calculated as [91]: 

k =
nrow - cK

s
(70) 

where nrow - c is the number of parallel rows of connectors along the 
longitudinal direction of a structural element, and s is the spacing be-

Fig. 4. Geometrical configuration and dimensions of the Swedish glued lami-
nated timber (glulam) GL30 composed of 5 orthotropic lamellae (grain/fiber 
orientation along the longitudinal direction). The directional material proper-
ties, given in Table 6, are based on the illustrated: Longitudinal (L), Radial (R), 
and Tangential (T) orientations.

Table 6 
Material properties (mean value) of the glulam GL30c [97]. The values used to 
represent each of the constituting lamellae based on the developed theoretical 
approach are Eℓ = EL and Gℓ = GLR.

Glulam GL30c (L:1, T:2, R:3)*

Elastic modulus (N/mm2) EL = 13000 ET = 300 ER = 300
Shear modulus (N/mm2) GRL = 650 GTL = 650 GTR = 650
Poisson’s ratio νRL = 0.06 νTL = 0.06 νTR = 0.4

* Material property directions are illustrated in Fig. 4.

Table 7 
The first five natural frequencies (Hz) of the partial-composite glulam GL30c beams (composed of five orthotropic lamellas) for different values of the interlayer 
interaction modulus, k, – ranging from zero interaction (non-composite) to perfectly-bonded (full-composite) condition. The results obtained from both the established 
Euler-Bernoulli-hypothesis-based (EBPC) and the Timoshenko/Engesser-based partial-composite (TEPC) model are compared with corresponding 3-D finite element 
analysis (FEA) results, using Abaqus CAE software (Percentage discrepancy has been calculated for any of the EBPC and TEPC cases relative to the corresponding 3-D 
FEA results).

Interlayer Interaction Approach Mode sequence
1st 2nd 3rd 4th 5th

k→0 EBPC [%Diff.] 12.466 [2.1 %] 49.865 [2.6 %] 112.20 [3.4 %] 199.46 [4.6 %] 311.66 [6.1 %]
TEPC [%Diff.] 12.439 [1.9 %] 49.428 [1.7 %] 110.02 [1.4 %] 192.73 [1.0 %] 295.67 [0.7 %]
3-D FEA 12.199 48.576 108.45 190.67 293.60

k = 10 MPa* EBPC [%Diff.] 17.695 [1.4 %] 56.053 [2.5 %] 118.63 [3.6 %] 205.99 [4.8 %] 318.24 [6.4 %]
TEPC [%Diff.] 17.617 [0.9 %] 55.435 [1.4 %] 116.07 [1.4 %] 198.60 [1.1 %] 301.27 [0.8 %]
3-D FEA 17.448 54.633 114.46 196.37 298.87

k = 102 MPa EBPC [%Diff.] 35.802 [1.8 %] 91.533 [3.1 %] 163.42 [4.5 %] 255.92 [5.9 %] 371.18 [7.7 %]
TEPC [%Diff.] 35.163 [0.1 %] 88.911 [0.2 %] 156.90 [0.3 %] 242.15 [0.2 %] 345.00 [0.1 %]
3-D FEA 35.135 88.707 156.38 241.44 344.52

k = 103 MPa EBPC [%Diff.] 56.390 [4.4 %] 182.80 [10.9 %] 332.59 [15.4 %] 493.60 [18.5 %] 665.90 [21.1 %]
TEPC [%Diff.] 53.991 [<0.1 %] 164.24 [0.3 %] 286.12 [0.7 %] 412.02 [1.0 %] 542.46 [1.3 %]
3-D FEA 53.995 164.79 288.14 416.33 549.77

k→∞ EBPC [%Diff.] 62.331 [5.4 %] 249.33 [20.0 %] 560.98 [40.6 %] 997.30 [65.1 %] 1558.3 [91.8 %]
TEPC [%Diff.] 59.135 [<0.1 %] 207.47 [0.2 %] 396.74 [0.5 %] 598.52 [0.9 %] 801.94 [1.3 %]
3-D FEA 59.114 207.85 398.92 604.19 812.48
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tween two adjacent connectors in a row, as illustrated in Fig. 3. K is the 
slip modulus of a single connector and can be determined experimen-
tally via the double shear joint test or, for design purposes, using rele-
vant standards (e.g., Kser: the slip modulus in serviceability limit state 
(SLS) or Ku: the slip modulus in ultimate limit state (ULS), for a timber 
structural elements design according to Eurocode 5 standard).

It should be clarified that as the present research has focused on the 
developed imperfect partial-composite models and solutions for the 
buckling and vibrations of multilayer column/beam elements, the study 
of the partial-composite/slip modulus and research on its determination 
falls outside the scope of the present article.

5.2. Comparative results and validation

To demonstrate the validity, reliability, and high accuracy of the 
established analyses and solutions, as well as the resultant introduced 
simple buckling- and vibration formulae, a comprehensive comparative 
study is conducted. Comparisons are provided with both available 
relevant numerical and experimental data in the literature.

Henghold [92] performed vibration tests on a three-layer simply- 
supported beam having imperfect partial-composite interaction between 
the layers via some discrete mechanical connectors. The beam was of 
1778 mm (70 in.) span length (total length 1828 mm ≡ 72 in.) and 
101.6 mm (4 in.) width, composed of the three identical layers, each of 
thickness 6.50 mm (0.256 in.) from aluminum with Young’s modulus 
73.08 GPa (10.6 × 106 lb/in.2). The average weight of each layer was 
reported to be 3.277 Kg; therefore, the mass density ρℓ = 2712 Kg/m3. 
Two rows of connectors made of rubber, low-density polyethylene, and 
nylon, each of a nominal diameter of 9.13 mm (23/63 in.) with a spacing 
of 50.8 mm (2 in.) for all cases, except for the nylon connectors 101.6 
mm (4 in.), were used. For details on the test procedure and equipment, 
readers are referred to [92]. The partial-composite moduli were 
measured in [92] based on two different experimental methods: (1) the 

direct double shear joint test (kDirect), and (2) the beam test method 
(kBT); see the results in Table 3.

Despite the considerable difference between the measured moduli 
based on the two approaches, it is shown that the discrepancy effect on 
the predicted natural frequencies based on the present approach is 
small.

Table 4 shows a comparison of the fundamental natural frequencies 
predicted on the basis of the introduced Euler-based- (EBPC) and 
Timoshenko/Engesser-based partial-composite (TEPC) analysis ap-
proaches in the present study with those reported in [92] based on the 
vibration test measurements. It is evident from Table 4 that there is a 
good agreement between the predicted fundamental natural frequencies 
and the corresponding test results for all cases, confirming the validity 
and reliability of the introduced approach.

It can be observed that regardless of the method used to determine 
the partial-composite modulus k, the highest percentage discrepancy 
between the vibration test results and predicted values does not exceed 
1.4 %, 7.8 %, and 6.4 % for the partial-composite beams with rubber, 
polyurethane, and nylon connectors, respectively. It can also be seen 
from Table 4 that, regardless of the type of connectors and their applied 
geometric characteristics (e.g. spacing intervals), the predicted results 
based on kDirect are slightly lower than those predicted on the basis of kBT 
for the interlayer interaction modulus. It can also be deduced from 
Table 4 that the predicted results from the TEPC model coincide with 
those from the EBPC model, confirming that the effect of shear de-
formations on the beam’s flexural rigidity is negligible. This is evidently 
due to the large length-to-layer thickness ratio of the tested beam 
(L/hℓ = 273 >> 10) on the one hand and, on the other hand, the choice 
of aluminum as an isotropic constituting material with relatively high 
shear rigidity.

To show the merit and reliability of the established approach for the 
adhesive-bonded multilayer structural elements, a comparison of the 
first six natural frequencies of a two-layer glass beam bonded by the 

Fig. 5. Variations of the buckling conversion factor, ηpc− ∞, versus the dimensionless interlayer slip modulus, ke, in terms of the columns’ effective length, Le, 
corresponding to different end conditions. The buckling reduction factor ηpc− ∞ converts the critical buckling load of the ideal classical layered Euler columns, having 

full-composite-interaction at their layers interfaces, (P∞
E ) to that of the layered columns with imperfect partial-composite interaction at the interlayers (PImp.

E ). The 
coefficient ηpc− ∞⩽1, and the upper-bound unity reflects the perfect case with an integrated cross-section. (N: the number of a column’s constituting layers).
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polyvinyl butyral (PVB) elastomeric polymer is provided in Table 5, 
based on the present approaches and those reported by Sainsbury and 
Zhang [93] based on the Galerkin element method (GEM) as well as the 
corresponding results by Koutsawa and Daya [94] using the finite 
element method (FEM). The geometrical and material property param-
eters of the two-layer beam are: Eg = 70.37 GPa, GPVB = 0.7037 MPa, 
ρg = 2770 Kg/m3, ρPVB = 970 Kg/m3, hg = 1.52 mm, L = 177.8 mm 
and b = 12.7 mm. It is noticeable that the subscripts ‘g’ and ‘PVB’ 
indicate the mentioned property parameter for each glass layer and the 
PVB bonding layer, respectively.

Here, we calculate the imperfect partial-composite interlayer 
modulus k according to Eq. (69) to be used in the present models as:k =

GPVBb/hPVB = 70.37 MPa.
The comparative results of Table 5 reveal that there is a very good 

agreement between the predicted natural frequencies of the adhesive- 
bonded glass beam and those reported in the literature using FE ana-
lyses, confirming the applicability and reliability of the present models 
and the introduced simple formulae.

To demonstrate the validity and high accuracy of the present 
approach and the introduced efficient buckling formulae for the buck-
ling of multilayer partial-composite columns, a comparison of Eqs. (31)- 
(33) with those available in the literature is provided in the following.

Based on the research conducted in [41] and [61] for the structural 
analyses of two-layer partial-composite Euler-Bernoulli beam-columns, 
the following buckling formula was reported for pinned end- (simply- 
supported), clamped-free- or clamped–clamped columns: 

Pcr

P0
E
=

P0
E + a2EI0

P0
E +

EI0
EI∞

a2EI0
: a2 =

kr2

EI0

(

1 − EI0
EI∞

) (71) 

where r is in-depth distance between the centroid of the two layers at the 
column cross-section. In case of two identical constituting layers, the 
above equation can be rearranged in the form: 

Pcr =
π2 + 8 kL2

e
EA

π2 + 2 kL2
e

EA

(
2π2EI

L2
e

)

(72) 

which is obviously exactly the same as that given in Table 1 for the two- 
layer partial-composite Euler columns on the basis of the introduced 
Eqs. (31)-(33) (EI and EA are the bending and axial stiffness of each 
individual layer, respectively).

Furthermore, a comparison of the resulting buckling equation from 
Table 1 for the partial-composite columns composed of three identical 
layers (i.e., EI∞ = 9EI0) with that reported in [66] for a three-layer wood 
element bonded at its interfaces equivalent to a partial slip modulus k as 

Pcr,E =
π2 + 9k L2

e
EA

π2 + k L2
e

EA

(
3π2EI

L2
e

)

(73) 

reveals that both are identical, confirming the validity and correctness of 
the present multilayer composite model and the developed buckling 
solutions. Moreover, for the case of three-layer pinned–pinned wood 
column connected with n mechanical connectors per row of its cross- 
section with the spacing s between each two adjacent rows of the con-
nectors (each connector with shear connection modulus K [N/m]), Ras-
sam and Goodman [95] reported the Euler-kinematics-based buckling 
equation as 

Pcr,E =
π2 + 9nrow

K
s

L2

EA

π2 + nrow
K
s

L2

EA

(
3π2EI

L2

)

(74) 

Evidently, the slip modulus k [N/m2] defined in the present study is 
equivalent to nrowK/s (see also Eq. (70) and Fig. 3). Therefore, Eq. (74) is 
exactly identical to that deduced from Table 1, if we set the effective 
buckling length Le = L corresponding to a pinned–pinned or simply- 

Fig. 6. Variations of the buckling reduction coefficient, ψT− E, versus the 
dimensionless interlayer slip modulus, ke (in terms of the columns’ effective 
length, Le, corresponding to different end conditions), for different levels of 

shear-effect factor: G* = G/h
2
e = (GL2

e )/(π2Eh2
Tot.) = 0.1, 0.2, 0.5, 1, 2, 5 and 10 

for multilayer columns composed of different number of layers: (a) N = 2; (b) 
N = 5. The buckling reduction factor ψT− E converts the critical buckling loads 
of the Euler-based partial-composite (EBPC) columns (PImp.

E ) to those of 
Timoshenko/Engesser-based (TEPC) model (PImp.

T ); (The reduction coefficient, 
irrespective of the interlayer interaction level, approaches unity for all cases 
when the shear-to-Young’s modulus ratio of the constituent material tends to a 
large value; i.e., shear rigidity).
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supported (SS) case.
To demonstrate the validity of the approach for deep multilayer el-

ements composed of a higher number of layers, the Swedish glulam 
GL30c timber beam product [96] was selected for comparative study 
using finite element analysis (FEA). The structural element consists of 
five orthotropic lamellae with low shear rigidity, each of thickness 45 
mm (total cross-section height of 225 mm), and the standard width of 
b = 140 mm. The geometrical configuration is illustrated in Fig. 4.

The orthotropic constituting material properties (mean value) [97] 
are given in Table 6, linked to the property directions shown in Fig. 4. 
Moreover, the density (mean value) of ρmean = 430 Kg/m3 [97] is 
considered.

The finite element modelling and analysis of the described glulam 
beams were carried out using the commercially available software 
Abaqus/CAE (Dassault Systèmes) for the free vibration analysis. Each of 
the five lamella layers was modeled by employing the three-dimensional 
(3-D) solid element type C3D8R, an eight-node brick element with 
reduced integration and enhanced hourglass control, to achieve accurate 
results. Each lamella was assigned with an orthotropic section, built up 
with the elastic property set in Table 6. A thin adhesive layer of average 
thickness 0.1 mm is modelled between the surfaces of every two adja-
cent lamellae. A relatively soft-shear isotropic material with flexible 
values of the shear modulus was assigned, corresponding to different 
values of the interlayer modulus. The adhesive-lamella coinciding sur-
faces were constrained via tie-constraint of the elements’ nodes. A 
double-sided bias-pattern fine mesh distribution was implemented for 
the through-depth element sizing to achieve a denser mesh at the vi-
cinity of the adhesive-lamella interfaces. This was applied to ensure that 
interaction effects are properly captured, gaining accurate and reliable 
results.

A comparison of the first five natural frequencies (Hz) of the partial- 

composite glulam GL30c beam, extracted from the FEA, is presented in 
Table 7, alongside those based on both the Euler-Bernoulli-hypothesis- 
based (EBPC) model and the Timoshenko/Engesser-based partial-com-
posite (TEPC) model. The comparative results are presented for different 
values of the interlayer interaction modulus, k, ranging from zero 
interlayer interaction (non-composite) to perfectly-bonded (full-com-
posite) condition. Percentage discrepancy is calculated for any of the 
EBPC and TEPC cases relative to their corresponding 3-D FEA results.

The results of Table 7 reveal that there is a very good agreement 
between the 3-D FEA results and those obtained from the proposed TEPC 
model across all cases, even for the higher modes, regardless of the level 
of interlayer interaction. It is evident from Table 7, that the maximum 
percentage discrepancy between the 3-D FEA results and the TEPC 
model predictions does not exceed 2 % for the analyzed five-layer 
orthotropic glulam GL30c beam, confirming the validity and accuracy 
of the introduced TEPC model. However, the percentage discrepancy 
between the 3-D FEA results and those predicted by the EBPC model 
significantly increases with an increase in the interlayer interaction 
level. This error is as high as about 92 % in comparison with the cor-
responding 3-D FEA result while the error associated with the corre-
sponding value predicted via the TEPC model is less than 1.5 %.

5.3. Results and discussion

Results and discussion are provided here based on the developed 
analysis approaches for both Euler-Bernoulli- (EBPC) and Timoshenko/ 
Engesser-based partial-composite (TEPC) models and the introduced 
solutions for the problems of buckling and vibrations of columns and 
beams having interlayer partial interaction imperfection. The numerical 
results are presented in a dimensionless format based on the previously- 
defined effective group of dimensionless parameters.

Fig. 7. Variations of the frequency conversion factor, κpc− ∞ versus the dimensionless interlayer slip modulus, ke, in terms of the beam element’s effective length, Le, 
corresponding to different end conditions. The frequency factor κpc− ∞ converts the natural frequencies of the ideal multilayer classical layered Euler-Bernoulli beams, 
having full-composite-interaction at their layers interfaces, (ω∞

E ) to those of the layered beams with imperfect partial-composite interaction at the interlayers (ωImp.
E ). 

The coefficient κpc− ∞⩽1, and the upper-bound unity reflects the perfect case with a fully integrated cross-section. (N: the number of a beam’s constituting layers).
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Fig. 5 shows the variation of the buckling conversion factor ηpc− ∞ =

PImp.
E /P∞

E (the ratio of the critical buckling load of layered partial- 
composite Euler columns to that of columns with full-composite inter-
action), versus the dimensionless interlayer slip modulus, ke, in terms of 
the columns’ effective length Le. The comparative curves are depicted 
for the imperfect columns composed of different numbers of layers, N, 
ranging from a single layer to ten layers, while maintaining the total 
cross-sectional height-to-column length the same. Thus, N represents the 
number of cross-section divisions, with partial interlayer interaction at 
their interfaces.

It can be observed that the magnitude of the critical buckling load 
ratio for partial-composite columns (ηpc− ∞ = PImp.

E /P∞
E ) asymptotically 

approaches certain lower-bound values and unity when the dimen-
sionless interlayer slip modulus ke approaches zero and infinity, 
respectively. The lower-bound values reflect special cases in which the 
frictionless layers lay one another without any interaction (i.e., non- 
composite), whereas the upper-bound unity represents the unique case 
of a perfectly-bonded column with fully-integrated cross-section (i.e., 
Pcr = P∞

E ). It can be seen from Fig. 5 that there is a quasi-linear rela-
tionship between the critical buckling load ratio and the dimensionless 
interlayer slip modulus in the logarithmic scale for a slip modulus range 
far from zero and infinity. It can also be deduced from the curves of 
Fig. 5 that the critical buckling load ratio (ηpc− ∞ = PImp.

E /P∞
E ) of 

imperfectly-bonded layered columns, having identical cross-section’s 
total height-to-column length ratio, decreases by increasing the number 
of constituting layers. This highlights the more pronounced influence of 
interlayer interaction level on the buckling load capacity of the layered 
columns constituting of a greater number of layers.

To investigate the influence of the disregarded shear deformations in 
multilayer partial-composite Euler columns on their buckling perfor-
mance, variations of the Euler-to-Timoshenko/Engesser buckling tran-
sition coefficient for imperfect columns (ψT− E = PImp.

T /PImp.
E ) versus the 

dimensionless interlayer modulus parameter, ke, are illustrated in 
Fig. 6a,b, respectively, for columns composed of two and five layers. For 

each case, different levels of the shear-effect factor G* = G/h2
e are 

considered, ranging from 0.1 to a relatively large value of 10, repre-
senting the layered columns with an extreme shear-softness to relatively 
shear-rigidity. It should be reminded that the dimensionless parameters 

group G* = G/h2
e appeared in the final buckling and vibration formulae 

based on the TEPC model (see Eqs. (56) and (66)), plays an important 
role in determining the relative shear flexibility effects in the layered 
beam and column elements. Evidently, all the differences between the 
buckling and vibration analyses based on the Euler partial-composite 
model and those according to the TEPC model may be attributed to 
this parameter. Therefore, we call it the shear-effect parameter: π2G* =

π2G/h2
e = (G/E)(Le/hTot.)

2. Obviously, the contribution of the reduction 
of an element’s length-to-total depth ratio to its shear deformations is 
equivalent to a squared reduction of the shear-to-Young’s modulus ratio.

It can be seen from Fig. 6a,b that, the Euler-to-Timoshenko/Engesser 
buckling conversion factor of partial-composite columns, ψT− E, is always 
less than unity for all cases, meaning that the Euler partial-composite 
model unrealistically overpredicts the buckling load capacity of the 
layered partial-composite columns, similar to the classical Euler col-
umns. However, as can be seen from the curves, the level of error in that 
model depends on both interlayer imperfect-bonding interaction as well 
as the number of constituting layers. A comparison of the curves of 
Fig. 6a,b reveals that the effect of the interlayer modulus parameter on 
the conversion coefficient is less pronounced for the columns composed 
of a higher number of layers. Clearly, the conversion factor decreases 
with a decrease in the shear-effect factor G*, and it approaches unity 
when the shear-effect parameter approaches infinity. It can also be 
deduced from the curves of Fig. 6a,b that the buckling loads over-
estimation error in the Euler hypothesis is lower for the imperfect 

Fig. 8. Variations of the frequency reduction coefficient, ζT− E, versus the 
dimensionless interlayer slip modulus, ke (in terms of the beams’ effective 
length, Le, corresponding to different end conditions), for different levels of 

shear-effect factor: G* = G/h2
e = (GL2

e )/(π2Eh2
Tot.) = 0.1, 0.2, 0.5, 1, 2, 5 and 

10, for multilayer beams composed of different number of layers: (a) N = 2; (b) 
N = 5. The frequency reduction factor ζT− E converts the fundamental natural 
frequencies of the Euler-Bernoulli-based partial-composite beams (ωImp.

E ) to 
those of Timoshenko/Engesser-based partial-composite (TEPC) model (ωImp.

T ); 
(The reduction coefficient, irrespective of the interlayer interaction level, ap-
proaches unity for all cases when the shear-to-Young’s modulus ratio of the 
constituent material tends to a large value; i.e., shear rigidity).
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columns when compared with the ideal columns. In other words, the 
highest error in load capacity of multilayer columns based on the Euler 
partial-composite model is for the perfectly-bonded cases, whereas the 
lowest error is for the columns with zero layers-interaction (i.e., non- 
composite).

In Fig. 7, variations of the ratio of the fundamental natural frequency 
of layered partial-composite beams (ωImp.

E )-to-that of beams with ideal 
full-composite interaction (ω∞

E ) are depicted versus the dimensionless 
interlayer modulus parameter ke in terms of the effective length, ac-
cording to the EBPC model. Similar to the previous buckling results, the 

curves are represented for the beams with identical total cross-sectional 
height-to-beam ratio, however, with different numbers of constituting 
layers, to study their influence on the structural behavior of the multi-
layer partial-composite elements. It can be seen from Fig. 7 that, 
regardless of the number of constituting layers, the fundamental fre-
quency of the layered partial-composite beams, ωImp.

E , approaches to the 
upper-bound fundamental frequency of the ideal perfectly-bonded beam 
(ω∞

E ) when the interlayer modulus parameter approaches infinity. It can 
also be seen that the ratio κpc− ∞ = ωImp.

E /ω∞
E tends to certain lower- 

bound values and unity, respectively, when the interlayer interaction 

Fig. 9. Variations of the first five natural frequencies of the analyzed five-layer glulam GL30c beam, predicted based on both the EBPC and TEPC models. The 3-D 
FEA results are shown in the figure.

Table 8 
Comparison of the dimensionless natural frequencies (ωImp.

T ) of imperfect multilayer beams based on the exact nonlinear characteristic equation (65) and those ob-
tained from the introduced simple closed-form vibration formula (66).

N = 2 N = 5 N = 10 N = 100

ke =

0.1
G* = 0.1 Exact 0.1615 0.1169 0.0882 0.0305

Eq. (66) 0.1625 0.1171 0.0882 0.0305
|% Diff.| 0.6 % 0.2 % 0.0 % 0.0 %

G* = 1.0 Exact 0.1900 0.1265 0.0921 0.0307
Eq. (66) 0.1922 0.1269 0.0922 0.0307
|% Diff.| 1.1 % 0.3 % 0.1 % 0.0 %

G* = 10 Exact 0.1937 0.1276 0.0925 0.0307
Eq. (66) 0.1962 0.1280 0.0926 0.0307
|% Diff.| 1.2 % 0.3 % 0.1 % 0.0 %

ke =

1.0
G* = 0.1 Exact 0.1939 0.1817 0.1663 0.0854

Eq. (66) 0.1956 0.1830 0.1672 0.0854
|% Diff.| 0.8 % 0.7 % 0.5 % 0.0 %

G* = 1.0 Exact 0.2490 0.2253 0.1981 0.0890
Eq. (66) 0.2555 0.2291 0.2001 0.0890
|% Diff.| 2.6 % 1.6 % 1.0 % 0.0 %

G* = 10 Exact 0.2575 0.2315 0.2023 0.0893
Eq. (66) 0.2650 0.2358 0.2045 0.0894
|% Diff.| 2.9 % 1.8 % 1.0 % 0.1 %

ke = 10 G* = 0.1 Exact 0.2010 0.1996 0.1973 0.1661
Eq. (66) 0.2031 0.2016 0.1992 0.1669
|% Diff.| 1.0 % 1.0 % 0.9 % 0.4 %

G* = 1.0 Exact 0.2642 0.2610 0.2561 0.1978
Eq. (66) 0.2729 0.2692 0.2635 0.1997
|% Diff.| 3.2 % 3.1 % 2.8 % 0.9 %

G* = 10 Exact 0.2747 0.2709 0.2651 0.2020
Eq. (66) 0.2846 0.2804 0.2740 0.2041
|% Diff.| 3.6 % 3.5 % 3.3 % 1.0 %
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modulus approaches zero and infinity. In other words, the frequencies of 
each case approach the lower-bound of a comparable layered element in 
which there is no bonding interaction between the layers, and the upper- 
bound of a perfectly-bonded beam having fully-integrated cross-section. 
It can also be observed from Fig. 7 that, for a practical range of the 
interlayer interaction parameter far from zero and infinity, there is a 
quasi-linear correlation between the frequency conversion coefficient, 
κpc− ∞, and the interlayer modulus, ke, in logarithmic scale.

Variations of the reduction factor ζT− E = ωImp.
T /ωImp.

E , which converts 
the natural modal frequencies of the Euler-Bernoulli-based partial- 
composite beams to those based on the TEPC model, are exhibited in 
Fig. 8a,b. This provides a better understanding and insight into the level 
of error associated with using the EBPC model for the frequency analysis 
of multilayer imperfect beams.

The graphs are provided for various levels of the shear-effect factor 
G*, and to investigate the effect of the number of constituting layers on 
the mentioned error level, the curves are depicted for the elements 
composed of two and five layers, respectively in Fig. 8a and 8b.

It can be seen from these figures that the highest reduction to the 
frequencies of the beams based on the EBPC, to be converted to those of 
the TEPC model, can be attributed to the elements with maximum 
interlayer interaction (i.e., perfectly-bonded elements) whereas the 
reduction coefficient is nearly close to unity when there is no bonding 
and interaction between the layers. However, for all cases, the reduction 
factor tends to its maximum value (i.e., unity) by increasing the number 
of constituting layers. It can also be deduced from the figures that a 
decrease in the shear-effect factor G* obviously results in decreasing the 
reduction factor due to the more dominant contribution of the shear 
softness on the natural frequencies.

To investigate the effect of the previously discussed parameters on 
the higher vibration modes, variations of the first five natural fre-
quencies of the analyzed five-layer glulam GL30c beams, predicted 
based on both the EBPC and TEPC models, versus the dimensionless 
interlayer interaction parameter ke are depicted in Fig. 9. The 3-D FEA 
results are also included in the figure, to demonstrate the generality of 
the proposed dimensionless parameters. It can be seen that conclusions 
drawn for the fundamental natural frequency, predicted by the EBPC 
and TCPC models, remain valid and true for the higher modes’ natural 
frequencies. It can be deduced from Fig. 9 that the results of the three 
mentioned sources are in very good agreement for the lower values of 
dimensionless interlayer interaction parameter, for all the first five vi-
bration modes. However, the predicted results based on EBPC gradually 
deviate from those of the other methods when the interlayer interaction 
parameter increases. This holds true, as the effect of shear deformations 
becomes more dominant when the interlayer interaction increases, and 
the EBPC model cannot capture the effects of shear deformations.

It can also be observed from Fig. 9 that, unlike the developed TEPC 
model, the EBPC model cannot inherently capture the effect of the 
higher vibration modes on the dimensionless frequency parameter 
(ωImp.

E /ω0
E). Consequently, the highest error in the natural frequencies 

predicted by the EBPC is observed to be for the highest modes of a beam 
with full-composite interaction.

As mentioned in Sections 3.4 and 4.4, the closed-form formulae 
introduced for the natural frequencies of the multilayer partial- 
composite beams rely on the key assumption that the effect of consti-
tuting layers’ axial mass inertia on their vibration behavior is negligible. 
To demonstrate the validity and high accuracy of the resulted fre-
quencies, a comparison of the results based on Eq. (66) and those 
extracted from the nonlinear characteristic Eq. (65) is presented in 
Table 8 for different values of the shear-effect factor, the dimensionless 
interlayer modulus parameter, as well as different numbers of consti-
tuting layers.

It can be seen from Table 8 that the maximum discrepancy between 
the frequencies predicted from the two mentioned sources is less than 

3.7 % for all cases. The small percentage difference between the results 
of both sources confirms the validity of the introduced simple closed- 
form vibration formulae.

6. Conclusions

In the present study, an Euler-Bernoulli- (EBPC) and a Timoshenko/ 
Engesser-hypothesis-based partial-composite (TEPC) model were 
employed, and the stability and vibration problems of columns/beams 
composed of any number of constituting identical layers, incorporating 
the effect of interfacial-bonding imperfection in the form of partial- 
composite interaction, were formulated. The presented novel solutions 
addressed a known challenging problem in the literature regarding the 
limitation in the total number of constituting layers of a partially- 
composite structural element. However, the applicability of the intro-
duced models and the exact analytical solutions is limited to identical 
constituent layers. A simple efficient conversion coefficient was intro-
duced for the first time in terms of some effective dimensionless 
parameter groups, converting the well-known classical Euler buckling 
formulae for the critical loads to that of multilayer partial-composite 
columns on the basis of exact analytical solutions. Similarly, a coeffi-
cient was introduced, enhancing the classical vibration formula of Euler- 
Bernoulli beams to that for beams composed of N partially-interacting 
layers. It was shown that the developed general coefficients in terms 
of the “effective length” can capture different classical end conditions. In 
continuation of the study, a novel Timoshenko/Engesser-hypothesis- 
based partial-composite model, as well as exact analytical solutions, 
were established to treat the governing differential equations and 
boundary conditions of flexible multilayer shear deformable beams/ 
columns, incorporating the effect of interlayer partial interaction 
imperfection. Consequently, simple and efficient reduction buckling- 
and vibration coefficients were introduced for the first time, turning the 
mentioned Euler-based partial-composite multilayer buckling and vi-
bration formulae into those based on Timoshenko/Engesser partial- 
composite (TEPC) model. It was shown that the highest reduction to 
the buckling capacity and frequencies of columns/beams based on the 
EBPC model, to be converted to those of the TEPC model, occurs for the 
elements with maximum interlayer interaction, whereas the reduction 
coefficient is nearly close to unity when there is no bonding and inter-
action between the layers. It was also concluded that the effect of the 
interlayer interaction level on the Euler-to-Timoshenko/Engesser con-
version coefficients is less pronounced for the elements composed of a 
higher number of layers.
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Appendix A 

Details on the solution for the set of linear second-order difference equations (12b) are presented here. A change-of-variable for the coefficients of 
the axial displacement components Ui in Eq. (12b) is used as 

Ui = cλi, i ∈ {1,2, ...,N} (A-1) 

Substituting Eq. (A-1) into the set of difference Eq. (12b), it can be expressed in the form: 

λ2 − [2 + 1/(Nk)]λ+1 = 0 (A-2) 

which obviously gives the following two roots: 

λ1,2 = 1+1/(2Nk) ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/(2Nk)[1 + 1/(2Nk)]
√

(A-3) 

Defining the repeating term [1+1/(2Nk)] in Eq. (A-3) as 

coshθ = 1+1/(2Nk) (A-4) 

the parameter λ is simplified as 

λ1,2 = coshθ ± sinhθ (A-5) 

Substituting Eq. (A-5) into Eq. (A-1) yields 

Ui = c1eiθ + c2λ− iθ (A-6) 

or equivalently: 

Ui = Acoshiθ+Bsinhiθ, i ∈ {1,2, ...,N} (A-7) 

Appendix B 

Proof of the general form of the buckling formula presented by Eq. (32) is given here. We consider the definition of the hyperbolic function: 

sinhNθe =
eNθe − e− Nθe

2
=

χ2N − 1
2χN (B-1) 

in which χ = eθe ; and for N = 1: 

sinhθe =
χ2 − 1

2χ (B-2) 

Solving Eq. (B-2) with respect to χ results in 

χ = sinhθe +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sinh2θe + 1
√

≡ coshθe +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

cosh2θe − 1
√

(B-3) 

Replacing the definition of θe from the last of Eq. (25) into the above equation yields 

χ =
1

2Nke

(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 4Nke

√ )
(B-4) 

Upon substitution of Eq. (B-4) into Eq. (B-1), one can obtain 

sinhNθe =

(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )2N
− (2Nke)

2N

2N+1NNk
N
e
(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )N (B-5) 

In a similar procedure, one can obtain the following relation for the function: coshNθe in terms of the dimensionless interlayer slip modulus ke, as 

coshNθe =

(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )2N
+ (2Nke)

2N

2N+1NNk
N
e
(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )N (B-6) 
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Substituting Eqs. (B-5) and (B-6) into the buckling Eq. (25), (noting that tanhθe/2 ≡ (coshNθe − 1)/sinhNθe), it can be presented in the following 
explicit form: 

P
P0

E
= 1+12ke

(

N −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 4Nke

√ (
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )N
− (2Nke)

N

(
1 + 2Nke +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4Nke

√ )N
+ (2Nke)

N

)

(B-7) 

Appendix C 

It can be shown that the solution for the natural frequencies of partial-composite beams in section 3.4 can be generalized approximately for 
different classical end cases via the concept of the “effective eigenmode length” (see [44]) as follows: 

ωn,E,e =
nhe

2
̅̅̅
3

√
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n2 + 12ke

[

N −
tanh(Nθn,e/2)
tanh(θn,e/2)

]√

, (n = 1, 2, ...) (C-1) 

where 

θn,e = cosh− 1[1 + n2/(2Nke)
]

(C-2) 

and the effective dimensionless beam thickness, he, and interlayer slip modulus, ke, are defined in terms of the effective eigenmode length Le for 
different classical end conditions as [44]:

Simply-supported (SS): 

Le = L (C-3a) 

Clamped-free/cantilever (CF): 

Le =

{
1.675L, n = 1
2nL/(2n − 1), n⩾2 (C-3b) 

Clamped-clamped (CC): 

Le = 2nL/(2n + 1) (C-3c) 

Clamped-pinned (CP): 

Le = 4nL/(4n + 1) (C-3d) 

in which n is clearly the vibration mode number.

Data availability

Data will be made available on request.
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[73] Krawczyk P, Frey F, Zieliński A. Large deflections of laminated beams with 
interlayer slips: Part 1: model development. Eng Comput 2007;24:17–32.

[74] Krawczyk P, Rebora B. Large deflections of laminated beams with interlayer slips: 
Part 2: finite element development. Eng Comput 2007;24:33–51.

[75] Ranzi G. Locking problems in the partial interaction analysis of multi-layered 
composite beams. Eng Struct 2008;30:2900–11.

[76] Sousa Jr JBM, da Silva AR. Analytical and numerical analysis of multilayered 
beams with interlayer slip. Eng Struct 2010;32:1671–80.

[77] Keo P, Nguyen Q-H, Somja H, Hjiaj M. Derivation of the exact stiffness matrix of 
shear-deformable multi-layered beam element in partial interaction. Finite Elem 
Anal Des 2016;112:40–9.

[78] Adam C, Ladurner D, Furtmüller T. Moderately large vibrations of flexibly bonded 
layered beams with initial imperfections. Compos Struct 2022;299:116013.
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specifically with application to the Sandö Bridge. Teknisk Tidskrift (Sweden) 1942; 
72:391.

[81] Bolotin VV. On the theory of layered plates. Izv Akad Nauk SSSR Otd Tekh Nauk, 
Mekh Mashinostr 1963;3:65–72.

[82] Bolotin VV, Novichkov YN. Mechanics of Multilayered Structures. Moscow: 
Mashinostroenie; 1980. in Russian.

[83] Peng S, Zhu Z, Wei Y. An analytic solution for bending of multilayered structures 
with interlayer-slip. Int J Mech Sci 2024;282:109642.

[84] Shen X, Wei Y, Liu Y. Unlocking slip-mediated bending in multilayers: Efficient 
modeling and solutions with high precision and simplicity. Int J Solids Struct 2024; 
302:112971.

[85] Grundberg S, Girhammar UA, Hassan OA. Vibration of axially loaded and partially 
interacting composite beams. Int J Struct Stab Dyn 2014;14:1350047.

[86] Belinha J, Araújo A, Ferreira A, Dinis L, Jorge RN. The analysis of laminated plates 
using distinct advanced discretization meshless techniques. Compos Struct 2016; 
143:165–79.

[87] Bedford A. Hamilton’s principle in continuum mechanics. Austin, TX, USA: 
Springer; 2021.

[88] Goldberg S. Introduction to difference equations with illustrative examples from 
economics, psychology and sociology. New York: Dover Publications; 1958.

[89] Girhammar UA, Gopu VK. Composite beam-columns with interlayer slip—exact 
analysis. J Struct Eng 1993;119:1265–82.

S.R. Atashipour et al.                                                                                                                                                                                                                          Composite Structures 367 (2025) 119219 

23 

http://refhub.elsevier.com/S0263-8223(25)00384-8/h0115
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0115
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0120
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0120
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0125
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0125
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0130
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0130
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0130
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0135
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0135
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0140
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0140
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0145
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0145
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0150
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0150
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0155
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0155
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0155
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0160
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0160
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0160
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0165
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0165
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0170
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0170
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0170
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0175
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0175
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0175
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0180
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0180
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0180
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0185
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0185
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0185
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0190
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0190
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0190
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0195
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0195
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0200
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0200
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0205
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0205
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0210
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0210
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0215
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0215
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0220
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0220
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0225
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0230
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0230
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0235
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0235
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0235
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0240
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0240
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0245
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0245
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0250
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0250
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0250
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0255
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0255
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0260
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0260
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0265
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0265
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0270
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0270
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0275
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0275
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0275
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0280
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0280
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0285
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0285
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0290
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0290
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0295
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0295
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0295
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0300
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0300
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0305
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0305
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0305
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0310
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0310
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0310
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0315
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0315
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0315
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0320
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0320
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0325
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0325
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0325
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0330
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0330
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0335
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0335
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0335
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0340
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0340
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0340
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0345
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0345
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0345
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0350
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0350
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0355
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0355
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0360
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0360
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0365
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0365
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0370
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0370
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0375
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0375
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0380
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0380
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0385
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0385
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0385
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0390
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0390
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0395
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0395
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0400
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0400
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0400
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0405
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0405
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0410
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0410
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0415
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0415
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0420
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0420
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0420
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0425
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0425
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0430
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0430
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0430
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0435
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0435
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0440
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0440
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0445
http://refhub.elsevier.com/S0263-8223(25)00384-8/h0445


[90] McCutcheon WJ. Method for predicting the stiffness of wood-joist floor systems 
with partial composite action: Department of Agriculture. Forest Products 
Laboratory: Forest Service; 1977.

[91] Design of timber structures. 2:2016 ed: Swedish Forest Industries Federation, 2016.
[92] Henghold WM. Layered beam vibrations including slip. Colorado State University; 

1972.
[93] Sainsbury M, Zhang Q. The Galerkin element method applied to the vibration of 

damped sandwich beams. Comput Struct 1999;71:239–56.

[94] Koutsawa Y, Daya EM. Static and free vibration analysis of laminated glass beam 
on viscoelastic supports. Int J Solids Struct 2007;44:8735–50.

[95] Rassam HY, Goodman J. Buckling behavior of layered wood columns. Wood 
Science 1970;2:238–46.
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