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Abstract

Microbial cell factories have been developed to produce various compounds
in a sustainable and economically viable manner. The yeast Saccharomyces
cerevisiae has been used as a platform cell factory in industrial biotechnol-
ogy with numerous advantages, including ease of operation, rapid growth,
and tolerance for various industrial stressors. Advances in synthetic bi-
ology and metabolic models have accelerated the design–build–test–learn
cycle in metabolic engineering, significantly facilitating the development
of yeast strains with complex phenotypes, including the redirection of
metabolic fluxes to desired products, the expansion of the spectrum of us-
able substrates, and the improvement of the physiological properties of
strain. Strains with enhanced titer, rate, and yield are now competing with
traditional petroleum-based industrial approaches. This review highlights
recent advances and perspectives in the metabolic engineering of yeasts for
the production of a variety of compounds, including fuels, chemicals, pro-
teins, and peptides, as well as advancements in synthetic biology tools and
mathematical modeling.
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INTRODUCTION

For more than 6,000 years the yeast Saccharomyces cerevisiae has been domesticated for the pro-
duction of bread, beer, and wine. These processes rely on the efficiency of yeast to rapidly convert
sugars into ethanol while tolerating high concentrations of ethanol.Because of this capability, yeast
was exploited for large-scale production of ethanol, which can be used as a transportation fuel. In
fact, in 1908 Henry Ford initially developed internal combustion engines to rely on ethanol as
the key fuel, and only later in the 1920s did the shift to gasoline occur. During the oil crisis of the
1970s, interest in the use of ethanol as a transportation fuel was renewed, and large industrial scale
production based on sugar cane and corn starch was established in Brazil and the United States,
respectively. Today, yeast-based production of ethanol, as well as its traditional applications, is by
far the largest industrial scale application of microbial fermentation processes.

Due to the large industrial application of yeast, S. cerevisiae has been extensively studied, and
therefore it also became an important model organism (70). The combination of our extensive
knowledge of, for example, yeast metabolism and genetic regulation and the capability of yeast
to tolerate harsh industrial conditions has made it well-suited as a cell factory for producing a
wide range of chemicals (1, 70). Through engineering yeast metabolism, it is possible to redirect
flux from ethanol to other products of interest and even to insert synthetic biosynthetic pathways
where genes from other organisms are expressed in yeast. This concept is referred to as metabolic
engineering (71, 72).

It is generally possible to engineer yeast metabolism throughmetabolic engineering to produce
small amounts of the product of interest, but it is more challenging to produce the product at
levels that make it industrially relevant. For this, it is important to improve the titer, rate, and
yield (TRY), as recently discussed by Konzock & Nielsen (43).

Optimizing yield is important for maximizing the utilization of the feedstock, generally the
carbon source. In ethanol production, more than 50% of the total production costs are associated
with the costs of the feedstock, but in this process it is also possible to obtain a high yield; i.e.,many
processes operate at 90–95% of the maximum theoretical yield of 0.51 g ethanol/g glucose. For
the production of other chemicals, it is more challenging to obtain high yields, but if the product’s
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E1 X Yield of product =  
vR3

vR1

Figure 1

Yields and rates in metabolic networks. Metabolic networks are large and consist of thousands of reactions,
but overall yields and rates are determined by how fluxes distribute around the many different branch points
within the metabolic network. This is conceptually illustrated for a single branch point. Yield is determined
by the relative flux between the flux upstream of the branch point metabolite and the flux leading toward the
product of interest. Rate (R1, R2, R3) is determined by the flux toward the product of interest, and improving
rate therefore often also results in improved yield. Key determinants for flux control around the branch point
are the concentration of the enzymes (E1, E2, E3) and the concentration of the branch point metabolite (cX).

price is higher than that of ethanol, it is also acceptable with a lower yield. Improving yield is
directly related to ensuring that flux is directed toward the product of interest, and this means
that there should be a focus on so-called branch points within the metabolic network (Figure 1).
Often metabolic flux can be redirected through the deletion or attenuation of enzyme activities
in branches of the metabolism that do not lead to the product of interest (80), but flux can also be
redirected by modifying the enzymes working at the branch points (87).

Optimizing rate is important for ensuring efficient utilization of the production facility. If the
rate is low, then a large production facility is needed to produce a certain amount of product,
and this affects the unit cost of the product. Rate improvement is typically attained by enhanc-
ing enzyme performance (45) (i.e., the catalytic efficiency), but the rate can also be improved by
increasing the enzyme concentration through overexpressing the gene encoding the enzyme.

Obtaining a high titer of the product is important for ensuring cost-efficient product purifica-
tion, generally termed downstream processing. If yeast has been engineered to enable high yield
and high rate, it is generally possible to obtain a high titer by designing the proper fermentation
process. However, in some cases the product is toxic to yeast and therefore it may be necessary to
engineer the yeast to improve its tolerance for the product (76).

Here, we review the application of yeast for the production of a variety of chemicals. We
also discuss how different mathematical modeling concepts can be applied for the identification
of metabolic engineering targets, and we present different methods for engineering yeast. We
conclude with several future perspectives on the application of yeast.

ADVANCES IN THE CONSTRUCTION OF YEAST CELL FACTORIES

Amid growing interest in a biobased economy, yeast cell factories have emerged as a platform for
sustainable production of a broad spectrum of products (Table 1). These products range from
low-value, high-volume commodities such as fuels and commodity chemicals to high-value, low-
volume specialties such as specialty chemicals and proteins. The development and optimization
of these cell factories for industrial applications typically necessitate enhancements in TRY.

Fuels

To date, bioethanol represents the most widely consumed liquid fuel synthesized via yeast.
Previous efforts have focused on improving bioethanol production from corn starch or mo-
lasses feedstocks, resulting in high yields and high titers in industrial production (55, 103).
Current research has shifted its focus to the production of ethanol from sugars derived from
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Table 1 Examples of engineered yeast for production of a wide range of different products mentioned in this review

Product Product application Carbon source Production level Reference
Fuels
Ethanol Drop in biofuel Molasses 114.71 g/L 103

Corn cob 94.76 g/L 8
Butanol Drop in biofuel and

precursor for jet fuels
Glucose 1.67 g/L 51
Glucose 0.24 g/L 90

Free fatty acids Biofuel and platform
chemical

Glucose 33.4 g/L 105
Glucose 0.56 g/L 109

Fatty acid ethyl esters Biodiesel Glucose 5 g/L 44
Fatty alcohols Biofuel and lubricants Glucose 1.5 g/L 112
Farnesene Biodiesel and jet fuel Glucose 28.3 g/L 100
Limonene Biodiesel and jet fuel Glucose 2.63 g/L 42
Isoprene Precursor for jet fuels Glucose 3.7 g/L 98
Chemicals (including commodity chemicals, fine chemicals, and specialty chemicals)
3-Hydroxypropionic acid Commodity chemical Glucose 71.06 g/L 108

Glucose and
bicarbonate

11.25 g/L 80

Muconic acid Commodity chemical Glucose 2.1 g/L 91
Succinic acid Precursor of various

commercial chemicals
Glycerol 45.5 g/L 83

l-phenylacetylcarbinol An important drug
intermediate

Glucose 2.48 g/L 33

7-Dehydrocholesterol Vitamin D3 precursor Glucose and glycerol 1.33 g/L 81
Rubusoside Sugar substitutes Glucose 1.37 g/L 104
Astaxanthin Antioxidant and

coloring dyes
Glucose 0.446 g/L 48

Carotenoid Antioxidant and
coloring dyes

Glucose 37.39 mg/L 37

Naringenin Antioxidative and
anti-inflammatory
effects

Glucose 3.42 g/L 47

Bikaverin Antibiotic, antifungal,
and anticancer
properties

Galactose 0.20 g/L 110

Cannabinoid Psychoactive drugs Galactose 2.3 mg/L tetrahydrocannabinolic acid;
4.2 µg/L cannabidiolic acid

58

Tropane alkaloid Anticholinergic drugs Glycerol 480 µg/L hyoscyamine; 172 µg/L
scopolamine

92

Heme Cofactor of essential
enzymes

Glucose 53.5 mg/L 34

Taxa-4(20),11-dien-5α-ol Precursors of taxol (an
anticancer drug)

Galactose 43.65 mg/L 60

Caffeic acid Pharmaceutical Glucose 5.5 g/L 7
Ferulic acid Pharmaceutical Glucose 3.8 g/L 7
Sclareol Fragrance molecules Glucose 11.4 g/L 5
Ginsenoside Rh2 Anticancer drug Glucose 300 mg/L 114

(Continued)
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Table 1 (Continued)

Product Product application Carbon source Production level Reference
Proteins and peptides
Insulin and its analogs Treatment of diabetes Glucose Approximately 90 mg/L insulin

precursor
53

Glucose 84 mg/L insulin precursor 28
α-Amylase Hydrolyzing starch Glucose 2.5 g/L 30
Hemoglobin Oxygen carrier and a

meat-like flavor
Glucose 18% of total soluble proteins 35

GAPDH-derived peptides Antimicrobials Mixture of sugars
(sucrose, glucose,
and fructose)

A higher inhibitory effect against
Brettanomyces bruxellensis (72-fold in
synthetic must fermentation and
tenfold in carob syrup fermentation)

3

Bacteriocins Antimicrobials Glucose 18.4 mg/L plantaricin 423; 20.9 mg/L
mundticin ST4SA

85

Abbreviation: GADPH, glyceraldehyde 3-phosphate dehydrogenase.

lignocellulosic biomass, necessitating efficient sugar release in lignocellulosic hydrolysate (61) and
the development of highly efficient xylose-utilizing yeast strains (8). For instance, novel active xy-
lose isomerases were identified to construct an efficient xylose-utilizing strain of S. cerevisiae (8).
Following adaptive laboratory evolution (ALE), this xylose-utilizing strain was evolved to produce
ethanol at a titer of 94.76 g/L from pretreated corn cobs. Although ethanol was the initial model
for biofuel commercialization, it presents several technical challenges, such as low energy content,
miscibility with water, and incompatibility with existing fuel distribution and storage infrastruc-
ture. In contrast, other nonethanol biofuels, such as higher alcohols (with more than two carbons),
fatty acid derivatives, and terpenes, are more promising alternatives due to their closer chemical
resemblance to current petroleum-based fuels.

Biobutanol is a suitable fuel molecule because it has a higher energy content, lower water solu-
bility, and reduced vapor pressure compared with ethanol. Two primary strategies have been used
to produce butanol in yeast: heterologous expression of the Clostridium pathway and endogenous
amino acid degradation pathways. Optimization of the substrate supply, redox balance, and stress
tolerance through the Clostridium pathway enhanced butanol production in engineered yeasts,
achieving a titer of 1.67 g/L (51). Conversely, endogenous butanol production, which relies on
amino acid degradation, has shown lower productivity (90). However, the butanol TRY remains
lower than that of ethanol, presenting significant challenges that need addressing, and improving
butanol tolerance is also required for increased production (16).

Fatty acids and their derivatives, including oils, fatty acid ethyl esters, free fatty acids, and
fatty alcohols, can be used as fuels or fuel precursors. Specifically, yeast metabolism has been re-
programmed toward lipogenesis through a comprehensive biological redesign that encompasses
metabolic rewiring, directed evolution, and bioprocess optimization (105). Additionally, accumu-
lated fatty acids can be transformed into various derivatives, such as fatty acid ethyl esters (44)
and fatty alcohols (112). Identifying efficient enzymes for the production of fatty acid derivatives
remains a challenge, which could potentially be addressed through high-throughput screening or
protein engineering techniques.

Several terpene-based biofuels, such as farnesene and limonene, can be synthesized by express-
ing various terpene synthases. Recent research has demonstrated the highly efficient production
of farnesene, achieving a yield of 28.3 g/L through combined enzyme and metabolic engineering
strategies (100). Similarly, the development of a synthetic pathway, augmented by dynamic

www.annualreviews.org • Metabolic Engineering of Yeast 105
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regulation and compartmental engineering, enabled the biosynthesis of limonene at 2.63 g/L
(42). These compounds, characterized by their ring structures and methyl branches, exhibit
superior fuel performance and can serve as alternatives to diesel and jet fuel. Furthermore,
synthetic biology techniques allow for the customization of terpene structures, enhancing their
suitability as fuels (113).

Chemicals

Yeast cell factories have been developed to produce a variety of commodity chemicals. One such
chemical, 3-hydroxypropionic acid (3-HP), holds significant industrial applications. By lever-
aging mitochondrial capabilities, cofactor engineering, and flux optimization at the acetyl-CoA
node, researchers achieved a notable 3-HP titer of 71.06 g/L in a meticulously engineered yeast
(108). Further advancements enhanced the carbon yield of 3-HP to 0.5625 g 3-HP/g glucose by
minimizing native CO2 emissions and reducing carbon waste (80).

Fine chemicals function as intermediates or active ingredients in pharmaceuticals, agrochem-
icals, and specialty chemicals. Dicarboxylic acids, such as malate and succinate, are extensively
utilized in the fine chemical industry. Noteworthy research has facilitated the production of suc-
cinate at a concentration of 45.5 g/L by optimizing the flux between the reductive and oxidative
branches of the TCA cycle, as well as by employing mitochondrial transporters (83). Additionally,
an inorganic–biological hybrid system has been developed to enable the production of succinate
that is more carbon and energy efficient (25).

Expressing secondary metabolite biosynthetic pathways in yeast enables the production of
high-value specialty chemicals with diverse applications, including dyes, pigments, agriculture,
medicine, nutrition, fragrances, and flavors. Increasing attention has been paid to terpenoids,
flavonoids, and polyketides. For instance, astaxanthin, a highly valued antioxidant and coloring
terpenoid, was produced in yeast at a concentration of 446.4 mg/L through the integration of spa-
tial regulation, lipid engineering, and dynamic regulation (48). Naringenin, a pharmacologically
significant flavonoid, was effectively synthesized using a multipathway synergistic and enzyme en-
gineering strategy, achieving a final titer of 3.4 g/L (47). Additionally, the biosynthesis pathway
for the tetracyclic polyketide bikaverin was constructed in yeast, leading to a production level of
202.75 mg/L after alleviating pathway bottlenecks (110).

Beyond the efficient and sustainable production of known compounds, exploring novel syn-
thetic compounds remains another primary objective in synthetic biology. For example, unnatural
cannabinoid analogs with customized C3 side chains were synthesized by exploiting enzyme
promiscuity (58). Furthermore, computational tools like ATLASx (67) have been utilized to ex-
pand the natural biochemical space, resulting in the production of two different classes of tropane
alkaloid derivatives: nortropane alkaloids and tropane N-oxides (92). Additionally, combinatorial
biosynthesis has been used to create novel sesquiterpenoids with unique hydrocarbon scaffolds by
combining various sesquiterpene cyclases and P450 oxygenases (93).

Proteins and Peptides

The production of biopharmaceutical proteins represents one of the fastest-growing sectors
within the multibillion-dollar pharmaceutical industry. Yeasts have been utilized to produce
approximately 29 biopharmaceuticals currently on the market, accounting for approximately one-
sixth of all pharmaceuticals used in human medicine (96). These biopharmaceuticals include
primarily vaccines and small proteins for treating conditions such as diabetes and obesity. For
example, Novo Nordisk has been producing insulin, one of the earliest and most well-known
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biopharmaceuticals, using yeast since 1987; yeast-based production now accounts for half of the
global insulin supply (41). Research has shown that multiple factors, including the leader sequence
(53) and vesicle trafficking (28), influence insulin production. Additionally, modifications to
the insulin sequence have led to the development of insulin analogs designed to optimize phar-
macokinetic and pharmacodynamic properties (41). An example is insulin detemir, engineered to
extend the duration of insulin’s activity (40). Currently, over 70% of biopharmaceuticals are gly-
coprotein products, and strategies to engineer glycosylation modification processes in yeast have
been employed.

Yeasts can produce various industrial enzymes for commercial purposes. These enzymes find
applications across various sectors. For instance, enzymes such as amylase, invertase, lipase, and
pectinase are crucial for purifying food products and enhancing food components. Numerous
strategies have been used to enhance yeast’s protein production capabilities. Through combina-
torial genetic manipulation, optimally engineered yeast strains have achieved production levels of
α-amylase of 2.5 g/L (30). Furthermore, recent advancements have introduced high-throughput
(99) and rational design (45) platforms for optimizing desired enzyme production. Looking ahead,
utilizing agricultural residues or by-products as substrates for producing industrial enzymes via
yeast fermentation could make the process more cost-effective.

By 2050, conventional farming will be insufficient to provide 9 billion people with healthy
food due to low conversion efficiency and the impacts of climate change. Yeast proteins, which
are natural and sustainable, could play a crucial role in addressing this challenge. Companies
such as Lesaffre (France) and Lallemand (Canada) have already commercialized yeast-based pro-
teins as food-grade single-cell proteins (84). Furthermore, advancements in synthetic biology have
facilitated the enhancement or modification of yeast proteins to meet the nutritional and sensory
preferences of consumers. For instance, hemoglobin, an iron-binding protein essential for im-
parting a meat-like flavor, has been effectively produced by engineered yeast, achieving 18% of
its intracellular protein as human hemoglobin (35). However, the application of yeast proteins as
food products is currently limited by high production costs, technical challenges in extraction and
refinement, and issues related to sensory qualities and palatability.

Peptides are short chains of amino acids and are generally smaller than proteins (65). Some
peptides exhibit various beneficial effects on human or animal health, including antioxidant,
antimicrobial, antihypertensive, antithrombotic, and immunomodulatory properties. Enzymatic
hydrolysis and microbial fermentation of yeast have been used to produce bioactive peptides. For
instance, small peptide fractions hydrolyzed from the glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) protein have been identified as antimicrobial peptides, which can be naturally
secreted and produced by yeast (4). This discovery has guided the development of metabolic
engineering strains for the production of GAPDH-derived peptides (3). In another study us-
ing an optimized expression system, two heterologous antimicrobial peptides, plantaricin 423
and mundticin ST4SA, were produced by engineered yeast, suggesting their potential as feed or
food additives (85). Due to the uncontrollable nature of the autolysis process, the use of precise
metabolic engineering strains is considered a promising approach for future developments.

COMPUTATIONAL DESIGN OF METABOLISM

Mathematical modeling enables predictions of the cellular behavior in response to environmental
and genetic perturbations, and therefore model-aided design and analysis of metabolism are ex-
pected to reduce the degree of trial and error and accelerate the design–build–test–learn cycle in
metabolic engineering. Different mathematical models of metabolism have been used in the field
of yeast metabolic engineering (Figure 2).

www.annualreviews.org • Metabolic Engineering of Yeast 107
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Figure 2

Mathematical models of metabolism. Kinetic models describe individual reactions with detailed kinetic
equations, which are a function of enzyme kinetic parameters, and concentrations of the enzyme, substrates,
products, and regulators, if any. In addition, changes in metabolite concentrations over time are formulated
on the basis of the rates of all the reactions in which the corresponding metabolites are involved.
Stoichiometric models do not assign detailed kinetic equations to individual reactions but only impose lower
and upper bounds on the reaction rates. On the basis of metabolite balancing as well, all reaction rates are
formulated within systems of equations, in which the right-hand side of the equations are set to zero by
assuming pseudo-steady state. Enzyme-constrained models are stoichiometric models integrated with
enzyme constraints that are formulated on the basis of enzyme kinetics and concentrations. Likewise,
enzyme-constrained models assume pseudo-steady state to reduce the computational burden.

Kinetic Models

Kinetic models describe individual enzymatic reactions with rate law formalisms (56); i.e., the rate
of an enzymatic reaction is determined by kinetic properties and the concentration of the enzyme
and by concentrations of related metabolites, including not only the substrates and products of
the reaction but also those regulating the enzyme (e.g., allosteric regulators). The rates of all
reactions in the metabolic network are related by the change in the concentration of the shared
metabolite over the change in time based on mass balance. Therefore, kinetic models allow for
simulations of reaction rates and concentrations of metabolites and enzymes in a dynamic system.

In practice, kinetic models serve mostly as a computational framework to estimate the control
on themetabolic system using the concept of metabolic control analysis (MCA) (22).MCA enables
the identification of key reactions that should be modified, for example, by altering the expression
of the enzyme level, in order to change the pathway flux or metabolite concentrations. This is
done by calculating the so-called flux (or metabolite concentration) control coefficients, i.e., how
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a fractional change in the flux (or metabolite concentration) is obtained following an infinitesimal
fractional change in enzyme activity. Enzymes with large control coefficients play a dominant
role in controlling the pathway flux and thus could be potential engineering targets for effectively
improving the flux. For instance,MCA with the kinetic model of the glycerol synthesis pathway in
S. cerevisiae quantified the control of enzymes in the pathway at the rate of glycerol production. It
showed that glycerol 3-phosphate dehydrogenase had a flux control coefficient of approximately
0.85, while glycerol 3-phosphatase had a coefficient of 0.15 (15). This indicates that the former
dominates the flux through glycerol synthesis and thus could be an efficient target for improving
glycerol production.Besides the product synthesis,MCA can also be used to optimize the substrate
uptake. An MCA study of co-utilization of glucose and xylose in S. cerevisiae (66) showed that
the computed control coefficient of hexokinase over xylose uptake was −0.11, meaning that a
twofold increase in the activity of hexokinase reduces xylose uptake by 11%.This finding indicates
a negative impact of hexokinase on xylose uptake, validated by the experimental observation that
HXK2 deletion improves xylose uptake rate.

Despite the advantages of kinetic models (e.g., enabling mechanistic and dynamic simulations),
there are few applications in yeast metabolic engineering due to some challenges and limitations.
First, the construction of kinetic models requires prior knowledge and experimental data, partic-
ularly detailed rate law formalisms of all enzymatic reactions together with enzyme parameters.
Because of data scarcity, current kinetic models either are at small scale or adopt many uncertain
enzyme mechanisms and parameters, which could limit the predictive performance. Second, the
computational costs and time of model construction and simulation are high.This is mainly due to
the large systems of ordinary differential equations in the computational framework, which would
further lead to a tremendous cost for model parameterization that depends on iterative simula-
tions (94). Third, the effectiveness of MCA-based predictions might be limited. Traditional MCA
studies have demonstrated that the control of a flux is distributed over several reactions (21); thus,
there is in fact no rate-limiting reaction engineering that would significantly improve the flux (69).

Stoichiometric Models

Different from kinetic models, pure stoichiometric models account for reaction stoichiometry
while disregarding detailed rate law formalisms and thus are much more simplified in terms
of mathematics. Stoichiometric models convert biochemical reactions into systems of ordinary
differential equations based on mass balance as done in kinetic models, but usually adopt the as-
sumption of pseudo-steady state to simplify the systems of equations, in which the variable is a
vector of reaction rates and the coefficient matrix reflects reaction stoichiometry. The reaction
rates can be determined by solving the systems of equations as linear programming problems
with constraint-based approaches, typically flux balance analysis (FBA) (73). In addition, FBA op-
timizes a predefined reaction (i.e., objective function, subject to given constraints) and thus has
the potential to predict optimal growth and productive capacity of cell factories. Notably, it takes
a short time to run FBA (e.g., thousands of reactions within 1 s) (59).

Thanks to the simplified framework and high computational efficiency, stoichiometric models
have been built for metabolism at the genome scale, resulting in genome-scale metabolic mod-
els (GEMs). Since the first GEM was built for S. cerevisiae in 2003 (20), an increasing number
of GEMs have been developed, including not only those for various yeast species (17) but also
multiple updated versions of the model for S. cerevisiae (11).

The yeast GEMs have been widely used in the field of metabolic engineering, and the appli-
cations published within the past 5 years involve prediction of engineering targets, identification
of optimal pathways, FBA of cell factories, and optimization of culture conditions. First, most
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studies have used GEMs to predict gene targets, engineering that could improve the flux to-
ward the compound of interest. In silico knockout of genes can be performed with GEMs by
either directly blocking the corresponding reactions or utilizing existing algorithms. For instance,
OptGene is an evolutionary programming-based method that can rapidly identify gene deletion
targets (75). Gene and reaction knockout predictions have led to effective targets for the overpro-
duction of various compounds, such as l-phenylacetylcarbinol (33), 7-dehydrocholesterol (81),
and rubusoside (104). GEMs have also been used to predict overexpression targets with the aid of
design algorithms [e.g., FSEOF (flux scanning based on enforced objective flux) (14) andOptForce
(82)]. These algorithms normally identify the reactions as overexpression targets whose rates in-
crease with the product formation rate, leading to successful cases, including the overproduction
of heme (34), taxadiene (60), and so on. Second, GEMs have allowed for comparison between
pathways and thus guided pathway selection and design, which is based on the GEM-calculated
pathway properties, especially the product yield on substrate. A recent example is the design of
3-hydroxypropionate overproduction in S. cerevisiae, in which the GEM suggested that targeting
malonyl-CoA reductase into mitochondria could improve the theoretical yield (108). Third, FBA
of cell factories also accounts for a large group of the applications,which aims to reveal the detailed
mechanisms contributing to overproduction. Examples include FBA-based flux quantification for
cell factories that overproduce α-amylase (78), caffeic acid (7), and sclareol (5). Last, GEMs have
been used to investigate and optimize the parameters of culture conditions [e.g., pH (24) and inlet
air flow (64)] of S. cerevisiae for ethanol production.

With the extensive applications in metabolic engineering, limitations of GEMs have emerged.
Current GEM-guided strategies depend exclusively on the optimization of substrate utilization
as the objective, which, however, conflicts with the finding that cells are simultaneously subject
to multiple objectives and constraints (86) and thus limits the predictive performance. To address
this issue, efforts have focused on integration of biological constraints into the stoichiometric
modeling framework (12, 89).

Enzyme-Constrained Models

Enzyme-constrained models (ecModels) are stoichiometric models integrated with enzyme kinet-
ics. The core of ecModels is to couple the usage of the enzyme to the corresponding metabolic
reaction on the basis of the equation ν ≤ kcate, in which ν is the reaction rate, kcat is the enzyme
turnover number, and e is the enzyme concentration. With this, ecModels can account for the
impact of enzyme concentrations (i.e., proteome resource) on cellular behaviors and thus outper-
form the conventional GEMs. With the development of ecModel construction toolboxes [e.g.,
GECKO (9) and ECMpy (62)], ecModels have been built for various organisms (39). Moreover,
by implementing deep learning prediction of kcat values (46), the latest GECKO toolbox claims
that it is now possible to build ecModels for any organism (9).

While ecModels have been built for more than 300 yeast species in a large-scale manner (46),
the ecModels for S. cerevisiae have gained more attention than models for other species have. In
a recent study, the S. cerevisiae ecModel was used to calculate the costs of substrate and protein
resources for synthesizing a metabolite. The substrate cost indicates how many units of substrate
(e.g., glucose) are required for the synthesis of one unit of the metabolite, while the protein cost
calculates the protein mass required per unit of the metabolite biosynthetic flux (13). By calcu-
lating the glucose and protein costs for the biosynthesis of the 20 proteinogenic amino acids in
S. cerevisiae, the study identified a weak correlation between the two types of costs and found that
protein cost rather than glucose cost could explain the amino acid composition in yeast. Thus, this
study demonstrates the potential effectiveness of ecModels in guiding engineering strategies, and
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the finding highlights the importance of considering the proteome resource when designing cell
factories.

In addition to the enzyme constraint, other biological constraints have been investigated. One
example integrated the enzyme cofactors (i.e., metal ions) into the S. cerevisiae GEM by formu-
lating protein synthesis and enzyme cofactor binding reactions (10). The resulting model, named
CofactorYeast, coupled the rates of metabolic reactions with the synthesis rates of the correspond-
ing enzymes and also the metal usage. Therefore, CofactorYeast can predict cellular behaviors
uponmetal limitation (e.g., decreased production of p-coumaric acid in response to iron depletion)
(10). Another example formulated the complete protein secretory pathway within the S. cerevisiae
GEM,which enabled the researchers to account for the resource of secretory machineries and also
to calculate the secretory cost of a protein (45). The resulting model, named pcSecYeast, acceler-
ated hypothesis generation for phenotypes that might be caused by limited secretory capacity. In
addition, pcSecYeast predicted targets for overproduction of recombinant proteins, and many of
those for α-amylase overproduction were experimentally validated in the study (45). These stud-
ies demonstrate that metabolism is under the control of multiple constraints, and future modeling
efforts could integrate more biological constraints and processes within a unified framework.

ENGINEERING METABOLISM

Yeast is not inherently optimized for producing any chemical of interest. Developing an engi-
neered yeast strain therefore necessitates extensive modifications to the host cell’s metabolism.
These modifications include adjusting expression levels, performing gene knockouts, and im-
plementing enzyme engineering strategies. Recent advancements in synthetic biology tools have
significantly enhanced our ability to elucidate complex phenotypes and engineer novel ones for
sophisticated biological applications (Figure 3).

Genome Editing

Genome editing technology is a powerful tool for metabolic engineering by enabling precise gene
modifications in living cells. Utilizing genome editing tools allows for the alteration of metabolic
pathways and the control over cellular metabolism through targeted gene modifications.

The advanced clustered regularly interspaced short palindromic repeat (CRISPR) and
CRISPR-associated (Cas) protein genome editing system has significantly enhanced strain con-
struction, offering faster andmore reliable methods by facilitating genetic integration, deletion, or
replacement via intrinsic DNA repair mechanisms. Meanwhile, enhanced functionalities, such as
transcriptional regulation, methylation, and base editing, have been achieved by fusing CRISPR-
Cas with functional effectors like transcriptional effectors, methyltransferases, and deaminases
(88). The development of a CRISPR-Cas system with orthogonal functions has proven to be a
versatile and powerful tool for implementing combinatorial and multiplex modifications essential
for creating superior yeast cell factories. For instance, the GTR-CRISPR system (a gRNA-tRNA
array for CRISPR-Cas9) has enabled the multiplexed engineering of the yeast lipid network, si-
multaneously disrupting eight lipid-related genes with 87% efficiency and resulting in a 30-fold
increase in free fatty acid production (109). Additionally, the use of three orthogonal Cas proteins
to construct a trifunctional CRISPR system has facilitated simultaneous transcriptional activation,
interference, and gene deletion, tripling β-carotene production in a single step (49).This approach
was further enhanced by integrating array-synthesized oligo pools for genome-scale genotype–
phenotype mapping, identifying previously unknown genetic determinants of complex traits such
as furfural tolerance (50). Genome-wide or combinatorial CRISPR engineering techniques sub-
stantially advance genotype–phenotype mapping, facilitate the construction of complex biological
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Figure 3

Schematic overview of synthetic biology tools and strategies to implement the ideal yeast cell factory (YCF). The figure illustrates
various methods used to engineer yeast metabolism, facilitating the construction and optimization of efficient YCFs. Key tools and
strategies include genome editing, enzyme engineering, adaptive laboratory evolution, and synthetic biology standardization.

systems, and enhance the metabolic engineering of yeast cell factories. However, a critical factor
in these approaches is the availability of high-throughput screening or selection strategies that
efficiently identify desired phenotypes.

In addition to the well-known CRISPR-Cas system, several alternative genome editing tech-
nologies have been developed for yeast. For instance, transcription activator-like effector nucleases
(TALENs) were the first accessible genome editing technology, and a TALEN-assisted method
has been developed to enhance yeast ethanol tolerance (23). The primary limitations of TALEN-
based techniques are their reliance on protein–DNA interactions and the necessity to design new
proteins for each specific application. In yeast with synthetic chromosomes, symmetrical loxP
sites are introduced along with Cre recombinase as the controller, enabling various recombi-
nation events. This method, known as synthetic chromosome rearrangement and modification
by loxPsym-mediated evolution (SCRaMbLE), has proven effective in inducing genome rear-
rangement and accelerating phenotypic evolution (37). However, the SCRaMbLE system cannot
facilitate rational genomic changes and its use is restricted to synthetic yeast. Concurrently, a
nuclease-independent eukaryotic multiplex automated genome engineering (eMAGE) platform
for yeast has been introduced (2). eMAGE employs single-stranded oligonucleotides to swiftly
generate precise combinatorial genome modifications, enabling up to 60 targeted mutations in
a single transformation. It has been effectively utilized for multiplex editing and optimization
of a heterologous β-carotene biosynthetic pathway. However, the efficient multiplex editing of
eMAGE is restricted to a region of approximately 20 kb surrounding the selectable marker.
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Enzyme Engineering

Enzymes are fundamental to the design and construction of engineered yeast systems. However,
native enzymes that exhibit limitations such as low activity, low stability, and susceptibility to feed-
back inhibition may not meet specific requirements. In such instances, protein engineering can
be utilized to develop modified enzymes with altered functions. Common protein engineering
techniques include directed evolution and rational engineering.

Rational engineering relies on a thorough understanding of the enzyme function and mech-
anism, derived from existing protein structures or homology models. For instance, rational
design has identified residues critical for isomeric substrate selectivity in monoterpene syn-
thases, facilitating the engineering of five different enzymes to accept an alternative substrate
with increased efficiency and specificity, leading to the synthesis of 134.8 mg/L of limonene and
72.4 mg/L of sabinene (32). Another promising approach involves the design of de novo artifi-
cial enzymes using computational methods (95), although this strategy has yet to be applied in
yeast.

Directed evolution, which simulates natural selection, does not require protein structural
information, allowing its application to any enzyme. This method necessitates a suitable high-
throughput assay or a connection to growth or pigment synthesis. For example, directed evolution
of isoprene synthase, driven by precursor toxicity, achieved enhanced catalytic activity, with the
best mutant producing 3.7 g/L of isoprene (98). Although rational engineering is significantly
developed, directed evolution remains powerful, as it often reveals beneficial mutations at unex-
pected sites. Future applications might include the use of electrochemical sensors or biosensors
to link yeast performance with observable signals or cell growth, thus enhancing high-throughput
screening capabilities.

Semirational design, a hybrid of rational protein design and directed evolution, balances se-
quence diversity andworkload. It generates a small but smartmutant library for directed evolution,
guided by in silico models. For example, in constructing a yeast cell factory for ginsenoside Rh2,
semirational design improved the catalytic efficiency of the natural glycosyltransferase UGT51
by approximately 1,800-fold (114). Introducing this mutant resulted in a 122-fold increase in Rh2
production in yeast.When combined with other metabolic engineering strategies, the final strain
produced approximately 300 mg/L of Rh2. Instead of focusing on one or two key amino acids,
future approaches of semirational design could target mutagenesis to specific protein regions to
introduce significant sequence changes, thereby facilitating the creation of beneficial variants with
increasingly ambitious goals.

Adaptive Laboratory Evolution

ALE utilizes natural selection to optimize biological systems by forcing the selection of specific
phenotypes through the accumulation of spontaneous mutations under constant selection pres-
sure. An effective selection strategy is crucial for successful ALE. The classical growth-coupling
strategy is commonly used, exemplified by ALE enhancing the utilization of nonpreferred
methanol as a substrate (19), balancing metabolic flux (79), and increasing tolerance for toxic
aromatic acids (76). However, desired phenotypes are not always associated with growth.

To address this, researchers have employed genetic biosensors to facilitate ALE for phenotypes
that do not directly benefit growth, such as high production of metabolites. In recent research, a
synthetic selection system was developed that links cis,cis-muconic acid (CCM) production to cell
fitness via a CCM biosensor (91). Multiple rounds of mutagenesis and ALE identified a strain
producing 2.1 g/L of muconic acid. Currently, the number of available biosensors is limited,
highlighting the need to expand the range of detectable metabolites and factors.
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Alternatively, a tailor-made growth-coupling strategy, though less universal, has also been uti-
lized to support ALE. For example, the use of H2O2 has driven the ALE of astaxanthin-producing
yeast, where intracellular astaxanthin provides fitness advantages under oxidative stress (38). This
approach led to the highest reported titer of 404.78 mg/L astaxanthin in yeast. However, this
strategy is highly specific and relies on a deep understanding of the desired trait’s properties, such
as the antioxidant capacity of astaxanthin.

After ALE, employing systems biology and machine learning techniques can further elucidate
the genetic basis of the adaptation process. This knowledge aids in designing more robust mi-
crobial strains for industrial bioprocesses through a reverse engineering approach (19, 76, 79).
Additionally, integrating ALE with rational genetic engineering could maximize the power. Us-
ing a rationally engineered parental microbe as the starter can expedite the evolution process,
particularly for complex phenotypes (79, 105).

Synthetic Biology Standardization

Standards form the foundation of synthetic biology technology and involve the precise description
and measurement of basic elements, such as promoters/terminators of varying strengths, coding
sequences with distinct functions, and regulatory sequences for complex genetic circuits. These
elements can be assembled to create devices or potentially entire synthetic biological systems that
operate in specific ways. For instance, a library of synthetic core promoters has been developed
and validated as modular parts for fine-tuning gene expression (77). Another notable example
of standardization is the design and construction of TALE (transcription activator-like effector)
constructs, which serve as a genetic circuit for producing zinc finger DNA recognition domains
utilized in TALEN genome editing tools (6). Currently, several collections of characterized yeast
elements are available, including the iGEM Registry (31) and the Joint Bioenergy Institute’s In-
ventory of Composable Elements (27). Additionally, novel standardization parameters such as loci
characterization, DNA integration efficiency, and newly identified elements with novel functions
are continually being added to these toolkits (63, 106).

Meanwhile, various tools and techniques are available for assembling DNA or synthetic bi-
ology elements, with the choice of method depending on the specific application. For example,
MoClo, based on the Golden Gate assembly method, enables a rapid and modular assembly for
multiparts (101). YeastFab facilitates the combinatorial assembly of pathways using hundreds of
regulatory biological parts through the incorporation of prefixes and suffixes (26). However, man-
ual approaches to assembling large combinations of parts using these tools are laborious, repetitive,
error-prone, and time-consuming. Therefore, the suitability of individual toolkits for automation
should be further evaluated in terms of cost-effectiveness and time savings (6, 74).

FUTURE PERSPECTIVES

To date, yeast has been engineered as a versatile platform host for a diverse array of products thanks
to its well-characterized genome, beneficial traits, and advanced genetic toolkit.Commercial-scale
plants utilizing engineered yeast strains are already operational or in development for the produc-
tion of biofuels (36), such as second-generation ethanol by companies like DuPont, POET-DSM,
and GranBio; chemicals (18), including succinic acid by DSM, isobutanol by Gevo, and farne-
sene by Amyris; biopharmaceuticals (96), such as insulin by Novo Nordisk and Vaxelis by Merck;
and natural molecules (97), including resveratrol and nootkatone by Evolva. Recent advances in
microbial fermentation aim not only to maximize the TRY of desired products but also to adapt
microbial catabolism for the use of cost-effective feedstocks (54, 111). For instance, carbon-neutral
or carbon-negative production is achievable through microbial biosynthesis from C1 feedstocks,

114 Shi • Chen • Nielsen



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
12

9.
16

.3
1.

64
 O

n:
 W

ed
, 2

1 
M

ay
 2

02
5 

09
:3

3:
52

BB54_Art06_Nielsen ARjats.cls April 17, 2025 12:30

with electricity providing the energy needed for microbial catalysis to convert CO2 into fuels and
other organic commodities.

The eukaryotic nature of yeast enables it to perform posttranslational modifications similar to
those in plants. Yeast cells are also equipped with subcellular organelles like the endoplasmic retic-
ulum and mitochondria, which are essential for enzyme localization or protection. These traits
make yeast suitable for producing a variety of complex natural products, providing a significant
advantage over bacteria. Additionally, yeasts offer significant advantages over higher eukaryotes
such as mammalian or plant cells due to their rapid growth and ability to achieve high cell densi-
ties. These characteristics make yeasts particularly suitable for large-scale production, leading to
higher yields of the desired plant-based natural products. Indeed, a myriad of plant metabolites
(68), including terpenes, flavonoids, alkaloids, and betalains, have been synthesized in yeast.With
the aid of synthetic biology tools, such as CRISPR-Cas, combinatorial optimization techniques,
and artificial intelligence–aided protein engineering, yeasts have been metabolically engineered
to produce even more complex plant-based natural products (52, 107).

Metabolic models are powerful tools that offer profound insights into cellular metabolism, fa-
cilitating the rational design and optimization of cell factories for the production of a diverse array
of bioproducts.Different types of models have distinct applications.Kinetic models enable quanti-
tative identification of the key nodes controlling fluxes through pathways or networks, and GEMs
and ecModels predict design strategies based on the optimization of resources (e.g., substrate and
proteome). It should be noted that ecModels appear to be a kinetic–stoichiometric hybrid, and
the hybrid does not increase computational cost too much but allows for MCA at the genome
scale (57). Therefore, more elements of kinetic models are expected to be introduced into the
stoichiometric modeling framework to improve model performance. The construction of the hy-
brid models may be limited by the lack of genome-scale parameters, which could be addressed by
machine learning and deep learning algorithms with biofoundry-based data generation.

Future engineered yeasts can produce molecules that are currently unattainable through syn-
thetic chemistry. The use of artificial enzymes, as demonstrated in the development of nonnatural
cyclopropanated terpenoids (29), is expected to expand the enzymatic toolbox, facilitating critical
chemical reactions. Additionally, incorporating artificial amino acids into proteins deserves
special attention, as it can enhance the diversity of protein functions for industrial applications.
Furthermore,multiplexed automated culture platforms facilitate the development of desired yeast
strains by enabling more precise control over selection, increasing the number of independent
replicates, and reducing labor costs (102).

In conclusion, yeast cell factories provide a combination of genetic tractability, high yield po-
tential, scalability, cost-effectiveness, and sustainability. These attributes make them an attractive
platform for the production of various compounds. With ongoing advancements in various tools
and techniques, metabolic engineering aimed at rewiring cellular metabolism is rapidly evolving,
further expanding the industrial applications for yeast cell factories.
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