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Batch SLAM with PMBM Data Association
Sampling and Graph-Based Optimization
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Abstract—Simultaneous localization and mapping (SLAM)
methods need to both solve the data association (DA) problem
and the joint estimation of the sensor trajectory and the map,
conditioned on a DA. In this paper, we propose a novel integrated
approach to solve both the DA problem and the batch SLAM
problem simultaneously, combining random finite set (RFS)
theory and the graph-based SLAM approach. A sampling method
based on the Poisson multi-Bernoulli mixture (PMBM) density is
designed for dealing with the DA uncertainty, and a graph-based
SLAM solver is applied for the conditional SLAM problem. In the
end, a post-processing approach is applied to merge SLAM results
from different iterations. Using synthetic data, it is demonstrated
that the proposed SLAM approach achieves performance close
to the posterior Cramér-Rao bound, and outperforms state-of-
the-art RFS-based SLAM filters in high clutter and high process
noise scenarios.

Index Terms—Batch processing, SLAM, DA, correlation, RFS,
graph-based SLAM, sampling, PMBM.

I. INTRODUCTION

The objective of the simultaneous localization and mapping
(SLAM) problem [1], [2] is to deduce the dynamic pose of a
mobile sensor over time, along with constructing a map of the
surrounding environment, using measurements obtained from
one or multiple sensors. Drawing inspiration from pioneering
research in autonomous robotics [3], the SLAM problem has
captured broad interest in recent decades: it holds significant
importance with a multitude of applications spanning diverse
fields, such as robotics [1], autonomous driving [4], virtual and
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Ángel F. Garcı́a-Fernández is with the IPTC, ETSI de Telecomuni-
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Fig. 1. Illustrative example of the SLAM application in integrated sensing
and communication, where resolved measurements over time are leveraged to
estimate both the sensor trajectory and the surrounding environment.

augmented reality [5], indoor navigation [6], [7], integrated
sensing and communication [8], [9] as exemplified in Fig. 1,
and so on.

Traditional SLAM methods typically follow a two-step
approach: i) solve the data association (DA) problem between
the unknown number of landmarks which collectively define the
map and imperfect measurements, which may include clutter
and mis-detections, ii) estimate the joint posterior density of
the sensor trajectory and the map, given measurements, control
inputs, and the DA from step (i). Two important methodologies
are the filtering-based and graph-based approaches. In filtering-
based approaches [2], [3], [10], the map is modeled with an
unknown number of physical landmarks with unknown spatial
locations, and the map and the sensor state are then typically
estimated sequentially. Prominent examples are extended
Kalman filter (EKF)-SLAM [10] and FastSLAM [11], which
has been demonstrated to work well in practice, but is sensitive
to DA uncertainty [12].

On the other hand, in graph-based approaches [13]–[15], the
sensor state at a specific time step or a physical landmark is
represented as a node in a graph, and each edge represents
probabilistic dependency between two sensor states, or between
a landmark state and a sensor state. The sensor trajectory and
the map can be simultaneously estimated by obtaining the
maximum a posteriori estimation (MAP) estimate, optimizing
over the whole graph. Unlike filtering-based approaches, graph-
based SLAM typically takes all measurements and performs
optimization techniques on the entire graph, maintaining cross-
correlation information between the sensor trajectory and
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the map. This results in more robust and accurate estimates,
and makes graph-based SLAM perform batch processing and
typically work offline. Among graph-based SLAM approaches,
the GraphSLAM algorithm has become a prevalent offline
SLAM solver for batch processing, due to its global consistency
properties [16]. However, the performance of graph-based
SLAM heavily relies on the quality of the DA. Statistical
tests such as the χ2 test, joint compatibility test, or other
types of heuristics are often applied to solve the DA problem
[17]. In GraphSLAM, the SLAM front-end is responsible for
constructing constraints of the graph and a single error in the
DA often leads to inconsistent maps [18]. Instead of assuming
that the generated pose-graphs are free of outliers, typically the
state-of-the-art SLAM back-ends are implemented such that
they are able to naturally change the topological structure of the
problem during the optimization itself [19]. Algorithmically this
is done either by switching off potential outlier constraints [18],
[19] or replacing the quadratic cost function in the nonlinear
optimization problem to a robust cost function [20], [21], such
as the Huber robust cost function used in ORB-SLAM [20].

One theoretically appealing approach to handling DAs is
using random finite sets (RFSs) [22]. Modeling the map and
measurements as RFSs enables a fully integrated Bayesian
SLAM solution that treats the DA uncertainty as a part of the
estimation process [23]. In RFS-based SLAM frameworks,
different RFSs are used to model the map, resulting in
probability hypothesis density (PHD)-SLAM filters in [23]–
[25], the labeled multi-Bernoulli (LMB)-SLAM filters in [26],
[27], the δ-generalized labeled multi-Bernoulli (δ-GLMB)-
SLAM filters in [28], [29], the Poisson multi-Bernoulli mixture
(PMBM)-SLAM filters in [30], [31], and the Poisson multi-
Bernoulli (PMB)-SLAM filters in [32], [33]. Within these RFS-
based SLAM solutions, the PMBM-SLAM filters can explicitly
consider all possible DAs, resulting in better performance by
sacrificing time efficiency. Many RFS-based SLAM solutions,
such as [24], [30], [34], apply Rao-Blackwellized particle
(RBP) filter, similar as the FastSLAM solution, sampling the
sensor trajectory and taking RFS likelihoods into consideration
in the particle weight computation. To reduce the computational
complexity, the number of required particles can be reduced
by using an approximation of the optimal importance density
(OID) to draw samples efficiently [35], [36]. In addition, low
complexity alternatives are introduced in [25], [31]–[33], [37],
which rely on linearization and jointly updating the sensor
state and the map, dropping the cross-correlation between the
sensor and the map, while keeping the RFS format. These
approaches can have relatively low computational complexities
by sacrificing the SLAM performance and robustness.

Although batch solutions to the backend problem are known
to yield superior performance, most of the existing RFS-
based SLAM solutions focus on filtering. An RFS-based batch
processing SLAM algorithm is vector-generalized labeled multi-
Bernoulli (V-GLMB)-SLAM [38], which relies on the joint
V-GLMB distribution. A drawback of this approach is that it
uses a generalized labeled multi-Bernoulli (GLMB) density

to represent the landmarks, which requires more hypotheses
than a PMBM density [39]. A recent study [40] shows that the
batch PMBM implementation outperforms the batch GLMB
implementation, with both approaches using Gibbs sampling to
address the multi-scan DA problem in the multi-target tracking
(MTT) task. Considering that the DA problem in batch SLAM
resembles the DA problem in the batch MTT problem, DA
techniques designed for MTT can be leveraged to address
the DA in graph-based SLAM. One possible solution to the
DA association problem in MTT is to use sampling-based
methods [41]–[43], which have been shown to exhibit excellent
performance in challenging scenarios. Markov chain Monte
Carlo (MCMC) sampling methods were proposed in [41], [42],
[44] to handle the DA problem, using the Gibbs sampling [43]
or/and the merge-split Metropolis-Hastings (MH) algorithms
[45].

In this paper, we present a novel method that combines
the advantages of batch processing with RFS for a theoreti-
cally optimal treatment of the DAs. The proposed approach
can overcome the limitation of RFS-based SLAM methods,
which are restricted to sequential processing, and graph-based
SLAM methods, which rely on heuristics to handle the DA
problem. Our approach is inspired by collapsed Gibbs sampling
technique [46], [47], and iteratively applies two methods: (i)
an MCMC sampling method based on the PMBM density to
solve the DA uncertainty; (ii) a graph-based SLAM solver for
a set of landmarks and the sensor trajectory conditioned on
a specific DA and existences of landmarks. In the end, the
final sensor trajectory and the map are acquired through a
post-processing marginalization step, which involves merging
the SLAM results from different iterations and considering the
undetected landmarks. Our main contributions are summarized
as follows:

● The development of a novel SLAM algorithm: We
designed a new Graph PMBM-SLAM approach, which
embodies a cyclic process of sampling, and graph-
based SLAM. The framework bridges RFS theory and
graph-based SLAM, where the RFS theory is leveraged
to devise a sampling-based method for addressing the
DA uncertainty, and graph-based SLAM serves as an
optimal solution for tackling the SLAM problem given
a determined DA and existences of landmarks. This
integration provides a new effective and robust SLAM
solution. Via simulation, this iterative refinement process
achieves performance close to the posterior Cramér-Rao
bound (PCRB), along with high accuracy and robustness
in challenging scenarios.

● The derivation of a new MCMC sampling method
for batch SLAM: Based on the RFS theory, a novel
MCMC sampling method is formulated for addressing the
DA problem. The proposed sampling method combines
the Gibbs and the MH algorithms and exhibits superior
performance compared to the Gibbs sampling and the MH
algorithms on their own, providing reliable DA solutions
for the batch SLAM problem.
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● The derivation of a novel marginalization algorithm for
post-processing: The GraphSLAM algorithm tackles the
SLAM problem given a determined DA and existences of
landmarks. By merging GraphSLAM results for different
posterior samples of DA and existences of landmarks, and
considering the undetected landmarks, the sensor trajectory
and the PMB representation of the set of landmarks are
estimated, including the existence probability of each
detected landmark.

The subsequent sections of this article are structured as
follows: Section II details the system models and introduces the
fundamental concepts of the PMBM density. Section III focuses
on the proposed Graph PMBM-SLAM approach designed for
batch processing. Section IV elaborates on the representation
of the DA problem and its solution using a sample-based
approach. In Section V, the exploration is directed towards the
GraphSLAM algorithm, conditioned on a specific DA sample
and existences of landmarks. Section VI delineates the method
for merging the map and sensor trajectory across iterations.
The detailed demonstration of the simulated environment and
the presentation of simulation results are provided in Section
VII. Finally, Section VIII summarizes our concluding remarks.

Notations: Scalars (e.g., x) are denoted in italic, vectors
(e.g., x) in bold, matrices (e.g., X) in bold capital letters,
sets (e.g., X ) in calligraphic. The cardinality of a set or the
number of elements in a sequence of sets is denoted by ∣ ⋅ ∣.
The inner product of f(x) and g(x) is denoted by ⟨f ; g⟩ =
∫ f(x)g(x)dx. The transpose is denoted by (⋅)T, and the
union of mutually disjoint sets is denoted by ⊎. A multivariate
Gaussian distribution with mean u and covariance Σ is denoted
as N (u,Σ), and dx = dim(x) is the dimension of x. The i-th
component of x is denoted by [x]i, and the component in the
i-th row and j-th column of X is denoted by [X]i,j .

II. MODELS AND PMBM BACKGROUND

A. Sensor, Landmark, and Measurement Models

We assume static landmarks, and employ a point object
model throughout this paper. Furthermore, we consider the
sensor movement to follow a known transition function. The
sensor state at time step k, denoted as sk, includes various
components depending on the specific problem and scenario.
The transition density of sk can be expressed as [48]

f(sk ∣sk−1) = N (sk;v(sk−1),Qk−1), (1)
where v(⋅) denotes a known transition function, and Qk−1

denotes a known covariance matrix. The map of the environ-
ment consists of various landmarks, which may correspond to
small objects, such as street lamps, traffic signs, and similar
features, reflecting surfaces, such as walls, building facades,
and other structures. In this paper, all landmarks are assumed
to remain static and persist throughout the entire time sequence.
We model the map as an RFS, denoted as X = {x1, . . . , xI},
where I = ∣X ∣ represents the total number of landmarks, and
each element xi ∈ X denotes a specific landmark state. It is
worth noting that both I and xi ∈ X are random, as X is

modeled as an RFS [22, Section 2.3]. The prior distribution
of the landmarks follows a Poisson point process (PPP).

We assume a point object model, where each landmark
can generate at most one measurement per time instant. The
detection probability pD(x

i,sk) ∈ [0,1] is introduced to
account for how likely there is a measurement from landmark
xi, when the sensor has state sk. At time step k, a set of
measurements Zk = {z1k, . . . ,z

Îk
k } is observed, where Îk

is the number of measurements, and zik ∈ Zk is a specific
measurement. Assuming measurement zi has originated from
landmark xi, its likelihood is given by

f(zik ∣x
i,sk) = N (z

i
k;h(x

i,sk),R
i
k), (2)

where h(sk,xi) is the known measurement function, which is
a function of the sensor state and the landmark state, and Ri

k

is the corresponding covariance matrix. It is important to note
that usually Îk ≠ Ik, is due to clutter and missed detections.
Apart from landmark-generated measurements, Zk may contain
clutter that is modeled as a PPP (see (3)), parameterized by
the intensity function c(z).

B. PMBM Density

An RFS is a random variable whose possible outcomes are
sets with a finite number of unique elements. Specifically, in an
RFS both the number of elements and the elements themselves
are random [22, Section 2.3]. There are various types of RFS,
with PMBM being one of the most significant [39]. In this
subsection, a high-level introduction to the PMBM density
is provided, without accounting for time dependency. The
distribution of the landmarks in the map is a PMBM, given the
sensor trajectory, measurements, and the considered models. In
the PMBM representation of the map, the set of landmarks is
separated into two disjoint sets: the set of undetected landmarks,
which are the landmarks that have never been detected, and
the set of detected landmarks, which are the landmarks that
have been detected at least once. Therefore, X can be divided
into two mutually disjoint sets.

The set of undetected landmarks XU is modeled as a PPP,
and the set of detected landmarks is modeled as an multi-
Bernoulli mixture (MBM) XD, which results in X = XU⊎XD

following a PMBM density [39], [42], [49]. The PPP density
fP(XU) is given by [22, Section 4.3.1]

fP(XU) = e
− ∫ λU(x)dx ∏

x∈XU

λU(x), (3)

where λU(⋅) is the intensity function, and the density can be
parameterized by λU(x). The MBM density fMBM(XD) is

fMBM(XD) =∑
j∈J
wj ∑
⊎i∈Ij X

i=XD

∣Ij ∣
∏
i=1

f j,iB (X
i
), (4)

where J is the index set of all global hypotheses, which
corresponds to DAs in the SLAM problem [49], wj ≥ 0 is the
weight for j-th global hypothesis, satisfying ∑j∈Jw

j = 1, and
Ij is the index set of landmarks (i.e., the Bernoulli components)
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under the j-th global hypothesis with density

f j,iB (X
i
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − rj,i X i = ∅,

rj,if j,i(x) X i = {x},

0 otherwise,

(5)

where rj,i ∈ [0,1] is the existence probability, and f j,i(⋅) is
the state density [22, Section 4.3.3]. A larger rj,i means that
the landmark is more likely to be present. If rj,i = 0, the
corresponding landmark does not exist, and if rj,i = 1, the
corresponding landmark surely exists. The MBM density can
be parameterized as {wj ,{rj,i, f j,i(x)}i∈Ij}j∈J. Following the
convolution formula [22, eq. (4.17)], the PMBM density f(X )
is given by [39]

f(X ) = ∑
XU⊎XD=X

fP(XU)fMBM(XD), (6)

which can be completely parameterized by λU(x) and
{wj ,{rj,i, f j,i(x)}i∈Ij}j∈J. Please note that if there is only
one mixture component in the MBM, i.e., there is only one
global DA, then (4) reduces to an multi-Bernoulli (MB), and
(6) reduces to a PMB. If there are no detected landmarks
(XD = ∅), (6) reduces to a PPP.

III. GRAPH PMBM-SLAM ALGORITHM

This section introduces the proposed Graph PMBM-SLAM
algorithm, which combines RFS and GraphSLAM. The frame-
work seeks to leverage the advantages of both methods to
obtain a SLAM solution, where the RFS posterior serves
for an elegant and theoretically sound treatment of the DA
uncertainties, and the GraphSLAM serves as a computationally
efficient and robust backend algorithm, conditioned on a DA
and the existences of the landmarks.

A. Joint Posterior Expressions

1) Sensor Trajectory and Map Posterior: The posterior dis-
tribution is denoted by f(s0∶K ,X ∣ Z1∶K), where s0∶K denotes
the sensor trajectory, and Z1∶K = (Z1, . . . , ZK) denotes the
measurement batch (i.e., the sequence of measurements up to
time step K). We can factorize f(s0∶K ,X ∣ Z1∶K) as

f(s0∶K ,X ∣Z1∶K) = (7)

f(s0)f(X )∏
K
k=1 f(sk ∣sk−1)g(Z1∶K ∣s1∶K ,X )

f(Z1∶K)
,

where f(s0) denotes the sensor prior density, f(X ) denotes
the prior set density of the landmark set, f(sk ∣sk−1) was
introduced in (1), g(Z1∶K ∣s1∶K ,X ) denotes the likelihood
function of measurement batch Z1∶K given s1∶k and X , and
f(Z1∶K) is the normalizing factor. By assuming that the prior
is a PPP with intensity λ(x), which does not depend on the
measurements [42], and plugging all these expressions into (7),
the joint posterior can be expressed in a more explicit form.
Please note that the prior PPP intensity λ(x) depends on x,
making the PPP inhomogeneous. However, the intensity can
be constant in the area of interest, in which case the PPP is
homogeneous.

We first proceed to define the required notation. As j ∈ J
denotes the index set of DAs, we can partition Z1∶K into
subsets Zj,11∶K , . . . ,Z

j,∣Ij ∣
1∶K based on the j-th DA. The i-th subset

in this partition, Zj,i1∶K , contains all measurements associated
with the same unique origin Yj,i. Here, Yj,i is an RFS
distributed according to the i-th Bernoulli component under
the j-th global hypothesis, with its measurement sequence
represented as Zj,i1∶K = (Z

j,i
1 , . . . ,Zj,iK ), where Zj,ik denotes the

measurement set from the source Yj,i at time step k. As the
landmarks can only create one measurement per time step,
we have that ∣Zj,ik ∣ ≤ 1. When Yj,i = ∅ and ∣Zj,i1∶K ∣ = 1, Zj,i1∶K

contains a single clutter measurement. Overall, it holds that
Z1∶K = (⊎iZ

j,i
1 , . . . ,⊎iZ

j,i
K ).

Theorem 1. The joint posterior (7) can be expressed as
f(s0∶K ,X ∣Z1∶K) = e

− ∫ λ(x)dx−K ∫ c(z)dz (8)

∑
j∈J

∑

XU⊎Y
j,1⊎⋅⋅⋅⊎Yj,∣Ij ∣=X

∏
x∈XU

(pU(x,s1∶K)λ(x)) f(s0)

K

∏
k=1

f(sk ∣sk−1)
∣Ij ∣
∏
i=1

(t(Zj,i1∶K ∣s1∶K ,Y
j,i
)λ(Yj,i))/f(Z1∶K).

In (8), XD = Y
j,1
⊎ ⋅ ⋅ ⋅⊎Y

j,∣Ij ∣ are all detected landmarks, and
pU(x,s1∶K) =∏

K
k=1(1 − pD(x,sk)) denotes the misdetection

probability for landmarks that have not been detected for the
whole time period. Moreover, t(Zj,i1∶K ∣s1∶K ,Y

j,i) denotes the
likelihood of Zj,i1∶K and is given by

t(Zj,i1∶K ∣s1∶K ,Y
j,i
) = (9)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c(z) ∣Z
j,i
1∶K ∣ = 1,Y

j,i = ∅,

∏
K
k=1 ℓ(Z

j,i
k ∣sk,x

i) ∣Z
j,i
1∶K ∣ ≥ 1,Y

j,i = {xi},

0 otherwise,

where

ℓ(Zj,ik ∣sk,x
i
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − pD(x
i,sk) Z

j,i
k = ∅,

pD(x
i,sk)f(z∣x

i,sk) Z
j,i
k = {z},

0 otherwise.

(10)
Finally, λ(Yj,i) in (8) denotes the prior intensity defined on
the set Yj,i given by

λ(Yj,i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 Yj,i = ∅,

λ(xi) Yj,i = {xi},

0 otherwise.

(11)

Proof. See Appendix A.

For using GraphSLAM, a weakness of the introduced
notation is that the partition of Z1∶K into Zj,11∶K , . . . ,Z

j,∣Ij ∣
1∶K

may contain subsets that only comprise a clutter measurement
without any corresponding landmarks (see the first entry
in (9)), which creates ambiguity in determining the actual
number of landmarks. To address this, inspired by the MBM01
representation in [39, Section IV.A], we introduce an auxiliary
variable ψj,i ∈ {0,1}, where1 ψj,i = 1 indicates that Yj,i is non-

1The usage of ψj,i is similar to the expansion of a Bernoulli density into
the sum of two Bernoulli densities with deterministic target existences in the
MBM01 representation in [39, Section IV.A].

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3567916

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

empty so that the corresponding landmark exists, while ψj,i = 0
indicates that Yj,i is empty so that the corresponding landmark
does not exist and the measurement is clutter. Therefore, ψj,i

is entirely determined by the emptiness of Yj,i. With this
auxiliary variable, we can write (9) and (11) as an MBM
t(Zj,i1∶K ∣s1∶K ,Y

j,i
)λ(Yj,i) = (12)

f̃(Zj,i1∶K ,Y
j,i
∣s1∶K , ψ

j,i
= 0) + f̃(Zj,i1∶K ,Y

j,i
∣s1∶K , ψ

j,i
= 1),

where
f̃(Zj,i1∶K ,Y

j,i
∣s1∶K , ψ

j,i
) = (13)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 − ψj,i)c(z) Yj,i = ∅,

ψj,i∏
K
k=1 ℓ(Z

j,i
k ∣sk,x

i)λ(xi) Yj,i = {xi},

0 otherwise.

Then, we have

f(s0∶K ,X ∣Z1∶K) =
e− ∫ λ(x)dx−K ∫ c(z)dz

f(Z1∶K)
(14)

∑
j∈J

∑

XU⊎Y
j,1⊎⋅⋅⋅⊎Yj,∣Ij ∣=X

∏
x∈XU

(pU(x,s1∶K)λ(x)) f(s0)

K

∏
k=1

f(sk ∣sk−1)
∣Ij ∣
∏
i=1

∑
ψj,i

f̃(Zj,i1∶K ,Y
j,i
∣s1∶K , ψ

j,i
).

2) Sensor Trajectory, Map, and DA Posterior: We now
proceed to express the joint posterior of the map, the sensor
trajectory, and the DA. We introduce A as the partition
of Z1∶K into Zj,11∶K , . . . ,Z

j,∣Ij ∣
1∶K , which corresponds to a DA

(see Section IV-A), and ψj = [ψj,1, . . . , ψj,∣I
j
∣] with ψj,i ∈

{0,1},∀i ∈ {1, . . . , ∣Ij ∣}, which describes the existence of
each corresponding landmark of Zj,11∶K , . . . ,Z

j,∣Ij ∣
1∶K . By further

introducing Ã = (A,ψj) as an auxiliary variable in (14), we
have

f(s0∶K ,X , Ã∣Z1∶K) =
e− ∫ λ(x)dx−K ∫ c(z)dz

f(Z1∶K)
(15)

∑

XU⊎Y
j,1⊎⋅⋅⋅⊎Yj,∣Ij ∣=X

∏
x∈XU

(pU(x,s1∶K)λ(x)) f(s0)

K

∏
k=1

f(sk ∣sk−1)
∣Ij ∣
∏
i=1

f̃(Zj,i1∶K ,Y
j,i
∣s1∶K , ψ

j,i
).

B. Overall Framework

To determine the posterior density f(s0∶K ,X ∣Z1∶K), we
take inspiration from the collapsed Gibbs sampling technique
[46], [47]. The core idea of the proposed algorithm is to
iteratively update 1) the DAs, and 2) the map, and the sensor
trajectory. In principle, these two steps can be executed either
through sampling, as in a Gibbs sampling algorithm, or through
optimization, as in a coordinate descent algorithm. In our
proposed approach, we sample the DAs and optimize the
map and sensor trajectory using GraphSLAM. However, other
combinations of these steps are also possible. We refer to the
method as a modified collapsed Gibbs sampling algorithm.
The term “collapsed” indicates that we condition the sampling
step only on the sensor trajectory, with the map analytically
marginalized, and “modified” denotes that we estimate the

sensor trajectory instead of sampling it. The modified collapsed
Gibbs sampling iterates the following two stages:

1) Sampling DAs (See Section IV): Sample a candidate Ã
value from f(Ã∣s0∶K ,Z1∶K) based on the latest estimate
of s0∶K .

2) GraphSLAM (See Section V): Perform the GraphSLAM
algorithm on f(s0∶K ,XD∣Z1∶K , Ã) to obtain conditional
posteriors of the detected landmarks and a sensor
trajectory, for the sampled Ã.

Please note that this combination of sampling and GraphSLAM
does not yield samples from (8). In a full Gibbs sampler, both
the DAs and sensor trajectories would be sampled iteratively.
In contrast, in our proposed approach, instead of drawing a
sample from the corresponding conditional distribution of the
sensor trajectory, we make a point estimate of the variable
given by the maximum of the conditional distribution through
GraphSLAM. In fact, if all sampling steps were replaced by
point estimates, we would obtain the iterated conditional modes
(ICM) algorithm [50, Section 8.3.3]. Therefore, our approach
can be seen as a greedy approximation of the full Gibbs sampler
[50, Section 11.3]. However, this approximation does not affect
convergence, as both the Gibbs sampler and ICM converge.

The final sensor trajectory and the map are acquired through
a post-processing step, which involves merging the SLAM
results from different iterations and considering the undetected
landmarks. The corresponding flowchart of the Graph PMBM-
SLAM algorithm is summarized in Fig. 2.

IV. DATA ASSOCIATION SAMPLING

In this section, the batch DA sampling problem is described.
First, the DA representation is introduced, and then its weight is
computed. To simplify the sampling process, instead of directly
sampling Ã, we firstly sample A from f(A∣Z1∶K ,s0∶K), and
then sample ψ from f(ψ∣Z1∶K ,s0∶K ,A).

A. Data Association Representation

Each DA is a valid assignment of the measurements to their
sources (landmarks or clutter), which is equivalent to partition
Z1∶K into valid non-empty subsets according to sources, i.e.,
Z
j,1
1∶K , . . . ,Z

j,∣Ij ∣
1∶K for the j-th DA in (8). In this section, we

index the measurements in Z1∶K by m ∈ M, where m =

(k,αk), with k ∈ {1, . . . ,K} representing the time index and
αk ∈ {1, . . . , ∣Zk ∣} representing the index of a measurement in
scan k ≤ K [49]. A DA can now be equivalently viewed as
a valid partition of M into nonempty disjoint index subsets.
Each subset (called a cell in this paper) contains indices of all
measurements from the same source. Hence, consider Zj,i1∶K ,
then the i-th cell of global hypothesis j is Cj,i = {m∣zm ∈
Z
j,i
1∶K}.
A valid DA must satisfy several criteria: (i) each measure-

ment can be associated with at most one landmark, so that two
cells should be disjoint; (ii) due to the point object assumption,
a landmark cannot generate more than one measurement at
each time step. Therefore, any cell cannot contain more than
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Fig. 2. The flowchart of the proposed Graph PMBM-SLAM algorithm. We generate a DA using a sampling algorithm, which is conditioned on the sensor
trajectory from the last iteration (or the prior trajectory). Then we sample the existence probabilities of all the resulting Bernoulli components. Conditioned on
the sampled DA and the existence of each Bernoulli, we apply the GraphSLAM algorithm to estimate the sensor trajectory and the detected landmarks. We
iterate these two steps for a certain number of times. Finally, we merge GraphSLAM results from the last Γ iterations to output the estimates of the sensor
trajectory and the map.

one measurement index with the same time index; (iii) the
union of all cells is the index space M. In summary, a valid
partition (DA) Aj ∈ A should satisfy

A
j
= {{C

j,1, . . . ,Cj,∣I
j
∣
}∣

∣ ⋃
m∈Cj,β

{m∣[m]1 = k}∣ ≤ 1,∀β,∀k; (16)

C
j,β
∩ C

j,γ
= ∅,∀β ≠ γ;⋃

β

C
j,β
=M},

where β, γ ∈ {1, . . . , ∣Ij ∣}.

Example 1. Let M = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)}.
One possible DA could be
{{(1,1), (2,1), (3,2)},{(2,2), (3,1)},{(1,2)}}, so that
a landmark is detected at all time steps 1, 2 and 3 with
measurements z(1,1), z(2,1) and z(3,2), respectively; another
landmark is misdetected at time step 1 and then detected
with measurements z(2,2) and z(3,1) at time step 2 and 3,
respectively; measurement z(1,2) can either be a clutter or
from a different landmarks. The partition is permutation
invariant, so that different orders of cells or different orders
of elements in cells do not create a new partition.

B. Data Association Weight

Here, we compute the DA hypothesis weight. The mea-
surement set sequence Zj,i1∶K = (Z

j,i
1 , . . . ,Zj,iK ) of the cell

Cj,i contains all measurements associated to the same source
over time, with Zj,ik = {zm∣[m]1 = k,m ∈ C

j,i}. Therefore,
once {Cj,1, . . . ,Cj,∣I

j
∣} is determined, the split of the mea-

surement batch Z1∶K = (Z
j,1
1∶K , . . . ,Z

j,∣Ij ∣
1∶K ) is determined, and

vice versa. The weight f(Aj ∣Z1∶K ,s1∶K), is equivalent to
f({Cj,1, . . . ,Cj,∣I

j
∣}∣s1∶K ,Z1∶K), which we will denote as wj

for notational convenience, and is given by

wj = f(Aj ∣s1∶K ,Z1∶K)∝

∣Ij ∣
∏
i=1

lj,i, (17)

where the proportionality constant, given by the normalizing
constant of the factor f(Z1∶K) in (8), ensures that ∑j∈Jw

j = 1,
and lj,i = f(Zj,i1∶K ∣s1∶K), which can be obtained by applying
set integral [49, eq. (4)] on (9) over Yj,i, as

f(Zj,i1∶K ∣s1∶K) = ∫ t(Zj,i1∶K ∣s1∶K ,Y
j,i
)λ(Yj,i)δYj,i (18)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c(z) + ⟨∏
K
k=1 ℓ

j,i
k ;λ⟩ ∣Z

j,i
1∶K ∣ = 1,

⟨∏
K
k=1 ℓ

j,i
k ;λ⟩ ∣Z

j,i
1∶K ∣ > 1,

0 otherwise,

where ⟨∏Kk=1 ℓ
j,i
k ;λ⟩ = ⟨∏

K
k=1 ℓ(Z

j,i
k ∣sk,x

i);λ(xi)⟩. Please
note that any invalid DA that does not satisfy the conditions
in (16) will have a weight of 0.

C. Data Association Sampling

We will now discuss a method for obtaining a DA sample
from (17). Due to the intractably large number of possible
DAs, especially for the batch problem, direct sampling from
(17) is unpractical. We will utilize a Gibbs sampling and a
MH algorithm. The Gibbs sampling algorithm may perform
poorly with an undesired initial DA, if several cells need to be
merged to get the correct DA, and the MH algorithm needs
to pass through intermediate DAs with comparatively lower
likelihood before forming larger cells, both of which lead
to slow mixing of the Markov chain [41], [45]. Therefore,
we propose a new batch DA sampling algorithm for a point
object model, which combines the Gibbs sampling and the MH
algorithms, and is summarized in Algorithm 1. The proposed
algorithm leverages the strengths of both the Gibbs sampling
and the MH algorithms, allowing it to not only handle groups
of components effectively but also form larger cells before
passing through the MH step. The details of both algorithms
are presented next. Note that the algorithm discards a certain
number of iterations due to the burn-in period of MCMC
sampling.
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Algorithm 1 DA Sampling
Input: Measurement Z1∶K , index set M, sensor trajectory

s1∶K , initial DA A
′
;

Output: DA A∗;
1: repeat
2: Gibbs sampling (Algorithm 2);
3: MH sampling (Algorithm 3);
4: until A certain number of iterations;
5: Return the last sample as A∗.

1) Gibbs Sampling: We denote the sample at the ι-th
iteration of the Gibbs sampler as Aι, which is a valid DA.
The cells in Aι can be indexed by {1, . . . , ∣Aι∣}. To obtain
the (ι + 1)-th sample using Gibbs sampler from Aι, we firstly
take a single measurement index m ∈ Cι,β ∈ Aι, from cell Cι,β .
Then, we consider all possible moves/actions of the index (the
case of no move is included in the two actions):

● Swap m from Cι,β with the index which has the same
time index as m in the γ-th cell, γ ∈ {1, . . . , ∣Aι∣}, and if
no such index exists, this action becomes a move of m
from Cι,β to the γ-th cell. We denote the new resulting
partition as Aιβ→γ(m).

2

● Move m from Cι,β to a new cell, which was an empty
cell before the move, and we denote the new resulting
partition as Aιβ→0(m).

In fact, both actions always yield a valid DA. No action
duplicates m, and m is only moved. Starting from a valid
DA, if m is moved to another cell, it will be removed from
its original cell, ensuring that two cells are always disjoint.
Furthermore, we do not move m to a cell that already contains
a component with the same time index; instead, we swap two
measurement indices. This ensures that each cell contains at
most one measurement index with the same time index. We
do not add new measurement indices or remove existing ones,
so the union of all cells remains equal to M. In summary,
the resulting DA always satisfies (16), and thus is always a
valid DA. For notational brevity, we use the shorthand notation
wιβ→γ(m) to denote the transition probability of forming the
new partition Aιβ→γ(m). For each of all the possible options,
wιβ→γ(m) is computed, where a move is sampled from the
resulting probability mass function (PMF) to form the new
partition, denoted as

f(Aι+1 = Aιβ→γ(m)∣A
ι,Z1∶K ,s1∶K) = w

ι
β→γ(m), (19)

for γ = 0,1, . . . , ∣Aι∣, and ∑∣A
ι
∣

γ=0 w
ι
β→γ(m) = 1.

As only two cells in Aι are changed at each sampling time,
most of the factors in (17) are common, which reduces the
computational cost significantly. In particular, wιβ→γ(m) can

2The process can be viewed as a form of Gibbs sampling. All resulting DAs
are valid, even when swap actions are performed. Considering all possible
resulting DAs, our MCMC kernel randomly selects one of these DAs by
sampling from a distribution proportional to f(Aj

∣Z1∶K ,s0∶K). While our
notation for the conditioned event (or variables) may not be particularly elegant,
our sampler still exhibits the Gibbs sampling property: it samples new variables
from a distribution proportional to f(Aj

∣Z1∶K ,s0∶K).

be calculated more efficiently as [42]

wιβ→γ(m)∝
∏
∣A

ι
∣

i=1 l
ι,i

lι,βlι,γ
lι,β

′
lι,γ

′
∝
lι,β

′
lι,γ

′

lι,βlι,γ
, (20)

where lι,β and lι,γ are the likelihood for Cι,β and Cι,γ ,
respectively, and lι,β

′
and lι,γ

′
are the likelihood for Cι,β

′
and

Cι,γ
′
, respectively, which are the resulting cells after applying

the action to Cι,β and Cι,γ . Also, we have the special cases
if Cι,γ = ∅, lι,γ = 1, and if Cι,β

′
= ∅, lι,β

′
= 1.3 The resulting

Gibbs sampling algorithm is summarized in Algorithm 2. This
algorithm converges because the resulting Markov chain is
ergodic. At each sampling iteration, the sampling space includes
all possible DAs for an arbitrarily chosen measurement index
at an arbitrary sampling step. Consequently, it is possible to
transition between one valid DA and any other by modifying
the differing measurement associations in a finite number of
steps, ensuring the Markov chain is irreducible. Additionally,
since there are many possible valid DAs at each sampling step,
and it is also possible to remain in the current DA. Therefore,
there is no guarantee that the chain will return to a DA after
any number of transitions, which ensures that the Markov chain
is aperiodic.

Example 2. Let Aι = {{(1,1), (2,1), (3,2)},{(1,2)},
{(2,2), (3,1)}}, and Aι1→3((1,1)) denotes the
resulting DA of moving the measurement index
(1,1) from its original cell to the third cell (the
cell {(2,2), (3,1)}), which is Aι1→3((1,1)) =

{{(2,1), (3,2)},{(1,2)},{(1,1), (2,2), (3,1)}}, and the
transition probability of such move to forming Aι1→3((1,1))
is wι1→3((1,1)).

Algorithm 2 Gibbs Sampling (one iteration)
Input: Batch measurements Z1∶K , index set M, sensor trajec-

tory s1∶K , DA Ain;
Output: DA Aout;

1: Set Aι=0 as Ain, and ι = 0
2: for n = 1 ∶ ∣M∣ do
3: Calculate transition prob. (19) for γ ∈ {0,1, . . . , ∣Aι∣};
4: Draw sample Aι+1;
5: ι← ι + 1;
6: end for
7: Output the last sample as Aout.

2) MH Algorithm: The Gibbs sampler can be slow as it
only takes actions on one measurement index each time (or
two for swapping), leading to slow mixing of the Markov chain
[45]. To address these problems, the MH algorithm can be

3Some implementation aspects: In (19), there could be some cases resulting
A

ι+1
= A

ι, i.e., if β = γ in general, meaning the selected index stays in
the same cell, or if ∣Cι,β ∣ = 1, the swapped cell only has one measurement
index that has the same time index as m or γ = 0. To avoid considering
the same move of the selected measurement index multiple times, we set
P (Aι+1

= A
ι
β→γ(m)∣A

ι, ,Z1∶K ,s1∶K) = 0 when ∣Cι,β ∣ = 1, for any γ
satisfying γ = β or ∣Cι,γ ∣ = 1 with its only measurement index having the
same time index as m. Avoiding the consideration of the same move can be
viewed as modifying the sampling space of the proposal distribution used in
MCMC. This adjustment does not impact the ergodicity of the Markov chain.
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used. In the MH algorithm, instead of considering the action
for a specific index at a sampling time, we consider the split
of a cell or the merge of two cells. Since splits and merges
change assignments for entire cells at each sampling time step,
it leads to a faster algorithm and can avoid oscillations of a
single index between these two cells. At each sampling time, if
a single cell is chosen, the corresponding cell is considered for
a cell split into two sub-cells; if two cells are chosen, the two
corresponding cells are considered for a cell merge. There is
only one way to merge two cells, while there are multiple ways
to split a cell into two sub-cells. To avoid multiple possible
split actions, we use the k-means++ algorithm [51] to split a
cell, as suggested in [41].

By following [41, eq. (33)-(35)] and choosing the same
proposal density, the acceptance probabilities of the split of
cell Cι,β into two sub-cells Cι,β,1split and Cι,β,2split , and the merge
of two cells Cι,β and Cι,γ into a cell Cι,β,γmerge are given by

P{split} =min[1,
lι,β,1split l

ι,β,2
split

lι,β
], (21)

P{merge} =min[1,
lι,β,γmerge

lι,βlι,γ
], (22)

respectively, with lι,β,1split , lι,β,2split , lι,β,γmerge, lι,β , and lι,γ denoting
the likelihood for the corresponding cells, obtained via (18).
Please note that if ∣Cι,β ∣ = 1, the cell cannot be split, resulting
in P{split} = 0 in (21); if Cι,β and Cι,γ contain indices with
the same time index, two cells cannot be merged, resulting
in P{merge} = 0 in (22) by setting lι,β,γmerge = 0 to effectively
exclude this action from the sampling space.

The interpretation of (21) and (22) is: if the likelihood of
the resulting DA is larger than the likelihood of the current
DA, the action is for sure performed (with probability 1); if the
likelihood of the resulting DA is smaller than the likelihood
of the current DA, the action is performed with the probability
of the value of the ratio of the likelihood of the resulting DA
and the likelihood of the current DA, where we sample on
this probability to decide if we perform the action or not. The
resulting MH algorithm is summarized in Algorithm 3.

D. Sampling Existence Probabilities

Given the DA At = {Ct,1, . . . ,Ct,∣A
t
∣}, there are

Yt,1, . . . ,Yt,∣A
t
∣ Bernoullis in total, as each cell in At refers

to a Bernoulli. Since ψt,i indicates whether the correspond-
ing landmark exists or not (the Bernoulli Yt,i is empty
or contains the landmark), its corresponding probabilities
are p(ψt,i = 1 ∣ At,Z1∶K ,s0∶K) = rt,iK and p(ψt,i = 0 ∣

At,Z1∶K ,s0∶K) = 1 − rt,iK , respectively, with rt,iK indicating
the existence probability of Yt,i, given by [42, eq. (32)]

rt,iK =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨∏
K
k=1 ℓ

t,i
k

;λ⟩

c(z)+⟨∏K
k=1 ℓ

t,i
k

;λ⟩
∣Ct,i∣ = 1 (∣Z

t,i
1∶K ∣ = 1),

1 ∣Ct,i∣ > 1 (∣Z
t,i
1∶K ∣ > 1),

0 otherwise.

(23)

Considering all components, the PMF of ψ is given by

f(ψ ∣ At,Z1∶K ,s0∶K) =
∣It∣
∏
i=1

p(ψt,i ∣ At,Z1∶K ,s0∶K). (24)

Algorithm 3 Metropolis-Hastings Algorithm (one iteration)
Input: Batch measurements Z1∶K , index set M, sensor trajec-

tory s1∶K , DA Ain;
Output: DA Aout;

1: Set Aι=0 as Ain, and ι = 0
2: for n = 1 ∶ ∣M∣ do
3: for n′ = 1 ∶ ∣M∣, n′ ≠ n do
4: if the n-th and n′-th indices belong to the same

cell in Aι then
5: Split the cell into two sub-cells;
6: Compute P{split} and draw ς ∼ U(0,1);
7: if ς ≤ P{split} then Split the cell;
8: end if
9: else

10: Compute P{merge} and draw ς ∼ U(0,1);
11: if ς ≤ P{Merge} then Merge two cells;
12: end if
13: end if
14: Set the resulting DA as Aι+1;
15: ι← ι + 1;
16: end for
17: end for
18: Output the last sample as Aout.

Therefore, to draw a sample ψt from p(ψ ∣ At,Z1∶K ,s0∶K) is
equivalently to sample ψt,i from p(ψt,i ∣ At,Z1∶K ,s0∶K) for
all i ∈ {1, . . . , ∣At∣}.4

V. GRAPHSLAM GIVEN A DATA ASSOCIATION

In Section IV, we generated a DA sample Ã based on the
proposed sampling algorithm and performed sampling on the
existence probabilities. In this section, we will focus on how to
estimate s0∶K and X from f(s0∶K ,X ∣Z1∶K , Ã) with the help
of an MAP estimator.

A. Representation

By fixing the DA and the existence of each Bernoulli in (8),
i.e, conditioning on Ã, f(s0∶K ,X ∣Z1∶K , Ã) follows

f(s0∶K ,X ∣Z1∶K , Ã) =
e− ∫ λ(x)dx−K ∫ c(z)dz

f(Z1∶K ∣Ã)

∑

XU⊎Y
j,1⊎⋅⋅⋅⊎Yj,∣Ij ∣=X

∏
x∈XU

(pU(x,s1∶K)λ(x)) f(s0)

K

∏
k=1

f(sk ∣sk−1)∏
i∈Ij

f̃(Zj,i1∶K ,Y
j,i
∣s1∶K , ψ

j,i
). (25)

Once A is determined, ∣Ij ∣ is fixed and the union
Yj,1⊎ ⋅ ⋅ ⋅⊎Y

j,∣Ij ∣ indicates there are ∣Ij ∣ landmark sets in

4Some implementation aspects: Although there are ∣At
∣ components should

be considered and ∣At
∣ is not usually a small number, many of the components

are 1, since these landmarks for sure exist and we can directly set the
corresponding ψt,i as 1, which corresponds to the second entry in (23).
Then, only landmarks that correspond to the first entry in (23) (the landmark
could either be a real landmark or a false alarm caused by clutter) need to be
considered, and the number of which is usually not small. To further simplify
the problem, we can also only directly set ψt,i as 0 if the corresponding
existence probability is lower than a threshold.
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total, where the emptiness of each landmark set Yj,i (i.e.,
the existence of each corresponding landmark) is determined
by ψj,i. All the remaining landmarks X /XD are part of XU.
In (25), XU is dependent on s0∶K but independent to (A,ψ).
Therefore, we can obtain f(XU∣s0∶K ,Z1∶K), which is given
by
f(XU∣s0∶K ,Z1∶K) =

e− ∫ pU(x,s1∶K)λ(x)dx ∏
x∈XU

(pU(x,s1∶K)λ(x)) , (26)

which is a PPP density as shown in (3), with its intensity
being pU(x,s1∶K)λ(x). Please note that the resulting inhomo-
geneous PPP also depends on the sensor trajectory. In addition,
by expanding f̃(Zj,i1∶K ,Y

j,i∣s1∶K , ψ
j,i) with (13), we have

f(s0∶K ,Y
j,1, . . . ,Yj,∣I

j
∣
∣Z1∶K , Ã)∝ f(s0)

K

∏
k=1

f(sk ∣sk−1)

× ∏
i∈Ij ∶ψj,i=1

K

∏
k=1

ℓ(Zj,ik ∣sk,x
i
)λ(xi), (27)

where the proportionality also corresponds to
f̃(Zj,i1∶K ,Y

j,i∣s1∶K , ψ
j,i = 0) = c(z). As ψ is fixed,

f(s0∶K ,Y
j,1, . . . ,Yj,∣I

j
∣∣Z1∶K , Ã) becomes an MB01 RFS,

i.e., it is an MB RFS where the existence probabilities of
all resulting Bernoullis are either 0 or 1 [39]. Our goal is to
obtain estimates of s0∶K and X from (25).

B. GraphSLAM Approximations

For notational brevity, we drop the DA index j in the
following two subsections. To enable the use of GraphSLAM
[14], we apply several approximations. First, we note that the
PPP part is independent of (A,ψ) (26) and in most cases
is not informative regarding the sensor state. Hence, we can
first compute the MAP estimate of s0∶K and Y1, . . . ,Y ∣A∣

with GraphSLAM on (27), and then update the PPP intensity
according to (26). Second, we drop non-existing landmarks
based on ψ. To this end, we introduce the number of existing
landmarks as κ = ∑∣A∣i=1 ψ

i, and reorder Y1, . . . ,Y ∣A∣ to keep
the first κ Bernoullis with ψi = 1, and the rest κ + 1 to ∣A∣
Bernoullis with ψi = 0. We also introduce the random variable
qik = [s

T
k , (x

i)T]T comprising the sensor state at time k and
the state of the corresponding landmark of Ci, and the random
variable q = [sT0 ,s

T
1 , . . . ,s

T
K , (x

1)T, . . . , (xκ)T]T. Then, q
can be estimated by maximizing the posterior
argmax

q
f(s0∶K ,Y

1, . . . ,Y ∣A∣∣Z1∶K , Ã) (28)

= argmax
q

f(s0)
K

∏
k=1

f(sk ∣sk−1)
κ

∏
i=1

K

∏
k=1

ℓ(Zik ∣sk,x
i
)λ(xi).

Third, instead of using λ(xi), we estimate a Gaussian distribu-
tion of xi, denoted as f(xi), for those i ≤ κ, by following [31,
Appendix A.C] with mean ui determined by the first detected
measurement (the measurement with the smallest time index
in Zi1∶K , and we denote its corresponding index as mi

fir) and
the corresponding sensor state, and very large covariance Ci.
Fourth, we approximate pD(x

i,sk) in ℓ(Zik ∣sk,x
i) from (10)

to be a constant pD > 0 in the field of view (FOV) of the

sensor and 0 outside the FOV of the sensor5. Hence, (28) can
be rewritten by

argmax
q

f(s0)
K

∏
k=1

f(sk ∣sk−1)

×
κ

∏
i=1

f(xi)
K

∏
k=1

∏
z∈Zi

k
∶pD>0

f(z∣sk,x
i
). (29)

C. GraphSLAM Optimization

By plugging (1) and (2) into (29), we can solve
argmin

q
E(q) for the optimization problem in (29), where

E(q) = (s0 − ϵ0)
TP −10 (s0 − ϵ0)+ (30)

K

∑
k=1

(sk − v(ϵk−1))
TQ−1(sk − v(ϵk−1))+

κ

∑
i=1

((xi −ui)T(Ci
)
−1
(xi −ui)+

K

∑
k=1

∑
z∈Zi

k
∶pD>0

(z −h(q̂ik))
T
(Ri

k)
−1
(z −h(q̂ik))),

with ϵk and P k denoting the mean and the covariance of sk for
k ∈ {0,⋯,K}, respectively. To optimize (30), we start from an
estimate q̂ = [ϵT0 , ϵ

T
1 , . . . , ϵ

T
K , (u

1)T, . . . , (uκ)T]T, and apply
gradient descent [53, Chapter 9], as detailed in Appendix B.
Here, ϵTk = v(ϵ

T
k−1), for k ≥ 1. After convergence, we obtain

the final estimate q̂ and the associated information matrix Ω.
The mean and covariance of f(s0∶K ∣Z1∶K , Ã) are then given
by

ϵ0∶K = [q̂]1∶ν(K+1), (31)

P 0∶K = [Ω
−1
]1∶ν(K+1),1∶ν(K+1). (32)

where ν = dim(sk). Similarly, the mean and covariance of the
map are given by

umap = [q̂]ν(K+1)+1∶end, (33)

Cmap = [Ω
−1
]ν(K+1)+1∶end,ν(K+1)+1∶end, (34)

where Cmap is generally a full matrix, as landmarks are corre-
lated to each other, when not conditioned on the sensor state
trajectory. In addition, the updated mean and the covariance of
each landmark can be directly obtained from umap and Cmap
by taking the corresponding parts, denoted as

ui = [umap]µ(i−1)+1∶µi, (35)

Ci
= [Cmap]µ(i−1)+1∶µi,µ(i−1)+1∶µi, (36)

with µ = dim(xi), and the existence probability ri = 1 since
it exists for sure. For the remaining Bernoullis, the existence
probability ri = 0, and the corresponding ui and Ci do not ex-
ist. Therefore, we only need to output {ri = 1,ui,Ci

}i∈{1,...,κ}
for the map. It is important to note that Ω usually has a high
dimension, and taking the inverse is computationally costly.

5In principle, pD is influenced by various factors, such as SNR and
propagation environment [52]. However, the calculation of pD is beyond
the scope of this paper. The assumptions made here are intended to simplify
the problem. Extending the approach to incorporate a more practical pD is a
straightforward task.
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There are computationally efficiently methods to compute (31)–
(36), e.g. [14, Section 5.5].

VI. MARGINALIZATION OVER SAMPLES

In this section, we describe how the final sensor trajectory,
the MB of detected landmarks, and the PPP intensity of
undetected landmarks are computed.

A. Marginalization

We keep the SLAM results from the last Γ iterations.
Based on the collapsed Gibbs sampling theory, all Γ samples
of Ã, which we kept after the burn-in period, are equiva-
lent to samples that are directly sampled from f(Ã∣Z1∶K).
For a specific sample Ãt, GraphSLAM provides ϵt0∶K and
P t

0∶K , and {rt,i,ut,i,Ct,i
}i∈{1,...,κt} for f(s0∶K ∣Z1∶K , Ã

t)

and f(Y1, . . . ,Yκ
t

∣Z1∶K , Ã
t), respectively. Different samples

of Ãt lead to varying SLAM results. However, our objective
is to derive a single, consolidated SLAM outcome as the
final output, directly providing the sensor trajectory and
the environmental map, which can be readily utilized for
further analysis or applications. Therefore, the desired posterior
approximations can be obtained by marginalizing across all
Ãt samples, with each sample having the same weight, given
by

f(s0∶K ∣Z1∶K) ≈
1

Γ

Γ

∑
t=1

f(st0∶K ∣Z1∶K , Ã
t
), (37)

f(Y1, . . . ,Y ∣I∣∣Z1∶K) ≈
1

Γ

Γ

∑
t=1

f(Y1, . . . ,Yκ
t

∣Z1∶K , Ã
t
). (38)

In terms of (37), the final updated trajectory has mean
ϵ0∶K ≈ 1/Γ∑

Γ
t=1 ϵ

t
0∶K , and covariance P 0∶K ≈

1
Γ ∑

Γ
t=1(P

t
0∶K +

(ϵt0∶K −ϵ0∶K)(ϵ
t
0∶K −ϵ0∶K)

T). In terms of (38), each sample of
the map follows the MB distribution, so that (38) is an MBM.
To marginalize the MBM over all samples into a single MB,
several practical aspects must be addressed: (i) the numbering
of the landmarks across the samples Ãt; (ii) computation of
the spatial density and existence probability of each MB: (iii)
pruning and merging.

To address the first aspect, we introduce a vector to index
all landmarks in the resulting MB of each sample, denoted as
σt = [σt(1), . . . , σt(κt)], defined as σt(i) =mt,i

fir , where we
recall that mt,i

fir is the index of the first (earliest) measurement
in Ct,i.6 Different samples may have different σt, since the
source of each Ct,i may be different, which is f(xi) generated
using the corresponding measurement of mt,i

fir . To make σt

consistent in all DAs, we pick up all unique mt,i
fir , and re-index

them with i ∈ {1, . . . , ∣I∣}, where ∣I∣ denotes the number of
unique mt,i

fir across all Γ samples, which represents all different
landmarks over all DAs. Therefore, σt can be extended and

6This implies that we assume that if mt,i
fir are the same, Ct,i are from the

same source. It is possible that two cells in two different Ã with different
mt,i

fir could be still from the same source, where all the measurements assigned
to a landmark are the same, expect the first one. Although these two cells are
viewed as from different landmarks, they can be merged in the end, as they
are close to each other (see later).

rewritten as a vector σ̃t with length ∣I∣ and components
σ̃t(i) ∈ {0,1},∀i ∈ I = {1, . . . , ∣I∣}, where σ̃t(i) = 1 means the
corresponding landmark exists in the t-th sample, and σ̃t(i) = 0
means the corresponding landmark non-exists in the t-th sample.
We also extend and reorder {rt,i,ut,i,Ct,i

}i∈{1,...,κt} into
{rt,i,ut,i,Ct,i

}i∈I by setting rt,i = 0, if the corresponding
σ̃t(i) = 0. Then, the landmark MB for i ∈ I can be set to
ri = ∑

Γ
t=1 σ̃

t(i)/Γ and

ui =
1

Γri
∑

t∈{1,...,Γ}∶σ̃t(i)=1

ut,i, (39)

Ci
=

1

Γri
∑

t∈{1,...,Γ}∶σ̃t(i)=1

(Ct,i
+ (ut,i −ui)(ut,i −ui)T).

(40)

After marginalizing over Ã, an updated MB to represent
the map of all detected landmarks {ri,ui,Ci

}i∈I is acquired.
Finally, we prune Bernoullis with low existence probabilities
and merge Bernoullis which are very close to each other. The
proposed method provides an efficient way to approximate the
MBM into an MB. More accurate MB approximation methods
exist, e.g., by finding the best-fitting MB that minimizes the
Kullback–Leibler (KL) divergence [54].

B. PPP intensity for Undetected Landmarks

Apart from the detected landmarks, we have the updated PPP
for all remaining undetected landmarks, f(XU∣s0∶K ,Z1∶K) in
(26). We can also marginalize out the sensor trajectory to
acquire f(XU∣Z1∶K), which results in the updated intensity as

λ̌(x) = ∫ f(s0∶K ∣Z1∶K)
K

∏
k=1

(1 − pD(sk,x))λ(x)ds0∶K .

(41)
Together with the marginalized MB computed in Section VI-A,
the final map is approximated as a PMB.

VII. RESULTS

In this section, we assess the proposed algorithm in a
simulated vehicular setting, conducting a comparison with
a benchmark. We outline the simulation environment, detail
the performance metrics, and describe the benchmark algorithm
before analyzing SLAM performance.

A. Simulation Environment

We consider a propagation environment of bistatic radio
SLAM, similar to [30], [31], featuring a single vehicle as the
user equipment (UE), as shown in Fig 3. There is a single base
station (BS) in the environment located at [0m,0m,40m]T,
and 20 scattering points (SPs), corresponding to small objects in
8 distinct clusters, with each SP capable of generating at most
one measurement per time step. Although real-world scenarios
may involve various types of landmarks, we consider only SPs
in the simulation to validate the proposed framework. It is also
important to note that the ground truth locations of the SPs
do not follow the PPP distribution assumed by the algorithm.
The UE functions as the sensor, the BS is an a priori known
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landmark for the UE and SPs are a priori unknown landmarks
for the UE. The state of the single UE sk−1 comprises the 3D
position xUE,k−1 = [xk−1, yk−1, zk−1]

T, the heading ϖk−1, and
clock bias Bk−1. The UE does a counterclockwise constant turn-
rate movement around the BS on the ground, with v(sk−1) in
(1) defined as same as the transition function in [31, eq. (63)],
i.e.,

v(sk−1) = sk−1 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ
ϱ
(sin (ϖk−1 + ϱ∆) − sinϖk−1)

ζ
ϱ
(− cos (ϖk−1 + ϱ∆) + cosϖk−1)

0
ϱ∆
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(42)
where ζ is the translation speed, set as 22.22m/s, ϱ is the turn
rate, set as π/10 rad/s, and ∆ is the sampling time interval,
set as 0.5 s. As the UE moves on the ground, we assume that
its position along the z-axis remains fixed and is known. The
covariance of the process noise is assumed to be the same for
all time steps, denoted as Q. The UE has a concentrated
prior regarding its initial position, but possesses no prior
knowledge of the map, except for the BS location and the
PPP intensity λ(x) = 1.5 × 10−5UENV for the SPs, with UENV
denoting a uniform distribution in the environment. It represents
a homogeneous PPP intensity, as the UE has not yet explored
the area and has no prior knowledge of the SPs locations at the
beginning. We assume that pD = 0.9 (same as in [31]), where
the FOV with respect to the BS is unlimited while for the
SPs, it is limited to 50 m around the UE. All measurements
from the BS and SPs are used, with measurements from the
known BS and from SPs following different measurement
functions h(xi,sk), which serves as a general representation,
both detailed in [55, Section 2.2]. The measurement functions
return an output of the form

h(sk,x
i
) = [τ ik, (θ

i
k)

T, (ϕik)
T
]
T, (43)

where the geometric information is translated into a 5D
measurements containing a time of arrival (TOA) τ ik, an
angles of arrival (AOA) θik and an angles of departure
(AOD) ϕik. Both AOA and an AOD have azimuth and
elevation components, for example, θik = [θ

i
az,k, θ

i
el,k]

T.
The measurement covariance matrix is fixed to R =

diag[0.12 m2,0.012 rad2,0.012 rad2,0.012 rad2,0.012 rad2]
(same as [25]). The clutter measurement intensity is given by
c(z) = ΥUFOV, with UFOV representing a uniform distribution
inside the FOV and Υ representing the expected number of
clutter measurements per time step. The simulation parameters
are primarily selected based on existing literature to ensure
consistency for comparison. However, in practical radio
SLAM systems, these parameters are influenced by various
factors, such as noise levels, transmitter power, and waveform
design.

1) Scenarios: Four different scenarios are considered.
Scenario I: low clutter and low process noise case; Scenario
II: high clutter and low process noise case, Scenario III: low
clutter and high process noise case; Scenario IV: high clutter
and high process noise case. Here, the low clutter and the
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Fig. 3. Scenario with the environment of a BS, 20 SPs and 7 clutters. The
UE moves counterclockwise along the trail centered at the BS.

high clutter cases stand for cases with Υ = 1 (same as in [31])
and Υ = 5 (same as in [36]), respectively, and the low process
noise and high process noise cases stand for cases with
Q = diag([0.22 m2,0.22 m2,0m2,0.0012 rad2,0.22 m2])

(same as in [31]) and Q =

diag([0.22 m2,0.22 m2,0m2,0.0012 rad2,0.22 m2] × 8),
respectively.

2) Baselines: First, we assess the performance of the
proposed sampling algorithm, comparing it to the Gibbs
sampling algorithm and the MH algorithm, in Scenario IV with
Γ = 100, which is the most challenging scenario among the four
scenarios. Next, we assess the performance of the proposed
Graph PMBM-SLAM algorithm with Γ = 100 by conducting
a comparative analysis with respect to three baselines: the EK-
PMB SLAM filter [31]; the RBP-PHD SLAM filter without
optimal importance sampling [24] using 1000 samples; the
RBP-PHD SLAM filter with optimal importance sampling [35]
using 1000 samples.

3) Performance Metrics: The accuracy of DA accuracy is
assessed using the average of normalized mutual informations
(NMIs) [56] between each resulting DA and the ground-truth
DA, where the NMI being 1 meaning the resulting DA and
the ground-truth DA contain the same information, i.e, same
to each other, and the closer NMI is to 1, the more accurate
resulting DA is. The sensor state estimations are evaluated
by the root mean squared error (RMSE) for the UE states
over time. The mapping performance is quantified using the
generalized optimal subpattern assignment (GOSPA) distance
[57], where the cut-off distance is set to 5, and the exponent
factor is set to 2. In total, we undertake 100 Monte Carlo
(MC) simulations for all algorithms, and the final results are
obtained by averaging over the independent MC simulations.

B. Results and Discussion

1) DA Accuracy: We initialize the sample with each mea-
surement forming an individual cell. We measured the proposed
sampling algorithm has better performance in accuracy than the
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Gibbs sampling and the MH algorithms, which results in the
NMI at 0.9971, compared to 0.9679 for Gibbs sampling and
0.9804 for the MH algorithm for the Scenario IV. The Gibbs
sampling algorithm moves at most two indices at a time, which
can cause measurements to oscillate between sub-cells and fail
to transfer groups of measurements between cells, especially
when each measurement starts as an individual cell, leading
to poor DA results. Similarly, the MH algorithm performs
poorly with this initialization, since it requires merging several
cells to achieve correct DA, but may pass through intermediate
DAs with lower likelihoods before forming larger cells. The
proposed algorithm combines the Gibbs sampling and the
MH algorithms, effectively handling groups of measurements
and forming larger cells before using the MH algorithm. The
inaccurate DAs result in poor SLAM results, for example, the
resulting GOSPA distances are 10.37 m and 7.36 m if the
proposed SLAM framework uses only the Gibbs sampling
algorithm or the MH algorithm, respectively, compared to
1.55 m when the proposed sampling algorithm is used. While
this proposed method outperforms the individual algorithms, it
still does not perfectly solve the DA problem, as evidenced by
its NMI being below 1. The primary reasons for this shortfall
are the presence of cluttered scenarios and the misclassification
of low-quality measurements as clutters.

2) Localization Performance: Next, the performance of the
proposed framework in sensor state estimation is evaluated.
Fig. 4 shows the RMSEs of the estimated sensor trajectories
for four SLAM algorithms across four scenarios, compared to
theoretical bounds. We observe that the proposed algorithm’s
bounds are approximately 30% lower than those of the filter-
based algorithms. This difference arises because the proposed
algorithm focus on the posterior f(s0∶K ,X ∣Z1∶K), which incor-
porates all measurements. In contrast, filter-based algorithms
work on f(sk,X ∣Z1∶k) for k ∈ {1,⋯,K}, conditioned only on
measurements up to the current time step, resulting in higher
bounds. For all algorithms, the bounds are higher in high-
process noise scenarios (Scenarios III and IV) compared to
low-process noise scenarios (Scenarios I and II). This is due
to the PCRB considering the transition density; lower process
noise, indicating a more accurate motion model, brings more
posterior information and results in lower bounds. Therefore,
all algorithms perform better in low process noise scenarios.
Furthermore, all algorithms exhibit slightly worse performance
in high clutter scenarios (Scenarios II and IV) compared to low
clutter scenarios (Scenarios I and III), as the bars are higher.
This decline is attributed to the presence of closely spaced
clutter measurements in high clutter scenarios, which leads to
false alarms and negatively impacts overall performance.

Among the four algorithms, the proposed algorithm demon-
strates superior performance due to its batch processing
approach, as evidenced by the blue bars being the lowest
in Fig. 4. Additionally, the proposed algorithm is robust
to both high clutter and high process noise, maintaining
close-bound performance in all scenarios, which is indicated
by the blue bars being very close to solid black lines in
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(b) Comparison of heading estimation.
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(c) Comparison of clock bias estimation.

Fig. 4. Comparison of sensor trajectory estimation for 4 algorithms under 4
scenarios.

Fig. 4. The proposed algorithm is also robust to low detection
probabilities, as it maintains close-bound performance across all
scenarios even with a reduced pD, as summarized in Table. I.
The robustness is due to the effective solution to the DA
for the entire measurement batch and the joint optimization
conditioned on the resulting DAs, allowing the algorithm
to track all cross-correlations between the sensor trajectory
and the map. Among filter-based algorithms, the EK-PMBM
SLAM filter, which drops cross-correlations in computation,
suffers from information loss, while the RBP-PHD and RBP-
PHD2 SLAM filters retain cross-correlations through particles,
requiring a sufficient number of particles for good performance.
Consequently, the EK-PMBM SLAM filter performs the worst
among the algorithms, when a sufficient number of particles are
used for the two RBP-based algorithms, as the red bars are the
highest in low process noise scenarios. However, 1000 particles
are insufficient for the RBP-PHD SLAM filter in high process
noise scenarios, leading to worse positioning performance for
the RBP-PHD SLAM filter compared to the EK-PMBM SLAM
filter, as reflected by the yellow bars being generally highest
in high process noise scenarios. The RBP-PHD2 SLAM filter
has close-bound performance as 1000 particles are sufficient,
but it still underperforms to the proposed algorithm, due to its
inherently higher bounds as a filter-based algorithm.

Fig. 5 demonstrates that the proposed algorithm consistently
outperforms filter-based algorithms in Scenario IV, as the blue
line consistently lies below the red, yellow, and purple lines,
highlighting the efficacy of the proposed algorithm. Moreover,
the proposed algorithm’s bound remains stable throughout
the trajectory, in contrast to the decreasing trend observed
for filter-based bounds, as the solid black line remains stable,
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TABLE I
THE PERFORMANCE OF THE PROPOSED ALGORITHM IN POSITION

ESTIMATION ACROSS 4 SCENARIOS WITH pD = 0.7.

Scenario I Scenario II Scenario III Scenario IV
Proposed 0.22 m 0.23 m 0.31 m 0.33 m

PCRB batch 0.21 m 0.21 m 0.29 m 0.29 m
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Fig. 5. Comparison of RMSE on sensor position estimates changing with
time among four algorithms and two bounds for Scenario IV.

while the solid dashed line decreases in general. This stability
arises from the batch-processing bounds conditioning on all
measurements, unlike filter-based bound, which are conditioned
only on measurements up to the current time step. As time
progresses, more measurements can be incorporated, leading
to improved performance.

3) Mapping Performance: Fig. 6 shows the RMSE of
estimated landmark locations for four SLAM algorithms across
different scenarios, compared to their respective bounds. We
observe that the bounds for batch processing are lower than
the bounds for filter-based algorithms, indicated by the solid
black lines being lower than the dashed black lines in Fig. 6.
This is because the batch processing incorporates the entire
sensor trajectory into the posterior information matrix (PIM),
compared to filter-based algorithms that only have snapshots
of the sensor state in the bound computation. Consequently,
batch processing yields lower bounds than filter-based methods
even when all measurements are conditioned. In low process
noise scenarios, all bounds are lower due to the more accurate
transition model, which also benefits landmark state estimation.

The proposed method is robust to both high clutter and
high process noise, and performs the best in landmark state
estimation, as evidenced by the blue bars being close to solid
black lines and lowest among four algorithms in all four
scenarios. The superior performance and the robustness are
attributed to the batch processing of the proposed method.
In contrast, the EK-PMBM and RBP-PHD SLAM filters
perform poorly. The EK-PMBM SLAM filter suffers from
information loss, and the RBP-PHD SLAM does not utilize
sufficient particles. Their performances degrade further in
Scenario IV, due to the challenges posed by high clutter and
high process noise for filter-based algorithms. The RBP-PHD2
filter, with sufficient particles, is also robust to high clutter and
process noise but still underperforms compared to the proposed
algorithm, due to its inherently filter-based processing.

Fig. 7 shows the GOSPA distance for the four algorithms
across four scenarios. Consistent with previous results, the
proposed algorithm exhibits the best performance, providing
better landmark estimations with fewer false alarms and
misdetections, as the blue bars are the lowest. This superior
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Fig. 6. Comparison of landmark estimations for 4 algorithms under 4 scenarios.
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Fig. 7. Comparison of GOSPA distance for 4 algorithms under 4 scenarios.

performance is due to the effectiveness of the proposed DA
solution for measurement batch and joint optimization in the
SLAM results. Among the filter-based algorithms, the RBP-
PHD2 filter performs the best due to its use of sufficient
samples, where DA problem is solved effectively, resulting in
fewer false alarms and misdetections. In contrast, the RBP-
PHD and EK-PMBM SLAM filters perform poorly due to
insufficient particles or information loss from marginalization,
leading to more false alarms and misdetections compared to
the RBP-PHD2 SLAM filter.

We also evaluate the proposed algorithm using a real-
world radio SLAM dataset provided in [58]. Fig. 8 shows
a comparison of our proposed algorithm with the RBF-PHD2
SLAM filter and the robust snapshot SLAM algorithm [59]
using experimental data. We observed that all algorithms
achieve good SLAM performance. However, the robust snap-
shot SLAM algorithm performs the worst, due to its snapshot-
based nature, which ignores the temporal connections between
time steps. Specifically, the RMSEs for position, heading, and
clock bias were 0.28 m, 2.26○, and 0.23 m for the RBP-
PHD2 SLAM filter, 0.40 m, 2.02○, 0.46 m for the robust
snapshot SLAM algorithm, and 0.22 m, 2.19○, and 0.16 m
for the proposed algorithm. These results demonstrate that our
proposed algorithm performs better than the robust snapshot
SLAM algorithm and the RBP-PHD2 SLAM filter on the real
data, despite the multi-model implementation of the RBP-PHD2
SLAM filter. Furthermore, the performance of the proposed
algorithm is expected to improve further if a multi-model
implementation is incorporated.

VIII. CONCLUSIONS

This paper presents a novel Graph PMBM-SLAM algorithm,
which bridges the RFS theory and graph-based SLAM together.
By modeling the measurements and the landmarks as RFSs, a
sampling-based algorithm, which combines the Gibbs sampling
algorithm and the MH algorithm together, is proposed to
solve the DA problem of all measurements given a sensor
trajectory. The GraphSLAM algorithm is applied to estimate
the best fit of the sensor trajectory and the map to the joint
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Fig. 8. Evaluation of the proposed algorithm using real-world radio SLAM
data [58], collected from an indoor corridor. The blue solid line represents
the ground truth of the UE trajectory, while the green dashed line and green
squares depict the SLAM results of the proposed algorithm. The red dashed
line and red plus signs represent the SLAM results from the RBP-PHD2 SLAM
filter. The black dashed line and black circles represent the SLAM results
from the robust snapshot SLAM algorithm. Please note that the RBP-PHD2
SLAM filter employs a multi-model implementation for different landmark
types, whereas the other two algorithms do not. In the latter, the unknown
environment is represented exclusively using multiple incidence points.

posterior of the sensor trajectory and the map conditioned
on the resulting DA. The proposed framework iterates within
these two steps until reaching a maximal number of iterations.
The marginalization step to merge the SLAM resulting from
iterations serves as the post-processing step to approximate the
correct joint posterior, where the map is modeled as a RFS
instead of a list of random vectors. Analysis was carried out
in four simulated scenarios through MC simulations. Results
demonstrated that the proposed framework can address the
DA problem of all measurements accurately. Our results also
demonstrated the close-to-bound performance of the proposed
framework in mapping and positioning, as well as its accuracy
and robustness in high clutter and high process noise scenarios.

Since the main goal of this paper is to demonstrate the
feasibility of the proposed framework that integrates RFS
theory with GraphSLAM, we focus on the most basic assump-
tions—point objects and static landmarks. While this paper
primarily considers the point object assumption in a radio
SLAM scenario, it is possible to extend the approach to include
extended objects, incorporate a multi-model implementation,
as well as apply the proposed algorithm to other datasets.
Although the proposed algorithm currently operates offline and
is limited to static landmarks, its practicality could be enhanced
by incorporating techniques from conventional graph-based
SLAM, enabling real-time operation [15] and adaptation to dy-
namic environments with moving objects [60]. Our future work
will explore the extension to extended object models, evaluate
the algorithm with additional experimental datasets, such as
visual and LiDAR data, and compare its performance against
other state-of-the-art SLAM algorithms using additional real-
world datasets and widely adopted simulation platforms, such
as the g2o software [61]. It will also be interesting to extend

the proposed algorithm with a multi-model implementation
that accounts for various types of landmarks, and investigate
scenarios involving moving objects in the map, rather than
only static landmarks.
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