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Abstract

Giant atoms have emerged as a new paradigm in quantum optics during the
last decade. These are quantum emitters that couple to light—or other bosonic
fields—at multiple discrete points, which can be spaced wavelengths apart. In
the short time since the giant-atom regime was first reached, it has been shown
that they o!er more possibilities for design, control, and tunability than small
atoms do, which makes them promising assets for quantum technologies. At the
same time, due to the novelty of the field, most works have only studied giant
atoms in relatively simple setups, e.g., coupled to open continuous waveguides.
Thus, the papers appended here are an attempt to broaden the field by study-
ing giant atoms in environments that have not been explored in depth before:
continuous waveguides with chiral coupling and structured baths.

In this thesis, we contextualize the papers with regards to previously ex-
isting knowledge and future applications in the fields of quantum optics and
quantum technology. We also provide a detailed description of the analytical
tools that are necessary to derive the results of the appended papers: we delve
into Lindbladian master equations, SLH formalism, and resolvent formalism,
and we focus particularly on the underlying assumptions and approximations
behind these techniques.

Keywords: Quantum optics, waveguide quantum electrodynamics, open
quantum systems, giant atoms, artificial atoms, continuous waveguides, struc-
tured waveguides, master equation, SLH formalism, resolvent formalism
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Vittorio, Junjie and Yiting, among whom I found more than purpose: I found
community.

And speaking of community, I can honestly say I could not have finished the
PhD without the incommensurable support of the badass women I have met
in this journey. I am deeply grateful to Irina Pettersson, one of the strongest
people I know, for being the absolute best mentor and role model I could ever
ask for. I am also thankful for my AQP family: Therese, Hanna, Laura, Emely,
Maryam, and my sisters from Physics: Adriana, Pantea, Emelie, Laura, Julia,

iii



Kajsa, Mirna, Rebecka. Time and time again, you have shown me the most
beautiful blend of strength, resilience, intelligence, fun, compassion, empathy,
and love. I am in awe of all of you, and in eternal gratitude to Adriana for
bringing us together. Keep shining bright!

Next, I would like to thank those who didn’t have to, but went above and
beyond to create warm and safe spaces for me. To Linda Br̊anell, she who has
all the answers: your diligence alone would be reason enough to thank you. But
what I appreciate the most is how much you care about others and always create
the best environment around you. Thanks for welcoming us to your home, your
o”ce and your lunch breaks, and for helping us navigate this foreign language
and culture that we now call our own. To the sta! at Wijkanders, thank you
not only for making me safe lunch and adapting to my changing needs without
complaint, but also for knowing my order, receiving me with open arms, laughs
and even silly little dances. You have no idea the amount of hours you’ve saved
me in lunchbox prep! Tusen tack to Mats and Madeleine, who have given me
a home away from home, a refuge, a shelter. A place where I can disconnect,
recharge, and where every day feels like spa day. Finally, infinites gràcies to
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Physical Review A 107, 013710 (2023)

C
Avoiding decoherence with giant atoms in a two-dimensional struc-
tured environment
Emil Raaholt Ingelsten, Anton Frisk Kockum, and Ariadna Soro
Physical Review Research 6, 043222 (2024)

D
Two-photon quantum gates with giant atoms in structured waveg-
uides
Walter Rieck, Ariadna Soro, Anton Frisk Kockum, and Guangze Chen
In preparation (not appended)

E
Driven-dissipative entanglement with separate giant atoms
Aziza Almanakly, Ariadna Soro, et int., Anton Frisk Kockum, and William D.
Oliver
In preparation (not appended)

Other papers that are outside the scope of this thesis:

I

Giant Rydberg excitons in Cu20 probed by photoluminescence exci-
tation spectroscopy
Marijn A. M. Versteegh, Stephan Steinhauer, Josip Bajo, Thomas Lettner,
Ariadna Soro, Alena Romanova, Samuel Gyger, Lucas Schweickert, André
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Prologue

El prólogo, para los de la
LOGSE: lo que hay al principio
de los libros que no son las tapas.

Goyo Jiménez (2011)

What is quantum?—asked Vitaly, in a thick Slavic accent and a skeptical
tone, on one of my first days as a PhD student. Not the question you expect to
hear from the most senior member of the Applied Quantum Physics division,
yet I have heard him ask it many times since, to all sorts of speakers—from
students to renowned researchers. Vot is qvantum?

To borrow from Elyse Myers, that’s a great question, I’d love to tell you.
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1 Introduction

In this field, almost everything is
already discovered, and all that
remains is to fill a few holes.

Philipp von Jolly, Max Planck’s
professor (1878)

At the end of the nineteenth century, scientists seemed to have understood
the most fundamental principles of nature: from the motion of bodies, to the
propagation of electromagnetic fields, or the laws of thermodynamics. Little did
they know that the understanding of physics was about to drastically change at
the turn of the century, once they started delving into the atomic and subatomic
scales. Many novel counterintuitive ideas were postulated and subsequently
proved: energy comes in discrete quantities known as quanta, objects have
characteristics of both particle and waves, and there are limits to how accurately
the value of a physical quantity can be predicted prior to its measurement.
Under these principles, quantum mechanics was established, and many great
inventions were created, such as the transistor, the laser, and the atomic clock.
In turn, these inventions later gave us computers, optical fiber communication,
and the global positioning system (GPS), all of which are vital to the world as
we know it today. This is what we call the first quantum revolution [1, 2].

Now a second revolution is underway—this one centered on the applicability
of more complex quantum phenomena, such as superposition, entanglement, or
squeezing. In this era, we not only talk about quantum mechanics or physics,
but also of quantum technologies, which can be divided in four main fields
according to their purpose. Quantum computing [3] aims at speeding up com-
putation on important optimization problems; quantum simulation [4] pursues
simulating complex physical systems, such as molecules for medical and chemi-
cal applications; quantum communication [5] wants to provide secure encryption
and communication channels; and quantum sensing and metrology [6] aims at
increasing precision and speed for a large variety of measurements.

Most of these quantum technologies have something in common: they rely
on the manipulation and generation of non-classical states of light. And in order
to achieve such control, it is essential to first achieve a deep understanding of
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1. Introduction

quantum optical phenomena, i.e., of phenomena concerning the interactions
between light and matter at the scale of individual quanta of light (photons). It
was, in fact, quantum optics that kickstarted the first quantum revolution, with
the modeling of the blackbody radiation spectrum by Max Planck in 1899. Since
then, the field has expanded—and keeps expanding—into many directions, in
part aided by emerging technologies that keep opening the door to unexplored
physical paradigms.

In this thesis, we focus on a specific platform to study quantum optics: wave-
guide quantum electrodynamics (QED) [7]. As the name suggests, a waveguide
is a structure that guides waves with minimal energy losses by restricting the
transmission of energy to one dimension. Thus, waveguide QED is concerned
with the interaction between photons propagating in a waveguide and localized
quantum emitters, such as cold atoms or superconducting qubits, which are
capable of emitting and absorbing single photons. More in particular, in this
thesis, we use waveguide QED to study a new kind of quantum emitters: giant
atoms. These emitters can couple to light at multiple discrete points, spaced
wavelengths apart, and give rise to fascinating interference e!ects.

Contrary to small atoms, which is the standard paradigm of matter in quan-
tum optics, giant atoms o!er more possibilities for design, control, and tun-
ability than small atoms do, which makes them promising assets for quantum
technologies. At the same time, the field is still very new, meaning that at the
beginning of this thesis, most works had only studied giant atoms in relatively
simple setups. Thus, the papers upon which this thesis is based are an attempt
to broaden the field by studying giant atoms in environments that either had
not been explored before, or not in su”cient depth: continuous waveguides
with chiral coupling (Paper A), one-dimensional structured waveguides (Papers
B and D) and two-dimensional structured lattices (Paper C). Paper E is the
experimental implementation of one of the results found in Paper A.

1.1 Outline of the thesis

This thesis is structured as follows.
In Chapter 2, we introduce the building blocks of the setups that we study

in the appended papers: giant atoms as the system, and continuous and struc-
tured waveguides as the environment. We describe them from the standpoint
of both theory and experiment, and we contextualize them with state-of-the-art
technologies.

In Chapter 3 and Chapter 4, we present the formalism that we use to de-
scribe giant atoms coupled to open continuous waveguides—the setup studied
in Papers A and E. In particular, in Chapter 3, we introduce the density opera-
tor to discuss pure and mixed states, entanglement measures, and decoherence
mechanisms. We then use the density operator to derive a Lindbladian master
equation which describes the Markovian dynamics of a quantum emitter coupled
to a waveguide. In Chapter 4, we introduce the SLH formalism, which we use in

2



1.1. OUTLINE OF THE THESIS

conjunction with the Lindblad master equation to model cascaded systems such
as the setup in Paper A, where an atom (or an ensemble) is chirally coupled to
the waveguide. We also lean on the more applied side of the theory to discuss
chiral interfaces, as well as interference e!ects for preventing decoherence and
for implementing quantum logic gates.

In Chapter 5, on the other hand, we delve into the analytical methods used
to describe giant atoms coupled to structured baths, which is the environment
studied in Papers B, C, and D. In particular, we discuss the limitations of the
tools presented in the previous chapters, and introduce the resolvent formalism
and other complex-analysis techniques to overcome them. We then exemplify
the use of these methods to the spontaneous emission of a giant atom coupled
to a one- and a two-dimensional structured environment, specifically focusing
on harnessing bound states to prevent decoherence. We round o! by discussing
the non-Markovian e!ects that arise in these setups.

Finally, in Chapter 6, we give an overview of the papers upon which this
thesis is based, and we conclude with final remarks and an outlook on future
research in Chapter 7.

3



1. Introduction
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2 The system and its environ-
ment

Yo soy yo y mi circumstancia.

José Ortega y Gasset (1914)

In this chapter, we introduce the building blocks of the setups that we study
in the appended papers: giant atoms as the system, and continuous and struc-
tured waveguides as the environment. We describe them from the standpoint
of both theory and experiment, and we contextualize them with state-of-the-art
technologies.

2.1 The system – giant atoms

Historically, when studying light-matter interactions at the smallest scale, we
have assumed the matter to be natural atoms. And since the radius of natural
atoms (r → 10→10 m) is orders of magnitude smaller than optical (ω → 10→7

↑

10→6 m) or microwave wavelengths (ω → 10→2
↑ 10→1 m), we have typically

assumed that atoms are small compared to the light they interact with [8].
Even Rydberg atoms, which are considerably larger (r → 10→8

↑ 10→6 m), are
still small with respect to the microwaves they typically interact with [9]. This
is known as the dipole approximation (r ↓ ω) [10].

However, in the last decades, quantum optics has expanded to systems with
artificial atoms, such as quantum dots (r → 10→9 m) [11] and superconducting
qubits (r → 10→4

↑ 10→3 m) [12, 13], which are engineered to have some of the
properties of natural atoms: quantized energy levels and the ability to emit and
absorb energy in those quanta. This grants both natural and artificial atoms
the name of quantum emitters.

In particular, in 2014, it was thanks to artificial atoms when an exper-
iment [14] showed that the dipole approximation can break down in circuit

5



2. The system and its environment

Small Atom

Giant Atom

x1

Q

Q

x1 x2

λ

λ

(a) Small atom

(b) Giant atom

Figure 2.1: (a) A small atom, treated as a point-like object because it is much
smaller than the wavelength ω of the field it interacts with. (b) A giant atom,
formed by coupling a small atom to a mode at two discrete locations, spaced
wavelengths apart. Figure adapted with permission from Ref. [20].

QED1. This feat was achieved coupling a superconducting transmon qubit [17]
to surface acoustic waves [18] (ω → 10→6 m) at multiple discrete points, spaced
ω/4 apart. A subsequent theoretical study [19] coined the term giant atom
(GA), in contrast to a small atom, to refer to a paradigm where a quantum
emitter is large compared to the wavelength of the field it interacts with, and
where the multiple coupling points lead to interference e!ects. A sketch illus-
trating the di!erence between a small and a giant atom is shown in Fig. 2.1: on
the left, the atoms couple to the field in free space; on the right, the emitters
are qubits which interact with the field by coupling to a waveguide at a single
or multiple points.

Looking at the illustration of the GA in Fig. 2.1(b), one can see that, if
GAs can emit and absorb energy at each of their coupling points, there can
be interference between those paths. Therefore e!ectively, GAs interfere with
themselves, which allows them to exhibit physical phenomena that are generally
unattainable with small atoms. Some of these phenomena, such as frequency-
dependent relaxation rates and decoherence-free interaction, will be explained
in the next section and derived in more detail throughout the thesis.

It should be noted, however, that some particular cases of GAs can indeed
be reproduced by using small atoms. For instance, a small atom in front of a

1We refer to the dipole approximation breakdown as the fact that r ↭ ω, which means there
may be variations of the electromagnetic field across the atom that lead to self-interference
e!ects. We do not imply that higher multipole e!ects should be considered, as may be the
case in other subfields of atomic and molecular physics [15, 16]; nor that this was the first
experiment ever to break the dipole approximation (only in the context of circuit QED).
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2.2. THE ENVIRONMENT

(a) Separate (b) Nested (c) Braided

Figure 2.2: Di!erent arrangements of two giant atoms with two coupling points
each. Figure adapted from Paper B.

mirror [21–36] can simulate a GA with two coupling points in a unidirectional
waveguide. That said, the small-atom setup poses many design limitations, since
it is not possible to increase the number of coupling points, to have di!erent
coupling strengths at di!erent points, or to have more advanced scattering.

In fact, in general, it has been shown that GAs o!er more possibilities for
design, control, and tunability than small atoms do. This can be intuitively
understood by picturing the di!erent ways in which two GAs with two coupling
points each can couple to a common waveguide. In Fig. 2.2, we can see that
with such a simple setup, there already exist three possible arrangements: the
separate configuration, where the points of the second atom come sequentially
after the ones of the first atom; the nested configuration, where the points of the
first atom enclose those of the second atom; and the braided configuration, where
the points of the two atoms are interleaved. Now, it is straightforward to see that
by increasing the number of atoms and coupling points, the amount of possible
configurations increases too, and with it, the amount of design parameters.

This freedom in design, control and tunability that GAs o!er, makes them
appealing both for the pursuit of fundamental understanding of light-matter
interactions, and for their potential applications in the fields of quantum com-
puting [3] and quantum simulation [4, 37].

2.2 The environment

Because the size of a quantum emitter is defined with respect to the field it
interacts with, it does not make sense to talk about a GA as a closed system.
Instead, it should be considered an open quantum system, i.e., a quantum-
mechanical system that is coupled to a surrounding environment, often called
a bath or a reservoir. In general, this interaction changes the dynamics of the
system and results in dissipation, such that the information contained in the
system is lost to its environment.

7



2. The system and its environment

2.2.1 Continuous waveguides

In waveguide QED experiments, an open quantum system typically consists of
one or more quantum emitters (natural or artificial atoms) coupled to an optical
fiber or to a microwave transmission line (chip-integrated coaxial cable). These
are types of one-dimensional (1D) continuous waveguides, which support a con-
tinuum of propagating modes that can be modeled by the following Hamiltonian
(⊋ = 1 throughout this thesis):

H =
∑

k

εk a
†
k
ak, (2.1)

where εk is the frequency of each mode, and a†
k
, ak are the creation and anni-

hilation operators, respectively [7, 38–40]. Since the sum is infinite2 and mode
spacing is infinitesimal, it is sometimes convenient to rewrite the Hamiltonian
as an integral:

H =

∫ ↑

0
dε ε a†

ω
aω =

∫ ↑

0
dk εkvp a

†
k
ak, (2.2)

where vp is the phase velocity. The dispersion relation of the bath is given
by ε(k) = k · vp(k), with k being the wave number, which sets the density of

states D(ε) = |ϑε(k)/ϑk|
→1 [40]. Continuous waveguides usually have trivial

dispersion relations, often considered linear [38, 39, 41].
When coupling a small excited atom to a continuous waveguide, the atom

will relax, i.e., it will spontaneously emit a photon at a rate given by Fermi’s
golden rule, which is proportional to the density of states D(ε) [40, 42]. The
photon, of frequency equal to the spacing between the atomic energy levels, will
then propagate through the waveguide with little to no dissipation, at a speed
given by the phase and group velocities (vp = vg in the case of linear dispersion).

When coupling a single GA or multiple small or giant atoms to a contin-
uous waveguide, interference e!ects may amplify or suppress the spontaneous
emission process. We present below two consequences of such e!ects.

Tunable frequency-dependent relaxation rates

In the first theory paper on GAs back in 2014, it was shown that interference
between the coupling points of a GA leads to frequency-dependent relaxation
rates [19]. This dependence can be engineered with a number of design param-
eters (e.g., coupling strength at each point, distance between coupling points)
that increases linearly with the number of coupling points. What is more, in
some experimental platforms—for instance, by using superconducting qubits or
ferromagnetic spin ensembles as GAs (see Sec. 2.3.1)—the atomic frequency can
be tuned in situ, making it possible to move between regions with high and low
relaxation rates during an experiment, as demonstrated in Refs. [20, 43, 44].

2In reality, most waveguides have a cuto! frequency after which modes can no longer
propagate. However, when operating at frequencies far o! the cuto!, the dynamics mimic
those of an infinite continuum of propagating modes.

8



2.2. THE ENVIRONMENT

If we consider more than two atomic levels, other interesting applications
of the frequency-dependent relaxation rate open up. For instance, it is possi-
ble to engineer di!erent relaxation rates for di!erent transitions, thus allowing
population inversion and lasing, which in turn, can enable electromagnetically
induced transparency, as shown in Refs. [43, 45].

Waveguide-mediated decoherence-free interaction

Probably the most intriguing property yet found in GAs is their ability to in-
teract though a waveguide without decohering—a feature demonstrated both
theoretically [46–48] and experimentally [20]. By arranging two or more giant
atoms in the braided configuration, i.e., with their coupling points interleaved
[see Fig. 2.2(c)], it is possible to suppress their relaxation rates while maintain-
ing their exchange interaction. In this way, they can exchange an excitation
back and forth without ever losing it into the waveguide, which is something
small atoms cannot do.

Thus, this property is of great interest in the field of quantum computing,
where a major hurdle is preventing operation errors arising from decoherence
and dissipation.

At the beginning of this thesis, the two features above had only been shown
for GAs coupled to 1D bidirectional waveguides. In the appended papers, we ex-
tended their applicability to continuous waveguides with chiral coupling (Paper
A), through the formalism provided in Chapter 3 and Chapter 4; and to 1D and
2D structured baths (Papers B and C), through the formalism in Chapter 5.

2.2.2 Structured waveguides

Structured waveguides are those which, contrary to continuous waveguides, have
nontrivial dispersion relations, such as band edges and band gaps. A simple ex-
ample is an array of coupled cavities, which creates a finite propagating band
with a speed of light that is controlled by the tunneling between neighboring
cavities and thus can, in principle, be made arbitrarily small. This is why struc-
tured waveguides are also known as slow-light waveguides [49]. Other commonly
used names are photonic crystal waveguide or coupled-resonator array.

As shown in Fig. 2.3, an atom coupled to a structured environment with
its transition frequency tuned to the propagating band shows the typical ex-
ponential decay of spontaneous emission (similar to a continuous waveguide).
Conversely, when the atom is detuned away from the band, i.e., when it is tuned
to the band gap, it does not decay. This occurs because atom-photon bound
states are formed in the band gaps, where photons become exponentially local-
ized in the vicinity of the atoms, inhibiting their decay [49–52]. Even at the
band edge of the continuum of propagating modes, atoms show fractional decay
due to the influence of bound states [53–56]. Furthermore, multiple atoms cou-
pled to the band gap of the same reservoir can interact through the overlap of
their bound-state photonic wavefunctions [57–59], without losing their excita-
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2. The system and its environment

Figure 2.3: Population dynamics of a two-level atom coupled to a structured
waveguide. The atom shows no relaxation when tuned to the band gap (green
line), fractional decay when tuned to the band edge (orange line) and exponen-
tial relaxation when tuned to the band (blue line).

tions to the environment. These interactions can be tuned during experiments
by modifying the frequencies of the atoms and their coupling strengths to the
bath, which opens doors for applications in quantum computation and quantum
simulation of many-body physics [60, 61].

1D arrays

Mathematically, a 1D structured waveguide can be modeled with the same
Hamiltonian as a continuous waveguide [Eq. (2.1)], but with a di!erent dis-
persion relation. For example, in Paper B, we use that the bath Hamiltonian
rotating at the bath frequency can be expressed as Hb =

∑
k
ε(k)a†

k
ak, with

ε(k) = ↑2J cos(k), (2.3)

where J is the hopping rate between coupled cavities. This describes a contin-
uum of modes confined in an energy band E ↔ [↑2J, 2J ], where the dispersion
is linear around the middle of the band [ε(±ϖ/2+ϱ) = ±2J sin(ϱ) → ±2Jϱ] and
parabolic close to the band edges [e.g., ε(ϱ) → ↑2J(1 ↑ ϱ2/2)]. In turn, this
translates into a density of states

D(E) =

∣∣∣∣
ϑε(k)

ϑk

∣∣∣∣
→1

ω(k)=E

=
1

ϖ
↗
4J2 ↑ E2

#(2J ↑ |E|), (2.4)

that is nearly constant around the middle of the band (i.e., for energies E → 0)
and diverges at the band edges (|E/J | → 2) [62]—as shown in Fig. 2.4(a).

2D lattices

The formulation for the 1D array can organically be extended to a two-dimensional
(2D) square lattice with the following dispersion relation:

10



2.2. THE ENVIRONMENT

ε(ςk) = ↑2J(cos kx + cos ky), (2.5)

which we use to describe the setup in Paper C. Although describing a fairly
simple 2D structured bath, Eq. (2.5) gives rise to some very interesting prop-
erties. First and foremost, it results in an broader energy band than the 1D
case, now in the range E ↔ [↑4J, 4J ]. Within this band, the energy dispersion
varies widely: it is isotropic close to the band edges, meaning that excitations in
the lattice propagate equally in all directions. However, the dispersion becomes
highly anisotropic at the band center [i.e., at ε(ςk) = 0] [62], which is easy to
see from the definition of group velocity:

ςvg = ς↘ε(ςk)

∣∣∣∣
ω(εk)=0

= 2J sin k

[
1

±1

]
(2.6)

for any k ↔ [↑ϖ,ϖ). Thus, at the band center, excitations can only propagate
along the two orthogonal diagonals

[
1

±1

]
. Furthermore, note that ςvg vanishes

for k = {0,±ϖ}, which yields a divergent density of states, i.e., a type of Van
Hove singularity present in many 2D structured baths [62, 63]. In particular,
the density of states in this case satisfies

D(E) =
1

(2ϖ)2

∫∫
dςk φ[E ↑ ε(ςk)], (2.7)

with ε(ςk) given in Eq. (2.5). We plot this expression in Fig. 2.4(b), computed
by Monte Carlo integration.

The singularities that appear in the density of states, both in 1D and 2D,
lead to non-Markovian dynamics, such as the aforementioned appearance of
atom-photon bound states and fractional decay at the band edges. These non-
Markovianities prevent us from using the analytical tools described in Chapter 3
and Chapter 4, so in order to accurately describe the dynamics of the system,
we instead resort to the complex-analysis techniques shown in Chapter 5.

(a) (b)

Figure 2.4: Density of states as a function of energy for (a) a 1D structured
bath, as given by Eq. (2.4); and (b) a 2D structured bath, as given by Eq. (2.7).
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2. The system and its environment

2.3 Experimental implementations

Since the first experiment in 2014, several other demonstrations of GAs have
been achieved, both with superconducting qubits coupled to surface acoustic
waves [14, 45, 64–73] and to microwave waveguides [20, 43, 74], and many other
implementations have been proposed [75–78]. Recently, giant-atom physics have
also been explored beyond the atomic paradigm (natural or artificial few-level
systems) into giant molecules [79–83], giant spin ensembles [44, 84], and giant
superatoms [85]. Here, we give an overview of how giant atoms can be imple-
mented in experiments.

2.3.1 Giant atoms in continuous waveguides

Transmon qubits coupled to transmission lines

While it is clear that superconducting qubits (r → 10→4
↑ 10→3 m) fall in the

giant-atom regime when coupled to SAWs (ω → 10→6 m), it may not be straight-
forward to see how they reach this regime when coupled to microwave waveg-
uides (ω → 10→2

↑ 10→1 m). The answer lies in meandering the waveguide
between the coupling points of the qubit long enough to enter the giant-atom
regime [20, 43, 86], as shown in Fig. 2.5(a), which is the approach we envisioned
in Paper A and brought to experiment in Paper E.

In Paper E, we used two frequency-tunable transmon qubits [17] acting as
separate giant atoms, as shown in Fig. 2.5(b). Transmons are superconducting
qubits whose energy spectrum can be modeled as an anharmonic potential. The
uneven spacing between energy levels means that we can control which energy
transition we want to target, and we choose to use the two lowest levels to
define our qubit, i.e., to encode the logical |0≃ in the ground state |g≃, and the
logical |1≃ in the first excited state |e≃. It is important to note that reducing
the anharmonic oscillator to its two lowest energy levels only makes sense in the
low-power regime, where the probability of exciting higher levels is negligible.
This is why modeling the giant atoms as two-level systems—which we do in
Papers A, B, C—is strongly tied to studying these systems in the single- or few-
photon regime. In Paper E, however, the choice of experimental parameters
requires us to use stronger drive powers, which can surpass the anharmonicity
and eventually populate the third energy level—typically referred to as |2≃ or
|f≃. We should note that populating higher states is not always undesired, on
the contrary, it can be necessary for the implementation of quantum gates such
as the CZ gate [87, 88], as is the case in Paper D.

Analytically, the atom as an anharmonic three-level system (3LS) is de-
scribed by the following Hamiltonian:

H3LS = ε01a
†a+

↼

2
a†a†aa, (2.8)

where ε01 and ε12 are the the two lowest transition frequencies, ↼ = ε12 ↑ ε01

is the anharmonicity, and a and a† are the annihilation and creation operators
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Figure 2.5: (a) A giant atom coupled to a meandering transmission line. Figure
adapted with permission from Ref. [20] (b) A picture of the chip used in Paper
E, with two separate giant atoms coupled to a common transmission line. The
giant atoms are flux-tunable transmon qubits with their own flux and drive
lines, and they are coupled to readout resonators.

of the harmonic oscillator. In the two-level system (2LS) approximation, we
disregard all higher levels, and a†a in Eq. (2.8) becomes ↽+↽→ = (1 + ↽z)/2,
with ↽z being the Pauli-Z matrix3. Hence, the Hamiltonian reads:

H2LS =
ε01

2
↽z. (2.9)

Regardless of their analytical description, and as we can see in Fig. 2.5(b),
the transmons are coupled to a transmission line, which is a continuous 1D
coplanar waveguide that follows the description in Sec. 2.2.1. The transmission
line may carry the microwave pulses that excite the qubits (in Fig. 2.5(b) each
qubit also has its own drive line), as well as the excitations emitted by them,
and therefore mediates their interaction. The qubit frequencies are tuned via
flux lines, which allows us to tune the phase shift between the coupling points of
the atoms, and thus control their relaxation rate and other interference e!ects
during the experiment. Finally, the state of the qubits are measured through
readout resonators, which are shorted transmission line that can be modeled
as harmonic oscillators. State readout is possible by dispersively coupling the
qubit and the resonator, i.e., by detuning them significantly, until the state of
the qubit imprints a frequency shift in the resonator that is measurable.

3In the basis {|e→ , |g→}, which is more common in atomic, molecular and optical physics,
these operators are defined as: ε→ = |g→↑e|, ε+ = |e→↑g|, and εz = |e→↑e|↓ |g→↑g|. In quantum
computing, however, they are typically defined the other way around, e.g., εz = |0→↑0|↓ |1→↑1|.
In this thesis, we use the former definition, unless stated otherwise.
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2. The system and its environment

Spin ensembles in waveguide magnonics

Using superconducting qubits as giant atoms means that experiments have to
take place at cryogenic temperatures. However, a di!erent approach has made it
possible to reach the giant-atom regime at room temperature in the microwave
spectrum [44]. The trick is to substitute the qubit for a ferromagnetic spin en-
semble in the form of a rotating sphere and couple it to a meandering waveguide
at two discrete points, in a similar way as in superconducting experiments. This
demonstration has been able to reproduce frequency-dependent relaxation rates
and characterize giant nested atoms in agreement with theory.

Optical spectrum

In the optical spectrum, meandering the waveguide around the atom is nontriv-
ial: natural atoms are three to four orders of magnitude smaller than optical
wavelengths, and optical waveguides such as nanofibers have a physical limita-
tion to how much they can be bent. However, one can get around that by going
beyond the atomic paradigm and using free-space light instead of waveguides.
For instance, in a setup reminiscent of giant braided atoms, room-temperature
decoherence-free interaction has been demonstrated between an optomechanical
system and an atomic ensemble [47, 84].

2.3.2 Giant atoms in structured environments

Many di!erent platforms have been used to demonstrate phenomena arising
from the interaction between a small atom and a structured environment [89].

In the optical domain, these include cold atoms coupled to a photonic crystal
waveguide [90–93] or to an optical lattice [94, 95], and quantum dots coupled
to a photonic crystal waveguide [96, 97]. While it seems unlikely that many of
these architectures can be adapted to reach the giant-atom regime, a proposal
exists for ultracold atoms in 2D optical lattices [75]—which prompted us to
study the setup in Paper C. In this proposal, the atom is localized in a deep
lattice site and it is coupled by a laser to a shallower lattice which lets matter-
wave propagate at rate J . Then, by moving the relative position between the
potentials fast enough, the GA couples e!ectively to several bath positions. An
experimental implementation of such a proposal remains elusive to date.

In the microwave domain, the interaction between a small atom and a struc-
tured environment has been realized with superconducting qubits coupled to mi-
crowave photonic crystals [98–100], to superconducting metamaterials [60, 101–
104], and to compact resonator arrays [105–107]. In particular, microwave pho-
tonic crystals were first created to emulate their optical counterparts: by peri-
odically modulating coplanar waveguides with a lattice constant on the order of
the wavelength. However, this translated to a device size of approximately a few
centimeters for complete confinement of the evanescent fields in the frequency
range of microwave qubits. Such a restriction significantly limited the scaling in
this approach, both in qubit number and qubit connectivity. To overcome this
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limitation, a new approach started to gain traction: metamaterials with sub-
lattice constants, where photonic excitations could be more strongly confined.
While metamaterials had been studied for many years, their use in quantum
optical experiments had been fairly unexplored, due to the lossy nature of the
subwavelength components. Fortunately, technological improvements in recent
years have made them very suitable for studying quantum phenomena. An even
smaller lattice footprint has been achieved with compact lumped-element res-
onator arrays, for instance, by replacing the geometric inductance for Josephson
inductance [105, 107], or for thin films of high kinetic inductance [106].

Since all of the 1D microwave arrays above use superconducting qubits as
the quantum emitter, they are all adaptable to study giant-atom physics. To
do that, the capacitive couplings between the atom and the resonator need to
be made longer, so that the atom couples to several resonators instead—thus
becoming giant. Extending these architectures to 2D may prove a bit more
challenging, but still feasible: arranging for the multiple coupling points may
be aided by flip-chip technology [108–110].
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3 Density operator and mas-
ter equation

Are we human or are we denser?

The Killers (2008)

In this chapter, we introduce the density-operator formalism to discuss pure
and mixed states, entanglement measures, and decoherence mechanisms. Then,
we use the formalism to derive a Lindbladian master equation, which allows us
to examine the Markovian dynamics of a qubit coupled to a waveguide. The
framework in this chapter is used in Papers A and E.

3.1 Density-operator formalism

In quantum optics and the study of open quantum systems, the density-operator
formalism provides a robust framework for describing statistical mixtures, en-
tanglement, and the e!ects of decoherence. While the terms density matrix and
density operator are often used interchangeably, in reality, the density operator
⇀ is an object acting on a Hilbert space, whereas the density matrix is the matrix
representation in a chosen basis.

A general quantum state is described by a density operator [3]

⇀ ⇐

∑

ϑ

pϑ |⇁≃⇒⇁| , (3.1)

where {|⇁≃} are pure states that occur with a probability pϑ ↔ [0, 1], and the
probabilities add up to one (

∑
ϑ
pϑ = 1). This decomposition is not unique,

and the operator ⇀ is Hermitian and has unit trace.
Given an orthonormal basis {|i≃}, the pure states can be written as |⇁≃ =∑

i
cϑ,i |i≃, and the density matrix elements become

⇀ij ⇐ ⇒i|⇀|j≃ = ⇒i|




∑

ϑ

pϑ
∑

k,l

cϑ,kc
↓
ϑ,l

|k≃⇒l|



|j≃ =
∑

ϑ

pϑcϑ,ic
↓
ϑ,j

. (3.2)
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3. Density operator and master equation

These elements carry physical meaning: on the one hand, the diagonal elements
⇀ii ↔ R are the populations of the states, i.e., the probabilities of measuring
the system in state |i≃. On the other hand, the o!-diagonal elements ⇀ij ↔ C
with i ⇑= j are the so-called coherences, which capture phase information and
quantum interference between basis states.

To describe subsystems of composite quantum systems, we often use the
reduced density operator, which is obtained by tracing out one of the subsystems.
For instance, let us take systems A and B, whose state is given by the density
operator ⇀AB. Then, the reduced density operator for system A is [3]

⇀A ⇐ TrB(⇀AB), (3.3)

where TrB is the partial trace over system B.

3.1.1 Purity, fidelity, and entanglement

A measure of coherence in noisy quantum systems, which we use in Paper E, is
the purity, defined as the trace of the density operator squared [111]:

P ⇐ Tr
(
⇀2
)
, (3.4)

which takes values 1/d ⇓ P ⇓ 1, with d being the dimension of the Hilbert
space in which ⇀ is defined.

We say that a state is pure if it can be written as ⇀ = |⇁≃⇒⇁|, which means
that ⇀2 = ⇀ and P = 1. In this case, according to Eq. (3.2), the density matrix
elements become simply ⇀ij = cϑ,ic↓ϑ,j

. Consequently, since the populations
⇀ii = cϑ,ic↓ϑ,i

describe the probabilities of the system being in state |i≃, we
commonly refer to cϑ,i as the probability amplitudes.

In contrast, a state is mixed or in a mixture of pure states when ⇀ =∑
ϑ
pϑ |⇁≃⇒⇁| cannot be simplified, and thus ⇀2 ⇑= ⇀ and P < 1.
Remarkably, in composite systems, even if the global state ⇀AB is pure, the

reduced state ⇀A can be mixed [3]. This happens, for instance, when ⇀AB is
entangled, such as in the Bell state

∣∣$+
〉
AB

=
1

↗
2
(|01≃ + |10≃). (3.5)

Here, the global system is perfectly known, but if we trace out system B,

⇀A = TrB
(∣∣$+

〉
AB


$+

∣∣) = 1

2
|0≃⇒0| +

1

2
|1≃⇒1| , (3.6)

we obtain a statistical mixture, i.e., we have no information about A individu-
ally; on the contrary, it looks maximally uncertain.

One way to quantify entanglement is to use the measure of concurrence. For
a two-qubit mixed state ⇀, the concurrence C(⇀) is defined as [112]

C(⇀) ⇐ max {0, ω1 ↑ ω2 ↑ ω3 ↑ ω4} , (3.7)
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where {ωi} are the eigenvalues (in decreasing order) of the Hermitian matrix

R =


↗
⇀⇀̃

↗
⇀; ⇀̃ = ⇀ (↽y ⇔ ↽y) ⇀

↓ (↽y ⇔ ↽y), (3.8)

where ↽y is the Pauli-Y matrix, and ⇀↓ is the complex conjugate of ⇀ in the
↽z basis. Concurrence ranges from 0 for separable states, to 1 for maximally
entangled Bell states.

Another approach to “quantifying” entanglement, is to use the measure of
fidelity to see how close a state is to a specific maximally entangled state, such
as |$+

≃ above. In general, the fidelity between two quantum states ⇀ and ↽
quantifies how close the states are to each other. It is defined as [113, 114]

F(⇀,↽) ⇐

[
Tr


↗
⇀↽

↗
⇀

]2
, (3.9)

and it can take values from zero, when the states are orthogonal, to one, when
the states are identical. For pure states ⇀ = |⇁≃⇒⇁| and ↽ = |φ≃⇒φ|, this reduces
to their overlap:

F(⇀,↽) = |⇒⇁|φ≃|
2. (3.10)

It is important to note that sometimes an alternative definition of fidelity is
used: F

↔ :=
↗

F , where F
↔ is instead called fidelity. That is, for instance, the

case for QuTiP’s fidelity function [115]—but we stick to the definition in
Eq. (3.9).

In Paper E, where we want maximize the entanglement between two GAs,
we use the fidelity between the steady-state of the system and the Bell state
|$+

≃ to optimize the experimental parameters. However, we remark that the
fidelity is not a measure of entanglement. While, in the case of Paper E, the
fidelity to the |$+

≃ state yields very similar values to the concurrence, this is
not always the case. For instance, if our entangled state would be rotated by
a local unitary, fidelity to |$+

≃ could drop significantly, while the concurrence
would remain high.

3.1.2 Decoherence mechanisms

In open quantum systems, the interactions with the environment lead to decohe-
rence, i.e., loss of the quantum information stored in the system. In the context
of qubits or two-level systems, decoherence can be understood via the Bloch
sphere representation, where pure states lie on the surface and mixed states lie
inside. In these systems, we distinguish two decoherence paths: energy relax-
ation, and loss of phase coherence (dephasing) [88]. These mechanisms, as well
as their combination, are depicted on the Bloch sphere in Fig. 3.1.

Relaxation

Also called amplitude damping, longitudinal decay, or dissipation. It is the sys-
tem’s loss of energy to the environment, which is reflected in the density matrix
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Figure 3.1: Representation of the decoherence mechanisms on the Bloch sphere,
assuming the definition ↽z = |0≃⇒0| ↑ |1≃⇒1|. (a) Energy relaxation, as a contrac-
tion of the state vector along the Z-axis. (b) Pure dephasing, as a contraction
of the state vector in the XY-plane. (c) Decoherence, as a combination of re-
laxation and pure dephasing, makes the qubit decay to a mixed state. Figure
adapted with permission from [116].

as changes in the populations. For a qubit, this corresponds to decay from the
excited state |1≃ to the ground state |0≃, with populations evolving as

⇀11(t) ↖ ⇀11(0) e
→t/T1 , (3.11)

where T1 is the relaxation time [88]. In fact, relaxation is caused by transverse
noise, via the X- or Y-axis, with the intuition that o!-diagonal elements of an
interaction Hamiltonian are needed to connect and drive transitions between
states |0≃ and |1≃. On the Bloch sphere, transverse noise can be pictured as
fluctuations that kick the state vector out of the pole. On average, these fluc-
tuations lead to a contraction along the Z-axis, with ⇒↽z(t)≃ decaying to its
equilibrium value [see Fig. 3.1(a)].

Note that, in the literature, it is common to represent this phenomenon by
drawing the state vector moving away from the pole on the surface of the Bloch
sphere, without shrinking (e.g., Refs. [116, 117]). This may lead the reader to
misinterpret relaxation as the trajectory that connects the poles through the
surface of the sphere, instead of through its center—a notion that is incorrect.

Physically, relaxation is the sum of radiative decay, where the energy is dis-
sipated in the form of a photon (e.g., spontaneous emission), and non-radiative
decay, where the energy is dissipated to the environment in other ways, like
phonons or heat [20, 118]: T→1

1 = γr + γnr.
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Pure dephasing

Caused by longitudinal noise that couples to the qubit via the Z-axis, pure
dephasing describes depolarization in the XY-plane on the Bloch sphere at a rate
%ϖ = 1/Tϖ [see Fig. 3.1(b)]. The longitudinal noise causes the qubit frequency
to fluctuate, such that it is no longer equal to the rotating-frame frequency, and
causes the Bloch vector to precess in the rotating frame [88]. This makes it
common to represent pure dephasing as a state vector that points to the surface
of the Bloch sphere and moves along its equator [88, 116, 117]. However, on
average, these stochastic fluctuations result in a contraction of the Bloch vector
in the XY-plane.

In contrast to energy relaxation, pure dephasing is not a resonant phe-
nomenon, which means that noise at any frequency can modify the qubit fre-
quency and cause dephasing. Thus, qubit dephasing is subject to broadband
noise [88].

Decoherence

Also known as dephasing or transverse decay, since it includes the aforemen-
tioned pure dephasing. It is the decay of o!-diagonal elements in the density
matrix, i.e., loss of coherence without energy exchange. Given a basis {|i≃}, the
coherences decay exponentially as follows:

⇀ij(t) ↖ ⇀ij(0) e
→t/T2 , i ⇑= j, (3.12)

where T2 is the decoherence time [88].
As we will show at the end of Sec. 3.2.1, the timescales above are related by

1

T2
=

1

2T1
+

1

Tϖ

, (3.13)

indicating that decoherence is a combination of energy relaxation and pure
dephasing [see Fig. 3.1(c)]. It is important to note that, while characterizing
these rates is of the utmost importance to experimentalists, us theorists tend
to neglect many of these loss channels. For instance, the models developed in
Papers A, B, C and D do not account for pure dephasing nor non-radiative
decay. In Paper E, we add these contributions ad hoc, as we show through the
master-equation formalism derived next.

3.2 Master equations

When dealing with open quantum systems, we are interested in how the system
dynamics are a!ected by the environment, but not so much in the dynamical
processes taking place in the environment itself. In order to provide a math-
ematical description of such dynamics, we derive a master equation for the
system’s reduced density matrix, which includes the e!ects of the interaction
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with the bath, but traces out the bath’s degrees of freedom. Since the envi-
ronment consists of infinitely many quantum systems, we need to make several
approximations which, fortunately, are well justified in most experiments.

The term master equation originates from classical statistical mechanics,
where it refers to equations describing the evolution of probability distribu-
tions [119]. In quantum theory, it refers to analogous equations for density
matrices. Due to their di!erential equation form, master equations are some-
times referred to as equations of motion [120].

Let us briefly review the progression of relevant quantum dynamical equa-
tions (remember that ⊋ = 1 throughout the thesis).

The Schrödinger equation governs the time evolution of state vectors in
closed systems:

d

dt
|⇁(t)≃ = ↑iH |⇁(t)≃ . (3.14)

The equivalent equation generalized for density matrices is the von Neumann
equation:

d⇀

dt
= ↑i[H, ⇀], (3.15)

often called the Liouville-von Neumann equation, since it can be derived by
canonical quantization of the classical Liouville equation [120].

For open quantum systems, the Liouvillian superoperator L is typically in-
troduced to include both Hamiltonian and dissipative contributions [120]:

d⇀

dt
= ↑i[H, ⇀] + dissipative terms = L⇀. (3.16)

One of the most common forms of the master equation above in the Marko-
vian regime is given by the Lindblad equation [121]:

d⇀

dt
= ↑i[H, ⇀] +

∑

k

D[Lk]⇀, (3.17)

where D[X]⇀ = X⇀X†
↑

1
2


X†X, ⇀


, and the Lk are jump operators character-

izing di!erent dissipative processes (e.g., photon loss, dephasing, spontaneous
emission)1. This equation is also often referred to as the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation to acknowledge the concurrent derivation
of the equation by the other authors [122].

3.2.1 Lindblad master equation for a qubit coupled
to a waveguide

To illustrate the derivation of a master equation, we consider a model where our
quantum system is a two-level atom, coupled to a bath of an infinite number

1While our notation is fairly established, sometimes L is used instead to denote the Liou-
villian superoperator or the Lindblad operator D. Since we do not use the Liouvillian in this
thesis or in the appended papers, we will consistently refer to the dissipative terms by D[Lk].
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of harmonic oscillators, such as a waveguide. The total Hamiltonian H is then
the sum of the atomic Hamiltonian Ha [Eq. (2.9)], the bath Hamiltonian Hb

[Eq. (2.1)], and their interaction Hint, taken from the Rabi Hamiltonian [123]:

H = Ha +Hb +Hint, (3.18)

Ha =
εa

2
↽z, (3.19)

Hb =
∑

k

εk a
†
k
ak, (3.20)

Hint =
∑

k

gk(ak + a†
k
)(↽→ + ↽+), (3.21)

where εa is the transition frequency of the atom; ↽z is the Pauli-Z matrix; ↽± =
(↽x± i↽y)/2 are the ladder operators of the atom, such that ↽+↽→ = (1+↽z)/2;
and gk denotes the coupling strength between the atom and the bath.

Let ⇀tot(t) be the density operator of the total system (atom plus bath).
Then the von-Neumann equation reads

⇀̇tot = ↑i[H, ⇀tot], (3.22)

with H given by Eq. (3.18). In the interaction picture, henceforth denoted by
↙, we can write Eq. (3.22) by separating the rapid motion generated by Ha+Hb

from the slow motion generated by Hint. Defining

⇀̃tot(t) ⇐ ei(Ha+Hb)t⇀tot(t)e
→i(Ha+Hb)t, (3.23)

we obtain
˙̃⇀tot(t) = ↑i[H̃int(t), ⇀̃tot(t)], (3.24)

the solution of which is

⇀̃tot(t) = ⇀̃tot(0) ↑ i

∫
t

0
d▷


H̃int(▷), ⇀̃tot(▷)


. (3.25)

By inserting Eq. (3.25) into Eq. (3.24) and tracing over the the bath degrees of
freedom, we obtain an equation for the atomic density matrix ⇀a:

˙̃⇀a(t) = Trb


↑i


H̃int(t), ⇀̃tot(0)


↑

∫
t

0
d▷


H̃int(t),


H̃int(▷), ⇀̃tot(▷)


.

(3.26)
Note that all steps from Eq. (3.22) to Eq. (3.26) are exact and generalizable

to any Hamiltonian of the form Eq. (3.18). To go forward, however, we need to
make some approximations.

Born, Markov, and rotating-wave approximations

The Born approximation is based on the couplings gk being weak and the reser-
voir being large enough to be virtually una!ected by its interaction with the
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3. Density operator and master equation

atom. In this approximation, we first assume that the interaction is turned on
at t = 0 and that no correlations exist between the system and the bath at this
initial time. Therefore, the initial state factorizes as ⇀tot(0) = ⇀a(0) ⇔ ⇀b(0).
At later times, correlations between the system and the bath arise due to their
coupling. However, since we assume that the coupling is very weak and ⇀tot(t)
should only show deviations of order Hint from an uncorrelated state, we can
neglect higher-order terms, i.e., ⇀̃tot(t) = ⇀̃a(t)⇀b(0)+O(Hint). Then, Eq. (3.26)
becomes, under the Born approximation,

˙̃⇀a(t) = ↑

∫
t

0
d▷ Trb


H̃int(t),


H̃int(▷), ⇀̃a(▷)⇀b(0)


. (3.27)

The Markov approximation states that the bath has no memory, i.e., that
any imprint the atom makes on the bath at time t1 does not a!ect the dynamics
at a later time t2. It can be understood as follows: if the reservoir is large, we do
not expect it to preserve the minor changes caused by its interaction with the
atom for very long—at least, not long enough to significantly a!ect the future
evolution of the atom. Therefore, we can replace ⇀̃a(▷) in Eq. (3.27) with ⇀̃a(t)
to obtain a master equation in the Born-Markov approximation:

˙̃⇀a(t) = ↑

∫
t

0
d▷ Trb


H̃int(t),


H̃int(▷), ⇀̃a(t)⇀b(0)


. (3.28)

To proceed from here is quite straightforward, so the remaining details of
the derivation are left out of the scope of this thesis and we refer the interested
reader to Refs. [86, 124].

The only non-trivial step left to take is the rotating-wave approximation
(RWA), through which we neglect the fast oscillating terms [125]. Explicitly,
the RWA is applied in the interaction picture, where terms in the Hamiltonians
that oscillate with frequencies εa + εb are neglected, while terms that oscillate
with frequencies εa ↑ εb are kept. This is a valid approximation when the
bath frequency εb is close to the atomic transition εa, and the coupling is weak
(i.e., when εa,εb ∝ g), which is a safe assumption to make in the optical and
microwave regimes.

Finally, after all approximations have been made and the bath has been
traced out, we can transform back from the interaction picture to obtain a
master equation in the Lindblad form:

⇀̇a = ↑i

[
ε↔
a

2
↽z, ⇀a

]
+ %aD[↽→]⇀a, (3.29)

where D[↽→]⇀ is the Lindblad superoperator2 defined under Eq. (3.17), %a is
the atomic relaxation rate, and ε↔

a
is the Lamb-shifted transition frequency. In

a small atom, the relaxation rate is given by

%small = 2ϖD(εa)g
2(εa), (3.30)

2Note that, by the definition of the Lindblad superoperator, ”aD[ε→]ϑa = D[
↔
”a ε→]ϑa.
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3.2. MASTER EQUATIONS

where D(ε) is the bath density of states and g(εk) = gk is the coupling
strength [19]. For a GA, % also accounts for the interference between cou-
pling points and it therefore depends on the spacing between the points. As we
will see in subsequent examples (see, e.g., Table 4.1), it can take values up to
%giant ⇓ N2%small, where N is the number of coupling points3 [19, 86].

It should be noted that we could have made the RWA earlier, for instance, di-
rectly on Hint in Eq. (3.21), by neglecting the terms a↽→ and a†↽+, which would
yield the interaction Hamiltonian from the Jaynes-Cummings model [10, 126].
However, while that is a very common practice, it carries the consequence that
ε↔
a
does not accurately capture the Lamb shift of the transition frequency [124,

127, 128]. Thus, only if we are not interested in the exact value of the frequency
shift can we apply the RWA directly on the Hamiltonian, which is the case in
the appended papers.

A master-equation treatment like the one presented in this section is used in
Paper A to study the waveguide-mediated interaction between giant atoms in a
chiral setting. While such an approach had been used before for giant atoms [46],
variations in the direction of propagation of light had not been considered.
Since the setup in Paper A deals with more interconnected systems and a more
complex system-bath interaction, an accurate description of it requires some
additional formalism beyond the master equation derived here. In particular,
we use the SLH formalism, which we introduce in Chapter 4.

Decoherence in the Lindblad equation

In the derivation of the Lindblad equation Eq. (3.29), we have assumed that
the atom only couples to the waveguide and no other bath, and we have not
considered any noise sources. While this common approach allows us to isolate
the atomic dynamics arising from the coupling to the bath, it does not draw
a realistic picture. As explained in Sec. 3.1.2, qubits are also susceptible to
pure dephasing, which is caused by longitudinal (Z) noise and is modeled in the
Lindblad equation by including an additional dissipation term in ↽z [129]:

⇀̇a = ↑i

[
ε↔
a

2
↽z, ⇀a

]
+ %aD[↽→]⇀a +

%ϖ

2
D[↽z]⇀. (3.31)

3Throughout this thesis and in the appended papers, we distinguish between ” being
the atomic or individual relaxation rate (including interference e!ects), ϖ being the bare
relaxation rate at each coupling point (no interference e!ects), and g being the coupling
strength. Experimentally, the variable that is set by design is g, but the one that is measured
to characterize the system is ”, which may sometimes lead to an abuse of language: calling
” the coupling strength. Moreover, in Chapter 4 and in Papers A and E, g is used for the
exchange interaction between two atoms. There, in order to avoid confusions, we refrain from
using g to refer to the coupling strength, and default to using the bare relaxation rates ϖ in
our calculations.
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3. Density operator and master equation

In matrix form, considering ↽z = |0≃⇒0| ↑ |1≃⇒1|, it reads


⇀̇00 ⇀̇01
⇀̇10 ⇀̇11


= iε↔

a


0 ↑⇀01
⇀10 0


+ %a


⇀11 ↑⇀01/2

↑⇀10/2 ↑⇀11


+ %ϖ


0 ↑⇀01

↑⇀10 0



=


%a⇀11 (↑iε↔

a
↑ %a/2 ↑ %ϖ)⇀01

(iε↔
a

↑ %a/2 ↑ %ϖ)⇀10 ↑%a⇀11


. (3.32)

With the two expressions above, we can relate the di!erent terms back to the
decoherence mechanisms from Sec. 3.1.2 as follows.

First, we see that, as expected, relaxation transfers population from state
|1≃ to |0≃ at a rate %a = 1/T1. Then, the term %aD[↽→]⇀a, together with the
fact that %a ′ g2 [ Eq. (3.30)], indicates that this process is induced by the
o!-diagonal term of the interaction Hamiltonian g↽→. This agrees with our
previous intuition that relaxation is caused by transverse (X or Y) noise.

Moreover, we see that relaxation induces a decoherence of the o!-diagonal
terms at half the relaxation rate %a/2. If we additionally consider pure dephas-
ing, the coherences decay at a rate %a/2+%ϖ = 1/T2. This leads to the relation
presented in Eq. (3.13):

1

T2
=

1

2T1
+

1

Tϖ

, (3.33)

which illustrates decoherence as a combination of both relaxation and pure
dephasing.

Finally, regarding the pure dephasing term, we note that one could more
naturally define it as %ϖD[↽z]⇀. However, the canonical renormalization with
the factor 1/2 is done to match the e!ect of the relaxation: in the same way
that the factor %a in the Lindblad equation leads to a decay of the populations
at a rate %a, the factor %ϖ/2 leads to a decay of the coherences at a rate %ϖ.

Note that in the case of a three-level atom, we would normally switch our
Pauli matrices for harmonic ladder operators in all the equations above: ↽→ ↖ a
and ↽z ↖ a†a ↑ aa†, although the exact form of dephasing and relaxation for
higher levels depends a lot on the specific system we consider [129].
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4 Cascaded quantum systems

And when they try to pay you back,
tell them instead to pay it forward.

Catherine Ryan Hyde (1999)

In this chapter, we introduce the theory of cascaded quantum systems, used
in Paper A to model a quantum emitter (or an ensemble of them) chirally
coupled to a 1D continuous waveguide. In particular, we discuss the properties
and applications of chiral interfaces, and we delve into the SLH formalism [130–
132], which we then use in conjunction with the Lindblad equation derived in
the previous chapter.

4.1 Chiral interfaces and applications

In general, we say that atoms couple chirally to a waveguide when their bare
relaxation rate (the relaxation rate before any interference e!ects are taken into
account) is generally di!erent towards the right and left directions, i.e., γR ⇑= γL.
Consequently, there are two limiting cases: the bidirectional or nonchiral case,
where atoms couple symmetrically to the right and left (γR = γL), and the
unidirectional or cascaded case, where atoms couple to modes propagating in
only one direction (e.g., γL = 0).

While most waveguides are bidirectional, chirality emerges naturally in op-
tical nanofibers when light is strongly transversely confined [133–135]. It is also
achievable in atomic waveguides [136] and in microwave waveguides by using
circulators [13, 137–140], sawtooth lattices [141], or entangled states between
quantum emitters [80, 82, 83]. Even beyond photonic reservoirs [142], other
architectures with phononic [143–146] and magnonic waveguides [146–148] have
been proposed to realize chiral coupling.

Chiral quantum networks have been increasingly attracting interest in recent
years [103, 149–157] since they have immediate applications in quantum infor-
mation processing. With two-level emitters representing stationary qubits, and
photons as ‘flying qubits’ for distributing quantum information in a quantum
network, the chiral light-matter coupling enables photons to be routed between
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4. Cascaded quantum systems

the nodes. In particular, it has been shown how this coupling can be harnessed
to transfer quantum states between qubits and to manipulate stabilizer codes
for quantum error correction [79].

As a simple example, consider two small atoms, A and B, coupled to a
common waveguide where they can only absorb and emit right-moving excita-
tions (i.e., the setting in Fig. 4.2(a) with all γL = 0). Consider the emitter
on the left to be in an arbitrary superposition c0 |0≃

A
+ c1 |1≃

A
(defined by

the complex coe”cients c0 and c1) and the emitter on the right in the ground
state |0≃

B
. Then the chiral setting could enable the quantum-state transfer

(c0 |0≃
A
+ c1 |1≃

A
) |0≃

B
↖ |0≃

A
(c0 |0≃

B
+ c1 |1≃

B
), whereby an arbitrary super-

position stored in emitter A is mapped to emitter B. Chiral coupling serves
here to convert the first qubit to a rightward-propagating photonic qubit, and
to increase the chance of reabsorption of this photon by the second qubit.

Let us now take the case of entanglement between emitters. On the one
hand, even the slightest directionalities in the couplings have been shown to
improve the maximum entanglement achievable as compared to nonchiral sys-
tems [150], while on the other hand, chirality can destroy collective emission
e!ects. Consider the spontaneous emission of an ensemble of two-level emitters.
Owing to the fact that all emitters are coupled to the same bath, the emission
di!ers strongly from that of independent emitters—an e!ect referred to as sub-
or super-radiance [158] (see more in Sec. 4.4.2). For instance, for bidirectional
coupling, two small atoms can share a single excitation that is prevented from
decaying by destructive interference between coupling points. This collective
behavior, however, is not possible if the atoms are coupled to a unidirectional
waveguide, where the symmetry is broken and only one of the atoms “knows”
about the presence of the other [153]. Interestingly, we found in Paper A that
GAs in the nested configuration [i.e., where the coupling points of atom B are
situated between the points of atom A—see Fig. 2.2(b)] preserve the symmetry
and thus the entanglement for any chirality of the coupling.

To get around the lack of collective e!ects for small atoms in chiral waveg-
uides one can coherently drive the system [149, 151]. In such a case, the diatomic
ensemble evolves to a dynamic equilibrium between drive and dissipation where
the stream of photons scattered from the first atom interferes destructively with
the photons scattered from the second [153]. In Paper A, we showed that such a
regime not only is accessible for GAs, but the driven-dissipative equilibrium can
be reached faster than with small atoms. This result prompted the conception
of Paper E, where we designed an experiment to generate this driven-dissipative
entangled states with separate giant atoms [see Fig. 2.2(a) and Fig. 2.5(b)].

To derive these results, in Paper A we used the SLH formalism, which is
explained next.
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4.2. SLH FRAMEWORK FOR QUANTUM NETWORKS

4.2 SLH framework for quantum networks

The SLH framework [130–132] was developed in 2009 to model quantum input-
output networks, i.e., quantum optical networks made of local components that
interact via itinerant quantum bosonic fields. Its conception was motivated by
the need to simplify complicated descriptions of networks containing cascaded
quantum systems [159, 160], where the output from one system is used as the
input for another.

The SLH formalism is a modular framework where each local component is
treated as a black box that scatters the propagating fields according to some
pre-specified input-output behavior. In addition, it incorporates the quantum
nature of the itinerant fields and any quantum dynamics in the localized com-
ponents. The power of the SLH formalism lies in its ability to compose the
propagator for local components according to how they are connected in a net-
work.

4.2.1 SLH formalism

In the SLH formalism, an open quantum system with n input-output ports is
described by a triplet G = (S, L, H), where S is an n ∞ n scattering matrix,
L is an n ∞ 1 vector representing the coupling between the system and the
environment at the input-output ports, and H is the Hamiltonian of the system.
Let us elucidate why.

Consider two cascaded quantum systems with HamiltoniansH1 andH2, such
that the output from system 1 becomes the input to system 2. Both systems
are coupled via an input-output port to the environment, by jump operators
L1 and L2, respectively. Through input-output theory and quantum stochastic
calculus, it can be shown that the total system behaves as if it had a Hamiltonian
H = H1+H2+(L†

2L1 ↑L
†
1L2)/(2i) and was coupled to the environment via an

operator L = L1+L2 [86, 132, 161]. This suggests that an open quantum system
could be assigned a doublet G = (L, H), and that the doublet corresponding to
two quantum systems in series would defined as follows:

G = G2 ◁ G1 = (L2, H2) ◁ (L1, H1) =


L1 + L2, H1 +H2 +

1

2i
(L†

2L1 ↑ L
†
1L2)



(4.1)
Now, the doublet above is still missing the S in SLH, i.e., the scattering

matrix. For a single-channel case, the S may describe the non-negligible distance
between two systems G1 and G2 through, for instance, an acquired phase shift
φ, which is inserted by placing the triplet Gϖ = (eiϖ, 0, 0) between G1 and G2.
Note that in such a case, the time it takes for an excitation to travel between
systems must be small compared to the timescale of the systems’ evolution.

On the other hand, the scattering matrix is also essential to describe many-
channel systems such as beamsplitters or circulators, which take several inputs
and mix them into several outputs.
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4. Cascaded quantum systems

Finally, another widely used component is the coherent drive. For example,
a coherent signal of |0|

2 photons per second can be represented by the triplet
Gϱ = (1,0, 0).

4.2.2 SLH composition rules

Now that we have introduced the di!erent components of the SLH triplet, we
can compose them to build more complex quantum networks. For that, we
need the three fundamental composition rules for the SLH formalism: the series
product, the concatenation product, and the feedback operation (see Fig. 4.1).

As shown in Eq. (4.1), the series product is denoted by ◁ and describes
systems which are laid out in a cascaded way. Now accounting for the scattering
matrix, the series product is defined as:

G2 ◁G1 =


S2S1, S2L1 + L2, H1 +H2 +

1

2i


L
†
2S2L1 ↑ L

†
1S

†
2L2


, (4.2)

which we note does not commute, i.e., it is not invariant under the permutation
of 1 and 2.

The concatenation product is denoted by ↫ and is used in processes that
occur in parallel, and there is therefore no need to let one system evolve before
calculating the evolution of the other. Mathematically, it is defined as:

G1 ↫ G2 =


S1 0
0 S2


,


L1

L2


, H1 +H2


. (4.3)

The concatenation product may also be generalized to consider the case where
G1 is directly coupled to G2 by some interaction Hint. Then, we would just
need to replace H1 by H1 +Hint in Eq. (4.3).

The feedback operation describes the process of feeding the x-th output of
a system into the y-th input of the same system, a link denoted by x ↖ y.
As shown in Fig. 4.1(c), this interconnection results in a triplet of reduced
dimension Gx↗y = (Sred,Lred, Hred), where

Sred = S!!x,y + S
"x,y

(1 ↑ Sx,y)
→1

Sx,"y
Lred = L

"x
+ S

"x,y
(1 ↑ Sx,y)

→1
Lx

Hred = H +
1

2i

(
L
†
S:,y(1 ↑ Sx,y)

→1
Lx ↑ H.c.

)
, (4.4)

and S!!x,y is the scattering matrix with row x and column y removed; S
"x,y

(Sx,"y
)

denotes the column y (row x) of the matrix with the x-th (y-th) element re-
moved; S:,y is the entire y-th column; Sx,y denotes the element xy; L

"x
refers to

the coupling vector with the x-th element removed; Lx is the x-th element of
the vector; and H.c. denotes Hermitian conjugate.

These three composition rules are su”cient to describe any arbitrary quan-
tum network that satisfies (i) the Born-Markov approximation, (ii) that the
bosonic fields propagate in a linear medium without dispersion, and (iii) that
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4.3. EXAMPLE: TWO ATOMS CHIRALLY COUPLED TO A CONTINUOUS
WAVEGUIDE

(a) Series

G1 G2

=

G2 ωG1

(b) Concatenation

G1

G2

=

G1 ↫ G2

(c) Feedback

G
a a
b b
c c

=

Gb↑c

a a

b b

Figure 4.1: The three SLH composition rules: (a) series product, (b) concate-
nation product, (c) feedback operation.

the travel time between components is negligible compared to the relaxation
times of the systems. In fact, once we calculate the triplet G = (S,L, H) of the
network, we can extract the Lindblad master equation

⇀̇ = ↑i[H, ⇀] +
n∑

j=1

D[Lj ]⇀. (4.5)

4.3 Example: two atoms chirally coupled
to a continuous waveguide

In this section, we illustrate the SLH formalism for two small atoms [Fig. 4.2(a)]
and two giant braided atoms [Fig. 4.2(b)], which are some of the elementary
setups studied in Paper A.

Let us consider two atoms A and B with resonant frequencies εA and εB ,
respectively1. Taking the atoms to be two-level systems, their Hamiltonians can
be written as

HA =
εA

2
↽A

z
, HB =

εB

2
↽B

z
, (4.6)

regardless of whether they are small or giant.
The atoms are coupled to the waveguide at connection points identified by

their position xk and their bare relaxation rates γk, for k = 1, 2, 3, 4. At each

1Not to be confused with the subscripts a, b from Sec. 3.2.1 denoting atom and bath.
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(a) Small

A
|e≃

|g≃
εA

γ1Rγ1L

B εB

γ2L γ2R

x1 x2

φ

(b) Braided

A

γ1Rγ1L γ3L γ3R

B

γ2Rγ2L γ4L γ4R

x1 x2 x3 x4

φ1 φ2 φ3

(c) SLH scheme

G1R
ω

Gϖ1

ω
G2R

ω . . .

GR

ω
Gϖn→1

ω
GnR

G1L
ε

Gϖ1

ε
G2L

ε . . .

GL

↫↫↫

ε
Gϖn→1

ε
GnL

Figure 4.2: Atoms coupled to a 1D continuous open waveguide. (a, b) A sketch
for (a) two small atoms, and (b) two giant braided atoms showing the relevant
parameters. (c) The SLH scheme that describes the input-output flows from
the setups in (a) and (b), and which is also applicable to an arbitrary number
of atoms with an arbitrary number of coupling points. All figures are adapted
from Paper A.

coupling point, we distinguish the decay rate to the right- and left-propagating
modes as γkR and γkL, in such a way that γkR+ γkL = γk. The phase shifts ac-
quired between neighboring coupling points are denoted by φk = ε|xk+1 ↑ xk|/v
for k = 1, 2, 3, where ε and v are the frequency and velocity of the traveling
bosons, respectively. Note that in order for the setup to be consistent with the
assumptions behind the SLH formalism, we need to assume that the coupling of
each atom is weak compared to their transition frequency, and that the travel
time between connection points is negligible compared to the relaxation times of
all the atoms. Finally, in each propagation direction, we can model the coupling
between an atom j and the waveguide at a connection point k with the jump
operator L, in such a way that Lk =

↗
γk↽

j

→ (as we did in Sec. 3.2.1).

With all the elements we established, we can now define an SLH triplet at
each connection point k:
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Gk =







1,

↗
γk↽

j

→,
1
2εj↽j

z


if k is the first coupling
point of atom j


1,

↗
γk↽

j

→, 0


otherwise.

(4.7)

To account for the phase shift acquired between connection points k and k+ 1,
we define

Gϖk = (eiϖk , 0, 0). (4.8)

We then take each propagation direction (right and left) separately and
apply a series product between all the triplets, as if the system was cascaded
[see Eq. (4.2)]. In particular, for two small atoms, that is

GR

∣∣∣∣
sma

= G2R ◁Gϖ ◁G1R =

=


1,

↗
γ2R ↽B

→ ,
1

2
εB↽

B

z


◁ (eiϖ, 0, 0) ◁


1,

↗
γ1R ↽A

→,
1

2
εA↽

A

z


=

=


eiϖ, eiϖ

↗
γ1R ↽A

→ +
↗
γ2R ↽B

→ ,

εA

2
↽A

z
+

εB

2
↽B

z
+

↗
γ1Rγ2R
2i

[eiϖ↽A

→↽
B

+ ↑ H.c.]


, (4.9)

GL

∣∣∣∣
sma

= G1L ◁Gϖ ◁G2L =

=


1,

↗
γ1L ↽A

→,
1

2
εA↽

A

z


◁ (eiϖ, 0, 0) ◁


1,

↗
γ2L ↽B

→ ,
1

2
εB↽

B

z


=

=


eiϖ,

↗
γ1L ↽A

→ + eiϖ
↗
γ2L ↽B

→ ,

εA

2
↽A

z
+

εB

2
↽B

z
+

↗
γ1Lγ2L
2i

[eiϖ↽B

→↽A

+ ↑ H.c.]


. (4.10)

Similarly, for two giant braided atoms, the triplets are

GR

∣∣∣∣
bra

= G4R ◁Gϖ3 ◁G3R ◁Gϖ2 ◁G2R ◁Gϖ1 ◁G1R =

=
(
1,

↗
γ4R ↽B

→ , 0
)
◁ (eiϖ3 , 0, 0) ◁

(
1,

↗
γ3R ↽B

→ , 0
)
◁ (eiϖ2 , 0, 0)

◁

1,

↗
γ2R ↽B

→ ,
εB

2
↽B

z


◁ (eiϖ1 , 0, 0) ◁


1,

↗
γ1R ↽B

→ ,
εA

2
↽A

z


,

(4.11)
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GL

∣∣∣∣
bra

= G1L ◁Gϖ1 ◁G2L ◁Gϖ2 ◁G3L ◁Gϖ3 ◁G4L =

=

1,

↗
γ1L ↽B

→ ,
εA

2
↽A

z


◁ (eiϖ1 , 0, 0) ◁


1,

↗
γ2L ↽B

→ ,
εB

2
↽B

z



◁ (eiϖ2 , 0, 0) ◁
(
1,

↗
γ3L ↽B

→ , 0
)
◁ (eiϖ3 , 0, 0) ◁

(
1,

↗
γ4L ↽B

→ , 0
)
,

(4.12)

which results in the components

SR

∣∣∣∣
bra

= ei(ϖ1+ϖ2+ϖ3),

LR

∣∣∣∣
bra

=

ei(ϖ1+ϖ2+ϖ3)↗γ1R + eiϖ3

↗
γ3R


↽A

→ +

ei(ϖ2+ϖ3)↗γ2R +

↗
γ4R


↽B

→ ,

HR

∣∣∣∣
bra

=
1

2
(εA + sin(φ1 + φ2)

↗
γ1Rγ3R)↽

A

z

+
1

2
(εB + sin(φ2 + φ3)

↗
γ2Rγ4R)↽

B

z

+
1

2i


eiϖ1

↗
γ1Rγ2R + ei(ϖ1+ϖ2+ϖ3)↗γ1Rγ4R ↑ e→iϖ2

↗
γ2Rγ3R

+ eiϖ3
↗
γ3Rγ4R


↽A

→↽
B

+ ↑ H.c.

, (4.13)

SL

∣∣∣∣
bra

= ei(ϖ1+ϖ2+ϖ3),

LL

∣∣∣∣
bra

=

↗
γ1L + ei(ϖ1+ϖ2)↗γ3L


↽A

→ +

eiϖ1

↗
γ2L + ei(ϖ1+ϖ2+ϖ3)↗γ4L


↽B

→ ,

HL

∣∣∣∣
bra

=
1

2
(εA + sin(φ1 + φ2)

↗
γ1Lγ3L)↽

A

z

+
1

2
(εB + sin(φ2 + φ3)

↗
γ2Lγ4L)↽

B

z

+
1

2i


↑ e→iϖ1

↗
γ1Lγ2L ↑ e→i(ϖ1+ϖ2+ϖ3)↗γ1Lγ4L

+ eiϖ2
↗
γ2Lγ3L ↑ e→iϖ3

↗
γ3Lγ4L


↽A

→↽
B

+ ↑ H.c.

. (4.14)

Now, since propagation to the right and left directions occurs simultaneously,
we can concatenate the two triplets GR and GL according to SLH practice, such
that G = GR ↫ GL [see Eq. (4.3)]. This yields the components

S

∣∣∣∣
sma

=


eiϖ 0
0 eiϖ



L

∣∣∣∣
sma

=


eiϖ

↗
γ1R ↽A

→ +
↗
γ2R ↽B

→
↗
γ1L ↽A

→ + eiϖ
↗
γ2L ↽B

+



H

∣∣∣∣
sma

=
εA

2
↽A

z
+

εB

2
↽B

z
+

1

2i


eiϖ

↗
γ1Rγ2R ↑ e→iϖ

↗
γ1Lγ2L


↽A

→↽
B

+ ↑ H.c.

,

(4.15)
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WAVEGUIDE

S

∣∣∣∣
bra

=


ei(ϖ1+ϖ2+ϖ3) 0

0 ei(ϖ1+ϖ2+ϖ3)



L

∣∣∣∣
bra

=

(
ei(ϖ1+ϖ2+ϖ3)↗γ1R + eiϖ3

↗
γ3R

)
↽A

→ +
(
ei(ϖ2+ϖ3)↗γ2R +

↗
γ4R

)
↽B

→(↗
γ1L + ei(ϖ1+ϖ2)↗γ3L

)
↽A

→ +
(
eiϖ1

↗
γ2L + ei(ϖ1+ϖ2+ϖ3)↗γ4L

)
↽B

→



H

∣∣∣∣
bra

=
1

2
(εA + sin(φ1 + φ2)(

↗
γ1Rγ3R +

↗
γ1Lγ3L))↽

A

z

+
1

2
(εB + sin(φ2 + φ3)(

↗
γ2Rγ4R +

↗
γ2Lγ4L))↽

B

z

+
1

2i


eiϖ1

↗
γ1Rγ2R + ei(ϖ1+ϖ2+ϖ3)↗γ1Rγ4R ↑ e→iϖ2

↗
γ2Rγ3R

+ eiϖ3
↗
γ3Rγ4R ↑ e→iϖ1

↗
γ1Lγ2L ↑ e→i(ϖ1+ϖ2+ϖ3)↗γ1Lγ4L

+ eiϖ2
↗
γ2Lγ3L ↑ e→iϖ3

↗
γ3Lγ4L


↽A

→↽
B

+ ↑ H.c.

, (4.16)

for small and braided atoms, respectively.
Finally, with the triplets above, we can compute the time evolution of the

density matrix according to the master equation in Eq. (4.5), which results in
an expression of the form

⇀̇ = ↑ i[H, ⇀] +
n∑

j=1

D[Lj ]⇀ =

= ↑ i

[
ε↔
A

↽A

z

2
+ ε↔

B

↽B

z

2
+
(
g↽A

→↽
B

+ +H.c.
)
, ⇀

]

+ %AD[↽A

→]⇀+ %BD[↽B

→ ]⇀

+

[
%coll


↽A

→⇀↽
B

+ ↑
1

2


↽A

→↽
B

+ , ⇀


+H.c.

]
, (4.17)

where ε↔
j
= εj + φεj is the Lamb-shifted frequency of atom j ↔ {A,B}, g is the

exchange interaction between atoms, %j is the individual relaxation rate of atom
j, and %coll is the collective relaxation rate for the atoms. The exact expressions
for these parameters are shown in Table 4.1.

On the one hand, the exchange interaction2 g is set by emission from con-
nection points of one atom being absorbed at connection points of the other
atom, and it is the complex term in the Hamiltonians from Eqs. (4.15)–(4.16).

On the other hand, the relaxation rates %j ,%coll are set by interference be-
tween emission from connection points belonging to the same atom (%j), and

2The exchange interaction g used in this chapter, in Papers A and E, and in other re-
lated papers [20, 46] should not be confused with the coupling strength g used in Chapter 3,
Chapter 5, and Papers B, C, and D. It should also not be confused with the atomic ground
state |g→. To avoid mix-ups, in Papers A and E, we use the bare relaxation rates ϖ instead
of the coupling strengths at each connection point. Other common nomenclature for the ex-
change interaction in the literature is J [62], but we instead use J for the hopping rate between
the cavities of a structured waveguide, as described in Sec. 2.2.2.
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4. Cascaded quantum systems

Table 4.1: Frequency shifts, exchange interaction, individual and collective
decays [φεj , g,%j ,%coll in Eq. (4.17)] for small and braided giant atoms chirally
coupled to a 1D open waveguide. We assume arbitrary phase shifts φ1,φ2,φ3

and arbitrary bare relaxation rates γkR, γkL at each coupling point k = 1, 2, 3, 4.

Parameter Topology Expression for two atoms, A and B

Frequency

shifts,

φεA, φεB

Small 0

0

Braided sin(φ1 + φ2)(
↗
γ1Rγ3R +

↗
γ1Lγ3L)

sin(φ2 + φ3)(
↗
γ2Rγ4R +

↗
γ2Lγ4L)

Individual

decays,

%A, %B

Small γ1R + γ1L
γ2R + γ2L

Braided γ1R + γ1L + γ3R + γ3L
+2 cos(φ1 + φ2)(

↗
γ1Rγ3R +

↗
γ1Lγ3L)

γ2R + γ2L + γ4R + γ4L
+2 cos(φ2 + φ3)(

↗
γ2Rγ4R +

↗
γ2Lγ4L)

Collective

decay,

%coll

Small eiϖ
↗
γ1Rγ2R + e→iϖ

↗
γ1Lγ2L

Braided eiϖ1
↗
γ1Rγ2R + ei(ϖ1+ϖ2+ϖ3)↗γ1Rγ4R

+e→iϖ2
↗
γ2Rγ3R + eiϖ3

↗
γ3Rγ4R

+e→iϖ1
↗
γ1Lγ2L + e→i(ϖ1+ϖ2+ϖ3)↗γ1Lγ4L

+eiϖ2
↗
γ2Lγ3L + e→iϖ3

↗
γ3Lγ4L

Exchange

interaction,

g

Small [eiϖ
↗
γ1Rγ2R ↑ e→iϖ

↗
γ1Lγ2L]/2i

Braided [eiϖ1
↗
γ1Rγ2R + ei(ϖ1+ϖ2+ϖ3)↗γ1Rγ4R

↑e→iϖ2
↗
γ2Rγ3R + eiϖ3

↗
γ3Rγ4R

↑e→iϖ1
↗
γ1Lγ2L ↑ e→i(ϖ1+ϖ2+ϖ3)↗γ1Lγ4L

+eiϖ2
↗
γ2Lγ3L ↑ e→iϖ3

↗
γ3Lγ4L]/2i

di!erent atoms (%coll). They relate to the right (R) and left (L) collapse oper-
ators from Eqs. (4.15)–(4.16) as follows:

LR/L =


%A,R/L ↽A

→ +

%B,R/L ↽B

→ , (4.18)
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with

%j = %jR + %jL, for j = A,B (4.19)

%coll =

%
A,R

%↓
B,R

+


%
A,L

%↓
B,L

, (4.20)

where * denotes complex conjugate.
The procedure used in these examples follows the SLH scheme depicted in

Fig. 4.2(c), and it is the same used in Paper A, where we generalize it to a setup
of an arbitrary number of atoms with an arbitrary number of coupling points
to the waveguide, and for any chirality of the coupling.

4.4 Interference e!ects

As we can see from the expressions in Table 4.1, for both small and giant atoms,
the phase shifts acquired in the waveguide determine the interference e!ects be-
tween di!erent atoms; for GAs, they also determine the self-interference e!ects.
We explain these e!ects below.

4.4.1 Self-interference

Frequency-dependent relaxation rates

As introduced in Sec. 2.2.1, while a small atom coupled to a waveguide will al-
ways relax, the relaxation rate of a GA can be tuned during an experiment. This
tunability is determined by the phase φk between coupling points k and k + 1,
which is, in turn, dictated by the atomic frequency ε, since φk = ε|xk+1 ↑ xk|/v,
with v being the speed of the traveling excitation in the waveguide.

We see this e!ect in Table 4.1, where taking all bare relaxation rates to be
equal (i.e., γkR = γkL = γ/2 for all k) leads to %j

∣∣
sma

= γ, but %j

∣∣
bra

↔ [0, 4γ]
depending on the phases. In particular, the total suppression of the relaxation
%j

∣∣
bra

= 0 occurs when an excitation acquires a phase ϖ (mod 2ϖ) between
the coupling points of atom j (e.g., φ1 + φ2 = φ2 + φ3 = ϖ), thus leading
to destructive interference. Equivalently, this occurs when the coupling points
are separated by half the excitation’s wavelength, ω/2 (mod ω). We refer to
this as that the atom is perfectly subradiant or decoherence free, or is set to a
decoherence-free frequency/point.

Although recalling the decoherence mechanisms introduced in Sec. 3.1.2 bares
the question: does % = 0 truly mean decoherence free? The answer is no, at least
not for experimentalists. For us theorists, who do not typically consider other
loss channels other than relaxation to the waveguide, then yes, total suppres-
sion of relaxation means total suppression of decoherence. However, dephasing
and non-radiative decay will not be suppressed, as demonstrated in Ref. [20],
although these are typically orders of magnitude smaller than relaxation.
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4.4.2 Collective interference

Subradiance

Let us now delve into the aforementioned phenomenon of subradiance [158, 162–
164], which is the suppression of spontaneous emission by collective interference.
We typically label a many-atom state as subradiant whenever it decays slower
than the relaxation of each individual atom. A perfectly subradiant state—that
which does not decay—is known as a dark state. In an atomic ensemble, dark
states |D≃ are non-radiative pure states which are annihilated by all collapse
operators and are eigenstates of the multiatom Hamiltonian [149, 151, 152, 163,
165], i.e., they satisfy

LR |D≃ = LL |D≃ = 0

H |D≃ = µ |D≃ , µ ↔ R.
(4.21)

By applying Eq. (4.21) to the examples in Sec. 4.3 we find that, under certain
conditions for γk,φk and εj , the possible dark states are the Bell states |$+

≃

and |$→
≃, which are maximally entangled states with one atom being excited

and the other being in the ground state3:

∣∣$±〉
⇐ |T/S≃ ⇐ |±≃ ⇐

1
↗
2
(|01≃ ± |10≃) =

1
↗
2
(|ge≃ ± |eg≃). (4.22)

These conditions for the existence of dark states, which are well known for
small atoms and have been studied since the discovery of superradiance [158],
had not been derived before for GAs, until we did in Paper A. In fact, it was by
applying the conditions from Eq. (4.21) that we found that, while most diatomic
configurations (including small atoms) require the coupling to be bidirectional
for dark states to exist, i.e., γR = γL, the nested configuration does not.

By coherently driving the system, and applying the same conditions from
Eq. (4.21), in Paper A we found that the system evolves into an equilibrium
between drive and dissipation, where the dark steady state reads4

∣∣DS/T

〉
=

1
1 + |↼|

2
(↼ |S/T ≃ + |gg≃). (4.23)

Here, ↼ is a function of the bare relaxation rates, the coherent drive, and the
detuning of the atoms from the drive; and

∣∣DS/T

〉
approaches |S/T ≃ for strong

drives5. This state has the same form for small [149, 151] and giant atoms, but

3There is no universal nomenclature for these states, but rather common naming practice
di!ers between fields. The Bell state

∣∣#+
〉
↗ |ϱ01→ is also commonly referred to as the plus

state |+→, the triplet |T →, or the symmetric state |s→; whereas the Bell state
∣∣#→〉

↗ |ϱ11→ is
also known as the minus state |↓→, the singlet |S→, or the antisymmetric state |a→. In Paper
A, we follow the notation |T/S→, but we use |±→ in Paper B.

4We note an erratum in Table III of Paper A, where the conditions for the existence of
driven-dissipative dark states are collected. For separate atoms, the phase shifts that lead to
the existence of |DS→ are ς1 = ς2 = ς3 = 0 (mod 2φ) — not ς2 = φ.

5This factor ↼ should not be confused with the anharmonicity introduced in Eq. (2.8).
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can be reached faster for certain configurations of GAs—a feature that we use
for the design of the experiment in Paper E.

While collective emission phenomena have always been of interest to the
quantum-optics community, subradiance is receiving a recently renewed interest
in the context of quantum technologies: being able to access and harness dark
states is a key ingredient in the development of quantum memories [166–168]
and in the robust distribution of information in scalable quantum networks with
quantum repeaters [169, 170].

Finally, it is important to remark that, in Papers B and C, we talk about
(perfect) subradiance not as the collective interference e!ect between two atoms
described here, but as the destructive interference between two coupling points
of the same atom—i.e., as the decoherence-free e!ect explained in Sec. 4.4.1.
While that may very well be abuse of language, we believe it is justified since,
in the single-excitation regime, the subradiance that takes place between two
small atoms is identical to that of a GA with two coupling points.

Decoherence-free interaction

Perfect subradiance o!ers a way of protecting atoms against decoherence only
when the atoms are in the dark state. A much more robust way of protecting
the atoms is achieved by braided GAs through the so-called decoherence-free
interaction (DFI), which is independent of the states of the GAs, meaning that
the entire Hilbert space of the atomic ensemble is protected from decoherence.

As mentioned in Sec. 2.2.1, this is one of the most promising properties of
GAs and a feature of great potential in quantum computing applications, a field
which is currently largely limited by quantum decoherence and dissipation.

Waveguide-mediated DFI between two atoms A and B takes place when
the interference from their coupling points suppresses both the individual and
collective relaxation rates (%j ,%coll = 0 ∈j ↔ {A,B}) while maintaining their
exchange interaction (g ⇑= 0). Let us see when that happens.

As explained before, the individual decay rate of each atom %j = 0 is zero
when the coupling points of each atom are separated by a phase ϖ (mod 2ϖ)
[see Fig. 4.3(a)]. For this particular distance, the emission from each atom’s
connection points interferes destructively, making the sum over all atoms zero
and thus preventing collective decay (%coll = 0). In separate and nested atoms,
the connection points of atom B are consecutive, so the emission between them
cancels the interaction (g = 0) when %B = 0. Unlike these topologies, braided
atoms have the particularity that no consecutive points belong to the same
atom, allowing a non-zero exchange interaction (see Table 4.1). As depicted in
Fig. 4.3(b), this implies that an excitation can be released from atom A to be
reabsorbed by atom B and vice versa, in a perpetual loop. What is more, one
can braid more than two GAs to achieve decoherence-free chains and all-to-all
decoherence-free interaction [46].

DFI was first described in 2018 [46] and demonstrated experimentally in
2020 [20]. Later, we showed that it holds in continuous waveguides of any
chirality (Paper A), as well as in 1D and 2D structured baths (Papers B and
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(a)

A
ϖ

B

ϖ

(b)

Figure 4.3: (a) Two braided giant atoms with the coupling points of each atom
separated by a phase shift of ϖ (mod 2ϖ), which is the distance that allows
them to interact without decohering. (b) Excitation exchange between two
atoms arranged in the setup from (a), showing a decoherence-free interaction.

C, respectively). In Papers B and C, we also studied how DFI is a!ected by
non-Markovianities, which requires the formalism explained in the next chapter.

4.5 Quantum logic gates

The interference e!ects explained above can be harnessed to implement two-
qubit quantum gates (i.e., unitary operations performed on two interacting
qubits) without the help of additional resources such as couplers. This is an
important application, because access to an entangling two-qubit gate such as
the iSWAP or the CZ, together with a complete set of single-qubit gates, is
su”cient to achieve a universal gate set for a quantum computer [171]. That
means that it is su”cient to approximate any unitary transformation on any
number of qubits to any desired precision.

4.5.1 iSWAP

An iSWAP gate leaves the states |00≃ and |11≃ unchanged, while the states |01≃
and |10≃ are swapped and acquire a phase factor eiς/2 = i [88]. In matrix form,
it reads

iSWAP =

|00≃ |01≃ |10≃ |11≃



1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1



 .
(4.24)

In GAs, the iSWAP gate is the operation performed after half a period of the
DFI oscillations from Fig. 4.3(b). Experimentally [20], it usually requires the
atoms to have three coupling points each, so that they have two decoherence-free
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frequencies. In this way, the gate is started by tuning atom A to a decoherence-
free frequency εDF1 and atom B to εDF2. Then, atom A is tuned to εDF2,
resonantly with atom B, so that they interact. Finally, after one population
swap, atom A is detuned back to εDF1 for readout or further operations.

The same procedure can be followed to perform a
↗
iSWAP gate by cutting

the interaction time in half. In this case, instead of starting in the state |10≃ and
ending in |01≃, we end in the entangled state (|01≃↑ i |10≃)/

↗
2, as was achieved

in Ref. [20] with 94% fidelity.

4.5.2 CZ

A controlled-Z gate, or CZ gate, leaves all the states unchanged except for |11≃,
which accumulates a phase eiς = ↑1 [3, 88]. In matrix form, this is

CZ =

|00≃ |01≃ |10≃ |11≃



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ↑1



 .
(4.25)

A common way to implement the CZ gate is to bring the population of the
|11≃ state to the |20≃ (or |02≃) state and back [87]. In three-level GAs, this can be
done [172] by tuning resonantly the transitions ε12 of atom A and ε01 of atom
B, which leads to DFI between the states |11≃ and |20≃. For the population
exchanges to be fully protected, the transition ε01 of atom A should also be
decoherence-free, but detuned away from the DFI frequency. This requires the
atom to have an additional coupling point to the waveguide, with respect to the
layout described for the iSWAP gate.

The CZ gate with GAs has been demonstrated theoretically in a continuous
waveguide [172]; and in Paper D, we study how to perform it in a structured
waveguide under non-Markovian e!ects.

41



4. Cascaded quantum systems

42



5 Resolvent formalism

I passed Complex Analysis! Unbelievable!
Now I can throw away the notes and never
see this again...

Ariadna Soro (2016)

In this chapter, we present the resolvent formalism used in Papers B and C
to model GAs coupled to 1D and 2D structured environments (see Sec. 2.2.2).
This theory, which is more general and requires fewer assumptions than the
Lindblad master equation (Sec. 3.2.1) or the SLH formalism (Sec. 4.2), allows
us study exact atomic dynamics and non-Markovian e!ects.

Let us start by considering a system with a total HamiltonianH = H0+Hint,
where H0 is the “unperturbed” Hamiltonian for which the eigenstates and
eigenenergies are known, and Hint represents the coupling between subspaces
spanned by some of the unperturbed eigenstates. This could be the case of the
Hamiltonian used in Chapter 3 [in Eq. (3.18)], whereH0 = Ha+Hb, i.e., the sum
of the bare atom and bath Hamiltonians. There, we made many simplifications
to be able to describe the atomic dynamics: we made the Born-Markov approx-
imation, and we assumed a linear dispersionless bath with negligible travel time
between components. With fewer simplifications, in many cases, we could take a
perturbative approach to solve the dynamics. However, sometimes, a deeper un-
derstanding of certain physical phenomena requires going beyond perturbation
theory and taking into account some e!ects of Hint to all orders.

For this type of problem, we resort to the so-called resolvent formalism, based
on the definition of the resolvent G(z) = 1/(z ↑H) of the Hamiltonian H, with
z ↔ C. The relation between the resolvent G(z) and the unperturbed resolvent
G0(z) = 1/(z ↑ H0) is an algebraic equation, much simpler to manipulate than
the integral equation connecting the evolution operators U(t) = exp{↑iHt} and
U0(t) = exp{↑iH0t}. The matrix elements of U(t) are then calculated from
the matrix elements of G(z) via a contour integral. Moreover, the analytical
properties of G(z) provide information about the di!erent contributions to the
dynamics.
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5.1 From resolvent to evolution operator

The time-evolution operator U(t, t↔) of the Hamiltonian H = H0 +Hint is the
solution to the Schrödinger equation

i
d

dt
U(t, t↔) = (H0 +Hint)U(t, t↔), (5.1)

with the initial condition U(t↔, t↔) = 1. In fact, the solution can be written as

U(t, t↔) = U0(t, t
↔) ↑ i

∫
t

t↑
d▷U0(t, ▷)HintU(▷, t↔), (5.2)

where U0(t, t↔) = exp{↑iH0(t ↑ t↔)}. Note that this expression is close to a
convolution product, but not quite, since ▷ varies between t↔ and t. Fortunately,
by introducing new operators, we can convert it to a true convolution product,
which will transform into a simple product by Fourier transformation. We define

K+(t, t
↔) = U(t, t↔)1(t ↑ t↔); K0+(t, t

↔) = U0(t, t
↔)1(t ↑ t↔), (5.3)

where 1(t↑ t↔) is the Heaviside function, equal to 1 for t > t↔ and to 0 otherwise.
With these operators, we can rewrite Eq. (5.2) as a true convolution:

K+(t, t
↔) = K0+(t, t

↔) ↑ i

∫ ↑

→↑
d▷K0+(t, ▷)HintK+(▷, t

↔). (5.4)

We note that K+(t, t↔) satisfies the equation

i
d

dt
↑ H


K+(t, t

↔) = φ(t ↑ t↔), (5.5)

which is why the operator K+(t, t↔) is sometimes called the Green’s function.
In fact, it is a retarded Green’s function because it is non-zero only for t > t↔.
Conversely, we can define the advanced Green’s function

K→(t, t
↔) = ↑U(t, t↔)1(t↔ ↑ t), (5.6)

which obeys the same evolution equation as K+ but satisfies di!erent boundary
conditions.

It is now convenient to introduce the Fourier transform of K+(t, t↔), which
depends only on t ↑ t↔, so by redefining t := t ↑ t↔, we can write

K+(t) = ↑
1

2ϖi

∫ ↑

→↑
dE e→iEtG+(E), (5.7)

or, inversely,

G+(E) = ↑ i

∫ ↑

→↑
dt eiEt

exp{→iHt}φ(t)
︷ ︸︸ ︷
K+(t) = ↑i

∫ ↑

0
dt ei(E→H)t =

= lim
↼↗0+

↑i

∫ ↑

0
dt ei(E→H+i↼)t = lim

↼↗0+

1

E ↑ H + i2
, (5.8)
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5.1. FROM RESOLVENT TO EVOLUTION OPERATOR

were 2 is a positive real number that tends to zero, and G+(E) is called retarded
propagator1. Similarly, the advanced Green’s function and propagator satisfy

K→(t) = ↑
1

2ϖi

∫ ↑

→↑
dE e→iEtG→(E), (5.9)

G→(E) = lim
↼↗0+

1

E ↑ H ↑ i2
. (5.10)

Notice that, now, the integral from Eq. (5.4) becomes a simple product by
Fourier transform, thus resulting in the algebraic equation

G+(E) = G0+(E) +G0+(E)HintG+(E), (5.11)

where G0+ is the retarded propagator associated with H0.
The simple form ofG±(E) suggests the introduction of the resolvent operator

of the Hamiltonian H,

G(z) =
1

z ↑ H
, (5.12)

as a function of the complex variable z. Then, the retarded (advanced) propa-
gator G+(E) [G→(E)] is simply the limit of G(z) when z tends to the point E
on the real axis, with a positive (negative) value of its imaginary part:

G±(E) = lim
↼↗0+

G(E ± i2). (5.13)

Finally, the time-evolution operator U(t) = K+(t) ↑ K→(t) is expressed by a
contour integral of G(z):

U(t) =
1

2ϖi

∫ ↑

→↑
dE e→iEt[G→(E) ↑ G+(E)] =

=
1

2ϖi

∫

↽++↽→

dz e→iztG(z), (5.14)

where γ+ (γ→) is a line situated infinitesimally above (below) the real axis
and followed from right (left) to left (right), and the contribution of C→ (C+)
is zero for t > 0 (t < 0). Later, to compute this integral, we will use the
residue theorem (Sec. 5.4), which requires the contour to be a closed curve.
Conveniently, Jordan’s lemma [173] allows us to extend γ± without changing
the value of the integral, by integrating around a semicircle of infinite radius
in the upper half-plane for t < 0 and in the lower half-plane for t > 0. Thus,
for t > 0, as is the case in most physical scenarios, the contour in Eq. (5.14)
reduces to a counter-clockwise path around the closed lower half-plane (i.e., the
lower half-plane and the real axis)—as depicted in the example of Fig. 5.2(a).

1Since K+ and G+ are interchangeable by Fourier transform, sometimes, it is K+ which is
referred to as the retarded propagator, and G+ receives instead the name of retarded Green’s
function.
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5. Resolvent formalism

5.2 Singularities of the resolvent

It becomes patent from Eq. (5.14) that we can determine properties of U(t)
from the analytical properties of G(z). In fact, the matrix elements of G(z)
are analytic functions of z in the whole complex plane except for the real axis,
where they have two types of singularities:

• Real poles, located at the discrete eigenvalues of the Hamiltonian H, and

• Branch cuts, extending over the intervals corresponding to the continuous
spectrum of H. A cut appears when the matrix elements of G(z) do not
tend to the same value when z tends from below or from above toward a
point on the real axis, located on the cut.

Now, it is possible to analytically continue G(z) from, e.g., the upper half-plane
towards the lower half-plane, into the so-called second Riemann sheet. In this
case, the continued function is not necessarily analytic outside the real axis and
may have

• Complex poles, which describe unstable states of the system, i.e., states
having a complex energy and characterized by exponential damping.

5.3 From level-shift operator to resolvent

The identity Eq. (5.11) can be applied to give the perturbative expansion of
G(z) in powers of V , and iterated to yield

G(z) = G0(z) +G0(z)HintG(z) =

= G0(z) +G0(z)HintG0(z) +G0(z)HintG0(z)HintG0(z) + . . . (5.15)

Then, the matrix elements of G(z) between two eigenstates ⇒l| and |m≃ of
H0, with unperturbed energies El and Em, read

Glm(z) =
1

z ↑ El

φlm +
1

z ↑ El

H int
lm

1

z ↑ Em

+
∑

i

1

z ↑ El

H int
li

1

z ↑ Ei

H int
im

1

z ↑ Em

+ . . . , (5.16)

where |i≃ are eigenstates of H0, Glm(z) = ⇒l|G(z)|m≃, and H int
im

= ⇒i|Hint|m≃.
Note that this expression is quite simple, consisting only of products of matrix
elements of Hint and of unperturbed energy denominators. In this way, we
can regroup the terms where a denominator 1/(z ↑ Ee) involving a particular
unperturbed state |e≃ appears x times, and then formally sum the perturbation
series. Let us take l = m = e. Then, the zero-order term in Hint of Eq. (5.16) is
just 1/(z ↑ Ee) and thus contains this denominator once. Meanwhile, the next
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5.3. FROM LEVEL-SHIFT OPERATOR TO RESOLVENT

terms in the expansion contain the denominator at least twice. If we require
them to contain the denominator only twice, then we can express the sum as

&e(z) = H int
e

+
∑

i ↘=e

1

z ↑ Ei

H int
ie

+
∑

i ↘=e

∑

j ↘=e

H int
ei

1

z ↑ Ei

H int
ij

1

z ↑ Ej

H int
je

+ . . . ,

(5.17)
but we can generalize it to contain the denominator x times. In fact, it is
su”cient to sum the contributions corresponding to di!erent values of x to
obtain

Ge(z) =
↑∑

x=1

[&e(z)]x→1

(z ↑ Ee)x
=

1

z ↑ Ee

↑∑

x=0

[
&e(z)

z ↑ Ee

]x
=

1

z ↑ Ee ↑ &e(z)
, (5.18)

which is an exact expression for Ge(z) = ⇒e|G(z)|e≃.

5.3.1 Projection of the resolvent

Equation (5.18) can also be derived using projection operators. Consider the
subspace spanned by some eigenvectors {|a≃ , |b≃ , . . . , |l≃} of the unperturbed
Hamiltonian H0. If they are orthonormal, the projector onto the subspace is

P = |a≃⇒a| + |b≃⇒b| + · · · + |l≃⇒l| . (5.19)

The projector onto the complementary subspace is then Q = 1 ↑ P . Since the
subspaces are orthogonal, then PQ = QP = 0, and since the states |a≃ , |b≃ , . . . , |l≃
are eigenstates of H0, then [P,H0] = [Q,H0] = 0. From these two relations, we
derive that

PH0Q = QH0P = 0. (5.20)

Let us now take the definition of resolvent and manipulate it by multiplying
on the right by P and on the left by P or Q:

G(z) =
1

z ↑ H
=∋ (z ↑ H)G(z) = 1

=∋






P (z ↑ H) (P +Q)︸ ︷︷ ︸
1

G(z)P = P 2
︸︷︷︸
P

Q(z ↑ H)
︷ ︸︸ ︷
(P +Q)G(z)P = QP︸︷︷︸

0

=∋

{
P (z ↑ H)[PG(z)P +QG(z)P ] = P

Q(z ↑ H)[PG(z)P +QG(z)P ] = 0

=∋






P (z ↑ H) PP︸︷︷︸
P

G(z)P + P (z ↑H0 ↑ Hint︸ ︷︷ ︸
→H

) QQ︸︷︷︸
Q

G(z)P = P

Q(z ↑H0 ↑ Hint︸ ︷︷ ︸
→H

) PP︸︷︷︸
P

G(z)P +Q(z ↑ H) QQ︸︷︷︸
Q

G(z)P = 0
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5. Resolvent formalism

=∋





P (z ↑ H)P [PG(z)P ] +!!!# 0

PQz ↑$$$$% 0
PH0Q ↑ PHintQ[QG(z)P ] = P

!!!# 0
QPz ↑$$$$% 0

QH0P ↑ QHintP [PG(z)P ] +Q(z ↑ H)Q[QG(z)P ] = 0

(5.21)

We can solve the system of equations above for PG(z)P by substitution of
QG(z)P to obtain

P

[
z ↑ H0 ↑ Hint ↑ Hint

Q

z ↑ QH0Q ↑ QHintQ
Hint

]
PG(z)P = P. (5.22)

For this expression, we define the level-shift operator &(z) as follows:

&(z) = Hint +Hint
Q

z ↑ QH0Q ↑ QHintQ
Hint, (5.23)

whose perturbative expansion in powers of Hint reads

&(z) = Hint +Hint
Q

z ↑ H0
Hint +Hint

Q

z ↑ H0
Hint

Q

z ↑ H0
Hint + . . . . (5.24)

Rewriting Eq. (5.22) in terms of the level-shift operator [Eq. (5.23)] yields

PG(z)P =
P

z ↑ PH0P ↑ P&(z)P
, (5.25)

which generalizes equation Eq. (5.18). The form of Eq. (5.25) suggests that
P&P can be considered as a “Hamiltonian” (ignoring the dependence on z) in
the subspace spanned by {|a≃ , |b≃ , . . . , |l≃} being added to PH0P and allowing
us to determine the shifts of the perturbed levels relative to unperturbed levels.
This is why &(z) is called the level-shift operator.

5.4 Residue theorem

Before we move on to applying the resolvent formalism to a physical scenario,
let us review one last concept from complex analysis: the residue theorem.

Consider a function f(z) that has a pole of order m at z = a. Then, by the
definition of a pole,

f(z) =
A→m

(z ↑ a)m
+

A→m+1

(z ↑ a)m→1
+ · · · +

A→1

(z ↑ a)
+ g(z), (5.26)

where g(z) is analytic near and at a, and the coe”cient A→1 is called the residue
Res(f, a) of the function f(z) relative to the pole a [174]. Formally,

Res(f, a) = A→1 = lim
z↗a


1

(m ↑ 1)!


d

dz

m→1

[(z ↑ a)mf(z)]


. (5.27)
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It follows from the above definition that, if a is a simple pole of f(z), the residue
of f(z) at that pole is limz↗a[(z ↑ a)f(z)].

The residue theorem states that if f(z) is analytic throughout a contour γ
and its interior except at a number of poles a1, . . . , an inside the contour, then

1

2ϖi

∫

↽

f(z)dz =
n∑

j=1

Res(f, aj) wind(γ, aj), (5.28)

where wind(γ, aj) is the winding number of γ around aj [174]. Note that
wind(γ, aj) = 0 if aj falls outside the contour.

5.5 Example: a giant atom in a 1D struc-
tured waveguide

Consider the simplest setup from Paper B, shown in Fig. 5.1: a single giant
atom with two connection points coupled to a 1D structured waveguide, and
suppose we want to find the time evolution of the atomic population. We can
start by writing the total Hamiltonian as the sum H = H0 +Hint, with

H0 = ’↽+↽→ +
∑

k

ε(k)a†
k
ak, (5.29)

Hint =
g

↗
N

∑

k

[(
eikn1 + eikn2

)
ak↽

+ +H.c.
]
, (5.30)

where ’ is the detuning of the atom with respect to the bath frequency, ↽±

denote the atomic ladder operators, a†
k
, ak are the creation and annihilation

operators of the cavity modes, ε(k) is given by the dispersion relation from
Eq. (2.3), g is the coupling strength at each connection point, N is the number
of coupled cavities conforming the bath, and np denotes the position of the p-th
coupling point.

n1
n2

... ...

N
JJJ

∆

Figure 5.1: A giant atom with two connection points coupled to a 1D structured
waveguide. Figure adapted from Paper B.
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5. Resolvent formalism

Note that we have applied the RWA directly on the Hamiltonian, which
requires that the atomic and bath resonant frequencies are much larger than the
coupling strength g, and, as explained in Sec. 3.2.1, will not yield an accurate
value of the Lamb shifts.

In the single-excitation subspace, the eigenstates of the unperturbed Hamil-
tonian H0 consist of an atomic excitation |e≃ := |e, 0≃, and a photonic excitation
in mode k ↔ [↑ϖ, . . . ,ϖ ↑

2ς
N
], |k≃ := |g, k≃. It is the interaction term Hint

that couples the subspace {|e≃} with {|k≃}. We can then define the projector
P = |e≃⇒e| and its complement Q =

∑
k
|k≃⇒k|, and use the techniques described

in the previous section, but in inverse order: we will first derive the matrix el-
ements of the level-shift operator and, from there, we will deduce the resolvent
and the time-evolution operator.

Let us start with the perturbative expansion of the level-shift operator in
powers of Hint shown in Eq. (5.24), truncated to second order:

&(z) = Hint +Hint
Q

z ↑ QH0Q ↑ QHintQ
Hint → Hint +Hint

Q

z ↑ H0
Hint. (5.31)

It is nontrivial to see why this truncation is justified, so let us elucidate. Assume
the eigenstate |e≃ of H0 is well isolated from all the other discrete eigenstates
of H0. Let us examine Eq. (5.17) near z = Ee, which is where Ge(z) [see
Eq. (5.18)] takes on the most important values. All the energy denominators
involved in the expansion of &e(z) are large because the other discrete energies
of H0 are assumed to be far from Ee. Nevertheless, even if Ee falls within the
continuous spectrum of H0, the sums over the intermediate states associated
with this continuous spectrum involve delta functions and principal parts which
do not lead to any divergence. Thus, if Hint is small compared to H0, the
perturbative series in Eq. (5.17) is rapidly convergent and it is completely valid
to approximate &e(z) by retaining only a finite number of terms.

It is important to remark that a perturbative approximation for &e(z) does
not correspond to a perturbative approximation for Ge(z), since Ge(z) obtained
by truncation of &e(z) still contains arbitrarily high powers of Hint. In other
words, the truncation in Eq. (5.31) is equivalent to making a partial resumma-
tion of the perturbation theory.

Now, we can go back to the level-shift operator in Eq. (5.31) and calculate
the matrix element &e(z) = ⇒e|&(z)|e≃, known as the self-energy of the atom:

&e(z) =$$$$$%0
⇒e|Hint|e≃ +

∑

k

⇒e|Hint
|k≃⇒k|

z ↑ H0
Hint |e≃ =

=
g2

N

∑

k

(eikn1 + eikn2)(e→ikn1 + e→ikn2)

z ↑ ε(k)
=

=
2g2

N

∑

k

1 + cos(k(n2 ↑ n1))

z ↑ ε(k)
. (5.32)

Henceforth, we use the dispersion relation ε(k) = ↑2J cos(k) introduced in
Eq. (2.3), and that the distance between coupling points is d = n2 ↑ n1. In
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the continuum limit, i.e., when N ↖ △, the sum over k becomes an integral:∑
k

2ς
N

↖
∫
k
dk. Therefore, we can write the self-energy as

&e(z) =
g2

ϖ

∫
ς

→ς

1 + cos(kd)

z + 2J cos(k)
dk =

=
g2

ϖ

∫
ς

→ς

dk

z + 2J cos(k)
+

g2

ϖ

∫
ς

→ς

eikd

z + 2J cos(k)
dk, (5.33)

where, in the second integral, we have substituted the cosine for an exponential
because odd functions do not contribute to the integral. Now, we can introduce
the change of variable z̃ = eik such that 2 cos(k) = z̃ + z̃→1 and dk = ↑iz̃→1dz̃,
and integrate over the unit circle:

&e(z) = ↑
ig2

ϖ

∮
dz̃

zz̃ + Jz̃2 + 1
↑

ig2

ϖ

∮
z̃ddz̃

zz̃ + Jz̃2 + 1
=

= ↑
ig2

ϖJ

∮
(1 + z̃d)dz̃

(z̃ ↑ f+)(z̃ ↑ f→)
, (5.34)

where the function (1+z̃d) is an entire function, i.e., it does not have singularities
in the complex plane, and the poles of the denominator are

f±(z) =
↑z ±

↗
z2 ↑ 4J2

2J
. (5.35)

Applying the residue theorem [Eq. (5.28)], we obtain that
∮

(1 + z̃d)

(z̃ ↑ f+)(z̃ ↑ f→)︸ ︷︷ ︸
F (z̃)

dz̃ = 2ϖi
∑

±
Res(F, f±) wind(S

1, f±) (5.36)

where the residues are

Res(F, f±) = lim
z̃↗f±

(z̃ ↑ f±)F (z̃) =
1 + fd

±
f± ↑ f≃

=

=
±J

↗
z2 ↑ 4J2



1 +


↑z ±
↗
z2 ↑ 4J2

2J

d


 , (5.37)

and the winding number is zero for the poles that fall outside of the unit circle
S1, i.e.,

wind(S1, f+) =

{
1 Re{z} > 0

0 Re{z} < 0
, wind(S1, f→) =

{
0 Re{z} > 0

1 Re{z} < 0.
(5.38)

Therefore, we can insert the results of the residue theorem into Eq. (5.34) to
obtain the final expression of the self-energy:

&e(z) = sgn(Re{z})
2g2

↗
z2 ↑ 4J2



1 +


↑z + sgn(Re{z})
↗
z2 ↑ 4J2

2J

d


 .

(5.39)
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According to Eq. (5.18), the resolvent matrix element corresponding to the
excited state of the atom is then

Ge(z) =
1

z ↑ ’ ↑ &e(z)
, (5.40)

with ’ being the atom-cavity detuning. Lastly, we can express the probability
amplitude of an initially excited GA, for t > 0, as follows from Eq. (5.14):

Ce(t) = ↑
1

2ϖi

∫

↽

Ge(z)e
→izt dz, (5.41)

where the contour γ is shown in Fig. 5.2.
The derivation presented here is used in Paper B for a single giant atom.

For two atoms, the procedure is similar, but a bit trickier, since the G(z) is not
diagonal in the basis {|eg≃ , |ge≃} (where one atom is excited and the other one
is in the ground state), thus making it harder to calculate the matrix elements.
An outline of the procedure to follow in such a case is presented in the appendix
of Paper B.

5.6 Contributions to the probability ampli-
tude

In Fig. 5.2, we illustrate the di!erent singularities of the resolvent that we intro-
duced in Sec. 5.2, applied to the example of a giant atom coupled to a structured
waveguide. Below, we show how the singularities relate to physical phenomena.

5.6.1 Real poles

Real poles are isolated poles of the resolvent [Eq. (5.40)] that fall on the real axis
outside the continuum of propagating modes, i.e., they satisfy z↑’↑&e(z) = 0
and |z| > 2J .

Atom-photon bound states outside the continuum

These poles correspond to the energies of states that are bound (not propagat-
ing), and exponentially localized in the vicinity of the atoms. In particular,
they are often called bound states outside the continuum (BOCs) [175–177], or
atom-photon bound states [49, 52, 105–107] since, in these dressed states, the
excitation lives partly in the atom and partly in the bath. Depending on the de-
tuning and the coupling strength of the atom, the bound states can have a more
atomic nature, localized and isolated from the continuum; or a more photonic
nature, delocalized and hybridized with the continuum. A common measure of
localization is the inverse participation ratio (IPR), defined as [178]

IPR =
∑

n

|⇁(n)|4, (5.42)
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Band Band gapBand gap

Im(z)

Re(z)

Branch cutBranch cut

Complex
poles

BIC Atom-
photon
bound
state

Atom-
photon
bound
state

Riemann
sheet 1

Riemann
sheet 1

Riemann
sheet 2

2J-2J

γ

(b)

Band Band gapBand gap

Im(z)

Re(z)

Branch cut

2J-2J

γ

(a)

Figure 5.2: (a) Contour γ of the integral in Eq. (5.41). A branch cut arises along
the real axis and across the continuous energy band, i.e., at Re(z) ↔ [↑2J, 2J ],
and therefore the residue theorem cannot be applied using this contour. Figure
adapted with permission from Ref. [179]. (b) Contour γ modified from (a) to
include the energy band but exclude the branch cuts and branch points. This
is achieved by defining the branch cuts along the band edges (|Re(z)/J | = 2),
and contouring around them into the second Riemann sheet. In this way, the
probability amplitude gets contributions from both the poles of the resolvent
[Eq. (5.40)] and the detours around the branch cuts. Figure adapted from Paper
B and inspired by Ref. [62].
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where ⇁(n) is the real-space wavefunction at cavity site n. The IPR can takes
values from 1/N for fully delocalized states, to 1 for perfectly localized, which
means that for 1D baths, the IPR is inversely proportional to the localization
length.

As mentioned in Sec. 2.2.2, multiple atoms coupled to the band gap of the
same reservoir can interact through the overlap of their bound-state photonic
wavefunctions [57–59], without losing their excitations to the environment. This
is similar to the DFI explained in Sec. 4.4.2, although the latter occurs inside
the continuum, and it requires more than an overlap of the photonic part of the
wavefunctions (see Sec. 5.6.3).

5.6.2 Branch cuts

Contrary to the real poles, a branch cut extends over the interval corresponding
to the continuous energy spectrum [see Fig. 5.2(a)]. It arises due to the square
root in the self-energy [Eq. (5.39)], which is in turn introduced by the dispersion
relation. The presence of this branch cut implies that Ge(z) is not analytic
within the contour γ, and we cannot therefore apply the residue theorem to
compute the probability amplitude Ce(t) in Eq. (5.41). We circumvent this
problem by taking the branch cuts at the band edges instead, and contouring
around them, thus including the energy band and excluding the branch cuts
and points [see Fig. 5.2(b)]. In this case, the detour around the branch cuts will
add a contribution to the probability amplitude Ce(t), as shown in Eq. (5.45).

5.6.3 Complex poles

While the branch cuts no longer fall inside the contour, the function G(z) is
still not analytical within the contour. We tackle this by analytically continuing
the function into the second Riemann sheet, i.e., the surface contained between
the branch cuts; which can be done by replacing

↗
. . . with ↑

↗
. . . in &e(z)

[Eq. (5.39)]. This gives rise to the appearance of complex poles within the energy
band (i.e., poles with |Re{z}| < 2J and Im{z} ⇓ 0), which are responsible for
the spontaneous emission of the atom into the bath when ’ ↔ [↑2J, 2J ].

Bound states in the continuum

As found in Paper B, certain configurations of GAs suppress the imaginary part
of these poles, thus suppressing the spontaneous emission into the bath. While
complex poles lead to unstable states that relax into the bath, these real poles
lead to the so-called bound states in the continuum2 (BICs) [180–183], where

2We did not actually use the term bound state in the continuum in Paper B, as we were
not aware of the concept at the time. It took further studies of giant atoms in structured
environments to realize, in retrospect, that what we had referred to as real poles and trapped
excitation where the cause and consequence of BICs. The terminology was introduced in
Paper C.
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excitations get trapped by the atom and by the cavities between the coupling
points. In structured environments, this is a feature unique to GAs caused
by destructive interference between their coupling points, and we refer to the
geometries that allow it as decoherence-free or perfectly subradiant.

We remark that, while it may be tempting to refer to the BICs as “dark
states” (or “perfectly subradiant states”), we have refrained from doing so in
this thesis and the appended papers. Certainly, a dark state is, by definition,
perfectly subradiant (see Sec. 4.4.2) and this is an established nomenclature in
the quantum-optics literature; but the terminology becomes more intricate in
the case of GAs. While dark states for small (and giant) atoms are specific
states that decouple from the bath for a certain arrangement of the coupling
points, decoherence-free geometries make all states dark. Now, one could argue
that the limited definition of a dark state is as such because, in quantum optics,
we have historically considered all atoms to be small, and that the definition
should also be extended to non-radiative giant atoms. But for the sake of
avoiding confusions, we refrain from using the term “dark” in this context, and
only allude to the fact that the atoms do not radiate to the bath by using the
term decoherence-free or perfectly subradiant GA / configuration / geometry
(not state).

Now, by chaining two (or more) braided GAs in these decoherence-free ge-
ometries we can engineer DFI, as described in Sec. 4.4.2. We noted before that
this interaction bears some resemblance to the interaction through overlapping
BOCs, however, the interaction mechanism in the continuum is not quite the
same. For DFI to take place, each of the GAs need to be perfectly subradiant
and have at least one of their coupling points in a cavity populated by a BIC
associated with the other atom—this is only achieved in the braided configu-
ration. What is more, in this case, we can understand DFI as the two-atom
analogue of oscillating BICs [184–189]. The latter have been shown to appear
in GAs with three or more coupling points to a the waveguide, where multiple
BIC solutions coexist and give rise to dynamic oscillations. Here, the multiplic-
ity of BICs does not come from the multiplicity of coupling points, but instead,
from the multiplicity of atoms.

5.6.4 Sum of contributions

With the modifications to the integration contour γ and the analytic continua-
tion of Ge(z) into the second Riemann sheet, we can use the residue theorem to
calculate the probability amplitude Ce(t) [Eq. (5.41)] as a sum of the di!erent
contributions [62]:

Ce(t) =
∑

⇀⇐branch
cuts

Ce(t)

∣∣∣∣
⇀

+
∑

ϱ⇐poles

Res(Ge, zϱ)e
→izωt, (5.43)

where Ce(t)
∣∣
⇀
has the form of Eq. (5.41) and Res(Ge, zϱ) is the residue of the

real and unstable poles that we obtain through the residue theorem and that
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gives the overlap of the initial wavefunction with the poles, i.e.,

Res(Ge, zϱ) =
1

1 ↑ ϑz&e(z)

∣∣∣∣
z=zω

. (5.44)

In particular, the contribution of the detour around the branch cuts to
Eq. (5.43) can be written as

Ce(t)

∣∣∣∣
UBC

= ↑
1

2ϖi

∫ 0

→↑
Ge(2J + iy)e→i(2J+iy)t dy

↑
1

2ϖi

∫ →↑

0
G2RS

e
(2J + iy)e→i(2J+iy)t dy,

Ce(t)

∣∣∣∣
LBC

= ↑
1

2ϖi

∫ 0

→↑
G2RS

e
(↑2J + iy)e→i(→2J+iy)t dy

↑
1

2ϖi

∫ →↑

0
Ge(↑2J + iy)e→i(→2J+iy)t dy, (5.45)

where UBC and LBC denote upper and lower branch cut, respectively, and the
superscript 2RS stands for second Riemann sheet.

Finally, we note that the poles and the branch-cut integrals can be solved nu-
merically, thus allowing us to simulate the exact dynamics of the atom through
Eq. (5.43).

5.7 Example: a giant atom coupled to a
2D structured lattice

Let us now reproduce the previous example for the simplest setup in Paper C,
shown in Fig. 5.3: a giant atom with four connection points coupled to a 2D
square lattice. We model the total Hamiltonian of the setup as the sum of the
bare and interaction Hamiltonians, H = H0 +Hint, with

H0 = ’↽+↽→ +
∑

εk

ε(ςk)a†
εk
aεk, (5.46)

Hint =
4∑

p=1

gp
N

∑

εk


e→iεk·εnpaεk↽

+ +H.c.

, (5.47)

where ’ is the detuning of the atom with respect to the bath frequency, ↽±

denote the atomic ladder operators, a†
εk
, aεk are the creation and annihilation

operators of the cavity modes, ε(ςk) is given by the dispersion relation from
Eq. (2.5), gp is the coupling strength at the p-th connection point, N ∞ N
is the number of coupled cavities forming the bath, and ςnp = (nx, ny)p with
nx, ny ↔ [0, N ↑ 1] denotes the position of the p-th coupling point. In the same
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Figure 5.3: A giant atom with four connection points coupled to a 2D square
lattice. Figure adapted from Paper C.

way as we did in the 1D example, we have applied the RWA directly on the
Hamiltonian, which requires that the atomic and bath resonant frequencies are
much larger than the coupling strength, and, as explained in Sec. 3.2.1, will not
yield an accurate value of the Lamb shifts.

In the single-excitation subspace, the eigenstates of the bare Hamiltonian H0

are |e≃ := |e, 0≃ and |ςk≃ := |g,ςk≃, for ςk = (kx, ky) and kx, ky ↔ {↑ϖ, . . . ,ϖ↑
2ς
N

}.
The interaction term Hint couples these atomic and photonic subspaces {|e≃}

and { |ςk≃} to one another. This means that we can define P = |e≃⇒e| and its

complement Q =
∑

εk
|ςk≃⇒ςk|, and write [similarly to Eq. (5.32)] the self-energy

of the atom &e(z) = ⇒e|&(z)|e≃ as follows:

&e(z) =$$$$$%0
⇒e|Hint|e≃ +

∑

εk

⇒e|Hint
|ςk≃⇒ςk|

z ↑ H0
Hint |e≃

=
1

N2

∑

εk

∑4
p
gpe→iεk· εnp

∑4
q
g↓
q
ei

εk· εnq



z ↑ ε(ςk)
. (5.48)

Henceforth, we use the dispersion relation ε(ςk) = ↑2J [cos(kx) + cos(ky)] intro-
duced in Eq. (2.5), and that the distance vector between two di!erent coupling
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points is ’ςn. For simplicity, let us also assume that gp = gq = g ↔ R. Then,

&e(z) =
g2

N2

∑

εk

4 + 2
∑

!εn
cos


ςk · ’ςn



z + 2J [cos(kx) + cos(ky)]
. (5.49)

In the continuum limit, i.e., when N ↖ △, the sum over ςk becomes a double

integral:
∑

εk

(
2ς
N

)2
↖

∫∫
εk
d2ςk . Therefore, we can write the self-energy as

&e(z) ↖
g2

(2ϖ)2

∫∫
ς

→ς

d2ςk
4 + 2

∑
!εn

cos

ςk · ’ςn



z + 2J [cos(kx) + cos(ky)]
(5.50)

=4
g2

(2ϖ)2

∫∫
ς

→ς

d2ςk
1

z + 2J [cos(kx) + cos(ky)]︸ ︷︷ ︸
”SA(z)

+2
∑

!εn

g2

(2ϖ)2

∫∫
ς

→ς

d2ςk
cos


ςk · ’ςn



z + 2J [cos(kx) + cos(ky)]︸ ︷︷ ︸
”!εn(z)

, (5.51)

where the self-energy of a small atom &SA(z) is calculated from the particular
case of a GA [Eq. (5.50)] with only one coupling point (and therefore ’ςn = 0);
and &!εn(z) denotes the contribution to the self-energy from the interference
between coupling points that are spaced by ’ςn.

For example, let us consider that our GA is centered at some arbitrary point
in the lattice that we take as the origin

[
0
0

]
, and that its four coupling points draw

a diamond around it, i.e., they are placed at coordinates
[
0
1

]
,
[

0
→1

]
,
[
1
0

]
,
[
→1
0

]
—as is

the case in Fig. 5.3. Because there are four pairs of points spaced by ’ςn =
[
1
1

]

and two pairs spaced by ’ςn =
[
2
0

]
(disregarding rotations), the self-energy of

the atom in such a case, according to Eq. (5.51), is

&↭(z) = 4&SA(z) + 2

[
4&[

1
1

](z) + 2&[
2
0

](z)

]
. (5.52)

As shown in Ref. [190], it is convenient to rewrite &SA and &!εn in a dif-
ferent basis, such that instead of integrating in the kx,y horizontal and vertical
directions, we integrate in the q± diagonal directions. For that, we apply the
following change of variables:

q± =
1

2
(kx ± ky), (5.53)

’n± = ’nx ± ’ny. (5.54)

Note that this implies d2ςq = 1
2d

2ςk and that the integration area in the kx,y
direction is twice the area of that in the q± direction. Using the trigonometric
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expressions cos(↼ ± 0) = cos(↼) cos(0)▽sin(↼) sin(0) and cos(2↼) = 2 cos2(↼)↑
1 = 1 ↑ 2 sin2(↼), we can show that

&SA(z) =
g2

(2ϖ)2

∫∫
ς

→ς

d2ςk
1

z + 2J [cos(kx) + cos(ky)]

=
g2

(2ϖ)2

∫∫
ς

→ς

d2ςq
1

z + 4J cos(q+) cos(q→)
, (5.55)

&!εn(z) =
g2

(2ϖ)2

∫∫
ς

→ς

d2ςk
cos


ςk’ςn



z + 2J [cos(kx) + cos(ky)]

=
g2

(2ϖ)2

∫∫
ς

→ς

d2ςq
cos(q+’n+) cos(q→’n→)

z + 4J cos(q+) cos(q→)
. (5.56)

In this basis, the expressions above can be integrated by parts and rewritten in
a compact way in terms of elliptic integrals [190]. For instance, from Ref. [62]:

&SA(z) =
2g2

ϖz
K[m(z)], (5.57)

&[
1
1

](z) =
2g2

ϖz

[
2

m(z)
↑ 1

]
K[m(z)] ↑

2

m(z)
E[m(z)]


, (5.58)

&[
1
0

](z) =
g2

4J
↑

g2

2ϖJ
K[m(z)], (5.59)

where

m(z) =


4J

z

2

, (5.60)

and K and E are the complete elliptical integrals of the first and second kind,
respectively:

K(m) =

∫
ς/2

0

dφ
1 ↑ m sin2(φ)

, (5.61)

E(m) =

∫
ς/2

0
dφ


1 ↑ m sin2(φ). (5.62)

Finally, using the recursive formulas in Ref. [190], we can obtain the self-energy
at any arbitrary site. For example, using

&[
m + 1

0

](z) = ↑
1

2J


2z &[

m
0

](z) + 2J &[
m → 1

0

](z) + 4J &[
m
1

](z)

, (5.63)

together with Eqs. (5.57)–(5.58), we can show that

&[
2
0

](z) = ↑
z

J
&[

1
0

](z) ↑ &[
0
0

](z)

︸ ︷︷ ︸
”SA(z)

↑2&[
1
1

](z)

=
2g2

ϖz


K[m(z)] +

4

m(z)


E[m(z)] ↑

ϖ

2


. (5.64)
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Going back to the diamond configuration [Eq. (5.52)], we have now derived
an expression for the self-energy that is integrable in the first Riemann sheet,
i.e., for |z| > 4J . Then, according to Eq. (5.18), the resolvent-operator element
corresponding to the excited state of the atom is

Ge(z) =
1

z ↑ ’ ↑ &e(z)
, (5.65)

with ’ the atom-cavity detuning. Lastly, we can express the probability ampli-
tude of an initially excited GA, for t > 0, as follows:

Ce(t) = ↑
1

2ϖi

∫ ↑

→↑
Ge(E + i0+)e→iEt dE, (5.66)

i.e., as the Fourier transform of the retarded Green’s function Ge.

5.7.1 Contributions to the probability amplitude

Similarly to the example in the 1D coupled-cavity array, the contour in Eq. (5.66)
can be extended to the closed lower-half plane and modified to exclude branch
points, as shown in Fig. 5.4. In the same way as in 1D, the energy dispersion of
the 2D square lattice introduces branch cuts that we can place at the band edges,
making the contour detour around them. However, an additional branch point

Band Band gapBand gap

4J-4J

Riemann
sheet 1

Riemann
sheet 1

Riemann
sheet 2

Riemann
sheet 3

Im(z)

Re(z)

Branch cut Branch cutBranch
cut

Complex
poles

Atom-
photon
bound
state

BIC Atom-
photon
bound
state

Figure 5.4: Contour of the integral in Eq. (5.66), with contributions from the
poles of the Green’s function [Eq. (5.65)], as well as the branch cuts at the band
edges and at the middle of the band.
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that is not present in the 1D case arises in the middle of the band due to the
additional van Hove singularity described in Sec. 2.2.2. In this way, the branch
cuts divide the surface enclosed by the contour into three Riemann sheets: the
first Riemann sheet corresponds to the energy values outside the band (|z| > 4J)
and contains real poles of the Green’s function [Eq. (5.65)], which are associated
to the atom-photon bound states; while the second (↑4J < z < 0) and third
(0 < z < 4J) Riemann sheets extend over the band and contain the complex
poles of the Green’s function, which are responsible for the spontaneous emis-
sion into the bath. As mentioned in the 1D example, the poles in the second and
third Riemann sheets that are real—which only occurs for GAs—are responsible
for the existence of the BICs.

Note that the singularities that give rise to the branch cuts not only a!ect
the contour of the probability-amplitude integral, but also limit the domain of
definition of the self-energy. In fact, the analytical continuation of the expres-
sions in Eqs. (5.57)–(5.59) and Eq. (5.64) into the second [II] and third [III]
Riemann sheets can be obtained by transforming the elliptic integrals in the
following way [62]:

KII[III](m) = K(m) ± 2iK(1 ↑ m), (5.67)

EII[III](m) = E(m) ± 2i[K(1 ↑ m) ↑ E(1 ↑ m)]. (5.68)

Finally, we have all the ingredients to calculate the probability amplitude
Ce(t) as a sum of the di!erent contributions.

Comparing the 1D and 2D cases, we note the increasing analytical com-
plexity of the formalism with the dimensionality of the bath. Similarly, the
complexity increases when going beyond the single-excitation regime and the
two-level approximation. This is the reason why, in Paper D, where we con-
sider three-level GAs coupled to a 1D structured waveguide in the two-photon
subspace, we resort to numerical simulations over analytical methods.

5.8 Non-Markovian e!ects

Unlike in Chapter 3 and Chapter 4 for continuous waveguides, here we have not
made the Markovian approximation at any point in our derivation, thus allowing
us to discern non-Markovian behaviors when computing the time evolution of
the atoms.

5.8.1 Unstable poles and branch cuts

In the previous section, we mentioned that the unstable poles of the resolvent
are responsible for the spontaneous emission of the atoms into the bath when
the atoms are tuned to the band.

Within the Markovian approximation, we assume that the coupling g is
su”ciently weak such that &e(E+ i0+) → &e(’) [62]. Then, Ce(t) can be easily
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Figure 5.5: Atomic decay rate as a function of detuning for (a) a GA with
two coupling points, of coupling strength g/J = 0.2 each, and spaced by d = 2
cavities; and (b) a GA with four coupling points, of coupling strength g/J = 0.4
each, and spaced by d = 2 cavities. The black solid line corresponds to the
Markov prediction from Eq. (5.69), while the orange markers are the poles of
the Green’s function [Eq. (5.40)]. Within the band (’/J ↔ [↑2, 2]), we find
as many decoherence-free points as the number of coupling points minus one.
Figures adapted from Paper B.

solved by applying the residue theorem around the pole z = ’+&e(’) to yield
Ce(t) → exp{↑i[’+ &e(’)]t}. It then follows that we can split &e(’) into
its real and imaginary parts, and identify the frequency-dependent Lamb shift
φe(’) = Re{&e(’)} and the decay rate %e(’) = ↑2 Im{&e(’)} as follows [191]:

&e(’) = φe(’) ↑ i
%e(’)

2
. (5.69)

Moreover, using the same approximation for Ck(t) shows that the modes dom-
inating the emission will be those satisfying ε(k) → ’ [62].

Now, solving the exact pole equation of the resolvent as we outlined in
Sec. 5.5 for 1D [Eq. (5.40)] and Sec. 5.7 for 2D [Eq. (5.65)] allows us to go
beyond the Markov approximation and obtain a more accurate profile of the
decay rate %e(’). In fact, we can depict such a profile by plotting both
%e(’) = ↑2 Im{&e(’)} (Markov) and %e(’) = ↑2 Im{z} with z being the
poles (beyond Markov), and clearly illustrate where the Markovian approxima-
tion breaks down. This is what we did in Paper B, and we showed that, as
expected, the middle of the band falls in the Markovian regime, whereas the
approximation breaks down close to the band edges (see Fig. 5.5).

Around the band edges, the branch-cut contributions to the probability am-
plitude are also more prominent than at the band center [62, 192]. However,
they never take prevalence over the contributions from the poles, and they are
only relevant at the initial time of decay (small t), quickly decaying due to the
exponential in Eq. (5.45). Therefore, although we include these contributions
in both analytical and numerical results of Papers B and C, the branch cuts are
not responsible for any of the main phenomena studied in those manuscripts.
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5.8.2 Time delay

Another consequence of solving the atomic dynamics exactly is that we observe
time-delay e!ects, which arise from the time it takes an excitation to travel
between two points through the bath. These become relevant in processes gov-
erned by interference e!ects, such as subradiance and DFI (see Sec. 4.4).

For instance, in Papers B and C, we show that perfect subradiance is dete-
riorated by relaxation to the bath during the time it takes for the interference
to build up, i.e., the time it takes for the excitation to travel between coupling
points. The deterioration grows exponentially with increasing distance between
coupling points. Similarly, DFI between two braided giant atoms is also wors-
ened by the delay of the interference, in addition to an exponential deterioration
over time caused by the small imaginary part of the unstable poles that sustain
the interaction (i.e., the BICs that give rise to DFI become quasi-BICs).

Interestingly, one could think about a giant atom with non-negligible time
delay between its coupling points as a new regime in atomic size. We could
then distinguish between a small atom with r ↓ ω, a Markovian giant atom
with r ̸ ω, and a non-Markovian giant atom with r ∝ ω. In fact, in the first-
ever conference on giant emitters held in Zurich in 2023, the question was posed:
how should we call the latter regime? A gigantic atom? A supergiant atom? Or
maybe giant should be demoted to large instead3? Since it is probably a decade
too late to rename a giant atom, the Markovian / non-Markovian denomination
seems here to stay.

5.8.3 Fractional and other anomalous decay

As mentioned in Sec. 2.2.2, atom-photon bound states (real poles of the resol-
vent) cause fractional decay at the band edges [53–56]. This occurs because the
spontaneous emission of the atom is counteracted by the hybridization with the
bound state, prompting an initial exponential decay with a few beatings that
stabilizes to a nonzero value of the population (|Ce(t ↖ △)|2 ⇑= 0).

Similarly, other anomalous decay takes place due to the existence of other
poles. As we described in Sec. 5.8.1, in the Markovian regime, the atomic pop-
ulation of each atom is dominated by a single pole. However, with increasing
distance between coupling points and increasing detuning from the middle of
the band, more poles appear and, as their contributions become relevant, the
population exhibits beatings and other anomalous behavior. This can be un-
derstood through Eq. (5.43), where the atomic probability amplitudes become
a sum of exponential functions with di!erent frequencies and weights. In fact,
this is the very reason why DFI is destroyed close to the band edges, as we
showed in Paper B.

3Actually, in Swedish (the native language of the majority of authors in the original giant-
atom papers [14, 19]), a giant atom is called stor atom, which literally translates to “large
atom”. While less flashy, the name fits perfectly within the modest Swedish culture. Although
if you ask me, an even better alternative would have been lagom atom, which roughly translates
to “an atom that is not too little and not too large—it is just the right size”.
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6 Paper overview

In this chapter, we give an overview of the five papers (three of them appended)
upon which this thesis is based.

6.1 Paper A – Chiral quantum optics with
giant atoms

In Paper A, we studied the interaction between atoms chirally coupled to a
continuous open waveguide (see Sec. 4.1 for more on chiral interfaces). We
began by considering simple setups: two small atoms and two giant atoms with
two coupling points each, in all the possible configurations of coupling points
(separate, nested, and braided—see Fig. 2.2). For simplicity, we first assumed
all points had the same coupling strength γ, but that it was di!erent in each
propagation direction, i.e., γR ⇑= γL.

By using the SLH formalism, we derived a master equation to model the
atomic dynamics in the same way as we exemplified in Sec. 4.3.

We showed that braided giant atoms can interact without decohering re-
gardless of the chirality of their coupling to the waveguide, and we derived
the phase-shift conditions for that to occur, as explained in Sec. 4.4.2. With
this, we demonstrated that the most robust way we know of protecting against
decoherence was also robust against variations in directionality.

In the spirit of searching for ways to protect the atoms against decoherence,
we also investigated dark states. We derived conditions for the existence of such
states in undriven atomic ensembles, as outlined in Sec. 4.4.2. We showed that,
unlike small atoms, nested giant atoms allow for perfect subradiance regardless
of the chirality of their coupling.

We also went further and looked at the e!ects of coherently driving the
system, since it is known [149, 151] that this is a way to get around the absence
of dark states for small atoms in chiral settings. We showed that, when a
drive is considered, two giant atoms evolve to a dynamic equilibrium between
drive and dissipation, where the scattered photons from the first atom interfere
destructively with those from the second atom. This is the same behavior as
for two small atoms, except that we showed giant atoms can populate these
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driven-dissipative dark states faster—a feature that prompted us to design the
experiment in Paper E.

Finally, we generalized all results to an arbitrary number of atoms with an
arbitrary number of coupling points, and presented interesting configurations
that could be used to harness DFI and dark states.

6.2 Paper B – Interaction between giant
atoms in a one-dimensional structured
environment

In Paper B, we studied two-level giant atoms coupled to a 1D structured wave-
guide, modeled as an array of evenly spaced coupled cavities with nearest-
neighbor interaction, and with the dispersion relation introduced in Sec. 2.2.2
[Eq. (2.3)].

First, we considered a single giant atom, and from the system-bath Hamil-
tonian, we characterized the energy spectrum of the total system and the wave-
function of the atom-photon bound states. Then, we looked into the dynamics
of the atom, both through numerical simulations and through complex-analysis
techniques, as detailed in Sec. 5.5. In particular, we showed how the interference
between coupling points of the atom a!ects its relaxation, and how, as depicted
in Fig. 5.5, the poles of the resolvent provide a much more accurate description
of the decay rate than the Markovian prediction does close to the band edges.
We related those results to the time evolution of the atomic population, when
the atom is tuned to di!erent regions of the band structure.

With a single atom fully characterized, we modeled the interaction between
two giant atoms and analyzed the di!erences between tuning the atoms to the
continuum and to the band gap. Within the band, we showed that DFI is best in
the continuous-waveguide case, i.e., in the middle of the band, but also possible
for other detunings. We also demonstrated, through di!erent metrics, how
DFI deteriorates exponentially with increasing distance between the coupling
points. By mapping the DFI mechanism to the singularities of the resolvent
introduced in Sec. 5.2, we dissected the dynamics into di!erent contributions
and showed the significance of time delay and other non-Markovian e!ects.
Lastly, we identified DFI as the multiple-giant-atom analogue of subradiance.

In the band gap, we showed that GAs can interact through the overlap of
bound states in the same way small atoms do. That raised the question: what
kind of interaction is best—giant atoms inside the band (DFI), giant atoms
outside the band (bound-state overlap), or small atoms outside the band (bound-
state overlap)? We concluded that the answer depends on three parameters: the
coupling strength, the distance between coupling points, and the detuning of the
atoms from the cavities. In particular, giant atoms can provide an advantage
over small atoms in some regions of the parameter space, for instance, when
restricting the maximum coupling strength achievable per coupling point. We
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also found that there is a trade-o! between good population exchanges and high
interaction rates. All in all, while for some parameters giant atoms can interact
more strongly and over longer distances than small atoms, the preference of a
giant-atom design over a small-atom design should depend on the experimental
constraints and the intended application.

6.3 Paper C – Avoiding decoherence with
giant atoms in a two-dimensional struc-
tured environment

In Paper C, we conducted a detailed theoretical study of GAs in a 2D structured
environment. We focused on the case when this environment is a square lattice
of cavities which, as explained in Sec. 2.2.2, leads to band gaps and an energy
band that comes with an anisotropic energy dispersion at its center. In this
setting, we showed how GAs can avoid relaxing into the environment.

For a single GA with a transition frequency in the center of the band, we
found that it can display perfect subradiance, i.e., completely suppressed emis-
sion of energy into the environment, if the atom couples to the bath through at
least four cavities. This suppression is because the propagation of excitations in
the environment is restricted to be diagonal at the band center: with four cou-
pling points it becomes possible to cancel emission along these four propagation
directions through destructive interference between the emissions from pairs of
coupling points. We also showed how such perfect subradiance can be achieved
with more coupling points.

For multiple GAs, we showed that DFI, previously only demonstrated in 1D
environments, can also be realized in 2D. More specifically, we showed that this
DFI can take place if the individual atoms have their coupling points arranged
to be subradiant and each atom has some (but not all) of its coupling points
enclosed by coupling points from the other atom. This setup constitutes a
generalization of the braided configuration required for GAs in 1D. We further
showed how this DFI for GAs in 2D can be extended to more atoms, forming
e!ective high-connectivity (even all-to-all coupling) lattices of atoms connected
through DFI.

As explained in Sec. 5.6.3, the results we found for both single and multiple
GAs can be understood as manifestations of bound states in the continuum
(BICs). For a single GA in a subradiant configuration, an initial excitation in
the atom mostly remains there. A small amount of energy leaks into the envi-
ronment outside the atom before the destructive interference between emissions
from the di!erent coupling points kicks in, but about half that energy remains
in the photonic part of a BIC formed in-between the coupling points of the
atom. For multiple GAs, DFI between pairs of them is only possible when some
coupling point(s) of each atom in the pair are placed in locations that contain
a part of the BIC associated with the other atom.
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We note that these results were enabled by nontrivial extensions of the re-
solvent formalism (see Sec. 5.7) and numerical methods previously employed to
study small atoms in 2D structured environments [62]. Through these exten-
sions, we were able to obtain analytical expressions for the steady-state popu-
lations of GAs and their BICs, and perform numerical simulations of how the
atomic and photonic populations evolve in time for both single and multiple
GAs. For DFI between a pair of GAs, we observed that both the atomic popu-
lations and the photonic parts of the BIC populations undergo Rabi oscillations
when one of the atoms is initialized in its excited state and the rest of the system
is initialized in its ground state.

6.4 Paper D – Two-photon quantum gates
with giant atoms in structured waveg-
uides

In Paper D, we extended the setup from Paper B (GAs coupled to a 1D struc-
tured waveguide) to the two-photon subspace with three-level GAs. Taking a
more applied approach than in Paper B, we looked at how to engineer DFI
to perform two-qubit entangling gates such as the iSWAP and the CZ (see
Sec. 4.5). Compared to previous works on continuous waveguides [20, 172],
the structured-waveguide platform allowed us to study how non-Markovianities
degrade the gates, and how to avoid these undesired e!ects.

Because this work builds on the existing knowledge from Papers B and C,
where the interference and interaction mechanisms were well studied, we deemed
it was not necessary to use the resolvent formalism from Chapter 5. Instead,
we used exact numerical simulations involving the spectral decomposition of
the Hamiltonian to compute the system’s dynamics. This method is not free of
hurdles, since it becomes computationally more expensive with the increasing
dimension of the Hilbert space which, in turn, increases with the number of
photons, atoms, and cavities.

Compared to the CZ gate in continuous waveguides, we found that we can
create a CZ gate with one less coupling point, by engineering the decoherence-
free frequencies not involved in DFI to fall in the band gap. However, this makes
the DFI frequency fall close to the band edges, where non-Markovian e!ects
are most prominent (see Fig. 5.5), which leads to a very poor interaction. To
circumvent these e!ects, an additional coupling point is needed, which makes
all decoherence-free frequencies fall in the continuum, and away from the band
edges. By increasing the coupling strength of the middle point, the decoherence-
free frequencies may be tuned even further away from the band edges.
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6.5 Paper E – Driven-dissipative entangle-
ment with separate giant atoms

Paper E is the experimental demonstration of one of the results from Paper A:
that GAs can populate driven-dissipative dark states faster than small atoms. In
the experiment, the atoms are realized by transmon qubits capacitively coupled
to a meandering transmission line, as shown in Fig. 2.5(b). While in Paper A we
considered the atom-waveguide coupling to be generally chiral, in Paper E, we
took it to be bidirectional (γR = γL for all coupling points), which is significantly
easier to fabricate.

The setup is formed by two separate giant atoms with two coupling points
each, with phase shifts φ1 = φ3 = 4ϖ between the coupling points of the same
atom, and a phase φ2 = ϖ between the atoms. In this configuration, there exists
a driven-dissipative dark state |DT ≃ [Eq. (4.23)] that approaches the maximally
entangled triplet state |T ≃ [Eq. (4.22)] for strong drives. In fact, we choose the
design parameters to maximize the entanglement between the qubits, which is
done by calculating both the fidelity to the triplet state and the concurrence,
as described in Sec. 3.1.1. Note that, because the drive required to maximize
entanglement is quite strong, the two-level approximation breaks down, and the
third level needs to be considered [Eq. (2.8)].

Once the dark state has been populated, we measure the entanglement by
detuning the atoms to their decoherence-free frequencies (which corresponds
to φ1 = φ3 = 3ϖ) and performing quantum state tomography through the
readout resonators coupled to the giant atoms [see Fig. 2.5(b)]. This is a major
advantage of the giant-atom setup with respect to similar experiments done with
small atoms [193], where the qubits do not have a decoherence-free frequency,
and thus readout needs to be done at the end of the waveguide, through field
emission tomography.

Such methods for easily and quickly generating entanglement between dis-
tant qubits are much sought after for quantum communication and distributed
quantum computing, since these applications can use the entanglement to trans-
fer quantum information or perform operations involving several modules of a
quantum computer.
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7 Conclusion and outlook

That’s all folks!

Porky Pig

In this thesis, we have explored giant atoms as potential resources for pre-
venting decoherence in quantum-technology applications. A key insight of this
work has been establishing the relation between the concepts of subradiance,
dark states, decoherence-free interaction, and bound states in and out of the
continuum.

We did so by considering the coupling of giant atoms to environments that
had not been explored in depth before (continuous waveguides with chiral cou-
pling and structured baths), starting from a more idealistic and fundamental
perspective on light-matter interactions and advancing towards more realistic
setups and applications. For instance, in the first articles, we mostly worked in
the single-photon subspace (Papers B and C) and considered the giant atoms
to be two-level systems (Papers A, B, and C); while in later projects (Papers D
and E), we went beyond those approximations into the two- and many-photon
subspace, and considered the third level of the atoms. Moreover, throughout
the di!erent works, we transitioned from a more analytical approach (Papers
A, B, C), to relying on numerical simulations (Papers C and D), to bringing the
ideas to experiment (Paper E). In the latter, we went beyond the assumption
that atoms couple exclusively to the environment we study, and added other
sources of decoherence to our model, such as the e!ects of qubit dephasing and
non-radiative decay.

This evolution, which unfolded very organically, could be further devel-
oped in the future by modeling, for example, the e!ect of losses in the wave-
guide, longer-range interactions between atoms (cross-talk) and cavities (beyond
nearest-neighbor [105]), or richer band structures of the photonic baths [89, 103,
106, 194]. Another interesting avenue to explore could be to use giant atoms
for the quantum simulation of more complex open quantum systems [195]. This
pathway is attractive not only because giant atoms o!er more possibilities for
design, control, and tunability than small atoms do, but also because their
interference e!ects can find parallels in a myriad of systems.

We highlight that, because this thesis—and more generally, all giant-atom
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research—sits at the intersection of quantum optics, photonics, quantum electro-
dynamics (QED) and quantum computing, some parameters and physical phe-
nomena receive di!erent names in di!erent fields (as evidenced by the countless
footnotes in the dissertation), which hinders establishing links to related con-
cepts. For this reason, further e!orts to contextualize the physics presented
here are necessary. For instance, bound states in the continuum are ubiquitous
in di!erent physical systems, and classified into several categories according to
their nature [196, 197], but they are an emerging concept in the context of wave-
guide QED. Thus, to not reinvent the wheel, a relation should be drawn to the
established nomenclature.
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A. Vepsäläinen, M. E. Schwartz, J. L. Yoder, R. Winik, J. I. Wang, T. P.
Orlando, S. Gustavsson, J. A. Grover, and W. D. Oliver, “On-demand
directional microwave photon emission using waveguide quantum electro-
dynamics”, Nature Physics 19, 394-400 (2023).

[83] A. Almanakly, B. Yankelevich, M. Hays, B. Kannan, R. Assouly,
A. Greene, M. Gingras, B. M. Niedzielski, H. Stickler, M. E. Schwartz,
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[142] D. Suárez-Forero, M. Jalali Mehrabad, C. Vega, A. González-Tudela, and
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