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Abstract

This thesis investigates the use of Physics-Informed Neural Networks (PINNs)
for solving forward problems in fluid dynamics through two classical cases:
linear waves and lid-driven cavity problem. The linear wave case, based on
potential flow theory, involves periodic waves over a flat bed and serves to
examine how PINNs handle periodic boundary conditions and smooth solutions.
The lid-driven cavity problem, a benchmark for viscous incompressible flow,
introduces sharp gradients and corner singularities, challenging the network’s
ability to handle discontinuous boundary conditions. Together, these cases
evaluate PINNs across both smooth and complex flow regimes.

For the linear wave problem, both hard and soft strategies were used to
enforce periodic boundary conditions (PBCs). The vanilla PINN predicted the
velocity field with 2.31% error. A periodic input achieved a 0.16% velocity
error, while soft constraints performed slightly better (0.10%) but did not
fully enforce periodicity. Hard enforcement of the kinematic bottom boundary
condition (KBBC) using trial functions satisfied the constraint at machine
precision, though at the cost of increased velocity error (2.36%). The network
also predicted the angular frequency ω with 0.03% error and maintained velocity
errors below 0.2% without labeled data.

In the cavity flow case, a baseline PINN with soft boundary enforcement
performed well across most of the domain but struggled near the top corners
due to singularities. To improve accuracy, two strategies were tested: trial
functions for hard boundary conditions and spatially varying loss weights. Hard
Constraints 1, which left the top boundary soft, led to a marginal improvement,
reducing MAE(v) by about 8%, while Hard Constraints 2, which enforced the
top boundary with a trial function, worsened the results. Weighting strategies
were more effective: applying ωmw reduced MAE(u) by 63% and MAE(v) by
68%, and using both ωF and ωmw yielded the best accuracy, with reductions
of 81% in MAE(u) and 78% in MAE(v). These findings highlight the challenge
of handling singularities.

Overall, the study provides practical insights and quantitative benchmarks
to guide the design and training of PINNs for fluid dynamics problems.

Keywords

Physics-informed neural network, PINN, linear waves, lid-driven cavity, periodic
boundary condition, soft constraints, hard constraints

i





List of appended papers

In each of the four attached papers, the author contributed substantially,
providing the main ideas and refining them in collaboration with the co-
authors. Each manuscript was written by the author, with final reviews and
editing completed in collaboration with the co-authors.

[Paper I] M. Sheikholeslami, S. Salehi, W. Mao, A. Eslamdoost, and
H. Nilsson. Physics-Informed Neural Networks for Modeling
Linear Waves. In proceedings of the 43rd International Con-
ference on Ocean, Offshore and Arctic Engineering, Singapore,
2024. DOI: https://doi.org/10.1115/OMAE2024-125048

[Paper II] M. Sheikholeslami, S. Salehi, W. Mao, A. Eslamdoost,
and H. Nilsson. Physics-informed neural networks with hard
and soft boundary conditions for linear free surface waves.
Manuscript submitted for Journal Publication.

[Paper III] M. Sheikholeslami, S. Salehi, W. Mao, A. Eslamdoost, and
H. Nilsson. Comparative Evaluation of Periodic Boundary
Condition Approaches in PINNs. Accepted in the 1st Interna-
tional Symposium AI and Fluid Mechanics, Greece, 2025.

[Paper IV] M. Sheikholeslami, S. Salehi, W. Mao, A. Eslamdoost,
and H. Nilsson. Addressing Corner Singularities in Physics-
Informed Neural Network Solutions of the Lid-Driven Cavity
Problem. Manuscript to be submitted for Journal Publication.

iii

https://doi.org/10.1115/OMAE2024-125048


iv

CRediT Authorship Contribution Statement

Mohammad Sheikholeslami (All papers): Conceptualisation, Validation,
Methodology, Investigation, Visualisation, Writing–Original draft.

Saeed Salehi (All papers): Conceptualisation, Validation, Methodology,
Visualisation, Funding acquisition, Supervision, Project administration, Writing-
review and editing.

Wengang Mao (All papers): Conceptualisation, Validation, Methodo-
logy, Visualisation, Funding acquisition, Supervision, Project administration,
Writing-review and editing.

Arash Eslamdoost (All papers): Conceptualisation, Validation, Methodo-
logy, Visualisation, Funding acquisition, Supervision, Project administration,
Writing-review and editing.

H̊akan Nilsson (All papers): Conceptualisation, Validation, Methodo-
logy, Visualisation, Funding acquisition, Supervision, Project administration,
Writing-review and editing.



Acknowledgment

This project was carried out within the Divisions of Marine Technology and
Fluid Dynamics at the Department of Mechanics and Maritime Sciences,
Chalmers University of Technology. It was financially supported by the depart-
ment and conducted as part of the Swedish Centre for Sustainable Hydropower
(SVC). SVC is a national research program initiated by the Swedish Energy
Agency, Energiforsk, and Svenska kraftnät, in collaboration with Lule̊a Uni-
versity of Technology, Uppsala University, KTH Royal Institute of Technology,
Chalmers University of Technology, Karlstad University, Ume̊a University, and
Lund University.

First and foremost, I would like to express my sincere gratitude to my
main supervisor, Prof. Wengang Mao, for his constant support and guidance
throughout this work. His encouragement and advice have been invaluable
at every stage of this journey. I am also deeply thankful to Prof. H̊akan
Nilsson, my co-supervisor and examiner, for his generous investment of time,
insightful ideas, and constructive feedback, which helped improve both the
content and structure of my work. My appreciation extends to Dr. Saeed
Salehi, whose deep understanding of technical details and prompt feedback
significantly accelerated my progress and contributed to the efficiency of this
thesis. Finally, I would like to thank Prof. Arash Eslamdoost for his consistent
support and thoughtful comments, which meaningfully shaped the development
of this thesis. I’m grateful to Prof. Jonas Ringsberg for being such a supportive
and approachable manager throughout this period. His encouragement and
regular updates were always appreciated and made a real difference.

I am fortunate to have had wonderful colleagues who made my time at
the department both productive and memorable. Rui, Daniel, Stephan, Qais,
Mohsen, Malik, and Azim, who also formed our informal swimming club, have
been great colleagues and teammates in and out of the pool. Thank you for
making the swimming sessions more about laughs than laps and for always
keeping the spirits high, even when the water was cold and the deadlines were
near. I am also grateful to my colleagues and friends Mehmet, Xinyuan, Xiao,
Chengqian, Yuhan, Negin, Heng, Oweis, Chi, Seoyun, Lucile, Mohammad,
Erik, Henrik, Martina, Kourosh, Sucheth, Jaseung, Ali (senior), Matheus,
Ali (junior), Alexander, and Amin for creating a supportive and enjoyable
environment. I would also like to thank my former officemate Jiabing, and I
wish him all the best in his future endeavors.

v





Contents

Abstract i

List of Publications iii

Acknowledgement v

Nomenclature ix

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 A literature review on PINNs for fluid dynamics . . . . . . . . 3

1.2.1 Laminar flows . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 High-speed and turbulent flows . . . . . . . . . . . . . . 4
1.2.3 Complex flow phenomena and advanced applications . . 5
1.2.4 Free surface flows . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives, goals and contributions . . . . . . . . . . . . . . . . 6

2 Mathematical description of the linear wave and lid-driven
cavity problem 9
2.1 Linear wave theory: modeling free surface dynamics . . . . . . 9

2.1.1 Governing equation and assumptions . . . . . . . . . . . 9
2.1.2 Boundary conditions in their original form . . . . . . . . 10
2.1.3 Linearization of boundary conditions . . . . . . . . . . . 11
2.1.4 Analytical solution . . . . . . . . . . . . . . . . . . . . . 11

2.2 Lid-driven cavity problem . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Governing equation . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 15
3.1 Physics-informed neural network . . . . . . . . . . . . . . . . . 15

3.1.1 Solving direct and inverse problems . . . . . . . . . . . 17
3.1.2 Regularizing and refinement of the data . . . . . . . . . 17
3.1.3 Data provision with lower error . . . . . . . . . . . . . . 17
3.1.4 Integrating data and physics in modeling . . . . . . . . 18

3.2 PINN for the linear wave problem . . . . . . . . . . . . . . . . 18
3.2.1 Periodic boundary condition . . . . . . . . . . . . . . . 19

vii



viii CONTENTS

3.2.2 Trial functions . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Finding an unknown in the physics . . . . . . . . . . . . 24

3.3 PINN formulation for the lid-driven cavity flow . . . . . . . . . 24
3.3.1 Hard constraints through trial functions . . . . . . . . . 25
3.3.2 Spatially varying weights . . . . . . . . . . . . . . . . . 25

4 Summary of appended papers 27
4.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Objectives and contributions . . . . . . . . . . . . . . . 28
4.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . 28

4.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Objectives and contributions . . . . . . . . . . . . . . . 31
4.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . 31

4.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Objectives and contributions . . . . . . . . . . . . . . . 35
4.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . 37

4.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 Objectives and contributions . . . . . . . . . . . . . . . 38
4.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . 39

Bibliography 41
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x Spatial coordinate in x-direction [m]
z Spatial coordinate in z-direction [m]
t Time [s]
ϕ(x, z, t) Velocity potential [m2/s]
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w Velocity in z-direction [m/s]
η Surface elevation [m]
A Wave amplitude [m]
h Water depth [m]
L Domain length or wavelength [m]
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ω Wave angular frequency [rad/s]
g Gravitational acceleration [m/s2]
λ Wavelength [m]
Ω Computational domain
∂Ω Boundary of computational domain
θ Trainable parameters of the neural network
AD Automatic differentiation
Nτ [·] Governing differential operator
Bτ [·] Boundary operator
LT Total loss function
LGE Loss for governing equation
LKFSBC Loss for kinematic free surface boundary condition
LDFSBC Loss for dynamic free surface boundary condition
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Adam Adaptive Moment Estimation optimizer
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Lid-driven cavity problem

x Spatial coordinate in x-direction [m]
y Spatial coordinate in y-direction [m]
z Collocation coordinate pair z = (x, y)
u Velocity in x-direction [m/s]
v Velocity in y-direction [m/s]
p Pressure [Pa]
U Top wall velocity [m/s]
H Cavity height [m]
ν Kinematic viscosity [m2/s]
Re Reynolds number = UH/ν
F PDE residual operator

P̂θ(zi) PINN output at collocation point parameter-
ized by θ

NC Number of collocation points in the domain
NB,mw Number of boundary points on the moving wall
NB,nmw Number of boundary points on non-moving

walls
BRef Reference boundary values for velocity [m/s]
Bmw Moving wall boundary operator
Bnmw Non-moving wall boundary operator
LF Loss for governing equations
LB Loss for boundary conditions
LBmw Loss for the moving wall boundary
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LmomX Loss for x-momentum equation
LmomY Loss for y-momentum equation
Lcont Loss for continuity equation
Ltop u Loss for u at the top wall
Lwall u Loss for u on the side and bottom walls
Lwall v Loss for v on all walls
ωF Spatial weight for PDE residual loss
ωmw Spatial weight for moving wall loss
MAE Mean Absolute Error
MSE Mean Squared Error
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Chapter 1

Introduction

1.1 Background and motivation

Fluid dynamics is a fundamental branch of classical physics that describes
the motion of liquids and gases. It plays a critical role in understanding and
predicting a wide range of physical phenomena in both nature and technology.
In engineering, it is essential for the design of ships, offshore structures, airplanes,
wind turbines, and cooling systems. In natural systems, fluid dynamics governs
the behavior of ocean currents, atmospheric circulation, and river flows.

Accurately modeling such systems is of practical importance for improving
performance, safety, and efficiency. However, due to the complexity of fluid
behavior, especially in three dimensions and over time, the development of
reliable computational tools remains a central challenge in modern engineering.

The physics of fluid dynamics is mathematically described using partial
differential equations (PDEs), which express fundamental conservation laws [1].
These include the conservation of mass, momentum, and in some cases energy.
Depending on the assumptions made about the fluid properties and the nature
of the flow, the mathematical formulation of these laws can vary significantly
in complexity.

A common starting point is potential flow theory, which assumes that the
fluid is inviscid, incompressible, and irrotational. Under these conditions, the
velocity field can be expressed as the gradient of a scalar potential function ϕ,
and the governing equation becomes the Laplace equation, given by

∇2ϕ = 0. (1.1)

Potential theory offers a significant simplification and is widely used for
problems such as wave propagation in deep water and aerodynamics around
slender bodies. Although it captures important features of flow fields, it neglects
viscous effects and vorticity, making it inadequate for describing boundary
layers, turbulence, and many engineering flows.

To capture these effects, the model must be extended to include viscosity
and nonlinear interactions. This leads to the general formulation of fluid motion

1



2 CHAPTER 1. INTRODUCTION

through the incompressible Navier Stokes equations. These equations consist
of the continuity equation:

∇ · u = 0, (1.2)

which ensures mass conservation, and the momentum equation:

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u, (1.3)

which represents the balance of inertial, pressure, and viscous forces in the fluid.
Here, u is the velocity field, p is the pressure, and ν is the kinematic viscosity.

These equations are nonlinear and coupled, making them difficult to solve
analytically in most practical cases. As a result, various numerical techniques
have been developed to approximate their solutions [2].

The transition from potential flow to the full Navier Stokes equations
reflects a hierarchy of fluid models. At one end of this spectrum are inviscid
and linearized models, such as linear wave theory, which are tractable and
often sufficient for understanding global flow patterns in simple settings. At
the other end are the fully nonlinear and viscous models required for capturing
complex behaviors like vortex shedding, turbulence, and flow separation.

In linear wave theory, the governing equations consist of the Laplace equation
for the velocity potential, accompanied by linearized boundary conditions at the
free surface and solid boundaries. These include a kinematic boundary condition
(representing conservation of mass at the free surface) and a dynamic condition
derived from the unsteady Bernoulli equation (representing momentum balance).
Together, these equations form a complete linear model for small-amplitude
surface waves.

In contrast, for internal recirculating flows such as that in a lid-driven cavity,
the inviscid and irrotational assumptions break down. The full incompressible
Navier Stokes equations must be solved to capture the primary and secondary
vortices that arise due to the interaction between the lid motion and the fluid
viscosity.

This thesis investigates both regimes: the linear wave problem as a simplified,
inviscid, irrotational model, and the lid-driven cavity as a viscous, nonlinear
flow described by the general form of the Navier Stokes equations.

Since analytical solutions are rarely available, numerical methods have been
developed to solve PDEs that arise in fluid mechanics. The most widely used
methods include:

• Finite Difference Methods (FDM): These methods approximate
derivatives using differences between function values at discrete points
on a structured grid. They are simple to implement and computationally
efficient for regular domains.

• Finite Volume Methods (FVM): FVMs apply the conservation laws
directly to control volumes in the computational domain. They are widely
used in engineering applications due to their ability to handle complex
geometries and ensure local conservation.
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• Finite Element Methods (FEM): FEMs use variational formula-
tions and piecewise-defined basis functions, making them well-suited for
unstructured meshes and problems with complex boundaries.

• Spectral Methods: These use global basis functions, such as Fourier
or Chebyshev polynomials, to represent the solution. They offer very
high accuracy for smooth problems but are less suitable for localized
phenomena.

Each method has its strengths and limitations, and their selection depends on
the nature of the problem, domain geometry, and required accuracy [3], [4].

In recent years, Physics-Informed Neural Networks (PINNs), introduced
by Raissi et al. [5], have emerged as a promising framework that integrates
physical laws into neural network training. Rather than relying exclusively
on data, PINNs incorporate governing differential equations and boundary
conditions into the loss function, enabling the model to produce solutions
that adhere to the underlying physics. This framework provides a powerful
alternative to traditional numerical solvers. PINNs are mesh-free, which allows
them to handle irregular geometries and scattered data. They are also capable
of solving both forward and inverse problems, often within a single framework.
Because the physics is encoded in the loss function, they can make use of
sparse or incomplete data, offering a promising route for simulation and data
assimilation in complex systems.

Despite the growing interest in PINNs, their success in fluid dynamics
modeling remains problem-dependent. The following literature review focuses
on recent applications of PINNs in fluid dynamics, highlighting the types of
problems addressed, the modeling strategies adopted, and the key findings
from those studies.

1.2 A literature review on PINNs for fluid dy-
namics

One of the most prominent areas of application for PINNs is fluid dynamics,
where they have been used to solve the Navier Stokes equations governing
incompressible and compressible flows. PINNs have shown success in modeling
laminar flows and are increasingly being adapted to simulate turbulent flow
regimes. The foundational work by Raissi et al. [5] introduced PINNs as a
framework capable of solving forward and inverse problems involving nonlinear
PDEs, with applications demonstrated in fluid dynamics contexts. Their study
showcased the ability of PINNs to learn solutions to the Navier Stokes equations,
highlighting their potential in fluid mechanics.

Cai et al. [6] provided a comprehensive overview of how PINNs have been
applied and adapted for a wide range of fluid mechanics problems, including
vortex dynamics, flow around obstacles, and high-speed aerodynamics. Sim-
ilarly, the recent review by Toscano et al. [7] discusses the progression from
classical PINNs to more advanced variants like PIKANs, offering insights into
their evolving capabilities in fluid dynamics applications.
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It is important to note that the classification of PINN applications into
categories such as laminar, turbulent, or free surface flows is not mutually
exclusive. Many studies combine aspects of multiple flow regimes or incorporate
hybrid modeling strategies depending on the specific physical and computational
requirements of the problem.

1.2.1 Laminar flows

The applications of PINNs to laminar flows demonstrated their ability to infer
hidden variables from limited data. Vortex-induced vibrations were modeled
using sparse velocity field measurements and no pressure data, showing that
PINNs can reconstruct the entire flow field under severe data constraints [8].
Similarly, Lou et al. [9] used a Boltzmann-based PINN formulation to solve
forward and inverse cavity flows, while in another study, a conservative PINN
(cPINN) was introduced using domain decomposition to improve the enforce-
ment of conservation laws in laminar cavity problems [10]. Zhang et al. [11]
derived flow fields from temperature data in laminar settings like channel flow
and cavity flow. Jin et al. [12] developed NSFnets to solve benchmark problems
by optimizing network architecture and loss weighting strategies.

Alternative approaches have also been proposed. Karnakov, Litvinov and
Koumoutsakos [13] introduced a discrete loss optimization framework (ODIL),
which avoids neural networks altogether and demonstrated superior performance
over PINNs in both forward and inverse cavity flow simulations. Wang et
al. [14] highlighted issues of solution multiplicity and instability in PINNs when
modeling higher Reynolds number flows.

1.2.2 High-speed and turbulent flows

Modeling high Reynolds number flows is essential for capturing turbulence,
which is inherently multiscale and chaotic. While traditional approaches like
RANS and LES have dominated this domain, PINNs offer an alternative by
embedding physical laws directly into the learning process.

Several studies have extended PINNs to turbulent flows. Eivazi et al. [15]
applied PINNs to the RANS equations, enabling high Reynolds modeling with
turbulence effects. Similarly, Yang et al. [16] incorporated physics-based con-
straints to allow extrapolation beyond the training Reynolds number, recovering
the law of the wall and improving LES modeling. Kag et al. [17] observed
that basic PINNs captured large-scale statistics but not small-scale turbulence,
and proposed modifications to resolve energy spectra more accurately with
less reliance on training data. Raissi et al. [18] developed turbulence models
from sparse, noisy experimental data and validated them against analytical
solutions. Leoni et al. [19] reconstructed Rayleigh Bénard convection using
temperature data, showing PINNs outperform Nudging [20] at high Rayleigh
numbers when data coverage is dense. PINNs have also been employed as a
super-resolution tool for PIV/PTV data [21], enabling velocity and pressure
field reconstruction with limited measurements.

In high-speed compressible flows, Mao et al. [22] used PINNs with the



1.2. A LITERATURE REVIEW ON PINNS FOR FLUID DYNAMICS 5

Euler equations and sparse data to capture shock waves and steep gradients.
Although promising, they noted that PINNs still lag behind conventional solvers
in forward problems. The XPINN framework [23], further developed by Jagtap
et al. [24], extended PINNs to supersonic flows using domain decomposition and
was successfully applied to inverse problems involving shocks and expansions.
These works demonstrate the adaptability of PINNs to high Reynolds and
turbulent flows, especially when combined with hybrid models, physical priors,
or domain decomposition strategies.

1.2.3 Complex flow phenomena and advanced applica-
tions

Beyond traditional Newtonian fluid dynamics, PINNs have been extended
to more complex and non-Newtonian flow problems. Reyes et al. [25] used
PINNs to infer viscosity models of polymer melts and particle suspensions
from sparse velocity data, enabling solution of the momentum equations for
non-Newtonian fluids. Similarly, Thakur et al. [26] introduced ViscoelasticNet
for stress discovery and model selection in viscoelastic flows using velocity fields
and partial stress data.

PINNs have also been used in rarefied flow regimes. Lou et al. [9] applied
PINNs to flows governed by the Boltzmann-BGK model in both continuum
and rarefied regimes, demonstrating success on benchmark problems such as
Kovasznay and cavity flow. De Florio et al. [27] approximated creep flow in a
plane channel using a constrained PINN formulation combining free functions
and functionals.

In bio-inspired and experimental contexts, Calicchia et al. [28] used PIV data
to reconstruct pressure fields sensed by fish, showing that PINNs are robust even
with low-resolution inputs. Cai et al. [29] reconstructed 3D unsteady velocity
and pressure fields over an espresso cup from Schlieren imaging, validating
their results against PIV measurements.

1.2.4 Free surface flows

Chen et al. [30] applied a PINN to estimate flow properties beneath nonlinear
periodic waves in inviscid rotational flows. Huang et al. [31] proposed a PINN
approach that treats both initial and boundary conditions as hard constraints
and tested it on free surface problems. Jagtap et al. [32] addressed ill-posed
nonlinear wave dynamics governed by the Serre–Green–Naghdi equations by
integrating labeled data with physical laws in a PINN framework. Duong
et al. [33] used PINNs to reconstruct free surface profiles in wave-in-deck
loading scenarios using measured data and Euler’s equations. Wang et al. [34]
demonstrated the potential of PINNs to recover nearshore wave fields by
combining energy balance laws, dispersion relations, and observational data.
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1.3 Objectives, goals and contributions

While PINNs have shown significant promise, several challenges remain, particu-
larly in solving forward problems, enforcing boundary conditions, and choosing
appropriate modeling strategies. This study investigates the application of
PINNs to two representative problems in fluid dynamics that span a spectrum
of physical assumptions and mathematical complexity.

The first case is the classical linear wave model which describes inviscid,
incompressible, and irrotational flow with a free surface. The governing Laplace
equation, together with linearized dynamic and kinematic boundary conditions,
offers an analytically tractable system. In particular, our aim is to improve
the enforcement of boundary conditions within the PINN framework, focusing
on the periodic boundary condition in the x-direction and the kinematic
free surface boundary condition. These are addressed through the addition
of specialized layers to the network architecture and the use of tailored trial
functions. Accurate implementation of these conditions is essential for capturing
the correct physics of wave propagation and is crucial for the reliability of
PINN based solvers in this context. In addition, we explore the estimation of
unknown physical parameters appearing in the loss function without relying
on any field data.

The second case is the lid-driven cavity flow, a benchmark problem governed
by the incompressible Navier Stokes equations. Unlike the linear wave model
this system features viscous effects and nonlinear momentum transport. Its
bounded geometry and strong wall interactions pose additional challenges for
PINN based solvers. Our aim is to improve the results that are affected by the
singularity points in the domain. We use hard constraints and spatial varying
weights to assess how they can diminish the negative effects of singularities on
the solution quality and network training.

Although the two problems differ in complexity, there is a theoretical
connection between them. The linear wave problem can be derived from the
Navier Stokes equations under the assumptions of inviscid and irrotational
flow. This relationship enables us to assess how well PINNs generalize across
simplified and full formulations of fluid motion.

Figure 1.1 outlines the typical stages involved in the design of a PINN, from
formulating the problem and representing the model to embedding knowledge
and optimizing the network. While these stages often involve both data and
physical laws, this thesis focuses solely on fully physics-informed forward prob-
lems, without incorporating any observational data. Within this framework, the
emphasis is placed on the formulation of physics-based constraints, specifically,
how the governing equations and boundary conditions are translated into loss
functions and integrated into the PINN architecture.
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Formulation & Data Model Representation Embedding Knowledge & Data Optimization

Physics/Data Limits Common Architectures Soft/Hard Constraints, Weights, CPs Adam & L-BFGS

Main focus of this thesis

Figure 1.1: Stages in the design of a PINN and the focus areas of this thesis.
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Chapter 2

Mathematical description of
the linear wave and
lid-driven cavity problem

This chapter presents the theoretical foundation for the two fluid dynamics
problems explored using PINNs. The first problem is based on linear wave
theory, which models an inviscid and irrotational flow with a time-evolving free
surface. The second is the lid-driven cavity flow, which describes a viscous and
nonlinear flow confined within a closed domain.

2.1 Linear wave theory: modeling free surface
dynamics

Free surface flows are central to many problems in fluid dynamics, from ocean-
ography and coastal engineering to ship hydrodynamics and offshore design. In
such systems, the upper boundary of the fluid domain is not fixed but deforms
in response to the fluid motion, creating a dynamic interface between the liquid
and the air. Capturing the behavior of this interface is crucial for predicting
wave propagation, energy transmission, and pressure loading on structures.

One of the simplest and most widely studied models for free surface flows
is linear wave theory, which describes the evolution of small-amplitude surface
waves on an inviscid, incompressible, and irrotational fluid.

2.1.1 Governing equation and assumptions

We consider a two-dimensional fluid domain bounded below by a rigid, imper-
meable bottom and above by a free surface, as shown in Fig. 2.1. We assume
that the fluid is incompressible and irrotational.

Under these assumptions, the velocity field u = (u,w) can be expressed in

9
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Figure 2.1: Schematic representation of the spatial domain governed by linear
wave theory.

terms of a scalar potential function ϕ(x, z, t), such that

u =
∂ϕ

∂x
, w =

∂ϕ

∂z
.

The incompressibility condition,

∇ · u =
∂u

∂x
+
∂w

∂z
= 0,

leads to the Laplace equation for the velocity potential, given by

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 0. (2.1)

2.1.2 Boundary conditions in their original form

To solve the Laplace equation, we must impose boundary conditions at the
bottom and the free surface. At the rigid bottom z = −h, the vertical velocity
must vanish. This gives the kinematic bottom boundary condition (KBBC) as

∂ϕ

∂z

∣∣∣∣
z=−h

= 0. (2.2)

The free surface moves with the fluid. Letting η(x, t) represent the surface
elevation, a fluid particle initially on the surface remains there if

∂η

∂t
+ u

∂η

∂x
= w at z = η(x, t). (2.3)

This condition expresses that the surface moves with the fluid particles and is
called kinematic free surface boundary condition (KFSBC). At the free surface,
the pressure must match the atmospheric pressure, which we take as constant.
Applying Bernoulli’s equation for unsteady, irrotational flow gives

p

ρ
+
∂ϕ

∂t
+

1

2
(u2 + w2) + gη = C(t), (2.4)
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and setting C(t) = patm

ρ and choosing p = patm at the surface yields

∂ϕ

∂t
+

1

2
(u2 + w2) + gη = 0 at z = η(x, t). (2.5)

This boundary condition is called the dynamic free surface boundary condition
(DFSBC).

2.1.3 Linearization of boundary conditions

The boundary conditions above are nonlinear. To obtain a tractable linear
model, we consider small-amplitude waves where η ≪ h and apply dimensional
analysis to simplify the expressions.

From the original kinematic condition (2.3), we note that

∂η

∂t
+ u

∂η

∂x
= w.

The second term u∂η
∂x is of higher order in the wave amplitude and is therefore

negligible compared to the first term. Thus, the linearized kinematic boundary
condition becomes

∂η

∂t
= w(x, 0, t) =

∂ϕ

∂z

∣∣∣∣
z=0

. (2.6)

In the original DFSBC, Eq. (2.5), the nonlinear velocity terms u2 + w2 are
small for small-amplitude waves and can be neglected. Evaluating the potential
at the undisturbed surface z = 0, the linearized DFSBC becomes

∂ϕ

∂t
= −gη at z = 0. (2.7)

2.1.4 Analytical solution

The free surface elevation is assumed to be sinusoidal, according to

η(x, t) = A cos(kx− ωt), (2.8)

where A is the amplitude, k is the wave number, and ω is the angular frequency.
The solution to this problem yields the velocity potential

ϕ(x, z, t) =
Ag

ω

cosh(k(h+ z))

cosh(kh)
sin(kx− ωt). (2.9)

From the dynamic condition, the dispersion relation is obtained as

ω2 = gk tanh(kh), (2.10)

which connects the wave frequency and the wave number and is a fundamental
result in surface wave theory.

This problem exhibits several important features from a computational
perspective. First, it includes a free surface with two boundary conditions.
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Second, it involves periodic solutions, making it an ideal candidate to test
how PINNs handle periodicity. Finally, the angular frequency ω is not a
prescribed input but must satisfy the dispersion relation, which introduces the
possibility of estimating physical parameters as part of an inverse problem.
These characteristics make the linear wave theory a valuable test case for
validating the fidelity and flexibility of PINN models.

2.2 Lid-driven cavity problem

In contrast to the linear wave model, the lid-driven cavity problem involves
viscous, nonlinear, and bounded internal flows. It is a classical benchmark in
computational fluid dynamics (CFD), frequently used to assess the accuracy
and robustness of numerical solvers, especially those solving the incompressible
Navier Stokes equations.

As shown in Fig. 2.2, the setup consists of a square cavity completely
enclosed by solid walls. The vertical and bottom walls remain stationary, while
the top wall (the lid) moves tangentially at a constant velocity. Despite its geo-
metric simplicity, this configuration gives rise to rich and physically significant
fluid behavior. The motion of the lid induces a strong shear layer near the top
boundary, which propagates into the interior, generating complex recirculating
patterns. A large primary vortex develops in the center, accompanied by
secondary corner vortices whose size and structure depend on the Reynolds
number.

Moving wall (U)

S
ta
ti
on

ar
y
w
al
l

S
ta
ti
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ar
y
w
al
l

Stationary wall

x

y ⟳
⟲ ⟲

Figure 2.2: Schematic representation of the lid-driven cavity problem, with
coordinate system, square geometry, boundary conditions, as well as primary
and secondary vortices.

2.2.1 Governing equation

The mathematical formulation of this problem is governed by the two-dimensional
steady-state incompressible Navier Stokes equations, which are written as
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∇ · u = 0, (Continuity equation), (2.11)

u · ∇u = −∇p+ ν∇2u, (Momentum equation). (2.12)

In these equations, u = (u, v) denotes the velocity field in the x- and y-
directions, p represents the pressure field, and ν is the kinematic viscosity. The
first equation enforces incompressibility by requiring the velocity field to be
divergence-free. The second describes the momentum balance, incorporating
inertial, pressure, and viscous forces.

2.2.2 Boundary conditions

The no-slip boundary condition is imposed on all walls:

1. u = (U, 0) on the top wall (with U being a constant velocity),

2. u = (0, 0) on the left, right, and bottom walls.

These conditions create a discontinuity in tangential velocity at the top corners,
where the moving wall meets the stationary side walls. This results in steep ve-
locity gradients and strong localized vorticity, which are particularly challenging
to resolve accurately in numerical simulations.

In the context of PINNs, this problem offers a rigorous test case to evaluate
the framework’s ability to solve nonlinear PDEs, handle complex boundary
conditions, and reproduce multi-scale flow features. The lid-driven cavity also
serves as a bridge to more realistic internal flow problems, such as flow in
enclosures and heat transfer in electronics cooling. Success in modeling this
case with PINNs would indicate their potential to tackle a wider class of viscous,
wall-bounded flows.
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Chapter 3

Methodology

3.1 Physics-informed neural network

Solving PDEs using neural networks begins by approximating the solution
function u(x) with a trainable neural network uθ(x), where θ denotes the
network parameters (weights and biases). This approach transforms the PDE
problem into an optimization problem, where the goal is to minimize the
residuals of the governing equations and boundary conditions evaluated at
selected points in the domain.

A general form of a PDE defined on a domain Ω ⊂ Rd with appropriate
boundary conditions on ∂Ω can be shown as

Nτ [u](x) = s(x), x ∈ Ω, (3.1a)

Bτ [u](x) = g(x), x ∈ ∂Ω. (3.1b)

Here, x denotes spatial or spatio-temporal coordinates, u(x) is the unknown
function to be learned, Nτ and Bτ are differential operators associated with the
governing physics and boundary conditions, and τ is a set of physical parameters.
The source term s(x) represents external influences or forcing functions acting
within the domain, while the function g(x) defines the prescribed values or
behavior on the boundary, such as Dirichlet or Neumann boundary conditions.

To approximate u(x), a fully connected feed-forward neural network is used:

û(x) ≈ uθ(x), x ∈ Ω ∪ ∂Ω, (3.2)

where θ denotes the trainable parameters (weights and biases). The network
maps the input x ∈ Rd to the output via a sequence of layers defined recursively
as:

h(0) = x, (3.3a)

h(ℓ) = f (ℓ)
(
W (ℓ)h(ℓ−1) + b(ℓ)

)
, for ℓ = 1, 2, . . . , L− 1, (3.3b)

uθ(x) =W (L)h(L−1) + b(L), (3.3c)

15
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where f (ℓ) denotes the activation function in layer ℓ, and W (ℓ), b(ℓ) are the
weight matrix and bias vector at layer ℓ. The final layer typically uses a linear
activation function.

PINNs enhance the standard neural network approach by embedding the
physics of the problem directly into the training process. Instead of relying
solely on data or conventional numerical discretization, PINNs combine the
governing equations and, when available, observational data within a unified
loss function. This loss function generally includes the residuals of the governing
PDEs evaluated at interior collocation points, the residuals of the boundary
conditions on the domain boundaries ∂Ω, and, optionally, terms that penalize
the mismatch between the network’s predictions and given data points. The
required derivatives are evaluated using automatic differentiation, which elim-
inates truncation errors [35]. The network is trained by minimizing the total
loss across a set of collocation points distributed in the computational domain.

Overall, PINNs offer a flexible and mesh-free framework for solving PDEs,
especially in cases involving complex geometries, limited data availability,
or mixed boundary conditions. The framework introduced by Karniadakis
et al. [36] further categorizes the sources of bias in PINNs into three types.
Observational bias is introduced through the data, inductive bias is a result of
the network architecture, and learning bias arises from the structure of the loss
function. These categories are illustrated in Fig. 3.1. In this thesis, particular
attention is given to the influence of soft and hard constraint formulations on
the convergence behavior of PINNs.

Figure 3.1: Different training approaches for PINNs

Before presenting the specific PINN architectures developed for the linear
wave and lid-driven cavity problems, we briefly review advantages of PINNs
from different perspectives. These advantages help motivate their use in fluid
dynamics and highlight their potential in handling complex physical systems
without relying exclusively on dense data or traditional discretization schemes.
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3.1.1 Solving direct and inverse problems

Problems addressed by PINNs can be broadly classified as direct or inverse.
Direct problems have unique solutions and include well-posed boundary value
problems. While PINNs can solve these cases when provided with sufficient
collocation points and network expressiveness [5], they often show lower accuracy
and higher cost compared to traditional methods [10].

Inverse problems involve unknown parameters and partial data. For example,
one may measure velocity fields while the viscosity remains unknown. PINNs
can infer such parameters by combining known data and physics. These
problems are generally more complex, but PINNs have shown more promise in
handling them [37], [38]. Unlike direct problems, inverse setups may include
trainable physical parameters within the loss function. When both the solution
and some physical parameters are unknown, the setup is referred to as a mixed
problem.

3.1.2 Regularizing and refinement of the data

Providing data to train a classic neural network usually requires prior data
analysis to exclude biased data and outliers. This process can be time consuming
and sometimes not much reliable, and causes removing parts of the physics.
PINNs offer a novel way to alleviate noises and outliers in the data. In
many cases, the physics of the problem should satisfy some principal laws.
Conservation laws are good examples of these laws that for example fluid flow-
related problems should conform with. These kinds of laws can be incorporated
in the loss function in order to regularize the data points fed to the neural
network. Therefore, even in the cases that we have enough data points,
PINNs that take advantage of basic knowledge about the problems’ physics
can outperform classic neural networks. This kind of data refinement based on
the basic physical principles will also improves the intuitive interpretability of
the results compared to statistical data refinement methods.

3.1.3 Data provision with lower error

Traditional neural networks are sometimes trained using data points generated
by other solvers, such as CFD or FEM solvers. As illustrated in Fig. 3.2,
employing a separate solver to generate data point for the neural network
introduces errors at two stages: during the numerical solution used to generate
the data points and during the training of the neural network. In contrast,
PINNs circumvent this process (Fig. 3.2). By incorporating the governing
equations directly into the neural network, PINNs enable the network to
generate data based on the fundamental physics of the problem. If the problem
is correctly formulated as a closed boundary-value problem within the PINN
framework, the network can access precise data at the specified collocation
points, thereby reducing errors introduced by separate solvers used for data
generation. However, integrating the problem’s physics into a PINN may
present additional challenges, which studies like the present one aim to identify
and address.
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Physics Data Points Surrogate Model
Solver NN

PINN

Figure 3.2: The difference between the PINNs and classic neural networks (NN)
in dealing with data points

3.1.4 Integrating data and physics in modeling

Unlike traditional neural networks that rely solely on data, and conventional
solvers that depend on problem formulation, PINNs combine both. This hybrid
approach enables PINNs to incorporate available data and known physics,
potentially improving accuracy and convergence.

3.2 PINN for the linear wave problem

The theoretical formulation of the linear wave problem, including its governing
equation and boundary conditions, was presented in Chapter 2. In the current
subsection, the developed PINN to solve that problem is introduced. This
framework enforces the Laplace equation and boundary conditions through
physics-informed loss terms and hard constraints.

The network receives spatial coordinates x and z, along with time t, as
input. In PINNs, time can be treated as an additional spatial variable, as noted
by Raissi et al. [5]. The output is the velocity potential ϕ(x, z, t). Automatic
Differentiation is used to compute the first and second derivatives of ϕ with
respect to its inputs to evaluate the residuals of the governing equation and
boundary conditions.

As illustrated in Fig. 3.3, the total loss function LT is composed of the
governing equation loss LGE, the kinematic bottom boundary condition loss
LKBBC, and the kinematic free-surface boundary condition loss LKFSBC. These
terms are computed assuming the wave number k and angular frequency ω are
known and fixed. Once defined, the total loss is minimized using a combination
of Adam and L-BFGS optimization algorithms.

Three key challenges are addressed in this modeling framework. First,
enforcing the periodic boundary condition in the x-direction is handled through
both soft and hard constraints. This topic is explored in the first and second
appended papers, and the third paper further develops the periodic layer
and loss formulation. Second, the kinematic bottom boundary condition is
implemented through trial functions. Two distinct trial functions were designed
and evaluated for this purpose, which is discussed in the second appended paper.
Lastly, the network is also used to estimate the unknown angular frequency
ω, casting the task as an inverse problem. This extension and its results are
presented in the second appended paper.
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Figure 3.3: Schematic of the PINN used for the linear wave problem, when
wave number k and angular frequency ω are known (From Paper II).

3.2.1 Periodic boundary condition

Soft periodic boundary condition To impose periodic boundary condi-
tions in the x-direction, loss terms that ensure the periodicity of the solution
and its derivatives are introduced and incorporated into the total loss function.
This method is called the soft method, since the periodicity of the solution
and its derivatives will not necessarily be satisfied perfectly by dedicating
some specified loss terms to them, and the periodicity error depends on how
successful the PINN is in the minimization of the respected loss terms. To
account for the periodicity of the solution ϕ and its spatial derivatives u and v
in the x-direction, three periodicity loss terms are defined. These losses enforce
consistency between the values at the two ends of the domain in the x-direction,
where λ denotes the spatial wavelength of the wave. The periodicity loss for ϕ
is defined as:

Lϕx-per = |ϕx=0 − ϕx=λ| , (3.4)

Lux−per = |ux=0 − ux=λ|, and (3.5)

Lvx−per = |vx=0 − vx=λ|. (3.6)

Another definition for the loss terms has also been studied in Paper III in the
appendix. Since that loss term did not show any advantages over this form,
that is not presented here.
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Hard periodic boundary condition Although adding periodicity-related
loss terms has led the average periodicity error to decrease considerably, the
success of that method in reducing the periodicity error depends on the per-
formance of the optimization process in the training of the PINN. Therefore,
there is no guarantee that having a soft periodicity constraint can decrease the
periodicity error up to a certain level. In contrast, Dong and Ni [39] introduced
another method for implementing the periodic boundary condition, known as
the periodic layer. This layer is inserted between the input and hidden layers
in the PINN, as depicted in Fig. 3.4.
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Figure 3.4: Schematic of the PINN used for the linear wave problem, having a
periodic layer to meet the periodic boundary condition (BC) of the problem
(From Paper II).

The periodic layer enforces the periodic dependence of the PINN output,
ϕ, and its spatial derivatives on the input dimension of interest, x. Here, x
is transformed into a weighted sum of several periodic functions of x within
the periodic layer. This transformation ensures that the PINN’s final output
remains periodic with respect to x. The important point is that all these periodic
functions, should have the same periodicity, α. The detailed mathematical
proof for this method is provided in the work by Dong and Ni [39]. The periodic
layer is composed of several neurons, each represent a periodic function of the
input of interest, x, as

Pi = tanh(A sin(αx+B) + C), (3.7)

where Pi is the ith neuron in the periodic layer connected to the x neuron from
the input layer, as shown in Fig. 3.4. The function amplitude, A, phase angle,
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B, and the offset, C, are trainable, and α is not trainable and is the same for
all Pi functions. The parameter α is the periodicity of the solution with respect
to x, which is equal to the periodicity of the free surface profile with respect to
x, i.e., α = 2π/λ = 1. It must be noted that tanh operator in Eq. (3.7) is the
activation function and has not to be only tanh. We have used this activation
function to be consistent with those in other layers of the PINN.

This method is called the hard constraint method as it strictly imposes
periodicity, so that the periodic boundary condition will be satisfied to the level
of machine precision. Unlike the soft method explained in section 3.2.1, the
success of the hard periodicity method does not depend on the optimization
performance and convergence of the loss function of the PINN, and the results
of the PINN will always be periodic.

By applying Eq. (3.7) on the input of interest in the periodic layer, each
neuron adds three trainable variable, i.e., A, B, and C, to the PINN. Having
more trainable variable demands more computational cost to converge to the
solution. Lu et al. [40] applied the hard periodic boundary conditions in their
study, without considering A, B, and C in Eq. (3.7). They also set constant
values for α and argued that the input of interest must be decomposed into a
weighted summation of the basis functions of the Fourier series, to impose a
periodic relationship between that intput and the output of the PINN. Inspiring
from the formula proposed by Dong and Ni [39], i.e., Eq. (3.7), and the Fourier
basis function, suggested by Lu et al. [40], we evaluate the performance of the
PINN, imposing a simplified version of Eq. (3.7), as

Pi = tanh(sin(αx+B)), (3.8)

in the neurons of its periodic layer. The phase angle B in Eq. (3.8) is kept as
a trainable variable to offer this freedom to the PINN to find the best phase
angles to match the periodical behavior of the solution. Each neuron of the
periodic layer imposing Eq. (3.8) adds one trainable variable to the PINN,
instead of three with Eq. (3.7).

3.2.2 Trial functions

Lagaris et al. [41] introduced a method for incorporation of boundary conditions
in the neural networks designed to solve Ordinary Differential Equations (ODEs)
and PDEs. This method has also been improved and extended by Lagari et
al. [42]. This method can be categorized as a hard method, since the method
strictly imposes the boundary conditions of interest, and no loss term needs to
be explicitly dedicated to them. The satisfaction of the boundary conditions
treated with this method is independent of the training process and is always
guaranteed, even if the PINN does not converge to the correct solution, just like
what was observed about the hard implementation of the periodic boundary
condition in section 3.2.1. In this method, a function of the PINN’s output
should be set as the target function, which is being used in different loss terms
of the loss function. This function is called the trial function, which its location
in the PINN can be seen in Fig. 3.5. The design of the trial function needs
to be conducted in a way satisfying the boundary condition(s) of interest
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automatically. For example, if we are solving a boundary value problem with
PINN to find a target function of ψ(x), having a Dirichlet boundary condition
of ψ(0) = A, the output of the PINN, N(x), can be put in a trial function like
ψt(x) = A+ xN(x). By using ψt in our loss terms as the target function, the
Dirichlet boundary condition will always be strictly satisfied.
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Figure 3.5: Schematic of the PINN used for the linear wave problem, having
a periodic layer to meet the periodic BC of the problem, and a trial function
to ensure that the neural network output adheres to the required physical
constraints (From Paper II).

A proper trial function should fulfill two requirements.
Requirement #1- On the boundaries of interest, the trial function must be

devoid of the output of the PINN or its derivatives. At these locations, the
trial function or its derivatives of interest should be equal to the boundary
conditions of the problem.

Requirement #2- On the rest of the domain, the trial function should
include the output of the PINN or its derivatives.

Since a trial function tailored for implicit implementation of a single ho-
mogeneous Neumann boundary condition, i.e., KBBC, has not been included
among trial function provided by Lagaris et al. [41] and Lagari et al. [42], we
need to develop suitable trial functions based on the requirements mentioned
before. We begin with the suggested formula by Lagaris et al. [41] for Poisson
boundary value problem, i.e.,

∂2

∂x2
ψ(x, y) +

∂2

∂y2
ψ(x, y) = f(x, y) (3.9)

with mixed boundary conditions of ψ(0, y) = f0(y), ψ(1, y) = f1(y), ψ(x, 0) =
g0(x), and

∂
∂yψ(x, 1) = g1(x). The suggested trial function by Lagaris et al. [41]

for imposing these four boundary conditions implicitly is
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Ψt(x, y) = B(x, y) + x(1− x)y[N(x, y, p)−N(x, 1, p)− ∂

∂y
N(x, 1, p)], (3.10)

B(x, y) = (1− x)f0(y) + xf1(y) + g0(x)− [(1− x)g0(0) + xg0(1)]

+ y{g1(x)− [(1− x)g1(0) + xg1(1)]},
(3.11)

whereN is the output of the neural network and p is the weights and biases of the
neural network. In the suggested trial function for the Poisson boundary value
problem, Eq. (3.10), the multipliers of x, (1− x), and y in relate respectively
to three Dirichlet conditions of ψ(0, y) = f0(y), ψ(1, y) = f1(y), and ψ(x, 0) =
g0(x). Since this study intends to use the implicit method only for the KBBC,
and KBBC is a homogeneous Neumann boundary condition, we do not need
those three multipliers. The term B(x, y) in Eq. (3.10) is also responsible to
hold the value of the Poisson function or its derivatives at the boundaries, which
is zero in the case of KBBC. Therefore, Eq. (3.10) will be updated accordingly
and turns to

ϕt(x, z, t) = N(x, z, t)−N(x,−h, t)− ∂

∂z
N(x,−h, t), (3.12)

where Ψt(x, y) in Eq. (3.10) has turned to ϕt(x, z, t) to conform with the linear
wave problem terminology, and p is not mentioned, since it is apparent that
the output of the PINN is also a function of weights and biases, and we don’t
mention it. The derivative of Eq. (3.12) with respect to z on z = −h is

∂

∂z
ϕt(x, z, t)

∣∣∣∣
z=−h

=
∂

∂z
N(x, z, t)

∣∣∣∣
z=−h

, (3.13)

which includes a derivation of the PINN output and is not necessarily zero,
which violates requirement #1 of a proper trial function for this problem.
One way to resolve this problem is multiplying the bracket via a function of
z, which its derivatives with respects to z equals the original function. The
only function that its derivatives equals the original function is the exponential
function [43]. The exponential function was also used in the trial functions
introduced by Lagari et al. [42]. The trial function, Eq. (3.12), turns to

ϕt(x, z, t) = ez[N(x, z, t)−N(x,−h, t)− ∂

∂z
N(x,−h, t)], (3.14)

The derivative of Eq. (3.14) with respect to z on z = −h is

∂

∂z
ϕt(x, z, t)

∣∣∣∣
z=−h

= 0, (3.15)

which satisfies KBBC. Since the exponential function never becomes zero,
the PINN output always exists in the function, and no unwanted Dirichlet
boundary condition is being imposed on the problem. Therefore, the trial
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function in Eq. (3.14) meets both requirements to be a trial function for
implicitly imposing KBBC on liner wave problem in the PINN.

For the second candidate for strictly imposing KBBC on the linear wave
problem, the trial function for an initial value problem, with Cauchy initial
condition introduced by Lagaris et al. [41] has been chosen as a starting point.
By adapting the trial function developed by Lagaris et al. [41] for implicitly
implementation of KBBC, we can end up with

ϕt(x, z, t) = (z + h)2 N(x, z, t) (3.16)

It can be shown that the derivative of this trial function on z = −h equals zero,
which satisfies KBBC. However, one drawback of this trial function is becoming
zero on z = −h, which is the bottom of the computational domain. However,
since the values of ϕ and its derivatives, i.e., u and v, are quite small in the
bottom, and since the interesting part of the domain for ocean engineering
problems is near the free surface, this trial function can be acceptable, as long
as it does not ruin the general solution.

3.2.3 Finding an unknown in the physics

If the wave angular frequency, ω, or the wave number, k is considered as an
unknown, the dynamic free surface boundary condition (DFSBC) should be
used. DFSBC is introduced in Eq. (2.7). Finding ω by the PINN can be
interpreted as solving the dispersion relationship, i.e., Eq. (2.10) via the PINN.
For this purpose, the DFSBC is added to the loss function of the PINN in
Fig. 3.4. The trainable variables in this PINN include the weights and biases
of the neural network, phase angles of the neurons in the periodic layer, and ω
in KFSBC and DFSBC.

3.3 PINN formulation for the lid-driven cavity
flow

In this part of the work, the modeling of the lid-driven cavity problem via a
PINN at Reynolds number Re = 100 is discussed. The PINN is built using
a fully connected feed-forward neural network just like the one used for the
linear wave problem. The total loss function used to train the PINN model
is composed of multiple components, including residuals of the governing
equations and terms that enforce boundary conditions. The total loss is written
as:

Ltotal = Lcont + LmomX + LmomY + Ltopu + Lwallu + Lwall v. (3.17)

Each component is defined as follows:

• Lcont: It enforces the incompressibility condition ∇ · u = 0.

• LmomX and LmomY : They enforce the the x and y components of the
momentum equations, respectively.
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• Ltopu: It enforces the moving wall boundary condition where the hori-
zontal velocity u = 1.

• Lwallu and Lwall v: They enforce the no-slip condition (u = v = 0) on the
left, right, and bottom walls.

The following subsections outline two strategies to improve the model’s
behavior near singularities at the top corners.

3.3.1 Hard constraints through trial functions

Two types of trial functions are used to impose hard boundary conditions
in the lid-driven cavity problem. The formulation for the horizontal velocity
differs between the two implementations. In the first case, which enforces the
boundary condition on the left, right, and bottom walls, the horizontal velocity
is defined as

u(x, y) = x(1− x)y û(x, y), (3.18)

which satisfies u = 0 on those boundaries while the top wall condition is
softly enforced. û(x, y) is the network output. In the second case, where hard
constraints are imposed at the top and bottom walls, the horizontal velocity is
defined as

u(x, y) = y(1− y)û(x, y) + y, (3.19)

which satisfies u = 0 at the bottom and u = 1 at the top, while the side wall
conditions are softly enforced. For both types, the vertical velocity component
is defined as

v(x, y) = x(1− x)y(1− y)v̂(x, y), (3.20)

which ensures that v = 0 on all boundaries. v̂(x, y) is the network output.

3.3.2 Spatially varying weights

To mitigate the impact of corner singularities without altering the solution
structure, spatially varying weights can be incorporated into the loss function.
These weights reduce the influence of collocation and boundary points near high-
gradient regions. Two specific weighting functions are introduced, according
to

ωF (x, y) = 1− 0.99 exp
(
−20(x− 0.0)2 − 20(y − 1.0)2

)
− 0.99 exp

(
−20(x− 1.0)2 − 20(y − 1.0)2

)
, (3.21)

ωmw(x) = 1− 4x2. (3.22)

The function ωF (x, y) is applied to the residual loss of the Navier Stokes
equations to reduce the contribution of points near the top corners, where
velocity discontinuities lead to steep gradients. The function ωmw(x) is applied
to the boundary loss of the horizontal velocity component on the moving wall,
down-weighting the ends of the boundary to minimize the influence of corner
singularities.
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The weighted loss terms are defined as

LF =
1

NF

NF∑
i=1

ωF (xi, yi) |F (u, v, p)|2 , (3.23)

LB =
1

NB

NB∑
i=1

ωmw(xi) |u(xi, yi)− 1|2 , (3.24)

where LF is the residual loss of the governing equations, LB is the penalty
on the top boundary condition, the function F represents the residuals of the
continuity equation and the x- and y-momentum equations. The variable p
denotes the pressure field, which is also learned by the neural network along
with the velocity components u and v. Here, NF and NB are the number of
the entire collocation points and those at the respected boundary, respectively.

To analyze the individual and combined effects of these weighting strategies,
four configurations are considered: (i) baseline with no weights, ωF = ωmw =
1; (ii) using only ωF ; (iii) using only ωmw; and (iv) applying both weights
simultaneously. This formulation enables a controlled investigation into how
each weighting strategy affects training stability and predictive accuracy.



Chapter 4

Summary of appended
papers

This chapter presents a summary of the main findings from each appended
paper. For each study, the objectives and contributions are first introduced,
followed by a brief description of the methods used, and a summary of the
results and discussion.
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4.1 Paper I

4.1.1 Objectives and contributions

This study systematically investigates the use of PINNs for modeling linear
water waves. The objective is to predict the velocity potential field beneath a
periodic free surface wave, using a PINN trained on the governing equations
and boundary conditions of linear wave theory. Linear waves are chosen due
to their foundational role in wave mechanics and the availability of analytical
solutions, which enable rigorous evaluation of PINN accuracy. Both the wave
number and angular frequency are treated as known quantities, allowing the
dispersion relation to be satisfied during training. The study contributes a
detailed assessment of network behavior under periodic and kinematic bound-
ary conditions and highlights the strengths and limitations of PINNs in this
canonical wave modeling problem.

4.1.2 Methods

A fully connected PINN architecture was developed. The free surface was
modeled as a sinusoidal wave, allowing periodic boundary conditions to be
defined in the x-direction. The loss function was composed of six terms derived
from the governing equation and the boundary conditions: the Laplace equation
in the domain, the kinematic condition at the bottom, the kinematic condition
at the free surface, and three periodic boundary conditions in the x-direction
for ϕ, ∂ϕ/∂x, and ∂ϕ/∂z.

The PINN was trained using a combination of the Adam optimizer and the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. A
structured mesh of collocation points was used for training, and the network’s
inputs were the spatial and temporal coordinates (x, z, t), with outputs being
ϕ(x, z, t). A sensitivity study was conducted to determine the optimal number
of layers, neurons per layer, and collocation points. The evaluation metrics
included the average error and standard deviation of the error across ten
independent training runs.

4.1.3 Results and discussion

Figure 4.1 shows the results of a sensitivity study conducted to investigate the
impact of network architecture and collocation density. This study revealed
that deeper networks with a moderate number of neurons generally perform
better and more consistently. Notably, increasing the number of neurons from
10 to 20 did not always improve accuracy. The chosen architecture with 8
layers, 10 neurons per layer, and a grid of 16 × 16 × 16 collocation points
yielded an average error of 4.34% and a standard deviation of 2.79% over ten
independent training runs.

Figure 4.2 compares the predicted velocity potential ϕ(x, z, 0) by the PINN
and the analytical solution at different times. It shows that the PINN accurately
predicted the velocity potential field beneath a sinusoidal free surface wave,
especially in regions near the free surface where the velocity gradients are most
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(a) Average error across 10 runs. (b) Standard deviation of error across
10 runs.

Figure 4.1: Average error and standard deviation of the error in ϕ(x, z, t) pre-
diction across 10 training runs for various network architectures and collocation
densities.

significant. However, some deviations were observed in the lower regions of the
domain. The observed prediction error can be attributed to the incomplete
enforcement of periodic boundary conditions in the loss function. Although
periodic boundary constraints for ϕ, ϕx, and ϕz in the x-direction were included
in the loss formulation, they may not have been sufficiently satisfied during
training.
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(a) Exact ϕ(x, z, 0) (b) Predicted ϕ(x, z, 0)

(c) Exact ϕ(x, z, T/3) (d) Predicted ϕ(x, z, T/3)

(e) Exact ϕ(x, z, 2T/3) (f) Predicted ϕ(x, z, 2T/3)

(g) Exact ϕ(x, z, T ) (h) Predicted ϕ(x, z, T )

Figure 4.2: Comparison of exact and predicted velocity potential distributions
ϕ(x, z, t) at various time instances.
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4.2 Paper II

4.2.1 Objectives and contributions

This study extends prior work on applying PINNs to model linear water
waves governed by potential flow theory. While the previous paper focused on
assessing PINN performance under periodic and kinematic boundary conditions
with known wave characteristics, this work advances the methodology in several
key directions.

First, the study systematically evaluates the enforcement of boundary
conditions using both soft and hard approaches. In particular, it explores
the impact of implementing periodic boundary conditions (PBCs) as hard
constraints through architectural modifications, as opposed to soft enforcement
via loss terms. Second, trial functions are developed to impose the kinematic
bottom boundary condition (KBBC) as a hard constraint. Third, the study
investigates the ability of PINNs to infer the wave angular frequency ω as an
unknown parameter, using only physics-based loss terms without any labeled
data.

Together, these contributions aim to improve the accuracy and interpretab-
ility of PINN-based solvers in fluid dynamics problems and provide practical
guidance for incorporating boundary conditions and learning unknown para-
meters in PINN frameworks.

4.2.2 Methods

A fully connected PINN architecture was employed, with inputs consisting of
spatial and temporal coordinates (x, z, t) and output being the velocity potential
ϕ(x, z, t). The model was trained using a hybrid optimization strategy, begin-
ning with Adam optimizer, followed by the L-BFGS algorithm for fine-tuning.
A structured mesh of collocation points was uniformly distributed throughout
the three-dimensional space–time domain. The loss function was constructed
from the Laplace equation in the domain and the boundary conditions derived
from linear wave theory.

Hard enforcement of boundary conditions was implemented through archi-
tectural modifications to the network. Specifically, the PBC in the x-direction
was imposed via a periodic input transformation, effectively acting as a middle
layer immediately after the input layer. For the KBBC, custom trial functions
were used that embed the constraint directly into the output of the network, as
an additional final layer applied to the network output. In the inverse modeling
case, the wave angular frequency ω was treated as an additional trainable
parameter, incorporated in the same manner as network weights and biases,
and optimized jointly with the rest of the model.

4.2.3 Results and discussion

Table 4.1 summarizes a sensitivity study performed to evaluate how the number
of layers, neurons per layer, and collocation points affect PINN performance
for linear wave modeling. The standard deviations (Std) indicate variability
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across 100 independent runs. The best accuracy was achieved with a network
of 16 layers, 10 neurons per layer, and 413 collocation points.

Table 4.1: PINN Performance for Linear Wave Problem Under Different Con-
figurations

Layers Neurons Ncp u Total Error w Total Error u Period. Error w Period. Error Time
(Std) [%] (Std) [%] (Std) [%] (Std) [%] (Std) [s]

4 10 213 18.22 (28.04) 0.81 (0.57) 2.31 (1.53) 2.93 (2.17) 40.91 (5.11)
8 5 213 24.95 (90.93) 0.54 (0.40) 1.71 (1.31) 1.69 (1.54) 48.08 (6.03)
8 10 213 6.64 (12.19) 0.44 (0.38) 1.30 (1.05) 1.52 (1.42) 61.05 (5.82)
8 20 213 17.04 (10.28) 5.09 (2.28) 16.46 (6.11) 14.63 (4.47) 34.07 (1.03)
16 10 113 3.18 (5.20) 0.57 (1.36) 1.09 (0.95) 1.05 (0.92) 88.76 (8.75)
16 10 213 2.68 (6.18) 0.33 (0.46) 1.05 (1.47) 1.00 (1.14) 145.85 (19.02)
16 10 413 2.31 (3.37) 0.27 (0.19) 0.84 (0.56) 0.84 (0.63) 250.69 (35.90)
16 10 613 2.97 (10.85) 0.26 (0.20) 0.82 (0.57) 0.84 (0.73) 579.76 (94.62)
16 5 213 14.22 (31.17) 0.90 (1.35) 2.53 (2.73) 2.51 (2.97) 84.29 (10.10)
16 20 213 12.64 (10.62) 4.28 (1.64) 14.69 (4.69) 13.40 (4.77) 60.84 (1.57)
32 10 213 6.11 (18.40) 0.44 (0.45) 1.42 (1.46) 1.27 (1.26) 166.98 (16.69)

Figure 4.3 compares the the results of the vanilla PINN (the PINN without
PBC) with those of the PINNs with soft hard enforcement of PBC. It can
be seen that PBC enforcement decreases the average error and its variation
noticeably. Hard PBC with the function introduced in Eq. (3.7) ensures
machine-level periodicity and led to the average error of 0.16% in the velocity
components u and w. In comparison, soft PBC reduced periodicity errors to
0.10% for both u and w, with slightly lower computational cost. Advantages
and limitations of each implementation approach of PBC are summarized in
Fig. 4.4.
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Figure 4.3: Comparison of average and standard deviation of the total errors
for different methods of dealing with periodic BCs.
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Periodic Boundary Condition in
Linear wave PINN

Lower total error

Lower periodic error

Soft

Lower cost Imperfect periodicity

Hard

Perfect periodicity Higher cost

Benefits

Types

Advantage Limitation Advantage Limitation

Figure 4.4: Benefits of using PBCs for modeling linear waves, and the advant-
ages and limitations of each implementation approach.

Figure 4.5 compares the the results of the PINN with hard PBC with those
of the PINNs with the trial functions in Eq. (3.14) (Hard KBBC 1) and in
Eq. (3.16) (Hard KBBC 2). While both succeeded in strictly satisfying the
boundary, they unintentionally restricted the solution space, resulting in higher
total errors, up to 2.36% for u and 2.10% for w. Figure 4.6 summarizes the
limitations and requirements of using trial functions for boundary enforcement.
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Figure 4.5: Comparison of average and standard deviations of total errors for
different methods of dealing with the KBBC.

Additionally, when ω was treated as an unknown, the PINN was able to
estimate it with an average error of 0.03%, while maintaining velocity prediction
errors below 0.16%. This demonstrates the model’s ability to solve inverse-like
problems using only physical laws, without requiring labeled data.

Compared to the previous work presented in paper I:

• The current paper introduces and evaluates both soft and hard approaches,
while the earlier study used only soft constraints for boundary conditions.

• This work tackles more complex settings, including unknown parameters
like ω, thus extending applicability to inverse problems.
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Hard Boundary Condition
Through Trial Function

Limitation 1:
It might be difficult to find a

proper trial function for some BCs.

Limitation 2:
The trial function is not unique, and
it is difficult to find the best one.

Limitation 3:
There is no guarantee for conver-
gence with every trial function.

Limitation 4:
There is a risk of ending up with unwanted
constraints, which increases the total error.

Requirement 1:
On the boundaries of interest, the neural
network output and its derivatives should
vanish and only the values or the func-
tions imposed by the BCs should exist.

Requirement 2:
In every location of the domain, other than
the boundaries of interest, the neural net-
work output or its derivative should exist.

Advantage:
The BC is set to the level of machine precision.

Figure 4.6: Requirements and limitations of hard boundary enforcement using
trial functions.

• Practical guidance is provided for implementing hard constraints using
trial functions and periodic layers.
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4.3 Paper III

4.3.1 Objectives and contributions

This study focuses on the implementation of PBCs in PINNs for modeling linear
wave dynamics. Unlike prior work that compared soft and hard enforcement,
this research provides a detailed evaluation of two different strategies for
imposing PBCs as soft constraints through the loss function. The effectiveness
of each strategy is assessed in terms of accuracy and consistency with the
periodic nature of the wave field.

In addition, the study investigates hard enforcement of PBCs via periodic
layers. Several formulations proposed in the literature are reviewed and ana-
lyzed, highlighting their theoretical requirements and practical implications. A
simplified variant of a known periodic function is proposed, and its performance
is tested to determine the minimum number of neurons needed to accurately
capture periodic behavior.

4.3.2 Methods

A fully connected PINN architecture was employed, consisting of eight hidden
layers with ten neurons each and using the tanh activation function. The
model was trained using a hybrid optimization strategy, beginning with Adam
optimizer, followed by the L-BFGS algorithm for fine-tuning. The overall
formulation, including the governing equations and case setup, follows the
framework established in Papers I and II.

Two soft constraint settings explored in this paper are

1. One-Period Approach, where the loss penalizes mismatches at domain
boundaries, as shown in Fig. 4.7. The periodic loss function is given by

Lperiodic = ∥u(0)− u(L)∥22. (4.1)

x

z

t

Figure 4.7: One-Period approach for setting soft periodic boundary condition.

2. Three-Period Approach, where periodicity is enforced by aligning
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points over three consecutive periods, as shown in Fig. 4.8. The periodic
loss function is defined as given by

Lperiodic = ∥u(x+ L)− u(x)∥22 + ∥u(x− L)− u(x)∥22. (4.2)

x

z

t

Figure 4.8: Three-Period approach for setting soft periodic boundary condition.

For hard constraint strategies, four periodic layer functions are analyzed,
which are based on functions introduced by Dong and Ni [39] and Lu et al. [40],
as shown in Fig. 4.9. The study also examines the impact of neuron count in
the periodic layer.

Two main methods for periodic layers

Method developed by Dong & Ni [2] Method developed by Lu et al. [8]

σ(A1 sin(αx+B1) + C1)

σ(A2 sin(αx+B2) + C2)

σ(A3 sin(αx+B3) + C3)

...

sin(αx)

cos(αx)

sin(2αx)

...

Figure 4.9: Methods developed for hard PBC.
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4.3.3 Results and discussion

The performance of different soft and hard PBC enforcement strategies is
evaluated using a benchmark linear wave problem. The results, obtained from
100 training runs for each approach, highlight the relative advantages and
limitations of each approach:

Soft constraints: As shown in Fig.4.10, the One-Period approach outper-
formed the Three-Period approach in reducing the total error in u and v. The
One-Period approach reduces the average periodicity errors of u and w from
1.34% and 1.58% to 0.10% and 0.07%, respectively, across 100 training runs.
In comparison, the Three-Period approach achieves periodicity errors of 0.17%
for u and 0.29% for w. These errors are computed by evaluating the differences
between predicted values at the periodic domain boundaries and normalizing
them by the maximum exact value of the respective variable in the domain.
The Three-Period approach often led to convergence to suboptimal solutions
(69% of runs).
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Figure 4.10: Errors in u and w without PBC and with PBC using One-Period
and Three-Period approaches.

Hard constraints: The best results are achieved using the simplified
function tanh(sin(αx+B)), which combines periodicity and nonlinear trans-
formation. This configuration yields the lowest average errors (0.18% for
u, 0.17% for w). Functions with additional parameters (like A and C in
A sin(αx + B) + C) do not offer additional modeling benefits but increased
training complexity.

Neuron count: Analytical and empirical findings confirm that two neurons
in the periodic layer are necessary for flexible and accurate approximation of
general periodic functions. Using only one neuron limits the optimizer due to
mathematical dependency between sine and cosine components.
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4.4 Paper IV

4.4.1 Objectives and contributions

This study investigates the application of PINNs to solve the classical lid-driven
cavity problem at Reynolds number Re = 100, a benchmark case known for its
smooth interior solution and singular behavior at the top corners.

Following the linear wave case, which is governed by a potential flow model,
the lid-driven cavity problem is considered to examine PINN performance on a
more complex system. Unlike the inviscid and irrotational assumptions in the
wave problem, the lid-driven cavity is governed by the incompressible Navier
Stokes equations and features strong nonlinear and viscous effects. Studying
this problem allows us to evaluate how PINNs perform when extended to more
realistic fluid dynamics settings.

The study first evaluates a baseline PINN using soft boundary condition
enforcement to assess its ability to resolve the general flow features and capture
the effects of corner singularities. To examine how different strategies affect the
solution accuracy near the singularities, trial functions are introduced for hard
boundary condition enforcement. Additionally, the use of spatially varying
weights in the loss function is explored to reduce the optimizer’s sensitivity to
corner effects and improve prediction accuracy.

4.4.2 Methods

The incompressible Navier Stokes equations serve as the governing equations.
A fully connected neural network with 8 hidden layers and 10 neurons per layer
was trained using a two-phase strategy: an initial 400,000 epochs of Adam
optimization followed by the L-BFGS optimizer. The baseline model uses loss
terms to enforce all boundary conditions.

In the cases with hard boundary conditions, two configurations of Hard
Constraints 1 and Hard Constraints 2 are tested. As shown in Table 4.2, Hard
Constraints 1 enforces u hard on the bottom and side walls via the trial function
in Eq. (3.18). Hard Constraints 2 enforces u hard on the top and bottom walls
using the trial function in Eq. (3.19). In both cases, v is enforced hard on all
walls using the trial function in Eq. (3.20).

Table 4.2: Boundary condition enforcement strategies for u and v in Hard
Constraints 1 and 2.

Velocity Boundary Hard Constraints 1 Hard Constraints 2

u Top Soft (loss term) Hard (trial function)
Bottom Hard (trial function) Hard (trial function)
Left Hard (trial function) Soft (loss term)
Right Hard (trial function) Soft (loss term)

v All boundaries Hard (trial function) Hard (trial function)
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In the cases that spatial varying weights are used, two weight functions,
introduced in Eqs. (3.21) and (3.22) are applied independently and in com-
bination, one for the PDE residual loss and one for the boundary loss on the
moving wall.

4.4.3 Results and discussion

For analyzing different models’ accuracy, their results are compared to CFD res-
ults obtained by OpenFOAM. The CFD simulation employed the simpleFoam
solver, and a structured mesh with uniform cell distribution was generated.
Convective terms in the momentum equations were discretized using the second-
order linearUpwind scheme, while the diffusive terms were treated with central
differencing linear. Since the case is steady, temporal terms were excluded.
Pressure–velocity coupling was handled via the SIMPLE algorithm, and conver-
gence was ensured by reducing the residuals of both momentum and continuity
equations below 10−7. These CFD results are validated by comparing to the
benchmark results of Ghia et al. [44].

The baseline PINN with all boundary conditions enforced softly produces
reasonably accurate results across most of the domain, but fails to capture the
correct solution near the top corners, as illustrated in Fig. 4.11.
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(d) Right boundary

Figure 4.11: baseline PINN solution at boundaries

Hard constraints: The use of trial functions improves adherence to
the prescribed boundary conditions in the regions where hard enforcement is
applied. However, the presence of discontinuities limits their effectiveness at the
top corners. As shown in Fig. 4.12, Hard Constraints 1, with hard constraints
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on the bottom and sides, outperforms Hard Constraints 2 in terms of error
metrics.
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Figure 4.12: Comparison of error metrics for the velocity components u and
v, between CFD results and three PINN configurations: the baseline PINN
with soft boundary conditions, PINN with Hard Constraints 1, and PINN with
Hard Constraints 2. Log scale used for clarity.

Spatially Varying weights: The weighting strategy provides another way
to mitigate the impact of corner singularities. Figure 4.13 shows that using
the ωmw weight alone yields modest improvements, while using only ωF weight
deteriorates accuracy. The combined use of both weights results in the best
balance, specifically in predicting v velocity component.
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Figure 4.13: Comparison of error metrics for the velocity components u and v,
between CFD results and four PINN configurations: the baseline PINN with
no weights, PINN with only ωF , PINN with only ωmw, and PINN with ωF and
ωmw. Log scale used for clarity.
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