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 A B S T R A C T

Bottlenecks can drastically reduce transport through porous materials. Previous work has concentrated on 
constriction-bottlenecks caused by variations in pore size. Here we study connectivity-bottlenecks, which 
are caused by many paths in the pore network passing through the same small part of the material. We 
develop three new connectivity descriptors, geodesic channel-strength, pore size-channels, and the closed 
pore-tortuosity that capture these effects.

Five sets of computer-generated pore geometries with a wide variation in characteristics were used to 
evaluate the effect bottlenecks have on diffusive transport. We show that low connectivity as measured by the 
new bottleneck descriptors, can decrease diffusive transport drastically, but that in these data sets constriction-
bottlenecks had a smaller effect. We also show that path-lengths and connectivity-bottlenecks can be highly 
correlated and adjustments using theoretical models of diffusive transport can help separate the effects. We 
provide a freely available software MIST that can be used to measure connectivity-bottleneck effects.
1. Introduction

With advances in microscopy technology, porous materials can 
now be imaged in great detail [1–3]. To make use of the images it 
is important to be able to quantify properties of the pore structure. 
The quantification can then be used to compare different materials, 
and to explain material properties such as diffusive transport rate, 
thermal conductivity, electrical conductivity and fluid permeability in 
terms of the pore geometry. A next step is to use this knowledge to 
optimize the design of the material. This type of material quantification 
and optimization has applications in biomedical and pharmaceutical 
science [4–6], composite materials design [7], electrochemical engi-
neering [8], and several other areas. However, often only basic pore 
geometry descriptors such as pore size, surface area and porosity are 
used to predict conductivity processes [9].1 Such geometry descriptors 
cannot capture bottleneck and other complex effects that the connec-
tivity of the pore network has on the material’s properties. We need 
more sophisticated methods for this.

Bottleneck effects are thought to be important for determining 
diffusive transport and related processes [11–14]. Previous work show 
that quantification of bottlenecks can be useful for correlating the pore 

∗ Corresponding author.
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1 Note that tortuosity factor, computed in e.g. TauFactor [10] and presented in [9], is not a geometry descriptor but is derived from transport or conductivity 
measurements, see the discussion in Section 2.

geometry with these processes, both for diffusive transport, electrical 
conductivity and fluid permeability, see e.g. [9,14–17]. The work in 
these papers have all been based on the idea of constriction-bottleneck 
effects, where the type of bottlenecks considered are caused by varying 
pore sizes across the pore network. The constrictivity descriptor intro-
duced in [14] has been shown to be effective at capturing this type of 
bottleneck. 

However, in a poorly connected porous material, bottlenecks effects 
can also occur when many paths through the pore network converge in 
a small portion of the material. We term this a connectivity-bottleneck. 
Connectivity-bottleneck effects are often observed in materials with 
large-scale inhomogeneities, such as the poorly connected polymer 
films studied in [18,19].

The two types of bottlenecks, connectivity-bottlenecks and
constrictivity-bottlenecks, are illustrated in Fig.  1. The effect on dif-
fusive flux is similar for both types of bottlenecks. Higher flux within 
each bottleneck, encircled in red, is contrasted against relatively low 
flux in the structure leading into and out of the bottleneck.

Connectivity-bottleneck effects cause an inhomogeneous profile of 
diffusion, permeability or conductivity, with high transport (conductiv-
ity) through well-connected regions and low transport (conductivity) 
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Fig. 1. Illustration of the two types of bottlenecks in simple pore structures. (a) A 
connectivity-bottleneck and (b) a constriction-bottleneck. Diffusive flux computed in 
these simple structures are shown, with bottlenecks circled in red. The flux direction 
is indicated by arrows within the structures. Larger arrows correspond to higher flux.

through poorly connected regions. This reduces the efficiency of the 
transport (conductivity) and can cause high stress on well-connected 
regions. In the case of electrical conductivity through porous battery 
electrodes, e.g., this type of inhomogeneous conductivity profile can 
cause early degradation and safety issues [20,21]. In the examples seen 
in Fig.  1, this is illustrated by the high flux within the bottlenecks and 
low flux in other parts of the structure. The efficiency of the transport is 
around 50% that of an optimal structure for the connectivity bottleneck 
(Fig.  1(a)), and around 70% of that of an optimal structure for the 
constriction bottleneck (Fig.  1(b)). Here the efficiency is measured by 
the transport ratio defined below.

Although we focus on diffusive transport, the same equations govern 
electrical conductivity and so the results apply equally to both. In 
applications such as pharmaceutical science, packaging and hygiene 
products, diffusive transport can be the main phenomena of interest. 
In applications such as electrochemical devices, complex phenomena 
govern the behaviour of the structure with interactions between e.g. ion 
transport, electrochemical reactions and electrical conductivity. Results 
presented in this paper, where the effect of bottlenecks caused by 
e.g. large scale inhomogeneities, are just as important for all of these 
applications. For the first category of applications where diffusive 
transport is the main interest, see [18]. Work such as [20–23] show 
that understanding the impact of complex pore network geometries are 
essential also for electrochemical devices, which makes quantifying and 
capturing the effect of bottlenecks important also for such application.

When constructing new methods for capturing connectivity bottle-
neck effects, we look to established methodology already used for quan-
tifying other aspects of the connectivity of pore networks. Geodesic 
tortuosity and related geometric tortuosity descriptors have previ-
ously been shown to be highly efficient at predicting diffusive trans-
port, permeability and equivalent processes [14,17,24]. In this pa-
per we introduce three additional descriptors which are based on 
geodesic paths/geodesic tortuosity and which capture different aspects 
of connectivity-bottlenecks: our recently introduced geodesic channel-
strength descriptor [18] and two new ones, the pore size-channel 
descriptor and the closed-pore-tortuosity descriptor.

The geodesic channel-strength descriptor is based on pores with 
many geodesic paths passing through it. However such a pore may not 
be a severe bottleneck if its size is large, or if there are alternative path-
ways that can relieve the pressure on that pore. The pore size-channel 
descriptor is similar to the geodesic channel-strength but additionally 
takes pore sizes into account. The closed-pore-tortuosity descriptor 
captures how much longer paths through the pore structure become 
if a pore with a high channel-strength is closed. The introduction of 
these descriptors give useful new understanding of pore structures, we 
believe. Examples of this are given by the small illustrative set of pore 
structures shown in Fig.  2, Fig.  3 and in Table  3. These examples show 
2 
how the bottleneck effects illustrated in Fig.  1 apply to more complex 
pore structures, and how the new method geodesic channel-strength 
can be used to quantify connectivity-bottleneck effects.

To evaluate the impact connectivity-bottlenecks have on diffusive 
transport and the predictive power of our new descriptors, we gen-
erated four large sets of pore structures with a wide range of path 
length and bottleneck effects. The first of these, the polymer film data 
set came from a model developed to simulate the pore structures in 
coatings of medical pellets. Two other, the Bottlenecks 1 and 2 data 
sets, were obtained from simpler network models, also inspired by 
polymer film pore structures. A fourth dataset, the reference data set, 
was constructed with pore structures which have varying path lengths 
but no bottleneck effects. Diffusion through the pore structures was 
computed with the software Gesualdo [25].

We fitted physically motivated logarithmic multiplicative regres-
sion models, below called core models, with rescaled computed diffu-
sive transport rate as response variable and compared our three new 
connectivity-descriptors to the existing descriptors constrictivity, pore 
size and geodesic tortuosity by computing their predictive power. The 
main result obtained from the regression analysis was that for our data 
sets the geodesic tortuosity has the strongest predictive power, and that 
adding the connectivity descriptors to the prediction equation improves 
accuracy more than the existing pore geometry descriptors constrictiv-
ity and pore size. Connectivity-bottlenecks and path-lengths were also 
found to be highly correlated, so separating them through the geodesic 
tortuosity and the connectivity-bottleneck descriptors presented in this 
paper can be challenging when not using physically motivated models.

The next section provides some background on diffusion in porous 
materials. Section 3 gives an overview of existing descriptors used 
for pore geometry quantification and introduces our new connectivity 
descriptors and Section 4 describes the numerical experiment and 
the computation methods. Section 5 presents the results of the nu-
merical simulations and the regression modelling, and the following 
sections contain a discussion of the results and our final conclusions. 
We throughout indicate how the freely available software [26] can be 
used for interactive exploration of pore structures, and in particular of 
connectivity-bottleneck effects.

2. Diffusive transport through pore structures

Diffusion is governed by the equation 𝐉 = −𝐷0∇𝑐 in combination 
with mass conservation 𝜕𝑐𝜕𝑡 = ∇ ⋅ 𝐉. Here 𝑐 denotes concentration, 𝐷0 is 
the diffusion coefficient, and 𝐉 = (𝐽𝑥, 𝐽𝑦, 𝐽𝑧) the diffusive flux. Diffusive 
transport can be driven by a concentration difference between an inlet 
and an outlet, as in the case of controlled release from pharmaceutical 
pellets coated with an EC/HPC polymer blend [24]. In this work, we 
consider a three-dimensional material with transport in the pore phase 
and an impermeable interface between pore and solid phase. We define 
the inlet to be at the bottom and outlet at the top, denoting the direction 
from inlet to outlet by 𝑧, and compute diffusion numerically in the 𝑧-
direction. We use the steady-state diffusive flux, i.e., the solution 𝐉 to 
the governing equations for which 𝜕𝑐𝜕𝑡 = 0.

Diffusive transport through a pore structure can be summarized 
by the effective diffusion coefficient 𝐷eff, defined as ⟨𝐽𝑧⟩ = −𝐷eff∇̃𝑐, 
where ⟨𝐽𝑧⟩ is the average of the steady-state diffusive flux in the 𝑧-
direction over the whole structure and ∇̃𝑐 = (𝑐out− 𝑐in)∕𝐿𝑧, with 𝐿𝑧 the 
length of the structure in the 𝑧-direction. Here 𝑐in and 𝑐out are fixed 
concentrations at the inlet and outlet, respectively, which drive the 
diffusive transport. We assume that 𝑐in > 𝑐out so the transport goes from 
the inlet to the outlet.

The transport ratio 𝑇𝑅 was defined in [24] as 

𝑇𝑅 =
𝐷eff
𝐷0𝜖

, (1)

where 𝜖 denotes the pore volume fraction. By the Wiener bounds [27], 
we have that 
𝑇𝑅 ≤ 1. (2)
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As discussed in [24], this bound is attained for a pore structure that 
has straight pores. The transport ratio measures how much slower 
transport is through a given pore structure than through an optimal 
pore structure with the same pore volume fraction.

For a pore structure with separate pores that each have constant 
pore size and for which the separate pores never intersect, the transport 
ratio satisfies 
𝑇𝑅 = 1∕𝜏2, (3)

where 𝜏 is the geodesic tortuosity defined below in Section 3.1.1, 
see [24].

Sometimes diffusive transport (or the mathematically equivalent 
electrical conductivity) is summarized as the resistive formation factor 
𝐹 = 𝐷eff

𝐷0
, or its inverse 𝑀 = 1∕𝐹 , termed the microstructure factor, 

relative conductivity or relative diffusivity [17,28,29]. We prefer the 
definition in (1), since it allows us to compare the transport efficiency 
between pore structures of different porosity, and relate it to an optimal 
pore structure. A related transport or conductivity summary is the indi-
rect diffusional tortuosity factor, or indirect electrical tortuosity factor, 
which is defined as 

√

1∕𝑇𝑅 [28], provided e.g. by TauFactor [10]. It 
relates the same information as the transport ratio, but the name can 
easily be mis-interpreted as relating only to path-length effects when 
in fact it captures all effects except pore volume. It is especially easy 
to mis-interpret as it is often called simply tortuosity factor. Taking 
the square root and using the term tortuosity factor can be derived 
from the simple model (3), as in that case 

√

1∕𝑇𝑅 = 𝜏. When we 
work with more complex structures, however, we prefer to use 𝑇𝑅
with its interpretation of reduction in transport compared to an optimal 
structure.

To aid the interpretation of diffusion flux images, we compute the 
relative flux 𝐉(𝑝)∕‖𝐉𝑜𝑝𝑡‖ as it was defined in [24], where 𝐉(𝑝) is the flux 
computed in the point 𝑝 and ‖𝐉𝑜𝑝𝑡‖ = 𝐷0|∇̃𝑐| is the norm of the flux in 
an optimal pore structure. An optimal pore structure hence has relative 
flux equal to (0, 0, 1). The transport ratio can also be computed as the 
average of 𝐽𝑧(𝑝)∕‖𝐉𝑜𝑝𝑡‖, over the pore space. Thus the average is always 
below or equal to one even though the relative flux can take values 
above one in bottlenecks.

3. Pore geometry quantification methods

This section first briefly discusses existing pore geometry quantifica-
tion methods, and in particular the descriptors we will use in the rest of 
the paper. Then our new methods for quantifying connectivity bottle-
necks, the geodesic channel-strength descriptor, the pore size-channel 
descriptor, and the closed pore-tortuosity descriptor are described.

3.1. Existing quantification methods

3.1.1. Geodesic tortuosity
Path-length has long been considered an essential component in 

determining diffusive transport rates and related processes, so many 
definitions of tortuosity are available, see [28] for a recent review. Here 
we use the geodesic tortuosity, which only relies on the pore geometry 
for its definition.

The point-wise geodesic tortuosity 𝜏(𝑝), defined for a point 𝑝 ∈ 𝑃𝑐𝑜𝑛𝑛, 
is the length of the geodesic path 𝐺𝑒𝑜𝑃𝑎𝑡ℎ(𝑝) through the point which 
goes from the inlet to the outlet, divided by the distance between 
the inlet and the outlet of the pore structure. Here 𝑃𝑐𝑜𝑛𝑛 denotes the 
part of the pore space that is connected to both the top and bottom. 
Following [24], the geodesic tortuosity 𝜏 is then defined as 

𝜏 = 1
|𝑃𝑐𝑜𝑛𝑛| ∫𝑃𝑐𝑜𝑛𝑛

𝜏(𝑝)𝑑𝑝, (4)

i.e., the geodesic tortuosity is computed by averaging the point-wise 
tortuosity 𝜏(𝑝) over the connected pore space. This or similar geometric 
definitions of tortuosity have been used in e.g. [24,30–32]. Geodesic 
3 
tortuosity is sometimes computed by averaging 𝜏(𝑝) only over pores 
located at the top or bottom of the pore structure, see e.g. [14]. 
However, we showed in [24] that the geodesic tortuosity factor defined 
as in (4) by averaging over the whole pore space provides considerable 
improvements in explaining diffusive transport.as compared to the 
geodesic tortuosity defined by averaging only over the top or bottom 
of the pore structure.2

The geodesic tortuosity and the pointwise geodesic tortuosity can 
be computed interactively and visualized in 3D using the method 
geodesic tortuosity in MIST. This can build a basic understand-
ing of the connectivity properties of the pore network and help to 
identify potential connectivity-bottlenecks.

3.1.2. 2D and 3D pore size
Pore size measurement, sometimes called granulometry, determines 

size of objects of complex shape using simple structuring elements and 
the morphological operations erosion and dilation [33–36].

The standard 3D pore size descriptor uses a spherical structuring 
element. For a point 𝑝 in the pore space, it is defined as the size of the 
largest sphere that can fit in the pore space and cover 𝑝. See e.g. [37,38] 
for a description of how to compute the spherical pore size. Spherical 
pore sizes can be computed and visualized in [26] using the method 
pore-size distribution 3D.

Analogously to the spherical pore size, we can define other pore 
sizes by changing the structuring element. A 2D pore size, constructed 
using a circle oriented in one of the 𝑥𝑦-, 𝑥𝑧- and 𝑦𝑧-planes, can be 
computed in MIST using the method pore size distribution 2D. 
We use 2D pore sizes when defining pore sizes for the Bottlenecks 1- 
and Bottlenecks 2-datasets in Section 4.2. This since these datasets 
consist of 2D pore structures with an added thickness in the third 
dimension.

3.1.3. Constrictivity
Constriction-bottleneck effects in a simple pore with varying pore 

size, such as that shown in Fig.  3(B), can be quantified using the 
constriction factor 𝐴min∕𝐴max, where 𝐴min is the area of the smallest 
cross-section and 𝐴max is the area of the largest cross-section. For 
more complex pore structures, a method commonly used for quanti-
fying constrictivity uses the median of spherical pore size, 𝑟max, to 
define 𝐴max and the median of the numerically simulated mercury 
intrusion porosimetry-pore size (MIP-pore size), 𝑟min, to define 𝐴min. 
MIP-pore size was defined in [37], and the constrictivity in [39]. 
See e.g. [9,14,24,29,39,40]; and [17] for implementations within sta-
tistical and machine learning models correlating constrictivity with 
diffusive transport, permeability and electrical conductivity. Alterna-
tive definitions of constrictivity have been used, see e.g. [41]; 𝑟min and 
𝑟max have been used on their own as descriptors [17]; and so have 
the related descriptors the hydraulic radius [29] and the geometric 
constrictivity [9].

The connectivity of the pore network impacts the MIP-pore size 
in a point 𝑝 in that there has to be a path through which a sphere 
of a specific size can travel to the point. Thus the connectivity also 
influences the constrictivity. Connectivity bottlenecks, defined as parts 
of the material where many paths through the path network converge, 
is however not captured by the constrictivity.

2 In [24] we defined the geodesic tortuosity factor 𝜏 by 1∕𝜏2 = 1
|𝑃 |

∫𝑃
1

𝜏(𝑝)2
𝑑𝑝. 

Here 𝑃  denotes the full pore space and 𝜏(𝑝) is defined to be ∞ and 1
𝜏(𝑝)2

 is 
defined to be zero for points 𝑝 in the pore space that are not connected to the 
inlet and outlet. The main reason that 𝜏 performed better than the geodesic 
tortuosity defined at the top or bottom was that it is averaged over the full 
pore space and so uses more of the available connectivity information. As the 
definition of 𝜏 in (4) is simpler than the definition of the geodesic tortuosity 
factor 𝜏, and still averages over a large portion of the pore space, we prefer 
to use this definition of 𝜏 here.
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Constrictivity and MIP-pore size in 2D and 3D are implemented 
in [26] through the method intrusion porosimetry. Constrictiv-
ity was computed from 3D MIP-pore size for the Polymer film dataset, 
whereas 2D versions of MIP-pore size was used for the Bottlenecks 1 
and Bottlenecks 2-datasets.

3.2. Quantification of connectivity-bottlenecks

3.2.1. Geodesic channel-strength
The geodesic channel-strength [18] quantifies connectivity-

bottleneck effects caused by many paths through the pore network 
converging in a small part of the material. It is obtained as follows: 
A large number of geodesic paths 𝐺 = {𝐺𝑒𝑜𝑃𝑎𝑡ℎ(𝑝)} corresponding 
to points 𝑝 that are well distributed throughout the pore system are 
computed. Next, the pore space is divided into 𝐷 boxes of equal 
volume. The geodesic channel-strength in each box is then obtained 
as the proportion of the number of paths in 𝐺 that passes through the 
box. To summarize the channel-strength for a pore structure, we used 
the maximum of the channel strengths in the 𝐷 boxes for the small 
structures considered in Section 5.1, and we used transformed quantiles 
and standard deviations of the channel strengths in the regression 
experiments in Sections 5.3 and 5.4, see Table  1.

It should be noted that an alternative computational method was 
used in [18]. There each path in 𝐺 was given a thickness and the 
channel-strength in each point was computed as the number of paths 
passing through the point. The reason for instead dividing the space 
into boxes is that this is more computationally efficient.

One way of understanding connectivity in a pore structure is to find 
the main geodesic channels. These are obtained by combining boxes 
with a high channel-strength. They summarize important features of 
the connectivity of the pore network. Fig.  2, bottom left and right 
panels, illustrates how the geodesic channel-strength captures the large 
trends in a synthetic pore structure. There are three main channels 
through this structure. The middle main channel (indicated with red 
arrow) has strength 0.43, i.e. 43% of all geodesic paths pass through 
it. The geodesic channel-strength computed with two different box sizes 
(bottom left and bottom right panel) show roughly the same trends. The 
2D-image of the pore structure was given a thickness by duplicating 
the image 20 times, resulting in an 3-D image with 480 × 20 × 270 
voxels in which diffusion was simulated numerically. The norm of the 
relative flux in this 3-D image (top right panel) shows that there are 
strong bottleneck effects, and that these correspond to the three main 
channels. Even though there is a high relative flux through the main 
channels, the overall transport ratio has a low value, 𝑇𝑅 = 0.16. This is 
because transport is inefficient in regions of the pore network that lead 
to the main channels, such as the pores indicated by the red rectangle 
in the top right panel.

The geodesic channel-strength is similar to the betweenness central-
ity in graph theory, which captures the relative importance of vertices 
in a graph [42]. However, in contrast to the betweenness centrality 
which is computed on graphs, the geodesic channel-strength is com-
puted for continuous pore systems and only uses paths that connect the 
bottom and the top of the pore structure. This is more relevant for the 
application of diffusive transport driven by a concentration difference 
between top and bottom.

3.2.2. The pore size-channel and closed pore-tortuosity descriptors
Whether a pore is a bottleneck or not depends both on the number 

of paths that pass through it, i.e., on its geodesic channel-strength, and 
on the size of the pore and of neighbouring pores. If there is a high 
number of paths passing through a pore that is large then this pore is 
not a bottleneck for diffusive transport. Whether or not a pore with 
a high channel-strength is a bottleneck also depends on if there are 
alternative pathways that can relieve the pressure on that pore. These 
issues, the size of a pore with high channel-strength and the existence 
4 
of alternative pathways, are taken into account by the following two 
new pore geometry descriptors.

The first one, the pore size-channel descriptor, is the relative mean 
pore size of the channels with highest strengths, where the mean is 
taken of pore sizes of the voxels which have the 5% or 1% high-
est geodesic channel-strengths, and with the mean standardized by 
dividing by the mean pore size of all voxels in the pore space.

The second impact descriptor, the closed pore-tortuosity descriptor, 
is computed by closing pores with high channel-strength, i.e., by re-
moving a subset of the pore space so that no paths can pass through 
this subset. The subsets that are closed are defined using the geodesic 
distance to the top as follows: The range of geodesic distance values is 
first divided into 100 intervals of equal length {𝐼 (1),… , 𝐼 (100)}. Let 𝑃 (𝑗)

be the part of the pore space with geodesic distance in interval 𝐼 (𝑗) and 
𝑛(𝑗) the number of disconnected components of the set 𝑃 (𝑗). Denoting 
such a disconnected component 𝑃 (𝑗)

𝑖 , the pore space is partitioned into 
subsets 𝑃 (𝑗)

𝑖 , 𝑖 = 1,… , 𝑛(𝑗), 𝑗 = 1,… , 100. As we want to quantify the 
impact of constriction-bottlenecks, 100 of the subsets 𝑃 (𝑗)

𝑖  which have 
the 25% highest geodesic channel-strengths are chosen at random to be 
closed. For each such chosen subset, a modified structure is created by 
removing 𝑃 (𝑗)

𝑖  from the pore space, thus closing 𝑃 (𝑗)
𝑖 .

The geodesic tortuosity 𝜏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is then computed for each modified 
structure. We define

𝑞𝜏 =

{

0 if the modified structure is disconnected,
𝜏𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙∕𝜏𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 otherwise,

where 𝜏𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the geodesic distance of the original, unmodified, 
structure. The closed pore-tortuosity descriptor is then set to the mean 
value of 𝑞𝜏 over the 100 modified structures for the structures in the 
regression experiments, and the min value of 𝑞𝜏 for the small structures 
considered in Section 5.1.

The difference in geodesic tortuosity between the original structure 
and a modified structure quantifies to what extent there are alternative 
pathways to those passing through the closed pores. An alternative 
way to quantify the impact of closing a pore would be to compute 
the geodesic channel-strength with the bottleneck closed, and compare 
the results with the original geodesic channel-strength. The geodesic 
tortuosity is however less time-consuming to compute, which is why 
the impact was quantified by comparing the geodesic tortuosity before 
and after closing pores.

4. A diffusive transport prediction experiment

This section introduces the simulation experiment which was made 
to study the predictive power of the different pore structure descriptors. 
The experiment used the polymer film and the Bottleneck 1 and 2 data 
sets. The reference data set was not included in the experiment.

The aim of the experiment was not just prediction, but also the 
understanding it gives on how different properties of pore structures 
influence diffusive transport. We first describe the regression models 
which were used for prediction, then the simulated pore structure data 
sets, and finally give of brief description of how diffusive transport 
through the structures was computed.

4.1. Multiplicative regression models

The goal is to find a model that predicts the transport ratio well 
from the geometry of an arbitrary pore structure. There is a long 
list of predictors that possibly could have a considerable effect on 
diffusion. Complex models that have been used include (subsets of) 
pore volume fraction 𝜖, surface area, geodesic/geometric tortuosity 𝜏
(𝑚𝑒𝑎𝑛𝜏 and 𝑆𝑇𝐷𝜏 ), pore size (𝑚𝑒𝑎𝑛𝑃𝑆 , 𝑚𝑒𝑑𝑖𝑎𝑛𝑃𝑆 and 𝑆𝑇𝐷𝑃𝑆 ), MIP-
pore size (𝑚𝑒𝑎𝑛𝑀𝐼𝑃 , 𝑚𝑒𝑑𝑖𝑎𝑛𝑀𝐼𝑃 , and 𝑆𝑇𝐷𝑀𝐼𝑃 ) and constrictivity de-
scriptors as predictors [14,17,24,29,32,41]. To the best of our knowl-
edge, connectivity-bottleneck effects have not been studied in previous 
work.
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Fig. 2. 2D-illustration of geodesic channel-strength. Top left: the pore structure. Top right: diffusive transport. Relative flux > 1 indicates a bottleneck effect and relative flux < 1
indicates inefficient transport. Bottom left: geodesic channel-strength computed with smaller boxes. Bottom right: geodesic channel-strength computed with larger boxes. The red 
arrows in the bottom left and right panels indicate a main channel and the red arrow in the top right panel points to the corresponding bottleneck. The red rectangle indicates 
an area with pores which lead to the bottleneck and which have low relative flux.
Table 1
Predictors used in the multiple regression experiment.
 Predictor Explanation  
 𝜏 Geodesic tortuosity  
 𝑒−𝑆𝑇𝐷𝜏 Transformed standard deviation of geodesic tortuosity  
 constrictivity median𝑀𝐼𝑃 ∕median𝑃𝑆  
 𝑒− 𝑆𝑇𝐷𝑃𝑆

𝑚𝑒𝑎𝑛𝑃𝑆 Transformed normalized standard deviation of pore sizes 
 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 Transformed 99% quantile of channel strength  
 1 − 0.9 ⋅ 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 Transformed 95% quantile of channel strength  
 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 Transformed standard deviation of channel strength  
 pore size-channels As defined in Section 3.2.2  
 closed pore-tortuosity As defined in Section 3.2.2  

Table  1 lists the descriptors which were used to predict diffusive 
transport. As discussed above we know that geodesic tortuosity is a 
powerful predictor of diffusive transport and has a given place in any 
prediction model. The descriptors 𝑆𝑇𝐷𝑃𝑆∕𝑚𝑒𝑎𝑛𝑃𝑆 and 𝑆𝑇𝐷𝜏 were 
found to be relevant for diffusive transport prediction in [24]. Instead 
of 𝑆𝑇𝐷𝜏 , we here use 𝑆𝑇𝐷𝜏∕𝜏 as a predictor in order to reduce the 
correlation with 𝜏, and additionally we used the transformation 𝑒−𝑥
for the predictors 𝑆𝑇𝐷𝑃𝑆∕𝑚𝑒𝑎𝑛𝑃𝑆 and 𝑆𝑇𝐷𝜏∕𝜏. The 𝑚𝑒𝑎𝑛𝑃𝑆 is not a 
physically motivated predictor since pore size has no direct effect on 
diffusive transport; however, we instead used the standard deviation of 
the pore size divided by mean pore size as a predictor since this could 
be correlated with bottleneck effects caused by variations in pore size.

Three descriptors based on geodesic channel-strength were used, 1−
0.9 ⋅𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 1−0.9 ⋅𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , where 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 
𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 denote the 95%- and 99%-quantile of the geodesic channel-
strength respectively. The transformation of the quantiles was done 
to obtain a positive (instead of a negative) correlation between the 
quantile-based predictors and 𝑇𝑅.

To avoid overfitting, and to increase the possibility of obtaining a 
prediction model that could work for many types of data, we search 
for regression models that are sound from a physical perspective. A 
first step to obtain such models is to make sure that the models fits 
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simple pore structures for which the relationship (3) between the pore 
geometry and 𝑇𝑅 is known to hold. Motivated by this, we define a core 
model by the following equation, 

𝑇𝑅 = 𝑃
𝜏2

, (5)

where 𝑃  is an unknown factor that take values in the interval [0, 1]
which can depend on different predictors. The factor 𝑃  then will equal 
1 pore structures for which model (3) holds. This in particular means 
that the core model holds for pore structures with straight pores, in 
which case 𝜏 = 1 and the transport ratio equals 1. For more complex 
pore structures other factors, including bottleneck effects, influence the 
transport rate. The core model can be made to fit also such structures 
by adding these as predictors of the factor 𝑃 .

We considered four different variations of (5): The first two are of 
the form 𝑇𝑅 = 𝛼𝑥𝛽1∕𝜏𝛾 where 𝑥 is an additional predictor to be chosen 
and 𝛼, 𝛽1 and 𝛾 are regression parameters to be estimated. In the first of 
these, we fix 𝛾 = 2, as in the core model, whereas 𝛾 is estimated for the 
second model. These models are termed the one-predictor, core-model 
and the one-predictor, free exponent -model, respectively. The next two 
models are the same as the first two, except that an additional predictor 
𝑥2 is added to the model, so that 𝑇𝑅 = 𝛼𝑥𝛽11 𝑥𝛽22 ∕𝜏𝛾 . These models are 
termed the two-predictor, core-model if the exponent of 𝜏 is fixed to be 
equal to 2 and otherwise it is called the two-predictor, free exponent -
model. These models are displayed in Table  2. In the supplementary 
material models of the form 𝑇𝑅 = 𝛼𝑥𝛽1∕𝜏𝛾 with the exponent 𝛾 fixed 
to some value 𝑘 ∈ [2, 𝑘max] are also considered.

As in [24], we choose and estimate parameters in the models by 
stepwise linear regression on the logarithm of the models. Thus, the 
linear regression models we fit are all of the form

log(𝑦𝑖) = 𝛼 +
𝐾
∑

𝑘=1
𝛽𝑘 log(𝑥𝑘,𝑖) + 𝜖𝑖,

for 𝐾 = 1 or 2, and where 𝜖𝑖 are independent centred Gaussian random 
variables, 𝑥𝑘,𝑖 is the value of the 𝑘:th predictor for the 𝑖:th observation, 
𝛽  is the corresponding regression coefficient, 𝛼 is an intercept, and 
𝑘
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Table 2
Regression models. In the equations 𝑥1 and 𝑥2 are the predictors, 𝛼, 𝛽1 ,
and 𝛽2 are parameters to be estimated.
 Model name Model equation  
 Core model 𝑇𝑅 = 𝑃

𝜏2
 

 One-predictor core-model 𝑇𝑅 = 𝛼𝑥𝛽1∕𝜏2  
 One-predictor free exponent model 𝑇𝑅 = 𝛼𝑥𝛽1∕𝜏𝛾  
 Two-predictor core-model 𝑇𝑅 = 𝛼𝑥𝛽11 𝑥𝛽22 ∕𝜏2 
 Two-predictor free exponent model 𝑇𝑅 = 𝛼𝑥𝛽11 𝑥𝛽22 ∕𝜏𝛾 

𝑦 = 𝑇𝑅⋅𝜏2 for the core models and 𝑦 = 𝑇𝑅 for the free exponent-models 
where 𝜏 is one of the predictors. Furthermore, to obtain multiplicative 
regression-models that fit with the core model, the predictors were 
restricted to take values in the interval [0, 1].

4.2. Pore structure datasets

In the regression analysis we used three data sets, the polymer film 
data set, the Bottlenecks 1 and the Bottlenecks 2 data sets. These are 
described next. We also used a reference dataset consisting of simple 
pore structures which should satisfy (3). The geodesic tortuosity 𝜏 of 
the reference pore structures varied from 1.01 to 3.42, with 222 pore 
structures in total.

The polymer film data set was obtained by simulation of a thresh-
olded Gaussian random field model [43]. This model mimics the porous 
polymer film coatings which are used to control drug release from 
pharmaceutical pellets. It has parameters 𝜃𝑥𝑦,⋆ and 𝜃𝑧,⋆ which control 
the regularity of the pore geometry in the 𝑥, 𝑦-plane and in the 𝑧-
direction. A high value of 𝜃𝑥𝑦,⋆ gives pore structures that are highly 
regular, whereas a low value results in pore structures that have a 
larger variation in pore size and pore connectivity, and therefore pore 
structures with stronger bottleneck effects. Increasing 𝜃𝑧,⋆ results in 
pore structures with a higher geodesic tortuosity. In this work we used 
four different parameter combinations (𝜃𝑥𝑦,𝑙𝑜𝑤, 𝜃𝑧,𝑙𝑜𝑤), (𝜃𝑥𝑦,𝑙𝑜𝑤, 𝜃𝑥,ℎ𝑖𝑔ℎ), 
(𝜃𝑥𝑦,ℎ𝑖𝑔ℎ, 𝜃𝑧,𝑙𝑜𝑤) and (𝜃𝑥𝑦,ℎ𝑖𝑔ℎ, 𝜃𝑥,ℎ𝑖𝑔ℎ) to generate pore structures. We 
used two different pore volume fractions for each parameter combi-
nation, creating structures differing by about 5 percentage points. The 
Polymer film-dataset consists of 339 pore structures in total.

The Bottlenecks 1 data set is made up of 3D-networks grown from 
the bottom to the top and includes 71 pore structures. The Bottlenecks 2 
data set were generated from 2D-networks obtained by randomly re-
moving edges in a regular 2D-grid and randomly assigning each edge 
one of two sizes. Two ratios between the smaller and larger edges 
were used. It consists of 280 pore structures. Details on how the 
datasets were produced are given in the supplementary material. The 
supplementary material also contains images of pore structures from 
each of the four datasets.

4.3. Computation

The pore geometry quantification used Matlab [44] and the geodesic
distance, which is needed to compute the geodesic tortuosity and the 
geodesic channel-strength, was obtained using the function
bwdistgeodesic. The sizes of the boxes used to compute the
geodesic channel-strengths were different for the different datasets, and 
were roughly proportional to the mean pore size of the structures. The 
methods used to perform the geometry quantifications in this work are 
all included in the MIST software. The pore size-channel and close pore-
tortuosity descriptors are not explicitly included in MIST, however, the 
pore size, geodesic tortuosity and geodesic channel-strength needed to 
compute them are included.

Diffusive transport was calculated numerically with the lattice-
Boltzmann method in the software Gesualdo [25]. We used high preci-
sion, meaning that the tolerance stopping criterion in Gesualdo was set 
to a low value and that the resolution of the pore structures were high. 
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This meant that the computational cost was quite high, especially for 
the Polymer film and Bottlenecks 2 datasets, and hence a relatively low 
number of pore structures were simulated. All computations were per-
formed on resources at Chalmers Centre for Computational Science and 
Engineering (C3SE) provided by the Swedish National Infrastructure for 
Computing (SNIC).

To assess the quality of the numerical computation of diffusive 
transport we computed mass transport through each slice in the 𝑧-
direction, standardized by the mean of transport through all slices. 
The exact steady-state solution to the diffusion equations should have 
standardized mass transport through each slice equal to 1, if boundary 
effects are disregarded. Boundary effects were only present in the 
Polymer film-dataset, as the other three datasets were constructed so 
that the boundaries of the pore structures were solid except at the inlet 
and outlet. The quality of the diffusive transport computations seem 
to be good for all datasets, although the quality in the reference data 
set is somewhat lower than in the other datasets, see Figure S11 in the 
Supplementary Material.

5. Results

The pore structure in Fig.  2 in the introduction was taken from 
the Bottlenecks 2 data set. As a further illustration of the impact of 
bottlenecks we in the next section compare a structure with straight 
pores with four other somewhat more complicated pore structures cut 
out from this data set. Section 5.2 displays the basic features of the 
pore structure data sets used in the paper. The results from the multiple 
regression models are presented in the following sections.

5.1. Examples of impact of the new descriptors

The plots in Fig.  3 show the relative flux in five pore structures 
chosen to have different connectivity and constriction bottleneck effects 
and to make it possible to separate these from path-length effects. The 
corresponding values of transport ratios, geodesic tortuosities and our 
new descriptors are given in Table  3. The pore structures (A) - (C) all 
have the same geodesic tortuosity, and the differences between their 
transport ratios are hence caused by bottleneck effects. Structure (A) 
only has path-length effects. Structure (B) is the same as structure 
(C) except that it has constant pore size and thus only connectivity 
bottlenecks. Structures (C), (D), and (E) are from the Bottlenecks 2 
dataset and have both connectivity and constriction bottlenecks.

Table  3 shows that the connectivity bottlenecks in (B) and (C) 
have a drastic effect, they make transport less than half as efficient as 
that in structure (A). However, in this example the added constriction 
bottleneck in (C) only has little impact on the transport ratio.

The constriction bottleneck effects are captured by the maximum 
channel strength. For (B) and (C) the maximum channel strengths 
are equal to one but for (A) the maximum strength is around four 
times lower, leading to the much higher transport ratio. As for struc-
tures (D) and (E), they have higher maximum channel-strengths but 
lower geodesic tortuosity than structure (A). These higher constriction-
bottleneck effects but lower path lengths in (D) and (E) can be thought 
to cancel out as (A), (D) and (E) have similar transport ratios.

The pores in structures (A) and (B) have constant sizes and thus 
the pore size-channel descriptor is one for these structures. The pore 
size-channel descriptor by itself does not however discern structure (C) 
which has a smaller transport ratio from structures (D) and (E).

The minimum closed-pore tortuosity separates structure (A) from 
structures (B)-(D), but not from structure (E). Zero minimum closed-
pore tortuosity here means that the structure becomes disconnected 
after closing a pore. It is thus clear from both the maximum channel-
strength and the minimum closed pore-tortuosity that structures (B) 
and (C) differ from the other three in constriction bottleneck-effects.



S. Barman et al. Computational Materials Science 256 (2025) 113942 
Table 3
Transport ratios and descriptors for the pore structures in Fig.  3. 
 Structure TR Tortuosity max channel-strength Pore-size channel min closed pore-tortuosity 
 (A) 0.59 1.32 0.23 1 0.92  
 (B) 0.27 1.32 1 1 0  
 (C) 0.26 1.32 1 0.85 0  
 (D) 0.55 1.08 0.42 0.89 0.84  
 (E) 0.57 1.07 0.36 0.86 0.94  
Fig. 3. Illustration of the impact of path-length, constriction-bottlenecks and connectivity-bottlenecks on diffusive transport rates. Relative flux shown in (A) a structure with only 
path-length effects; (B) a structure with path-length and connectivity-bottleneck effects; and (C) - (E) structures with path-length, connectivity-bottleneck and constriction-bottleneck 
effects. Structures (A)–(C) have the same geodesic tortuosity. Relative flux > 1 indicates a bottleneck effect and relative flux < 1 indicates inefficient transport.
5.2. Relationship between transport ratio, geodesic tortuosity, and pore 
volume for the four data sets

Fig.  4 shows that the upper limit (2), 𝐷𝑒𝑓𝑓
𝐷0

= 𝜖, where 𝜖 is the 
pore volume, is satisfied by the polymer film, the Bottlenecks 1 and 
2, and the reference data sets, as it should. The simple model (1) 
holds for the reference dataset and so the plot for this dataset in Fig. 
5 is as expected. For the other three datasets, 𝑇𝑅 is lower than in 
the simple model which also is as expected as there are constrictivity 
and connectivity bottlenecks in these datasets. In Fig.  5 there is an 
approximately log-linear relationship between 1∕𝜏2 and 𝑇𝑅 when each 
dataset is considered separately. The results of fitting a regression 
model 

log(𝑇𝑅) = 𝛼 log(𝜏) (6)
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Table 4
Multiplicative regression-models fitted on the logarithm with no intercept.
 Dataset Fitted model MSE 
 The reference-dataset 𝑇𝑅 = 1∕𝜏2.3 0.01 
 All datasets except the reference-dataset 𝑇𝑅 = 1∕𝜏5.7 0.05 
 All datasets 𝑇𝑅 = 1∕𝜏3.8 0.35 

to the data sets is shown in Table  4. It can be seen that the exponents 
are different in the different data sets, and except for the reference data 
set they are far from the theoretical exponent 2.

5.3. Regression analysis of the one predictor core-model

Table  5 shows that using 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 in the one predictor 
core-mode 𝑇𝑅 ⋅ 𝜏2 = 𝛼𝑥𝛽1  (in the table called the full model) gives 
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Fig. 4. 𝐷𝑒𝑓𝑓

𝐷0
 against pore volume 𝜖 on log-scale. Each circle represents one pore structure, with circles of different sizes and colours for the different data sets. The diagonal line 

is the bound 𝐷𝑒𝑓𝑓

𝐷0
≤ 𝜖.
Fig. 5. TR against 1∕𝜏2 on log-scale. Each circle represents one pore structure, with circles of different sizes and colours for the different data sets. The diagonal line shows TR 
for the model 𝑇𝑅 = 1∕𝜏2.
the largest reduction of MSE and of relative standard deviation of 
residuals, as compared to a null model 𝑇𝑅 ⋅ 𝜏2 = 𝛼. The fitted models 
were computed from the full data sets and the values of MSE and 
relative standard deviations were obtained from averages of 10-fold 
cross-validation repeated 10 times with different partitions. Tests of 
the hypothesis that parameters were different from 0 gave p-values less 
than 0.05 for all cross-validations, except for constrictivity in all data 
sets, for closed pore tortuosity in the Bottlenecks 2 data set, and for 
𝑒−𝑆𝑇𝐷𝑃𝑆∕𝑚𝑒𝑎𝑛𝑃𝑆  in the Bottlenecks 1 data set.

Table S1 in the supplementary material give the corresponding 
results for the one-predictor, free exponent model. It shows that if 𝜏 is 
included as predictor the other predictors give a much smaller reduc-
tion of MSE and of relative standard deviation. A further perspective on 
this is given by Table S5 in the supplementary material. It in particular 
shows that the one-parameter core model with 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 as 
predictor has about the same predictive skills as the model (6).

5.4. Regression analysis of the two predictor core-model

Also for the full two predictor core-model 𝑇𝑅 ⋅ 𝜏2 = 𝛼𝑥𝛽11 𝑥𝛽22  the 
predictor 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 gave the largest reduction of MSE, as 
compared with the null model 𝑇𝑅 ⋅ 𝜏2 = 𝛼, see Table  6. The second 
predictor was different for the different data sets.

The fitted models were computed from the full data set and the 
values of MSE and relative standard deviation were obtained from the 
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averages of 10-fold cross-validation repeated 10 times with different 
partitions. Tests of the hypothesis that parameters were different from 
0 gave p-values less than 0.05 for all cross-validations for the three 
models in the table.

Table S2 in the supplementary material give the corresponding 
results for the two predictor, free exponent models. As for the one pre-
dictor core model, it shows that in this model the other predictors give 
a much smaller reduction of MSE and of relative standard deviation.

6. Discussion

Prediction using the simple model (3), i.e. the core model (5) with 
𝑃 = 1, fits the reference-dataset well, see Fig.  5 and the prediction 
model 𝑇𝑅 = 1∕𝜏2.3 obtained in Table  4. Thus the physical theory which 
motivated the core model works for this data set, as it should.

Table  4 and Fig.  5 also show that the model (6), i.e. log(𝑇𝑅) =
𝛼 log(𝜏) gives relatively good predictions for the other data sets, how-
ever with rather different values of 𝛼. A reason for this could be that 
in these data sets there is a strong correlation between the unknown 
factor 𝑃  in the core model and the geodesic tortuosity 𝜏. It is expected 
that there should be a relatively monotone relationship between 𝜏 and 
the different descriptors which form part of 𝑃 . It is also reasonable 
to expect that the relationship between 𝑃  and 𝜏 would be different 
for different datasets. What is perhaps surprising is that the expected 



S. Barman et al. Computational Materials Science 256 (2025) 113942 
Table 5
Logarithmic regression of the full one predictor core-model. The best, second best 
and third best MSE ratio for each dataset are in bold and the best MSE ratio is 
underlined. MSE ratios and relative standard deviations are not listed for models for 
which 𝑀𝑆𝐸𝑓𝑢𝑙𝑙

𝑀𝑆𝐸𝑛𝑢𝑙𝑙
≥ 1. The relative standard deviations for the null model where 0.19 

(Polymer film), 0.23 (Bottlenecks 1) and 0.33 (Bottlenecks 2).
 Predictor 𝑥 Full model 𝑀𝑆𝐸𝑓𝑢𝑙𝑙

𝑀𝑆𝐸𝑛𝑢𝑙𝑙
, [ 𝑆𝑇𝐷𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑚𝑒𝑎𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
, full model]

 Polymer film  
 Constrictivity 𝑇𝑅 ⋅ 𝜏2 = 0.3 –, [–]  
 𝑒−𝑆𝑇𝐷𝜏 ∕𝜏 𝑇𝑅 ⋅ 𝜏2 = 0.5𝑥5.5 0.85, [0.16]  
 Pore size-channels 𝑇𝑅 ⋅ 𝜏2 = 0.2𝑥−0.8 0.97, [0.18]  
 Closed pore-tort. 𝑇𝑅 ⋅ 𝜏2 = 0.5𝑥29 0.82, [0.15]  
 𝑒−𝑆𝑇𝐷𝑃𝑆 ∕𝑚𝑒𝑎𝑛𝑃𝑆 𝑇𝑅 ⋅ 𝜏2 = 0.1𝑥−6.0 0.84, [0.16]  
 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 0.7𝑥13 0.39, [0.07]  
 1 − 0.9 ⋅ 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 1.1𝑥46 0.52, [0.10]  
 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 8.5𝑥0.6 0.71, [0.13]  
 Bottlenecks 1  
 Constrictivity 𝑇𝑅 ⋅ 𝜏2 = 0.7𝑥0.1 0.99, [0.27]  
 𝑒−𝑆𝑇𝐷𝜏 ∕𝜏 𝑇𝑅 ⋅ 𝜏2 = 0.7𝑥1.3 0.78, [0.22]  
 Pore size-channels 𝑇𝑅 ⋅ 𝜏2 = 0.6 –, [–]  
 Closed pore-tort. 𝑇𝑅 ⋅ 𝜏2 = 0.6𝑥1.4 0.84, [0.23]  
 𝑒−𝑆𝑇𝐷𝑃𝑆 ∕𝑚𝑒𝑎𝑛𝑃𝑆 𝑇𝑅 ⋅ 𝜏2 = 0.7𝑥0.6 –, [–]  
 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 0.8𝑥0.9 0.66, [0.18]  
 1 − 0.9 ⋅ 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 0.8𝑥1.0 0.67, [0.18]  
 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 0.4𝑥−0.1 0.89, [0.24]  
 Bottlenecks 2  
 Constrictivity 𝑇𝑅 ⋅ 𝜏2 = 0.6 –, [–]  
 𝑒−𝑆𝑇𝐷𝜏 ∕𝜏 𝑇𝑅 ⋅ 𝜏2 = 1.0𝑥6.4 0.68, [0.23]  
 Pore size-channels 𝑇𝑅 ⋅ 𝜏2 = 0.8𝑥1.0 0.87, [0.29]  
 Closed pore-tort. 𝑇𝑅 ⋅ 𝜏2 = 0.8𝑥12 –, [–]  
 𝑒−𝑆𝑇𝐷𝑃𝑆 ∕𝑚𝑒𝑎𝑛𝑃𝑆 𝑇𝑅 ⋅ 𝜏2 = 1.2𝑥4.4 0.93, [0.31]  
 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 1.0𝑥2.0 0.49, [0.16]  
 1 − 0.9 ⋅ 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 1.2𝑥4.9 0.69, [0.23]  
 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑇𝑅 ⋅ 𝜏2 = 2.3𝑥0.3 0.55, [0.18]  

monotone relationship can be captured by (6), i.e., that log(𝑃∕𝜏2) can 
be approximated by 𝛼 log(𝜏).

The multiplicative regression models in Sections 5.3 and 5.4 add an 
intercept to the model, and in some cases predictors had a negative 
exponent, see Tables  5 and 6. The intercept can be seen as captur-
ing the effects in the factor 𝑃  that were not included as predictors, 
e.g. dead-end effects. All predictors are expected to have a positive 
correlation with 𝑇𝑅, and the negative exponents in some models could 
also indicate overfitting.

Tables S1 and S2 in the supplementary material show that for 
the full core models where also the geodesic tortuosity 𝜏 is used 
as a predictor, the other predictors contribute less to prediction in 
the polymer film and Bottlenecks 1 and 2 data sets. Still: (1) the 
physically motivated predictors, especially the 1 − 0.9 ⋅ 𝑞95𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 
improved prediction also when the exponent of 𝜏 was included as a 
parameter; (2) the high positive correlation between the connectivity-
bottleneck effect caused by many paths converging in a small portion 
of the pore structure (geodesic channel-strength) and the path-length 
(geodesic tortuosity) is as expected in our data sets, which explains 
why the geodesic tortuosity can explain a large part of the variation 
on its own; and (3) the model with only geodesic tortuosity performs 
well when looking at each dataset separately (Fig.  5), however, when 
looking at all datasets together including the reference-dataset then the 
model fit is significantly lowered (Table  4). Thus geodesic tortuosity 
may explain most of the variation in a dataset when the relationship 
between path-lengths and other aspects of the pore structures have a 
simple relationship, however, more geometric descriptors are needed 
when including a wider range of structures. One way of taking account 
of a wider range of structures without expanding the dataset is to 
include physically motivated constraints like was done here with the 
one predictor- and two predictor-core models. For these constrained 
models we can conclude that the connectivity-bottleneck effects as 
measured by the geodesic channel-strength were the best predictors.
9 
The geodesic channel-based descriptors are relatively sensitive to 
the size of the boxes that define channel-strength and the channel-
strength in a point of the box-division is also sensitive to where the 
point happens to be positioned relative to the box-division. E.g. if a 
box divides a pore in two or if it covers a whole pore can make a clear 
difference for the value of the channel-strength in a point that belongs 
to the pore.

It is not surprising that constrictivity and 𝑒−
𝑆𝑇𝐷𝑃𝑆
𝑚𝑒𝑎𝑛𝑃𝑆  performed poorly 

as predictors on the two bottleneck-datasets since constriction bottle-
necks were either not present (Bottlenecks 2-dataset) or likely played 
a less important role compared to connectivity-bottlenecks (Bottle-
necks 1-dataset). That constrictivity also performed poorly on the Poly-
mer film-dataset indicates that constriction-bottlenecks may have a 
relatively small influence on transport in this data set, or that the 
effect of constriction-bottlenecks are similar for all pore structures in 
the dataset.

7. Conclusions

This paper introduces three new pore structure descriptors: the 
geodesic channel-strength, the pore size-channel, and the closed pore-
tortuosity descriptors. These three in different ways quantify
connectivity-bottleneck effects caused by many paths converging in 
small parts of a pore structure. Connectivity-bottlenecks occur naturally 
in many real complex pore structures, see [18,19]. However, they 
are not captured by existing bottleneck-descriptors which focus on 
constriction-bottleneck effects caused by variations in pore size. To 
study the new descriptors we have constructed and analysed four data 
sets and developed logarithmic multiple regression models for use in 
prediction of diffusive transport through the structures.

Overall, geodesic tortuosity is the most important descriptor of 
transport. However, as described in Section 5.1, our first data set, the 
reference data set, provides examples which have the same tortuosities, 
but where diffusive transport decreases by a factor of two if there 
are connectivity bottlenecks in the structures. Different aspects of this 
were caught by our new descriptors. This data set shows that to get 
models which are broadly applicable and useful for many different 
kinds of pore structures also descriptors which capture different aspects 
of connectivity bottlenecks are needed. Further, the maximum relative 
flux in the pore structures with constrictivity-bottlenecks were more 
than three times as high as in the structures without bottlenecks. This 
can cause high strain on pores and the uneven distribution of transport 
(or conductivity) can potentially damage the material, see e.g. [20,21], 
again underlining the need for constrictivity descriptors.

The construction of the other three data sets were inspired by 
microscopy images of polymer films used to control drug delivery 
through pellet coatings. Sections 5.3 and 5.4 show that in the physically 
motivated core models where the exponent of tortuosity 𝜏 was set to 2
the best predictor of transport was a rescaled quantile of the geodesic 
channel strength. The descriptors based on the standard deviation of 
the geodesic channel-strength and on the standard deviation of the 
geodesic tortuosity also gave useful improvements of prediction. In 
these ‘‘polymer film’’ data sets the pore size-channel and the closed 
pore-tortuosity contributed less to prediction of transport.

To conclude, we have shown that connectivity-bottlenecks can be 
an important determinant for diffusive transport rate by reducing trans-
port efficiency and that they can put a high strain on the pores in the 
bottlenecks. Care needs to be taken when modelling the relationship 
between pore geometry and diffusive transport, as path-lengths can be 
strongly correlated with connectivity-bottleneck effects.

The geodesic tortuosity, the geodesic channel-strength, the constric-
tivity, and the 2D- and 3D-pore size descriptors which used in this paper 
can all be computed using the software [26]. For poorly connected 
pore structures with potential connectivity-bottlenecks, we recommend 
to first explore connectivity interactively in 3D using the geodesic 
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Table 6
Logarithmic regression of the full two predictor core-model. Column 2 of the table shows the number out of the 36 two-predictor 
models that had lower MSE than the best one-predictor model. The best full model had 𝑥1 = 1 − 0.9 ⋅ 𝑞99𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 for all three datasets. 
𝑥2 is listed in the table.
 # better models Best full model
 Full model; 𝑀𝑆𝐸𝑓𝑢𝑙𝑙

𝑀𝑆𝐸𝑛𝑢𝑙𝑙
, [ 𝑆𝑇𝐷𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑚𝑒𝑎𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
] 

 Polymer film 6 𝑥2 = 𝑒−
𝑆𝑇𝐷𝑃𝑆
𝑚𝑒𝑎𝑛𝑃𝑆 , 𝑇𝑅 ⋅ 𝜏2 = 0.4𝑥131 𝑥−1.92 ; 0.35 [0.08]  

 Bottlenecks 1 5 𝑥2 = 𝑒−𝑆𝑇𝐷𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 , 𝑇𝑅 ⋅ 𝜏2 = 0.5𝑥0.41 𝑥−0.12 ; 0.59 [0.16]  
 Bottlenecks 2 5 𝑥2 = 𝑒−𝑆𝑇𝐷𝜏 ∕𝜏 , 𝑇𝑅 ⋅ 𝜏2 = 1.1𝑥1.21 𝑥3.02 ; 0.38 [0.12]  
tortuosity as can be done in MIST, and then to use geodesic channel-
strength to quantify any connectivity-bottlenecks. Further information 
can, if needed, be obtained from the pore size-channels and closed 
pore-tortuosity.
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