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Two minimal-variable symplectic integrators for stochastic spin systems
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We present two symplectic integrators for stochastic spin systems, based on the classical implicit midpoint
method. The spin systems are identified with Lie-Poisson systems in matrix algebras, after which the numerical
methods are derived from structure-preserving Lie-Poisson integrators for isospectral stochastic matrix flows.
The integrators are thus geometric methods, require no auxiliary variables, and are suited for general Hamilto-
nians and a large class of stochastic forcing functions. Conservation properties and convergence rates are shown
for several single-spin and multispin systems.
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I. INTRODUCTION

Geometric integration methods are widely applied in the
simulation of physical systems with conserved quantities.
Algorithms that retain geometric properties of the underly-
ing differential equations often exhibit benefits over standard
integration algorithms, such as improved stability and statis-
tical accuracy in long-time simulations [1]. Simultaneously,
stochasticity is frequently employed to model uncertainty due
to unresolved or unknown physical processes. It is therefore
natural to (i) introduce noise in a manner that preserves the
geometric structure and (ii) consider numerical integrators
that respect the underlying mathematical structure even in
the presence of noise. This has spurred the development
and analysis of stochastic geometric integrators; see e.g.,
Refs. [2–9].

In the current study, we present two symplectic integrators
for stochastic atomistic spin dynamics. Spin systems describe
atomic phenomena often observed at finite temperature [10],
of which the fluctuations can be modeled by an external
stochastically fluctuating field. These systems possess a geo-
metric Lie-Poisson (LP) structure, which motivates the use of
so-called transport noise [11] to enable stochastic modeling.
For deterministic spin systems, several numerical symplectic
numerical integrators have been developed, e.g., based on
splitting techniques [12–14] or normalizing the vector field
governing the dynamics [15]. The methods presented here are
suited for simulation of both deterministic spin systems and
spin systems with transport noise. Specifically, the numerical
integrators are variants of the implicit midpoint method that
are symplectic, universally implementable for a large class
of Hamiltonians and stochastic forcing functions, and do not
require any auxiliary variables.
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Deterministic classical spin systems are noncanonical
Hamiltonian systems with phase space (S2)n, i.e., the n-fold
product of the two-sphere, where n is the number of spins.
In more detail, for a given Hamiltonian H ∈ C∞((S2)n), a
deterministic classical spin system is given by

ṡi = si × ∇si H (s1, . . . , sn), (1)

where i = 1, . . . n, ∇si denotes the gradient with respect to si,
and × denotes the conventional cross product in R3.

These systems may be rewritten as equations in the Lie
algebras su(2) or so(3)1, from which the geometric prop-
erties of the governing equations become apparent. For the
single-spin case, we consider R3 equipped with the rigid body
bracket

[u, v] = v × u,

where u, v ∈ R3. The Euclidean space R3 can be identified
with the Lie algebras su(2) or so(3) such that × in R3 cor-
responds to the matrix commutator in these Lie algebras, as
described in the Appendix. In other words, spin systems in
R3 are equivalently formulated as isospectral LP systems in
su(2) or so(3). Therefore, we may also consider a general
deterministic LP system on su(2) or so(3) and write this as
an LP system in R3,

ṡ = s × ∇sH, (2)

for a Hamiltonian H ∈ C∞(R3) and initial value s(0) = s0.
Lie-Poisson systems have a remarkable geometric struc-

ture [16]. Indeed, regardless of the choice of Hamiltonian,
LP systems evolve on coadjoint orbits, i.e., the orbits of the
coadjoint action of a Lie group on the dual of its Lie algebra.
In the specific case of so(3) or su(2), the corresponding group
acts by rotation and the coadjoint orbits are therefore spheres.
Furthermore, the LP structure induces a symplectic form on

1We should technically identify R3 with the duals of the Lie alge-
bras su(2) and so(3). However, we can readily identify these duals
with the corresponding Lie algebras.
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the coadjoint orbits, namely the standard symplectic form on
S2. Thus, the evolution of the LP system (2) is constrained to
the sphere with radius ‖s0‖. This property exactly corresponds
to the conservation of the spin magnitude over time.

The formulation of a single-spin system as an LP system
is straightforwardly extended to systems of n spins by repeat-
ing the above procedure n times. This yields an LP system
on (su(2))n ∼= R3n or (so(3))n ∼= R3n so that for each spin
i = 1, . . . n, we obtain the equation

ṡi = si × ∇si H (s), (3)

where C∞(R3n) � H = (H1, . . . Hn). Throughout this paper,
we adopt ‖si(0)‖ = 1 for simplicity. Henceforth, systems of
the form (3) are what we refer to as deterministic spin systems.
In particular, these flows are Hamiltonian on (S2)n and remain
in this space, meaning that the magnitude of each spin is
preserved. We now consider some examples of spin systems,
largely following the survey [17].

(1) Rigid bodies. One of the simplest examples of a
spin system is the rigid body, where the angular momentum
evolves according to Eq. (3) with H (s) = ∑3

i=1
1

2I j
s2

j , where
I = (I1, I2, I3) is the moment of inertia tensor of the rigid
body. It is also possible to consider nonlinear perturbations
of the above Hamiltonian, to obtain more intricate dynamical
behavior.

(2) Larmor precession. The equation of motion of a mag-
netic moment s in a constant external magnetic field B,
modeled as a vector in R3, evolves according to the Larmor
equation given by

ṡ = γ s × B, (4)

where γ ∈ R is the gyromagnetic ratio. We see that Eq. (4) is
obtained from Eq. (3) by setting N = 1 and H (s) = γ B · s, so
that ∇sH = γ B.

(3) Landau-Lifshitz equation. To ensure that Eq. (4) even-
tually aligns with the external magnetic field, Gilbert [18]
suggested adding a dissipative term to Eq. (4), to obtain the
Landau-Lifshitz (LL) equation for a single spin, which is
given by

ṡ = γ s × B − αs × (s × B), (5)

where α is a phenomenological damping constant. This sys-
tem is an LP system with double-bracket dissipation [19].

(4) Heisenberg spin chain and extension to higher di-
mensions. The previous examples concerned single-spin
dynamics. The extension to multispin systems involves in-
teracting spins on lattices, which represent ferromagnetic
materials [17]. A one-dimensional periodic lattice of spins
with nearest-neighbor interactions is the Heisenberg spin
chain. The dynamics of the corresponding system with n spins
s = (s1, . . . sn), sn+1 = s1, is governed by the Hamiltonian
H : (R3)n �→ R,

H (s) = J
n∑

i=1

si · si+1 +
n∑

i=1

B · si, (6)

where B ∈ R3 is the external magnetic field and J is a cou-
pling constant. This Hamiltonian leads to an LP system (3)

given by

ṡi = Jsi × (si−1 + si+1) + si × B. (7)

If B = 0, we note that si × (si−1 + si+1) = si × (si−1 − 2si +
si+1), where si−1 − 2si + si+1 is recognized as a finite differ-
ence approximation of the Laplacian. One may therefore also
view Eq. (7) as a discretization of the continuous Landau-
Lifshitz equation

ṡ = s × �s. (8)

A modification of Eq. (7) is the inclusion of non-nearest
neighbor interactions. For instance, the Hamiltonian in for the
latter in one spatial dimension reads

H (s) = Jnn

N∑
i=1

si · si+1 + Jnnn

N∑
i=1

si · si+2 +
N∑

i=1

B · si. (9)

Combining LL dynamics with such extended Heisenberg in-
teractions enables the formation of spatial structures in the
dynamics. For example, the spontaneous emergence of spa-
tial structures in the alignment of spins was observed when
including non-nearest neighbor interactions [20,21]. Alter-
natively, an extension is possible to two-dimensional spin
lattices with Heisenberg interactions, which permit vortex
motion [22,23], or to three-dimensional structures. Incorpo-
rating the Heisenberg interaction in higher-dimensional spin
configurations gives rise to a more complicated Hamiltonian
but does not alter its appearance in the governing equation (3).

II. STOCHASTIC SPIN SYSTEMS

Spin dynamics at finite temperature can be described by
coupling the spin system to a thermal reservoir [24]. The
interaction between the spin system and the reservoir can
subsequently be modeled as a random force describing ther-
mal fluctuations [25]. Below we provide a brief description
of transport noise in spin systems and why it preserves the
geometric structure of the governing equations.

Introducing stochasticity to spin systems arbitrarily may
lead to undesired nonphysical behavior. For instance, consider
the Larmor equation (4) with additive Itô noise to obtain

ds = γ s × Bdt + �dW,

where s(0) is deterministic and of unit norm, W =
(W1,W2,W3) is a R3-valued Brownian motion, and � is a
diagonal matrix. The evolution of f (s) = ‖s‖2, using Itô’s
lemma, is described by

d f = γ s · (s × B)dt + Tr(�T �)dt + sT �dW

= Tr(�T �)dt + sT �dW.

As a consequence,

E[‖s‖2] = ‖s0‖2 + Tr(�T �)t,

which means that the spin magnitude is expected to grow,
and the solution immediately leaves the sphere. A similar, but
somewhat more involved calculation also holds in general for
LP systems with additive Itô noise; see e.g., [26].

Therefore, if it is important that the length of the spin
vectors are preserved, stochasticity must be added in a way
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that respects the geometric structure of spin systems. The
solution is to add transport noise [11], which gives rise to spin
systems of the form

dsi = si ×
⎛
⎝ai(s)dt +

M∑
j=1

σ j (si ) ◦ dW i, j (t )

⎞
⎠. (10)

Here W i, j all are independent Brownian motions and σ j (si)
are of the form ∇si Hj (s) for some choice of noise Hamiltoni-
ans Hj : R3 → R, j = 1, . . . M. Further, ai(s) = ∇si H (s) −
αsi × ∇si H (s), where α is a damping parameter. We remark
that the transport noise introduced in (10) has been studied
before in the context of spin systems; see, e.g., [27,28]. In
particular, transport noise constitutes a special case of mul-
tiplicative noise: the stochastic term enters the governing
equations in the same way as the Hamiltonian; it hence trans-
ports the spin.

Stochastic differential equations given by (10) are guaran-
teed to remain on (S2)N . Intuitively, this is because the cross
product between si and both ai(s) and σ j (si ) only affects the
evolution of si tangential to the sphere. Geometrically, it is a
consequence of the fact that the cross product coincides with
the Lie bracket on su(2) and so(3), which leads to solutions
that remain on the coadjoint orbit [5]. As a result, stochastic
systems of the form (10) have similar geometric properties,
such as preservation of spin magnitude, as their deterministic
counterparts. The stochastic term in Eq. (10) is interpreted in
the Stratonovich sense, since manifold-valued curves can be
extended to manifold-valued processes in differential geome-
try due to the ordinary chain rule for Stratonovich processes
[29,30]. That is, if one would interpret (10) in the Itô sense,
the desired conservation properties of the equations would be
lost. Simultaneously, it is possible to rewrite the Stratonovich
formulation to an Itô formulation by including a correction
term. This term contains the gradient of σ j which makes the
stochastic component unwieldy and difficult to interpret, and
is hence avoided.

The choice of the noise Hamiltonians is up to the practi-
tioner and will vary from application to application. Let us,
however, consider a simple example by revisiting the Landau-
Lifshitz equation (5). Suppose that there is an uncertainty
in the external magnetic field. This could be modeled by
including a stochastic term in Eq. (5), i.e., by considering the
equation

ds = s × (γ B − αs × B)dt + s × ∇sH1(s) ◦ dW (t ).

Isotropic uncertainty in the external magnetic field can be de-
scribed, e.g., by ∇sH1(s) = B̃ ∈ R3. Anisotropic uncertainty
follows from selecting H1 such that ∇sH1(s) varies with s.

III. PROPOSED SYMPLECTIC INTEGRATORS

In this section, we present the two proposed symplectic
integrators for stochastic spin systems in R3n. The numer-
ical integrators are derived from an isospectral integrator
for finite-dimensional stochastic matrix LP systems. Efficient
structure-preserving integrators for these systems are obtained
by applying discrete Lie-Poisson reduction to equivariant
symplectic integration schemes for canonical Hamiltonian

systems. Detailed derivations are given in [5,31] for determin-
istic and stochastic LP systems, respectively.

The integrators for matrix flows are translated to systems
in R3 as follows. We may identify elements of su(2) or
so(3) with vectors in R3 through distinct isomorphisms, as
described in the Appendix. As a result, the cross product in
R3 between two vectors can be expressed as the matrix com-
mutator between the corresponding matrices. This implies
that the evolution of spin systems in R3n is equivalent to an
isospectral flow in (su(2))n or (so(3))n. Similarly, one can
apply the isomorphisms between these spaces and R3 to the
deterministic [31] and stochastic [5] isospectral integrator to
obtain two distinct symplectic implicit midpoint methods for
deterministic and stochastic spin systems. These integration
schemes are outlined below.

We describe the integration schemes for general spin sys-
tems with transport noise [Eq. (10)]. Let k, k + 1 denote two
time levels separated by a fixed step size h, with corresponding
numerical solutions si,k, si,k+1 and let the midpoint between
these time levels given by s̃i. The subscript i denotes the ith
spin. For the sake of readability, we define

y = hai(s̃) + h1/2
M∑

j=1

σ (s̃i )ξ
i, j
k , (11)

which encompasses the gradients of the Hamiltonian and
noise Hamiltonians at the midpoint s̃i and incorporates the
step size h. Here ξ

i, j
n are independent and identically dis-

tributed (i.i.d.) random variables defined as the truncated
variable ξh below, to accommodate implicit integration [7,32].
The truncated random variable ξh is obtained from the random
variable ζ ∼ N (0, 1) as

ξh =
⎧⎨
⎩

ζ , |ζ | � Ah

Ah, ζ > Ah

−Ah, ζ < −Ah

, (12)

with Ah = √
2| ln h|.

The proposed symplectic implicit midpoint methods for
spin systems differ in the adopted definition of the midpoint.
The midpoint s̃i is found through the implicit equations below,
respectively corresponding to the su(2) and so(3) isomor-
phisms applied to the isospectral LP integration scheme. The
classical implicit midpoint scheme (referred to as IMP) is
included for comparison,

si,k = s̃i − 1
2 s̃i × y, (13)

si,k = s̃i − 1
2 s̃i × y − 1

16 (y × s̃i × y − (y · s̃i)y), (14)

si,k = s̃i − 1
2 s̃i × y + 1

4 (s̃i · y)y. (15)

Here, the scheme (13) is the classical midpoint method, (14)
is obtained via the su(2) isomorphism, and (15) via the so(3)
isomorphism.

For each method, the spin configurations at time level k + 1
are computed via

si,k+1 = si,k + s̃i × y. (16)
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Both methods are second-order accurate in the deterministic
case. For stochastic systems, the schemes are of weak order 1
and mean-square order 1/2 under the assumption that the drift
and diffusion coefficients are sufficiently smooth, C4 and C5

respectively. This implies that the integrators are suitable for
a large class of Hamiltonians and noise Hamiltonians, facil-
itating, e.g., the simulation of spin systems with anisotropic
stochastic forcing. The corresponding proofs and numerical
convergence tests are found in [5]. Both methods are variants
of the classical implicit midpoint method and thus preserve the
spin magnitude and are self-adjoint. Furthermore, the methods
are symplectic [5] when applied to spin systems, in contrast
to the standard implicit midpoint method. We refer to these
methods as isospectral midpoint methods and denote these by
su2IsoMP and so3IsoMP, respectively.

The deterministic so3IsoMP method was originally derived
by [33] from an isospectral LP integrator on so(3) [31]. The
extension of the LP integrator to systems with transport noise
[5] has enabled the development of so3IsoMP as currently
presented, and it hence possesses the same desirable features
as the deterministic variant. First, it is symplectic for any
Hamiltonian due to the second-order correction term in (15).
Second, it requires only three coordinates and no auxiliary
variables, making it a minimal-variable symplectic integra-
tor in R3 [15]. The su2IsoMP method possesses the same
properties. The so3IsoMP method has concurrently and inde-
pendently been derived from a variational principle [34].

Compared to IMP, both so3IsoMP and su2IsoMP can be
implemented without many additional computational costs.
The implicit step in IMP requires solving 3n nonlinear equa-
tions at each time step [28], which is the primary source
of computational costs. Evidently, this remains the same for
so3IsoMP and su2IsoMP. The second-order corrections that
distinguish these methods from IMP are computed efficiently,
since these are explicit terms defined separately for each
spin.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical results for both deter-
ministic and stochastic spin systems. In particular, we focus
on conservation properties and numerical convergence and
compare these to the classical midpoint method and the SIB
method [28]. These are illustrated for certain single-spin and
multispin systems.

A. Single-spin systems

Two examples of single-spin systems are used to compare
su2IsoMP and so3IsoMP to existing methods and to illustrate
the symplecticity of the methods.

We first consider a simple example of the deterministic
LL equation. For simplicity, we choose s and B such that
they are of unit norm. It is then readily verified that the
Hamiltonian satisfies H (s) = s · B = cos θ , where θ denotes
the angle between the magnetic moment s and the external
field B. Moreover, the dissipative term in Eq. (5) ensures that
the Hamiltonian decays as [19]

dH

dt
= −α‖s × B‖2 = −α sin2 θ. (17)

An analytical solution for the evolution θ can be derived from
these relations and is given by

θ0 = θ (0) = arccos(s(0) · B),

θ (t ) = 2 arctan(tan(θ0/2)e−αt ). (18)

The computed numerical solutions are shown and com-
pared to the analytical solution in Fig. 1, computed with a time
step size h = 0.5 and a random initial condition. The evolu-
tion of θ indicates that su2IsoMP and so3IsoMP accurately
capture the dynamics of the magnetic moment. The difference
between the computed θ and the analytical solution reveals
that su2IsoMP has a decreased phase error, compared to the
other methods. Furthermore, the results of IMP and so3IsoMP
are virtually indistinguishable. The same qualitative result is
observed for the azimuthal angle of the spin, but is not shown
here.

The second example is a nonlinearly perturbed spinning
top [15] where one can distinguish between symplectic and
nonsymplectic methods. The deterministic single-spin equa-
tion is solved numerically, adopting the Hamiltonian

HNLST(s) = 1

2

3∑
j=1

1

I j

(
s2

j + 2

3
s3

j

)
, I = (1, 2, 4). (19)

Note that the subscripts j denote the components of the spin.
A time step size h = 1 is employed with a randomly selected
initial condition, which is the same for all methods. The sim-
ulation results in Fig. 2 show that the symplectic su2IsoMP
method retains the periodic trajectory of the spin, whereas
IMP shows nonperiodic behavior. The departure of the Hamil-
tonian over time shows the expected behavior for symplectic
and nonsymplectic methods. The Hamiltonian is not quadratic
hence it is not conserved under IMP and instead a linear
drift is observed. The su2IsoMP and so3IsoMP methods are
symplectic, and the observed energy departure is thus nonzero
but bounded [35].

Similar qualitative behavior may be observed when in-
cluding a stochastic perturbation of small magnitude. To
demonstrate this, we introduce the noise Hamiltonians

Hj (s) = 10−3s j, (20)

which is interpreted as isotropic noise in the field acting on
the magnetic moment s. In this case, the trajectories are no
longer periodic, even when computed with the symplectic
integrators. A clear difference between the trajectories arises
in long-time simulations, depicted in Fig. 3 for IMP and
su2IsoMP. The symplectic methods approximately retain the
trajectory of the deterministic system (Fig. 2), which is also
reflected in a bounded deviation of the Hamiltonian. On the
other hand, the drift in the Hamiltonian is still observed for
IMP. The solution trajectory drifts significantly from the deter-
ministic trajectory until it reaches an approximately periodic
solution markedly different from the solution of su2IsoMP.

B. Heisenberg spin chain

In this section, we demonstrate numerically certain proper-
ties of the integrators in multispin systems via simulations of
the Heisenberg spin chain.
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FIG. 1. Comparison of different methods for the deterministic LL equation. Left: evolution of the angle θ between the magnetic moment
and the external field over time. Note that the results of IMP, so3IsoMP, and SIB are virtually indistinguishable in this panel. Right: difference
between the numerically predicted θ and the analytical solution. In this panel, the results of IMP and so3IsoMP lie on top of each other and
cannot be distinguished.

The total spin is a conserved quantity in the determin-
istic Heisenberg spin chain. Conservation of total spin has
been proven for IMP [28] due to the structure of the numer-
ical method. This structure is the same for su2IsoMP and
so3IsoMP and hence they inherit this conservation property.
Furthermore, since the proof does not assume a specific cou-
pling of different spins or the relative location of these spins,
the conservation property is trivially extended to include
next-nearest neighbor interactions, interactions over arbitrary
distances, and two-dimensional and three-dimensional sys-
tems. In these cases, the expression for the Hamiltonian
becomes more intricate but the governing equations do not
change. For that reason, we demonstrate here the stochas-
tic one-dimensional Heisenberg spin chain with nearest- and
next-nearest-neighbor interactions.

The conservation of total spin is illustrated numerically
in the left panel of Fig. 4, showing the absolute departure
over time. Throughout the simulation, the implicit midpoint
methods conserve the total spin up to machine accuracy with-
out drift. This particular example was computed for n = 100
spins, with interaction strengths Jnn = 1 and Jnnn = 1/4 and a
time step size h = 0.25.

To illustrate the order of convergence of the numeri-
cal methods, we consider the stochastic Heisenberg spin
chain with nearest-neighbor interactions and damping. That
is, we consider the Hamiltonian (6) and define, largely
following [28],

ai(s) = −∇si H (s) − αsi × ∇si H (s), (21)

σ (x)y = −
√

2Dy − α
√

2Dx × y, (22)

0 1000 2000 3000 4000 5000

0

0.005

0.01

0.015

0.02

0.025

IMP

su2IsoMP

so3IsoMP

Time

FIG. 2. Results for the single-spin system with Hamiltonian (19). Left: trajectories obtained with IMP (black) and su2IsoMP (red). Right:
departure of the Hamiltonian over time.
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su2IsoMP

so3IsoMP

Time

FIG. 3. Results for the single-spin system with deterministic Hamiltonian (19) and noise Hamiltonians (20). Left: trajectories obtained
with IMP (black) and su2IsoMP (red). Right: departure of the Hamiltonian over time.

where we choose D = α/(1 + α2). We adopt an exchange pa-
rameter Jnn = 1 and a damping α = 0.1 for a total of n = 100
spins. We compute the reference result from stochastic real-
izations with step size href = 2−25 ≈ 2.98 × 10−8 and choose
the coarse time step sizes as href · 23, . . . , href · 28. A total of
100 independent realizations are compared to the reference
at 16 times the largest considered step size. We employ the
definition of the strong error,

E[‖s(hk) − sk,ref‖2]1/2, (23)

where s(hk) denotes the numerical solution after hk time units
and sk,ref is the reference solution at the same time instance.
The norm ‖ · ‖ is the standard two-norm for vectors in (R3)n.
The strong errors for the stochastic Heisenberg spin chain are
shown in the right panel of Fig. 4, from which the expected

order 1/2 convergence is observed. The order of convergence
was only observed at sufficiently small step sizes. At these
values of h, all adopted methods produce nearly identical
results.

V. CONCLUSIONS AND OUTLOOK

In this paper, we presented two symplectic integrators for
stochastic spin systems, labeled su2IsoMP and so3IsoMP.
The numerical methods are variants of the classical implicit
midpoint method, where the midpoint is defined differently
through the inclusion of a second-order correction. Both meth-
ods are derived from a stochastic isospectral Lie-Poisson
integrator on the matrix algebras su(2) and so(3). Identifying
spin systems in R3 with these isospectral Lie-Poisson systems

FIG. 4. Left: departure of the total spin for the deterministic Heisenberg spin chain with nearest-neighbor and next-nearest-neighbor
interactions. Right: Strong errors for the stochastic Heisenberg spin chain with only nearest-neighbor interactions, using 100 independent
realizations.
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allowed for a reformulation of the structure-preserving inte-
grator for matrix flows as two distinct numerical schemes for
spin systems. The two integrators thereby inherited favorable
properties such as symplecticity and applicability to a large
class of stochastic forcing functions.

A possible extension of the methods presented in this
paper concerns the application to temporally nonlocal dy-
namics. First, a fruitful development would be to address the
simulation of time-dependent Hamiltonians, observed, e.g.,
when including inertia effects in the dynamics [36]. Second,
semimartingales as the driving stochastic processes is com-
patible transport noise [37] and provides a natural progression
to include different types of stochasticity without breaking
the conservation properties of the governing equations. Both
extensions require additional method development and corre-
sponding analysis.

Further work should be dedicated to computationally ef-
ficient adaptations of these methods. The methods proposed
in this paper are both implicit midpoint methods that require
solving a system of nonlinear equations. Their performance
should be compared to existing methods in computationally
challenging and physically relevant test cases. Semi-implicit
variants of su2IsoMP and so3IsoMP may additionally be
studied, similar to the SIB method [28]. Here, one may take
existing explicit or semi-implicit Lie-Poisson integrators for
isospectral matrix flows and convert these to integrators for
spin systems, ideally maintaining desirable geometric proper-
ties of the Lie-Poisson system.
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APPENDIX: ISOMORPHISMS BETWEEN R3

AND su(2), so(3).

In this Appendix, we elaborate on the translation between
isospectral matrix flows and spin systems.

1. The su(2) case

Let z = (z1, z2, z3)T ∈ R3. We define the isomorphism
φsu(2) between R3 and su(2) as

φsu(2) : R3 → su(2),

φsu(2)(z) = 1

2

[
iz3 z2 + iz1

−z2 + iz1 −iz3

]
. (A1)

We additionally define the function y : R3 → R3 and adopt
the notation Z = φsu(2)(z) and Y = φsu(2)(y(z)). It is then
readily verified that the isospectral system in su(2),

Ż = [Y, Z], (A2)

is equivalent to the system of equations

ż = z × y (A3)

in R3. Applying the inverse of φsu(2) to the isospectral mid-
point method [[5], Sec. 4.3] yields the integration scheme
(14).

2. The so(3) case

We consider z ∈ R3 and y : R3 → R3 as defined in Eq.
(A1). We define the isomorphism φso(3) between R3 and
so(3) as

φso(3) : R3 → so(3),

φso(3)(z) =
⎡
⎣ 0 z3 −z2

−z3 0 z1

z2 −z1 0

⎤
⎦. (A4)

Adopting Z = φso(3)(z) and Y = φso(3)(y(z)), we find that
Ż = [Y, Z] is equivalent to ż = z × y. Similarly, we find that
applying the inverse of φso(3) to the isospectral midpoint
method [[5], Sec. 4.3] yields the integration scheme (15).
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