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Abstract
The focus of the paper is on constructing new solutions of the generalized clas-
sical Yang-Baxter equation (GCYBE) that are not skew-symmetric. Using regular
decompositions of finite-dimensional simple Lie algebras, we construct Lie algebra
decompositions of g((x)) × g[x]/xmg[x]. The latter decompositions are in bijection
with the solutions to the GCYBE. Under appropriate regularity conditions, we obtain
a partial classification of such solutions. The paper is concluded with the presentations
of the Gaudin-type models associated to these solutions.
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1 Introduction

The r -matrix approach is a fundamental method for constructing integrable systems;
see, e.g. [6, 7, 10]. Consider a mechanical system with a phase space M and a Hamil-
tonian H . If this system admits a Lax representation, i.e. the equations of motions
with respect to H are equivalent to

dL

dt
= [P, L]

for some functions P and L on M with values in some Lie algebra L, invariant
polynomials of this Lie algebra automatically define constants ofmotion of the system.
The involutivity property for these constants of motion is equivalent to the fact that
Lax matrix L satisfies the relation

{L ⊗ L} = [L ⊗ 1, r ] − [1 ⊗ L, r21] (1)

for some function r on M with values in L ⊗ L. The statements we just made can
be adjusted in a way so that they remain valid even for some infinite-dimensional Lie
algebras L. For example, we consider one of such cases when L = g((x))⊕n , where
g((x)) is the Lie algebra of formal Laurent power series with coefficients in a finite-
dimensional simple complex Lie algebra g. In this case, L = L(x) and r = r(x, y)
depend on the formal parameters.

The Jacobi identity for the Poisson bracket in Eq. (1) imposes some constraints on
the corresponding function r . If r is constant along M a sufficient condition that these
constraints are satisfied is given by the generalized classical Yang-Baxter equation
(GCYBE)

[r12(x1, x2), r13(x1, x3)]+[r12(x1, x2), r23(x2, x3)]+[r32(x3, x2), r13(x1, x3)] = 0.
(2)

A key idea of the r -matrix method is to start with a meromorphic solution to GCYBE,
having a simple pole along the diagonal, and construct amechanical system possessing
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many integrals of motion. For example, to every such solution, one can associate a
classical integrable system by considering the Poisson-commuting Hamiltonians

Hi :=
∑

k �=i

r(uk, ui )
(ki) + 1

2
(g(ui , ui )

(i i) + τ(g(ui , ui ))
(i i)). (3)

Here, ui are points inside the domain of the definition of r , g is the regular part of
r and Poisson-commuting means {Hi , Hj } = 0 for the linear Poisson structure {·, ·}
on g∗. Expression Eq. (3) can be understood as a quadratic polynomial on g∗,⊕n and
therefore as an element of the symmetric algebra S(g⊕n) ∼= S(g)⊗n . If one replaces the
space of functions S(g)⊗n by the universal enveloping algebra U (g)⊗n , one obtains a
quantum integrable system which generalizes the Gaudin models; see [23, 24].

This motivates the search for solutions to the GCYBE. One well-known strategy is
to consider certain Lie algebra decompositions into two subalgebras. For example, a
decomposition of the form

g((x)) = g[[x]] ⊕ W

for a subalgebra W ⊆ g((x)) leads to a generalized r -matrix of the form

r(x, y) = �

x − y
+ g(x, y),

where � is the quadratic Casimir element of g and g(x, y) ∈ (g⊗ g)[[x, y]]. This idea
is further developed in [4]. More formally, we can consider solutions

r(x, y) = ym�

x − y
+ g(x, y) ∈ (g ⊗ g)((x))[[y]] (4)

of the GCYBE.
Such an r now corresponds uniquely to a Lie algebra decomposition

Lm := g((x)) × g[x]/xmg[x] = D ⊕ W , (5)

whereD = {( f , [ f ]) | f ∈ g[[x]]} is the diagonal embedding of g[[x]] into Lm andW
is a complementary subalgebra determined by r .

Remark 1.1 Instead of Eq. (4) we can start with a solution in a more general form

r(x, y) = h(x, y)�

x − y
+ g(x, y)

for some h(x, y) ∈ C[[x, y]] such that h(y, y) �= 0. The last condition implies

h(x, y) = h(y, y) + (x − y)̃h(x, y)
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for some h̃(x, y) ∈ C[[x, y]]. Writing h(y, y) = yms(y) for some s(y) ∈ C
∗[[y]] and

substituting this expression into the r -matrix above, we get

r(x, y) = yms(y)�

x − y
+ g̃(x, y).

Multiplication in the y-component of r(x, y) by invertible series preserves the prop-
erty of solving GCYBE. For that reason, we can, without loss of generality, restrict
ourselves to the solutions of the form Eq. (4). ♦

Decompositions of the form (5) give another point of view on the construction of
the generalized Gaudin models defined by the Hamiltonians (3). Taking the difference
of the projections onto the two components R := PD − PW , we can define another
Lie algebra structure on Lm , by letting

[a, b]R := [Ra, b] + [a, Rb], ∀a, b ∈ Lm . (6)

The second Lie algebra structure makes Lm into what is now known as a Lie dialge-
bra structure [21]. Both Lie algebra structures [−,−] and [−,−]R give rise to two
linear Poisson brackets on the space of polynomial functions S(L ′

m) and its n-point
adaptation S(L ′

m)⊗n . Evaluating at n chosen points we recover the generalized Gaudin
Hamiltonians Eq. (3) and obtain the integrability of the associated system.

In general, one can consider a skew-symmetric bilinear form (6) in an arbitrary Lie
algebra L with an endomorphism R. It satisfies the Jacobi identity, and hence turns L
into a Lie dialgebra, if and only if the following equality holds

[BR(a, b), c] + [BR(b, c), a] + [BR(c, a), b] = 0, ∀a, b ∈ L, (7)

where
BR(a, b) := [Ra, Rb] − R([Ra, b] + [a, Rb]).

One obvious sufficient condition for Eq. (7) to hold is BR = 0. Furthermore, if the
endomorphism R can be identified with a tensor r , using a non-degenerate invariant
symmetric bilinear form on L, condition BR = 0 transforms into the GCYBE. In
particular, if L = Lm , we restore Eq. (2).

In this paper, we consider the problem of classification of generalized classical
r -matrices. This problem in its full generality is too wild, so we impose some natural
additional restrictions. Formally, we consider those generalized r -matrices for which
the corresponding W ⊆ Lm satisfies the following three restrictions:

1. (x−1, 0)W ⊆ W and (0, [x])W ⊂ W ;
2. [(h, h),W ] ⊆ W for any h in a Cartan subalgebra h ⊆ g;
3. W+ ⊆ xNg[x−1] for some positive integer N , where W+ := (1, 0)W is the

projection of W onto the left component g((x)) of Lm .

The first two restrictions are motivated by the utility of the resulting integrable systems
[13, 15, 23] and the last condition allows us to apply the theory of maximal orders,

123



Generalized classical Yang-Baxter equation and regular... Page 5 of 55    50 

developed in [26, 27]. SubalgebrasW ⊆ Lm with the above-mentioned properties are
called regular.

In [16], the authors proposed a method of constructing Lie algebra decompositions
g((x)) = g[[x]] ⊕ W satisfying x−1W ⊆ W ⊆ g[x−1] by utilizing decompositions

g = g1 ⊕ · · · ⊕ g�

satisfying [gi , g j ] ⊆ gi ⊕ g j for all 1 � i, j � �. In this paper, we exploit this
idea under the additional assumption of Cartan invariance. This allows to construct
subalgebras of W ⊆ Lm with m � 1 with the desired properties 1.–3. above.

The classification of regular subalgebras is further split into several classification
subproblems. We were able to completely resolve some of them and to construct a
vast set of examples for the remaining ones. The key idea that was used in all the
cases is the reduction of regular decompositions Lm = D ⊕ W to regular partitions
� = �1 ⊕ · · · ⊕ �� of the underlying irreducible root system of g.

Additionally, we introduce a technique for constructing weakly regular subalgebras
W ⊆ Lm , i.e. those for which condition 2. above is replaced with a weaker one

2’. [h,W±] ⊆ W±.

The construction is based on a generalization of Belavin-Drinfeld triples. The corre-
sponding r -matrices are written explicitly.

The Lie dialgebras constructed in this paper are amenable to several quantizations,
other than the above-mentioned ones of Gaudin-type.

The first approach to quantization comes from [14]. There, the solutions of the
GCYBE associated to Lie algebra decompositions g((x)) = g[[x]] ⊕ W such that
x−1W ⊆ W ⊆ g[x−1] are quantized to solutions of the quantum Yang-Baxter equa-
tion. The key idea is a transition from g to the Lie algebra g � g∗ with Lie bracket

[x + f , y + g] := [x, y] + ad∗(x)g − ad∗(y) f , ∀x, y ∈ g, ∀ f , g ∈ g∗. (8)

This procedure is related to the one in [5], where to any Lie algebra decomposition
g((x)) = g[[x]] ⊕ W the authors associate a Lie bialgebra structure on (g � g∗)[[z]],
which turns out to admit a natural quantization resembling the monoidal structure of
sheaves on a certain double quotient of formal groups. The same scheme could be
applied to Lie algebra decompositions of Lm for m > 0.

The second way of quantizing the constructed decomposition emerges from [12].
The paper states that every Lie quasi-bialgebra can be quantized. Therefore, if we
extend one of the Lie quasi-bialgebra structures on D ∼= g[[x]] (see [4]) to Lm and
quantize it according to [12], we get a quasi-Hopf algebra U�(Lm) and a quasi-Hopf
subalgebra U�(D) ⊆ U�(Lm). A quantization of a Lie algebra decomposition Lm =
D⊕ W could now be defined as a (not necessarily quasi-Hopf) subalgebraU�(W ) ⊆
U�(Lm) such that

U�(Lm) = U�(D) ⊗U�(W )

and U�(W )/�U�(W ) = U (W ).
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1.1 Structure of the paper

Let h be a fixed Cartan subalgebra of g. A decomposition of g of the form

g = g1 ⊕ · · · ⊕ g�

is called regular if

1. All gi and gi ⊕ g j are Lie subalgebras of g and
2. [h, gi ] ⊆ gi for all 1 � i � �.

We consider such decompositions as building blocks for regular decompositions Lm =
D⊕W . Note that the invariance under the adjoint action of Cartan subalgebra implies
that each gi has the form

gi = si
⊕

α∈�i

gα,

for some vector subspace si ⊆ h and a subset �i of roots of g. Forgetting the Cartan
part of g in Eq. (1.1) we obtain a partition of the corresponding root system

� = �1 � · · · � ��,

where �i and �i � � j are closed with respect to root addition. Such a partition of
a root system is again called regular. Regular decompositions of simple Lie algebras
g and regular partition of the corresponding root systems are completely classified in
[11, 19]. We present this classification in Sect. 2.1.

The theory of maximal orders, that allows us to split the classification of regular
decompositions Lm = D ⊕ W further into smaller subproblems, is presented in
Sect. 2.2. More precisely, the theory states that, up to a certain equivalence, every
regular subalgebra W ⊆ Lm satisfies

W ⊆ Pi × g[x]/xmg[x],

wherePi is the parabolic subalgebra of g[x, x−1] ⊆ g((x)) corresponding to the simple
root αi with 0 � i � rank(g) of the Lie algebra g[x, x−1]. Moreover, each parabolic
subalgebra Pi is associated with an integer ki , called the type of Pi . Consequently,
we have a reduction of the original problem to the classification of regular subalgebras
W ⊆ Lm with m ∈ {0, 1, 2} and different types 0 � k � 6.

We complete Sect. 2 with an explanation of the relation between regular decompo-
sitions Lm = D ⊕ W and solutions of the GCYBE.

A full classification of regular subalgebrasW ⊆ L0 of type 0 is obtained in Sect. 3.
Precisely, we prove the following result.

Theorem A Let W ⊆ g((x)) be a regular subalgebra of type 0. Then we can find a
regular partition of the root system of g

� =
n⊔

i=1

�i
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Fig. 1 Regular subalgebras contained in the parabolic subalgebras corresponding to the red roots are
completely classified

and constants a1, . . . , an ∈ F such that

W = Wφ

n⊕

i=1

⊕

α∈�i

(x−1 − ai )gα[x−1],

where Wφ ⊆ h[x−1] is defined by a linear map φ : h → h compatible with the regular
partition of �; see Theorem 3.11. The converse direction is also true.

The solution of the GCYBE associated to the subalgebra above is given by

r(x, y) = �

x − y
+

(
φ

yφ − 1
⊗ 1

)
�h +

n∑

i=1

ai�i

ai y − 1
,

where� ∈ (h⊗h)
⊕

α∈�(gα ⊗g−α) is the quadratic Casimir element and�h ∈ h⊗h
as well as �i ∈ ⊕

α∈�i
gα ⊗ g−α are the corresponding components of �.

In Sect. 3.3 we look at regular subalgebras W ⊆ g((x)) of type 1. We give a com-
plete description of regular subalgebras contained inside the parabolic subalgebras
corresponding to the roots presented in Fig. 1. The description is given in terms of
regular decompositions g = g1 ⊕ g2 and some additional data.
In order to present this result, we need to introduce the following subsets of roots:

�
<mαi± :=

{
α ∈ �± | α = ±

n∑

i=1

ciαi , 0 � ci < m

}
,

�
�mαi± :=

{
α ∈ �± | α = ±

n∑

i=1

ciαi , ci � m

}
.

Then the precise statement for the result mentioned above is the following.
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Theorem B Let � be the irreducible root system corresponding to g. Assume αi is a
simple root of � with ki = 1. For any partition �<αi = �1 � �2 into two closed
subsets and two constants a1, a2 ∈ F× the formula

W = Wφ

⊕

α∈�1

(x−1 − a1)gα[x−1]
⊕

α∈�2

(x−1 − a1)g
a2
α [x−1]

⊕

β∈�
�αi+

x(x−1 − a1)(x
−1 − a2)gβ [x−1]

⊕

α∈�
�αi−

x−1gα[x−1],

defines a regular subalgebra of type 1. Here Wφ ⊆ h[x−1] is a subalgebra defined by
a certain linear map φ : h → h; see Example 3.15. Moreover, every regular W ⊆ L0
of type 1 associated to a node from Fig.1 is of this form.

The corresponding solution of the GCYBE is given by

r(x, y) = �

x − y
+

(
φ

yφ − 1
⊗ 1

)
�h + a1�1

a1y − 1
+ a2�2

a2y − 1

+ a1a2(x + y) − a1 − a2
(a1y − 1)(a2y − 1)

�c,

where � ∈ (h ⊗ h)
⊕

α∈�(gα ⊗ g−α) is the quadratic Casimir element and

�i ∈ (⊕α∈�i gα) ⊗ g, �c ∈ (⊕
α∈�

�αi+
gα) ⊗ g

are components of � lying in the corresponding subspaces.

In Sect. 3.3 we also present explicit constructions of regular subalgebras in g((x)) for
the remaining type 1 cases starting with a regular decomposition of g.

Regular subalgebras in g((x)) of type k � 2 are considered in Sect. 3.4. The structure
of such subalgebras is even wilder and their classification seems unfeasible. However,
we present a general algorithm for constructing such objects. It is demonstrated in
Example 3.28.

Section 4 is devoted to regular decompositions Lm = D ⊕ W with m � 1. We
prove that regular subalgebras of L1 of type 0 can be reduced to regular subalgebras
of g × g. The latter are classified in Sect. 4.1.

Theorem C Let w ⊆ g × g be a subalgebra such that

• [(h, h),w] ⊆ w for all h ∈ h and
• � ⊕ w = g × g.

Then there is a regular partition � = S+ � S− and subspaces s± = t± ⊕ r± ⊆ h,
having the properties h = s+ + s− and t+ ∩ t− = {0}, such that

w =
⎛

⎝(t+
⊕

α∈S+
gα) × {0}

⎞

⎠ ⊕
⎛

⎝{0} × (t−
⊕

β∈S−
gβ)

⎞

⎠ ⊕ spanF {(h, φ(h)) | h ∈ r+},
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where φ : r+ → r− is a vector space isomorphism with no nonzero fixed points. The
converse direction is also true. In other words, all regular subalgebras are described
by partitions � = S1 � S2 and the extra datum (t±, r±, φ) describing the gluing of
the Cartan parts.

Similar to the L0 case, in Sect. 4.2, we classify regular subalgebras W ⊆ L1 of type
0 in terms of regular subalgebras of g × g and some additional datum.

Theorem D Let W ⊆ L1 be a regular subalgebra of type 0. Then

W = w ⊕
⎛

⎝

⎛

⎝Wψ

n⊕

i=0

⊕

α∈�i

(x−1 − ai )gα[x−1]
⎞

⎠ × {0}
⎞

⎠ ,

where

• w ⊆ g × g is described by the datum � = S+ � S− and (t±, r±, φ);
• � = �n

i=0�i is a regular decomposition with S+ ⊆ �0 and a0, . . . , an ∈ F are
distinct constants such that a0 = 0;

• ψ : h → h is a linear map defining Wψ and compatible with the previous root
space data; see Theorem 4.5 for details.

The converse holds as well.
Furthermore, the r-matrix of W above is

r(x, y) = y�

x − y
+ r(S±,t±,r±,φ) + 1

2
� +

(
ψ

yψ − 1
⊗ 1

)
�h +

n∑

i=1

ai�i

ai y − 1
,

where �i ∈ ⊕
α∈�i

(gα ⊗ g−α) is the component of the Casimir element and
r(S±,t±,r±,φ) is a certain tensor in g ⊗ g determined by m in Eq. (41).

Replacing the condition [(h, h),W ] ⊆ W with the weaker condition [h,W±] ⊆
W±, i.e. only the projections ofW are required to be h-invariant, we obtain the notions
of a weakly regular subalgebra of Lm . We show in Sect. 4.3 that such subalgebras
can be effectively constructed using a generalized version of Belavin-Drinfeld triples
combined with Theorem D.

In the remaining part of Sect. 4 we prove that regular subalgebras W ⊆ Lm with
m > 0 of type k > 0 admit a certain standard form. Since all regular subalgebras
W ⊆ L0 are trivially included into the set of regular subalgebras of Lm , with m � 1,
the classification of the latter objects is even wilder. However, we present methods
for constructing such non-trivial subalgebras. See Table 1 for a short summary of the
results.

The paper is concluded with Sect. 5, where we relate the decompositions mentioned
above to Gaudin models through the corresponding solutions to the GCYBE. We give
some explicit examples of new generalized Gaudin Hamiltonians.

In Appendix A, we placed a table with the most used notation to simplify the
reading.

123



   50 Page 10 of 55 R. Abedin et al.

Table 1 Overview of classification results

W ⊆ Lm

m = 0 type = 0 Classified by regular partitions of �

and compatible linear maps φ : h → h.

m = 0 type > 0 Cases from Fig. 1 are completely classified using decompositions
� = �1 � �2 and φ : h → h.
For the remaining cases explicit constructions are presented.

m = 1 type = 0 Classified by regular decompositions of g × g
and compatible linear maps φ, ψ : h → h.

m > 0 type ki > 0 Always of the form W = Wh ⊕ (I+ × {0}) ⊕ ({0} × I−)

for I+ ⊆ Pi , I− ⊆ g[x]/xmg[x] and Wh ⊆ h[x] × h[x]/xmh[x].
Explicit constructions are presented.

2 Preliminaries

We fix once and for all an algebraically closed field F of characteristic 0. Let g be a
finite-dimensional simple Lie algebra over F with a Cartan subalgebra h. We write �

for the set of (nonzero) roots and π = {α1, . . . , αn} ⊂ � for a chosen set of simple
roots. The choice of simple roots gives us the polarization � = �+ � �−. Later we
use α0 to denote the maximal root of �. Furthermore, we fix a basis

{Hαi , E±α | 1 � i � n, α ∈ �+}

of g, such that κ(Eα, E−α) = 1 and κ(Hα, H) = α(H), where κ is the Killing form of
g. In particular, we have [Eα, E−α] = Hα = ∑n

i=1 ci Hαi for any α = ∑n
1 ciαi ∈ �+.

2.1 Regular decompositions of simple Lie algebras

An m-regular decomposition of g is a decomposition of the form

g =
m⊕

i=1

gi , m � 2,

satisfying the conditions:

1. All gi as well as gi ⊕ g j are Lie subalgebras of g;
2. Each gi has the form si ⊕α∈�i gα for some subspace si ⊆ h and some subset

�i ⊆ �.

Subalgebras of the form described in 2. are called regular, motivating the name.
Equivalently, one can say that gi and gi ⊕ g j are subalgebras of g invariant under the
action of h.

We say that a subset S ⊆ � is closed if for all α, β ∈ S the containment α +β ∈ �

implies α +β ∈ S. Regular decompositions of simple Lie algebras are closely related
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with regular partitions of irreducible root systems of finite type, i.e. partitions

� =
m⊔

i=1

�i , m � 2, (9)

with the property that all �i and �i � � j are closed. More precisely, the results of
[19] give us the following correspondence.

Proposition 2.1 Given an m-regular partition � = S1 � · · · � Sm with m � 2, we can
find subspaces s1, . . . , sm ⊆ h (not unique in general) such that

g =
m⊕

i=1

⎛

⎝si
⊕

α∈Si
gα

⎞

⎠

is a regular decomposition. Conversely, by forgetting the Cartan part of an m-regular
decomposition of g we obtain an m-regular partition of �.

Regular partitions of irreducible finite root systems into two parts were classified
in [11]. Later in [19], it was shown that m-regular partitions with m � 3 exist only
for root systems of type An , n � 2. Such partitions were completely described in the
same paper.

We now shortly recall these classifications starting with the 2-regular case. Let S
be a subset of simple roots π . We denote by �S = �S+ � �S− the root subsystem of �

generated by S. Given two subsets S, T ⊆ π we define

P(S, T ) := �S ∪ (�+\�T+).

The following theorem describes all 2-partitions.

Theorem 2.2 ([11], Theorem 4) Let S ⊆ T ⊆ π be two subsets of simple roots such
that S is orthogonal to T \ S. Then

� = P(S, T ) � (�\P(S, T ))

is a 2-regular partition of �. Moreover, up to the action of the Weyl group W (�), any
2-regular partition is of this form.

Let us order the simple roots π = {α1, . . . , αn} of the system An in such a way,
that

βi := α1 + · · · + αi and βi − β j

are roots for all 1 � i �= j � n. For convenience, we put β0 := 0.

Theorem 2.3 ([19], Theorem A) If � = �1 � · · · ��m, m � 3 is a regular partition,
then � is necessarily of type An. Moreover, the following statements are true:
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1. Up to swapping positive and negative roots, re-numbering elements �i of the
partition and action of W (An), there is a unique maximal (n + 1)-partition with

�i = {−βi + β j | 0 � i �= j � n}, 0 � i � n;

2. Any other (3 � m < n + 1)-regular partition is obtained from the maximal one
above by combining several subsets �i together;

3. Up to equivalences mentioned above, all m-regular partitions are described by
m-partitions λ = (λ1, . . . , λm) of n + 1.

To pass from a regular partition � = �m
i=1�i to a regular decomposition g =

⊕m
i=1gi , we let

gi := si ⊕ spanF {Eα | α ∈ �i }
for some (non-unique) disjoint subspaces si of h. In case m = 2, we first put

s′
i := spanF {Hα | ±α ∈ �i }.

Then we represent h = (s′
1 ⊕ s′

2) ⊕ h′ and, finally, obtain si by distributing h′ into s′
i

in an arbitrary way. In case m � 3 there is even less freedom.

Theorem 2.4 ([19], TheoremB) Let sl(n+1, F) = ⊕m
i=1gi be an m-regular partition.

Up to swapping positive and negative roots, re-numbering gi ’s and the action of
W (An), it has one of the following forms

1. g1 = spanF {Eβi | 1 � i � n},
g� = spanF

{
E−βi+β j , Hβi

∣∣∣∣
�−2∑
t=1

λt < i �
�−1∑
t=1

λt , 0 � j �= i � n

}
,

where 2 � � � k + 1 and (λ1, . . . , λk) is a k-partition of n;

2. g1 = spanF {E−βi+β j , Hβi , X | 0 � i � λ1, 0 � j �= i � n},
g� = spanF

{
E−βi+β j , Hβi − X

∣∣∣∣
�−1∑
t=1

λt < i �
�∑

t=1
λt , 0 � j �= i � n

}
,

where 2 � � � k, (λ1, . . . , λk) is a k-partition of n and X is an arbitrary vector in

(FHβ1 ⊕ · · · ⊕ FHβλ1
) ∪

{
Hβp

∣∣∣∣ 2 � m � k, λm > 1,
m−1∑

t=1

λt < p �
m∑

t=1

λt

}
.

Remark 2.5 The decompositions in the theorem above have an intuitive description:
the Lie algebra gl(n + 1, F) can be decomposed into (n + 1) subalgebras, consisting
of (n + 1) × (n + 1)-matrices with a single nonzero row in position i . The projection
of gl(n + 1, F) onto sl(n + 1, F) preserves this decomposition outside the diagonal.
The Cartan part, however, has to be re-distributed. Two different descriptions of gi
come from two essentially different possibilities to do that. ♦
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2.2 Maximal upper-bounded subalgebras in g((x))

Subalgebras W of g((x)) are called upper-bounded, if they satisfy the condition

W ⊆ xNg[x−1] for some N ∈ Z+,

and bounded, if they satisfy the stronger condition

x−Ng[x−1] ⊆ W ⊆ xNg[x−1] for some N ∈ Z+. (10)

Among all upper-bounded algebras, we distinguish those that are both maximal, with
respect to inclusion, and sum up with g[[x]] to the whole g((x)), i.e.

g[[x]] + W = g((x)). (11)

Example 2.6 The trivial maximal bounded algebra is given by

P := P0 := g[x−1].

It is clearly a maximal proper subalgebra of g((x)) satisfying Eqs. (10) and (11) with
N = 1. ♦

Example 2.7 For each simple root αi ∈ {α1, . . . , αn}, there is a maximal bounded
algebra

Pi := h[x−1]
⊕

α∈�

x�α(hi )�gα[x−1], (12)

where hi ∈ h are defined byαi (h j ) = δi j/ki withα0 = ∑
kiαi , ki ∈ Z+. The notation

is motivated by the fact that Pi are the standard maximal parabolic subalgebras of
g((x)), if the latter is considered as a completed affine Lie algebra modulo its center. ♦

Maximal bounded subalgebras, which sometimes are also called maximal orders,
were thoroughly studied in [27], where the following result was proven.

Proposition 2.8 Let W ⊆ g((x)) be a proper bounded subalgebra such that

g[[x]] + W = g((x)).

Then there is an automorphism ϕ ∈ AutF[[x]]-LieAlg(g[[x]]) such that ϕ(W ) ⊆ Pi for
some 0 � i � n.

Remark 2.9 To be precise, paper [27] studies subalgebras W ⊆ g((x−1)) with the
property

x−Ng[[x−1]] ⊆ W ⊆ xNg[[x−1]].
These are called orders. It is straight-forward to transport the results from [27] to
our setting, since both our setting and the one in [27] can be reduced to the study of
bounded subalgebras of g[x, x−1]. ♦
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It turns out, that upper-bounded subalgebrasW of g((x)) can also be placed into the
maximal bounded ones.

Proposition 2.10 Let W be a subalgebra of g((x)) such that

W ⊆ xNg[x−1] and dim(xNg[x−1]/W ) < ∞

for some N ∈ Z+. Then there exists g ∈ G(F[x, x−1]), where G is the connected
semisimple affine algebraic group associated to g, such that

Ad(g)W ⊆ Pi

for some 0 � i � n.

Proof By enlarging W to F[x−1]W , we can assume without loss of generality that

F[x−1]W ⊆ W .

Let I := x−2N−1W ⊆ W , then I is an ideal inW and I ⊆ x−N−1g[x−1]. Consider the
algebra W ⊕ Fc as a subalgebra of the affine Lie algebra ĝ, i.e. the central extension

ĝ = g[x, x−1] ⊕ Fc, (13)

endowed with the bracket

[axk, bx� ]̂g = [a, b]xk+� + δk,−�kκ(a, b)c.

Because W ⊆ xNg[x−1] and I ⊆ x−N−1g[x−1], the algebra I is also an ideal in
W ⊕ Fc ⊆ ĝ. Furthermore, I has finite codimension in the subalgebra

n− ⊕ x−1g[x−1] ⊆ ĝ,

since W ⊆ xNg[x−1] is of finite codimension by assumption. Therefore, copying
the proof from [2, Proposition 3.10], we see that [17, Proposition 2.8] implies the
existence of g ∈ G(F[x, x−1]) such that Ad(g)W ⊆ Pi for some 0 � i � n. ��

Adding the extra condition onW to sum up with g[[x]] to the whole g((x)), the result
of Proposition 2.10 can be refined as follows.

Corollary 2.11 Let W be a subalgebra of g((x)) with the properties

1. W ⊆ xNg[x−1] for some N ∈ Z+ and
2. g[[x]] + W = g((x)).

Then there exists g ∈ G(F[x]) such that

Adg(W ) ⊆ Pi

for some 0 � i � n.
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Proof By virtue of Proposition 2.10, we have Adg(W ) ⊆ Pi for some element g ∈
G(F[x, x−1]). The Kac-Moody group Ĝ associated to the affine Lie algebra ĝ (see
Eq. (13)) is the central extension of G(F[x, x−1]) by F× via the rescaling of x ; see
[20]. Let B± := HU± ⊆ Ĝ, where the subgroups U± have the property

Ad(U±) = 〈ex±kad(a) | a ∈ gα, α ∈ �±, k ∈ Z�0〉 ⊆ Ad(G(F[x, x−1]))

and H is a maximal torus of Ĝ. We note that Ad(H) stabilizes all root spaces and the
Cartan subalgebra of ĝ. By [20, Corollary 2] we can decompose g inside Ĝ as

g = b+wb−,

for some b± ∈ B± and an element w inside the Weyl group W of ĝ. Using that
Ad(b−1− )Pi = Pi we obtain

Ad(b+)W ⊆ Ad(w−1)Pi .

Applying Ad(w−1) to the equality g[[x]]+Pi = g((x)) we get g[[x]]+Ad(w−1)Pi =
g((x)). The argument right before [1, Lemma 9.2.2] shows that this is possible if and
only if

Ad(w−1)Pi = Ad(w′)P j

for some (possibly different) integer 0 � j � n and some element w′ of the Weyl
group of g, viewed as an element of G. Taking g = w′,−1b+ and changing i to j if
necessary, we get the desired statement. ��

2.3 Regular decompositions

Motivated by [4, 13, 13, 15], we focus on Lie algebras

Lm := g((x)) × g[x]/xkg[x], m � 0

and their Lie algebra decompositions.More precise, we study regular decompositions,
i.e. decompositions of the form Lm = D ⊕ W , where

• � is the diagonal embedding of g[[x]] into Lm with a complementary subalgebra
W ⊆ Lm ;

• W is invariant under the adjoint action by {(h, h) | h ∈ h};
• W is invariant under the multiplication by (x−1, 0) and (0, [x]) and
• The projection W+ of W onto the left component g((x)) is upper-bounded.

Wecall a subalgebraW ⊆ Lm itself regular if Lm = D⊕W is a regular decomposition.
Projecting a regular subalgebra W onto the left component g((x)) of Lm gives an

upper-bounded subalgebra W+ ⊆ g((x)) such that W+ + g[[x]] = g((x)). By Corollary
2.11 we can find an automorphism ϕ such that

ϕ(W+) ⊂ Pi , 0 � i � rank(g).
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Extending this automorphism to Lm we get the inclusion

(ϕ × [ϕ])W ⊆ Pi × g[x]/xkg[x]. (14)

Allowing such equivalences, we can replace the last requirement on the projection
of W with the requirement on W to be contained in Pi × g[x]/xkg[x] for some
0 � i � rank(g). When the latter inclusion is satisfied, we say that W is regular and
has type ki . For consistency, we let k0 := 0.

Remark 2.12 The inclusion Eq. (14) restricts the set of integersm we need to consider.
Formally, since Pi ⊆ xg[x−1], combining Eq. (14) with Lm = D ⊕ W we get

{0} × x2g[x]/xmg[x] ⊆ (ϕ × [ϕ])W .

Therefore, (ϕ × [ϕ])W is completely determined by its image in

Lm/({0} × x2g[x]/xmg[x]) = L2

and we can assume without loss of generality that 0 � m � 2. ♦

2.4 Connection to the classical Yang-Baxter equation

In view of [4], subalgebrasW ⊆ Lm complementary toD are in bijection with formal
power series r of the form

r(x, y) = yk�

x − y
+ p(x, y) ∈ (g ⊗ g)((x))[[y]],

where � ∈ g⊗ g is the quadratic Casimir element of g, which satisfy the generalized
classical Yang-Baxter equation (GCYBE)

[r12(x1, x2), r13(x1, x3)]+[r12(x1, x2), r23(x2, x3)]+[r32(x3, x2), r13(x1, x3)] = 0.
(15)

Such a series can be viewed as a generating series ofW . For a regular subalgebraW ⊆
Lm , the upper-boundedness of W guarantees that p is a polynomial in (g ⊗ g)[x, y]
and h-invariance gives the identity

[h ⊗ 1 + 1 ⊗ h, p(x, y)] = 0

for all h ∈ h. The fact that W is an F[x−1]-module, on the other hand, has no nice
interpretation on the side of r .

3 Regular decompositions g((x)) = g[[x]] ⊕ W

We start the study of regular subalgebras W ⊆ Lm with the simplest case, namely
m = 0 and hence L0 ∼= g((x)).

123



Generalized classical Yang-Baxter equation and regular... Page 17 of 55    50 

3.1 Decompositions g((x)) = g[[x]] ⊕ W

Following [13], let us first consider decompositions g((x)) = g[[x]]⊕W for subalgebras
W of g((x)) which satisfy x−1W ⊆ W but are not-necessarily h-invariant. It is not
hard to see that in this case we can write

W = WA := A(x−1g[x−1])

for some series
A = 1 + Rx + Sx2 + . . . (16)

which is considered as an F((x))-linear map A : g((x)) → g((x)). Clearly, the subspace
WA for an arbitrary series Eq. (16) is not a subalgebra in general. The next statement
provides necessary and sufficient conditions on A for WA to be a subalgebra.

Lemma 3.1 ([13]) The vector space WA ⊆ g((x)) is a subalgebra if and only if for all
a, b ∈ g

[Aa, Ab] = A([a, b] + x([Ra, b] + [a, Rb] − R[a, b])) (17)

holds.

Proof Clearly, WA is a subalgebra if Eq. (17) is satisfied. On the other hand, if WA is
a subalgebra, we have that

x−2[Aa, Ab] = Ac

for some unique c ∈ x−2g[[x]]. On one side, the form of endomorphism A gives the
containment

x−2[Aa, Ab] ∈ x−2[a, b] + x−1([Ra, b] + [a, Rb]) + g[[x]]. (18)

On the other side, since WA ∩ g[[x]] = {0}, the coefficients in front of x−2 and
x−1 determine completely the g[[x]] part of the element Eq. (18). Therefore, c =
c2x−2 + c1x−1 for

c2 = [a, b] and c1 + Rc2 = [Ra, b] + [a, Rb]

and Eq. (17) holds true. ��
We can see from Proposition 2.10 that after applying a polynomial automorphism,

every upper-bounded subalgebra W complementary to g[[x]] is contained in Pi ⊆
xg[x−1]. Looking at coefficients in front of higher powers of x in Eq. (17) we get the
following statement.

Lemma 3.2 ([13]) The vector subspace WA ⊆ g((x)) is an upper-bounded subalgebra
if and only if, after applying an F[x]-linear automorphism of g[x], the following
conditions hold for all a, b ∈ g:

1. A = 1 + Rx + Sx2;
2. R([Ra, b] + [a, Rb] − R[a, b]) − [Ra, Rb] = [Sa, b] + [a, Sb] − S[a, b];
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3. [Sa, Sb] = 0 and
4. [Sa, Rb] + [Ra, Sb] = S([Ra, b] + [a, Rb] − R[a, b]).

When the subalgebra WA is h-invariant, we have [h, A] = 0 and therefore
A(x−1gα) ⊆ fαgα for some fα ∈ x−1 + F[[x]]. In particular, Lemma 3.1 specializes
to h-invariant decompositions as follows.

Lemma 3.3 Let g((x)) = g[[x]]⊕W be a decomposition for a subalgebra W satisfying
x−1W ⊆ W and [h,W ] ⊆ W. Then we can write

W = Wh

⊕

α∈�

fα gα[x−1],

where Wh is an F[x−1]-invariant subspace of h((x)) and fα ∈ x−1 + F[[x]] satisfy
the relations

fα fβ = (x−1 + cαβ) fα+β, ∀α, β, α + β ∈ �, (19)

for some constants cαβ ∈ F.

Remark 3.4 Any Lie algebra automorphism A of g((x)) given by Eq. (16) satisfy Eq.
(17), since for such automorphisms [Ra, b] + [a, Rb] − R[a, b] = 0. In this case
WA ∼= x−1g[x−1].

In the setting of Lemma 3.3 this observation can be interpreted as follows. There is
a trivial choice of series fα satisfying the relations Eq. (19). More precisely, we take
arbitrary series fαi ∈ x−1 + F[[x]] for simple roots αi and for any root of the form
α = ∑n

i=1 kiαi put

fα := xk−1
n∏

i=1

f kiαi
and f−α := x−k−1

n∏

i=1

f −ki
αi

, (20)

where k := ∑n
i=1 ki . In this case, the relations Eq. (19) hold true with cα,β = 0. How-

ever, this choice is not interesting, because the assignment Eαi �→ x fαi Eαi already
defines an automorphism A of g((x)) of the form Eq. (16) that maps W0 to W defined
by the fα as above. ♦

Remark 3.5 Following [9, 13, 23, 24], let g be matrix Lie algebra and D be a matrix
such that Y �→ DY +Y D defines an endomorphism of g. Then one can define a series
A by

A(Y ) := √
1 + Dx Y

√
1 + Dx .

This endomorphism of g((x)) satisfies the condition of Lemma 3.1 with

R(Y ) = 1

2
(DY + Y D).

Therefore, WA is an F[x−1]-invariant subalgebra of g((x)) complementary to g[[x]].
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When [ad(h), R] = 0 for all h ∈ h, the corresponding WA is additionally h-
invariant. For instance, take g = sp(2n)whose Cartan subalgebra is given by diagonal
matrices. Then one can take D = diag(a1, . . . , an, a1, . . . , an). A similar construction
is possible for other classical Lie algebras.

Note that the series A, in general, has more than 3 nonzero terms and hence do
not give rise to an upper-bounded subalgebra of g((x)). It is unclear however if these
subalgebras are gauge equivalent to upper-bounded ones. ♦

Combining previous results, we can derive a standard form for regular subalgebras
W ⊆ L0 of any type k � 0. To simplify the presentation of this normal form, we
introduce the following subsets of roots

�
<mαi± :=

{
α ∈ �± | α = ±

n∑

i=1

ciαi , 0 � ci < m

}
,

�
�mαi± :=

{
α ∈ �± | α = ±

n∑

i=1

ciαi , ci � m

}

and let

l :=
⊕

α∈�
<ki αi+

gα

⊕

α∈�
<αi−

gα, c :=
⊕

α∈�
�ki αi+

gα and r :=
⊕

α∈�
�αi−

gα. (21)

Furthermore, we define the following subspaces of g((x))

V a := (x−1 − a)V [x−1],
V a,b := x(x−1 − a)(x−1 − b)V [x−1]

for any subspace V ⊆ g and a, b ∈ F .
If α0 = ∑n

i=1 kiαi is the decomposition of the maximal root into a sum of simple
roots, then the parabolic Pi (see Eq. (12)) can be written in the form

Pi = (h ⊕ l ⊕ xc ⊕ x−1r)[x−1] (22)

and by Lemma 3.3 any regular subalgebra W ⊆ Pi is necessarily of the form

W = Wh

⊕

α∈�
<ki αi+

gaα
α

⊕

α∈�
<αi−

gaα
α

⊕

α∈�
�ki αi+

gcα,dα
α

⊕

α∈�
�αi−

g0α.
(23)

In other words, defining a regular subalgebra W ⊆ Pi is equivalent to defining con-
stants aα, cα, dα in Eq. (23) in a consistentway andfinding a compatibleWh ⊆ h[x−1].

If we write

Wh = Wφ := {x−n(x−1h − φ(h)) | h ∈ h, n ∈ Z�0}
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for some linear map φ : h → h, the associated A = 1 + Rx + Sx2 is given by

Rv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−φ(v) v ∈ h,

−aαv v ∈ gα, α ∈ �
<kiαi+ ∪ �

<αi− ,

−(cα + dα)v v ∈ gα, α ∈ �
�kiαi+ ,

0 v ∈ gα, α ∈ �
�αi−

and

Sv =
{
cαdαv v ∈ gα, α ∈ �

�kiαi+
0 v ∈ h

⊕
α∈�\��ki αi+

gα,

According to [23, Theorem 3.1], the r -matrix associated to WA is given by

r(x, y) = (A(x) ⊗ A(y))�

x − y
= ((A(x)A(y)−1 − 1) ⊗ 1 + 1 ⊗ 1)�

x − y

= �

x − y
+

(
A(x) − A(y)

x − y
A(y)−1 ⊗ 1

)
�,

(24)

where A is uniquely determined by κ(Aa, Ab) = κ(a, b). To obtain the expression
above we have used (1 ⊗ A)� = (A−1 ⊗ 1)�.

Therefore, if A = 1 + Rx + Sx2 we obtain

r(x, y) = �

x − y
+

(
(R + (x + y)S)(1 + Ry + Sy2)−1 ⊗ 1

)
�.

Here we used that

(1 + T x)−1 =
n∑

k=0

(−1)nT nxn .

holds for all linear maps T : g[[x]] → g[[x]].
Summarized, the r -matrix of the subspace Eq. (23) is given by

r(x, y) = �

x − y
+

(
φ

yφ − 1
⊗ 1

)
�h +

∑

α∈�
<ki αi+ ∪�

<αi−

aα

aα y − 1
Eα ⊗ E−α

+
∑

α∈�
�ki αi+

cαdα(x + y) − cα − dα

(cα y − 1)(dα y − 1)
Eα ⊗ E−α. (25)

Note that φ
yφ−1 = φ(yφ − 1)−1 = (yφ − 1)−1φ is unambiguous since φ and yφ − 1

commute.

3.2 Regular decompositions g((x)) = g[[x]] ⊕ W of type 0

Let us now discuss regular subalgebras g((x)) = g[[x]] ⊕ W of type 0, i.e. such that
W ⊆ g[x−1]. Using Lemma 3.2 with S = 0 yields the following result.
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Corollary 3.6 The vector space WA = A(x−1g[x−1]) ⊆ g((x)) is a subalgebra satis-
fying WA ⊆ g[x−1] if and only if A = 1 + Rx and the so-called Nijenhuis tensor

NR(a, b) := R([Ra, b] + [a, Rb] − R[a, b]) − [Ra, Rb]

of R vanishes: NR = 0.

The vanishing condition for the Nijenhuis tensor can be expressed using the Jordan
decomposition of R.

Proposition 3.7 Let R : g → g be a linear map, R = Rs + Rn be its Jordan decompo-
sition and λ1, . . . , λm ∈ F be the eigenvalues of the semi-simple linear map Rs with
associated eigenspaces gi := Ker(Rs − λi ). Then

1. NRs = 0 if and only if [gi , g j ] ⊆ gi + g j ;
2. NR = 0 if and only if NRs = 0 and

πi
(
NRn (a, b) − (λi − λ j )(Rn[a, b] − [Rna, b])) = 0,

π j
(
NRn (a, b) + (λi − λ j )(Rn[a, b] − [a, Rnb])

) = 0
(26)

holds for all a ∈ gi , b ∈ g j and 1 � i, j � m, where πk : g = ⊕m
i=1 gi → gk is

the canonical projection.

Proof By direct calculation we see that the equality NR(a, b) = 0 implies

(R − μ)(R − λ)[a, b] = (R − μ)[(R − λ)a, b] + (R − λ)[a, (R − μ)b]
− [(R − λ)a, (R − μ)b] (27)

for all λ,μ ∈ F . Assume λ and μ are two eigenvalues of R with generalized eigen-
vectors v and w of ranks r and t , respectively. We prove now by induction that the
equalities (R − λ)rv = (R − μ)tw = 0 imply the equality

(R − λ)r (R − μ)t [v,w] = 0.

If v and w are eigenvectors, then, using Eq. (27), we get the base case

(R − λ)(R − μ)[v,w] = 0.

Assume the statement is true for r = 1 and 1 � t � k − 1. Then,

(R − λ)(R − μ)k[v,w] = (R − μ)k−1(R − λ)(R − μ)[v,w]
= (R − λ)(R − μ)k−1[v, (R − μ)w]
= 0,

where the last equality follows from the induction hypothesis and the fact that the vector
(R−μ)w has rank k − 1. Assume now that the statement is true for all 1 � r � k − 1
and t � 1. We then have
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(R − λ)k(R − μ)t [v,w] = (R − λ)k−1(R − μ)t−1(R − λ)(R − μ)[v,w]
= (R − λ)k−1(R − μ)t−1 {(R − μ)[(R − λ)v,w]

+ (R − λ)[v, (R − μ)w]
−[(R − λ)v, (R − μ)w]}

= (R − λ)k−1(R − μ)t [(R − λ)v,w]
+ (R − λ)k−1(R − λ)(R − μ)t−1[v, (R − μ)w]
+ (R − λ)k−1(R − μ)t−1[(R − λ)v, (R − μ)w]

= 0.

This shows that [gi , g j ] ⊆ gi +g j for λ = λi andμ = λ j , since gi = ⋃∞
n=1 Ker((R−

λi )
n) and (R − λi )|g j has trivial kernel for all i �= j .
It is now easy to see from Eq. (27) that [gi , g j ] ⊆ gi + g j implies NRs = 0.

In particular, we see that these two conditions are equivalent. And if one of these
equivalent conditions is satisfied, Eq. (27) for λ = λi and μ = λ j implies NR(a, b) =
NRn (a, b) for a, b ∈ gi and

NR(a, b) = (R − λi )(R − λ j )[a, b] − (R − λi )[a, Rnb]
− (R − λ j )[Rna, b] + [Rna, Rnb]

for a ∈ gi , b ∈ g j . The latter can be rewritten as Eq. (26) since

(R − λi )v = (Rs + Rn − λi )v = (Rs − λi )v + Rnv = Rnv + (Rs − λi )π j (v)

= Rnv + (λ j − λi )π j (v)

and similarly
(R − λ j )v = Rnv + (λi − λ j )πi (v)

holds for all v ∈ gi ⊕ g j , so

(R − λi )(R − λ j )v = (R − λi )(Rnv − (λi − λ j )πi (v))

= R2
nv − (λi − λ j )Rnπ j (v) + (λi − λ j )Rnπi (v).

��
Remark 3.8 Observe that in particular, the Nijenhuis tensor of Rn|gi vanishes for all
1 � i � m. Therefore, the construction of all linear maps satisfying NR = 0 can
be split into two steps: first find a decomposition g = ⊕m

i=1 gi satisfying [gi , g j ] ⊆
gi + g j and then find nilpotent linear maps {Rn,i : gi → gi }mi=1 satisfying Eq. (26). ♦

The following corollary, which is equivalent to the first part of Proposition 3.7, was
already noticed in [16].
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Corollary 3.9 Let R : g → g be a diagonalizable linear map and a1, . . . , am ∈ F be
its eigenvalues with associated eigenspaces gi := Ker(R − ai ). Then NR = 0 if and
only if [gi , g j ] ⊆ gi + g j for 1 � i, j � m.

Remark 3.10 In view of Corollary 3.9, we can construct a solution R to NR = 0 by
first taking a decomposition g = ⊕m

i=1 gi with the property that gi and gi ⊕ g j are
subalgebras of g and then defining

R :=
m∑

i=1

λiπi ,

whereπi is the projection of g onto gi and λi ∈ F is an arbitrary constant. In particular,
we can start with a regular decomposition of g defined in Sect. 2.1. ♦

Let us now specify Proposition 3.7 for regular partitions.

Theorem 3.11 Let

� =
n⊔

i=1

�i

be a regular partition, a1, . . . , an be some constants in F and φ : h → h be a linear
map such that

(φ − ai )(φ − a j )Hα = 0 for α ∈ �i , −α ∈ � j . (28)

Then

W := Wφ

n⊕

i=1

⊕

α∈�i

gaiα , (29)

is a regular subalgebra of type 0, where

Wφ := {x−n(x−1h − φ(h)) | h ∈ h, n ∈ Z�0} (30)

This assignment is a bijection between the set of data (� = ⊔n
i=1 �i , {a1, . . . , an}, φ)

and regular decompositions g((x)) = g[[x]] ⊕ W of type 0.
Furthermore, the r-matrix of W in Eq. (29) has the form

r(x, y) = �

x − y
+

(
φ

yφ − 1
⊗ 1

)
�h +

n∑

i=1

ai�i

ai y − 1
,

where �i = ∑
α∈�i

Eα ⊗ E−α .

Proof Let W = WA for A = 1 + Rx , R = Rs + Rn be the Jordan decomposition of
R and λ1, . . . , λm ∈ F be the eigenvalues of the semi-simple part Rs with associated
eigenspaces gi := Ker(Rs−λi ). By virtue of Corollary 3.6,W ⊆ g((x)) is a subalgebra
if and only if NR = 0.
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Let us observe that W is h-invariant if and only if [ad(h), R] = 0. Therefore, for
every i ∈ {1, . . . ,m} we get gi = si

⊕
α∈�i

gα for some �i ⊆ �. The decomposition
g = ⊕n

i=1 gi is regular if and only if [gi , g j ] ⊆ gi + g j . However, by Proposition 3.7
the latter is equivalent to NRs = 0, which is a necessary condition for NR = 0.

Since gα is one-dimensional for all α ∈ � ∪ {0}, we have R|gα = Rs |gα . This
implies that NR(a, b) = NRs (a, b) = 0 for all a ∈ gα , b ∈ gβ with α, β ∈ � ∪ {0}
and α + β �= 0. Here, g0 = h was used. Moreover, R(h) ⊆ h and [h, h] = 0 implies
NR(a, b) = 0 for all a, b ∈ h.

Put φ := R|h : h → h and assume α ∈ �i and −α ∈ � j . Then

NR(Eα, E−α) = (−φ2 + (ai + a j )φ − aia j )Hα = −(φ − ai )(φ − a j )Hα

holds. In particular, we see that NR = 0 if and only if Eq. (28) holds.
The form of the r -matrix follows immediately from Eq. (25). ��

Remark 3.12 At first glance, it is unclear whether the system of equations Eq. (28) is
consistent. However, by Proposition 2.1 for any regular partition � = ⊔n

i=1 �i we
can find a decomposition h = ⊕n

i=1 si such that g = ⊕n
i=1 si

⊕
α∈�i

gα is a regular
decomposition. Then we can define φ satisfying Eq. (28) by letting φ(v) = aiv for
v ∈ si . ♦

Remark 3.13 Note that solutions r ∈ g⊗ g to the constant generalized classical Yang-
Baxter equation

[r12, r13] + [r12, r23] + [r32, r13] = 0 (31)

are in bijection with subalgebras w ⊆ g[x−1]/x−2g[x−1], such that g ⊕ w =
g[x−1]/x−2g[x−1]. Indeed, this follows from the fact that tensors r ∈ g ⊗ g sat-
isfying Eq. (31) are in bijection with solutions of the GCYBE of the form �

x−y + r
and [4].

We could also consider the classification of such tensors r under the assumption
of h-invariance. It turns out that this classification is trivial: these tensors are pre-
cisely arbitrary tensors in h⊗ h. Let us briefly explain why. The h-invariance is again
equivalent to the h-invariance of w and it is easy to see that there exists a linear map
φ : h → h such that

w = spanF {x−1h − φ(h) | h ∈ h} ⊕
∑

α∈�

(x−1 − aα)gα

for a set {aα}α∈� ⊂ F . Assume that some aα �= 0. Then

(x−1 − aα)(x−1 − a−α)(x−1 − aα)gα ⊆ (x−1 − aα)gα.

This implies that 2aαa−α +a2α = λ and a2αa−α = λaα so aαa−α = λ and 2λ+a2α = λ,
so a2α = −λ. Plugging this back into a2αa−α = λaα gives aα = −a−α . But this implies
that

[(x−1 − aα)gα, (x−1 + aα)g−α] = FHα ⊆ w ∩ g
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which is a contradiction. We conclude aα = 0 for all α ∈ �. Therefore, every h-
invariant subalgebra w ⊆ g[x−1]/x−2g[x−1] complementary to g is of the form

w = spanF {x−1h − φ(h) | h ∈ h} ⊕ x−1(n+ ⊕ n−)

for some linear map φ : h → h. The r -matrix corresponding to w is of the form

r = φ(hi ) ⊗ hi ∈ h ⊗ h

for an orthonormal basis {hi }�i=1 of h. Since there are no restrictions on φ, r can be an
arbitrary tensor in h ⊗ h. ♦

3.3 Regular decompositions g((x)) = g[[x]] ⊕ W of type 1

Let us now consider regular splittings g((x)) = g[[x]] ⊕ W of type 1. In view of Eq.
(22), we have

W ⊆ Pi = (h ⊕ l ⊕ xc ⊕ x−1r)[x−1] (32)

for i ∈ {1, . . . , n} such that the simple root αi has multiplicity ki = 1. In this case the
inclusion [l, l] ⊆ h⊕ l holds. Using this observation we can immediately concoct the
following example.

Example 3.14 For two different constants a1, a2 ∈ F× define

W = (h ⊕ l)a1 ⊕ ca1,a2 ⊕ r0.

Clearly, it is a regular subalgebra of Pi of type 1. By Lemma 3.2, it must be of the
formW = (1+ Rx + Sx2)x−1g[x−1] for some endomorphisms R and S of g. Indeed,
take

Rv =

⎧
⎪⎨

⎪⎩

−a1v v ∈ h ⊕ l,

−(a1 + a2)v v ∈ c,

0 v ∈ r

and Sv =
{
a1a2v v ∈ c,

0 v ∈ h ⊕ l ⊕ r.

In particular, by Lemma 3.2, these endomorphisms solve NR = dS. We do not allow
a1 or a2 be equal to 0, because then the type of W becomes 0. ♦

We can also make an example of a regular subalgebra of type 1 using a 2-regular
partition of �.

Example 3.15 Let �<αi be the root system one obtains from � by removing all the
roots containing αi , with ki = 1. In general, it is a union of two irreducible root
systems. A partition

�<αi = �1 � �2

into two closed subsets gives another two-parameter example of a type 1 regular
subalgebra:

W = Wφ

⊕

α∈�1

ga1α

⊕

α∈�2

ga2α ⊕ ca1,a2 ⊕ r0,

123



   50 Page 26 of 55 R. Abedin et al.

where a1, a2 ∈ F× and Wφ is given by the same formula Eq. (30), but we require the
linear map φ : h → h to satisfy

(φ − ai )(φ − a j )Hα = 0 for α ∈ �i , −α ∈ � j ,

(φ − a1)(φ − a2)Hα = 0 for α ∈ �
�αi+ .

Indeed, this follows from Lemma 3.2 with endomorphisms R and S given by

Rv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−aiv v ∈ ⊕
α∈�i

gα,

−(a1 + a2)v v ∈ c,

0 v ∈ r,

−φ(v) v ∈ h

and Sv =
{
a1a2v v ∈ c,

0 v ∈ h ⊕ l ⊕ r.

Observe, that by letting a1 = a2 and φ = a1 we obtain a specification of Example
3.14. ♦

We now present more sophisticated constructions usingm-regular decompositions.
As we will see, we can construct type-1 regular subalgebras with an arbitrary number
of parameters ai ∈ F for systems of types An,Cn and Dn . In all other cases, regular
subalgebras of type 1 are necessarily of the form presented in Example 3.15.
Type An . If we want to obtain a regular subalgebra of type 1 withm � 3 parameters, it
is natural to start with an m-regular decomposition of g and try extending it. The only
irreducible root systems, admittingm-regular partitions withm � 3, are precisely An ,
n � 2. Therefore, the following construction will be the main building block for the
latter examples.

Assume W ⊆ Pi is a type-1 regular subalgebra. Denote by R1 and R2 the sub-
systems of � generated by {α1, . . . , αi−1} and {αi+1, . . . , αn}. When i = 1 or n, we
allow R1 or R2 respectively to be the empty set. Such a W must have the following
form

W = Wh

partition of R1 and R2︷ ︸︸ ︷⊕

α∈R1

gaα
α

⊕

α∈R2

gbα
α

⊕

α∈�
�αi+

gcα,dα
α

⊕

α∈�
�αi−

g0α. (33)

Note that if we group together the roots in R j having the same constant aα , we obtain
a regular partition of R j in the sense of Eq. (9).

Define c := cαi , d = dαi and let � := {aα | α ∈ π\{αi }} ∪ {c, d} be the set of
constants in Eq. (33) associated with simple roots. The following statement says, that
these constants determine constants of all other roots.

Lemma 3.16 Let C := {aα | α ∈ �
<αi± } ∪ {cβ, dβ | β ∈ �

�α1+ } be the set of all
constants in Eq. (33). Then C ⊆ �.

Proof If γ is a positive root in R1, then it can be written as γ = αk1 +αk2 +· · ·+αkm
for some simple roots αk j ∈ {α1, . . . , αi−1}. Consequently, the constant aγ lies in the
set {aαk j

| 1 � j � m} ⊆ �. The same argument shows that aγ ∈ � for any positive
γ ∈ R2.
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Any root γ ∈ �
�αi+ is necessarily of the form γ = α + αi + β, for some non-

negative roots α ∈ R1 ∪ {0} and β ∈ R2 ∪ {0}. Assume first, that α �= 0 and β = 0.
Then by commuting

gc,dαi
= x(x−1 − c)(x−1 − d)gαi [x−1] with gaα

α = (x−1 − aα)gα[x−1]

we get the equality

(x−1 − q)(x−1 − cγ )(x−1 − dγ ) = (x−1 − c)(x−1 − d)(x−1 − aα)

for someq ∈ F . Consequently {cγ , dγ } ⊆ {aα, c, d} ⊆ �. Similarly, forα = 0, β �= 0

we have cγ , dγ ∈ �. Finally, writing an arbitrary root γ ∈ �
�αi+ as γ = α + (αi +β)

and using the previous results we get the containments cγ , dγ ∈ �.
It now remains to prove, that a−γ ∈ � for negative −γ ∈ Ri . Assume −αk ∈ R1,

then we can write it as

−αk = (αk+1 + · · · + αi )︸ ︷︷ ︸
∈�

�αi+

+ (−αk − · · · − αi )︸ ︷︷ ︸
∈�

�αi−

.

By commuting the corresponding subalgebras of W we get a−αk ∈ �. Similarly,
a−αk ∈ � for any −αk ∈ R2. Since any negative root −γ ∈ Ri is a sum of −αk ∈ Ri

we get the desired statement. ��
Corollary 3.17 In case of type An, a regular subalgebra W ⊆ Pi can have at most
n + 1 parameters. In other words, |C | ≤ |�| = n + 1.

The upper bound n + 1 can always be achieved as it is seen from the following
examples.

Example 3.18 Fix an integer n � 3 and a simple root αi with 1 < i < n. To simplify
the description, we introduce the following notation:

βk := α1 + · · · + αk, 1 � k � n,

−→
βk := αi+1 + · · · + αi+k, 1 � k � n − i,
←−
βk := αi−1 + · · · + αi−k, 1 � k � i − 1.

(34)

For convenience we also set β0 = −→
β0 = ←−

β0 = 0. Both R1 and R2 are subsystems of
type A; see Fig. 2.

By Theorem 2.3, up to equivalences, they have unique finest partitions. One repre-
sentative for the finest partition of R1 is

�0
1 =

{
−←−

βk | 1 � k � i − 1
}

,

�m
1 =

{←−
βm,

←−
βm − ←−

βk | 1 � m �= k � i − 1
}

.
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Fig. 2
←−
βk and

−→
βk sum k simple roots to the left and right from αi respectively

Similarly,

�0
2 =

{
−−→

βk | 1 � k � n − i
}

,

�
j
2 =

{−→
β j ,

−→
β j − −→

βk | 1 � j �= k � n − i
}

is one of the finest partitions of R2. Define H0 := 0. For all 0 � j � n − i and
0 � m � i − 1 we define the following subalgebras of g:

g1,m := FH←−
βm

⊕

α∈�m
1

gα,

g2, j := FH−→
β j

⊕

α∈�
j
2

gα.

These subalgebras can be now ”glued” into the following regular subalgebra of g((x)):

W =
i−1⊕

m=0

(
g
am
1,m ⊕ g

am ,b0←−
βm+αi

) n−i⊕

j=0

(
g
b j
2, j ⊕ g

a0,b j

αi+−→
β j

) i−1⊕

m=1

n−i⊕

j=1

g
am ,b j←−
βm+αi+−→

β j

⊕

α∈�
�αi−

g0α

where am and b j are distinct elements in F .
The corresponding endomorphisms R and S of g are given by

Rv =

⎧
⎪⎨

⎪⎩

−av (Fv)a ⊆ W ,

−(a + b)v (Fv)a,b ⊆ W ,

0 otherwise

and Sv =
{
abv (Fv)a,b ⊆ W ,

0 otherwise,
(35)

where v ∈ {H←−
βm

, H−→
β j

, E±α}. ♦

Example 3.19 When n � 2 and i = 1 or n, we can use the same approach as in
Example 3.18, keeping only R2 or R1, respectively. More precisely, when i = 1 the
above construction leads to the following regular subalgebra

W =
n−1⊕

j=0

(
g
a j
j ⊕ g

a j ,b

αi+−→
β j

) ⊕

α∈�
�αi−

g0α,
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Fig. 3 Unique vertex with
ki = 1

where

�0 = {−−→
βk | 1 � k � n − 1}, � j = {−→β j ,

−→
β j − −→

βk | 1 � j �= k � n − 1}

and
g j := FH−→

β j

⊕

α∈� j

gα, 0 � j � n − 1

with the convention H0 = 0.
The endomorphisms R and S are given by the same equations Eq. (35), but with

v ∈ {H−→
β j

, E±α}. ♦

Type Bn . There is only one vertex with degree 1, namely α1 The remaining simple
roots {α2, . . . , αn} generate a subsystem R ⊆ � of type Bn−1; see Fig. 3.
Similarly to Eq. (33), any regular subalgebra of type 1 can then be written in the form

W = Wh

⊕

α∈R

gaα
α

⊕

α∈�
�α1+

gcα,dα
α

⊕

α∈�
�α1−

g0α. (36)

Since there are no regular partitions of R into more than two parts [19], we can
immediately conclude that |{aα | α ∈ R}| � 2. When there are exactly two different
constants, call them a and b, we have a regular partition R = R1�R2 of the root system
R. Note that a system of type Bn has the following property: for any two η, γ ∈ �

�α1+
we can find two roots μ, ν ∈ R � {0} such that η = (γ + μ) + ν. Consequently, by
fixing a pair {cγ , dγ } of constants for an arbitrary γ ∈ �

�α1+ , we fix all other constants
as well. From this easy observation follows, that we cannot get more than 4 different
parameters in Eq. (36). The next result implies, that actually the number of parameters
is at most 2.

Lemma 3.20 There is a root γ ∈ �
�α1+ and two roots μ, ν ∈ �

�α1− such that γ +μ ∈
R1 and γ + ν ∈ R2.

Proof Assume the statement is false. Then the roots

βn − βn−1 = αn and βn − (βn + αn) = −αn

always lie together either in R1 or R2. Here, we used the notation defined in Eq. (34).
Without loss of generality let ±αn ∈ R1. Similarly, all three roots
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Fig. 4 Subdiagram An−1 inside
Cn . Here βk is the sum of k
consecutive simple roots starting
from α1

−αn = βn−1 − βn,

αn−1 = βn−1 − βn−2,

−αn−1 − 2αn = βn−1 − (βn + αn + αn−1)

must be contained in one of the sets R1 or R2. Since −αn ∈ R1, the same is true for
the other two roots. Consequently, ±αn−1 ∈ R1. Continuing in this way, we prove
that all ±αi , 2 � i � n lie inside R1. This contradicts the fact that we started with a
2-regular partition R = R1 � R2. ��

Taking γ ∈ �
�α1+ , satisfying the condition of Lemma 3.20, we get the inclusions

{cη, dη | η ∈ �
�α1+ } ⊆ {cγ , dγ } ∪ {a, b} ⊆ {a, b}.

Note that none of the constants can be 0, because this would imply the type of W
being 0.

In case {aα | α ∈ R} = {a �= 0}, we know that a ∈ {cγ , dγ }. If cγ = a, then the
remaining constant dγ �= 0 can be chosen arbitrarily. Summarizing everything above,
we get the following statement.

Proposition 3.21 Let g be of type Bn, n � 2. Then any regular subalgebra W ⊆ P1
is necessarily of the form presented in Example 3.15, where �<α1 is a root system of
type Bn−1 and �<α1 = �1 � �2 is its 2-regular partition.

Type Cn . As one can see from Fig. 4, removing the vertex of degree one from the
Dynkin diagram of type Cn leads to a subdiagram of type An−1.
This suggests that we can expect more than just 2 parameters. The following example
shows that we can obtain a regular subalgebra W ⊆ Pn with n parameters.

Example 3.22 Start with one of the finest regular decompositions of An−1, namely

�0 := {βi | 1 � i � n − 1} and � j := {−β j ,−β j + βi | 1 � i �= j � n − 1},

whereβk := α1+· · ·+αk andβ0 = 0.As before, we put H0 = 0 and for 0 � j � n−1
define

g j := FHβ j

⊕

α∈� j

gα.
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Fig. 5 Roots of degree 1 in Dn

We can extend this regular splitting of sl(n, F) to a regular subalgebra W ⊆ Pn in
the following way

W :=
n−1⊕

i=0

(
g
ai
i ⊕ g

ai ,an−1
βn−βi

) ⊕

0�i� j<n−1

g
ai ,a j
βn+βn−1−β j−βi

⊕

α∈�
�αn−

g0α

where ai ∈ F are arbitrary constants, such that at least one of the pairs
(ai , an−1), (ai , a j ) or (a0, a0) has both nonzero entries. The corresponding endo-
morphisms R and S are given using the same formula Eq. (35) with v ∈ {Hβ j , E±α |
1 � j � n, α ∈ �}. ♦

Type Dn . When g is of type Dn , we have three different roots of degree 1 and,
essentially, two different cases to consider; see Fig. 5. Removing α1 in case n � 5
leads to a subsystem of type Dn−1. On the other hand, removing α1 when n = 4 and
removing αn−1 or αn gives a subdiagram of type An−1.
Consequently, in the first case we anticipate a rigid system with only two parame-
ters, while in the second case, we can expect to find a regular subalgebra with many
parameters.

Let us first consider the case i = 1 and n � 5. It is similar to Bn-type case. We
define R to be the subsystem of � generated by {α2, . . . , αn}. It is a subsystem of
type Dn−1 and hence it has no regular partitions into more than 2 parts. Therefore,
for any regular subalgebra W ⊆ P1 we can find two constants a, b ∈ F and a regular
partition R = R1 � R2 such that

W = Wh

⊕

α∈R1

gaα

⊕

α∈R2

gbα

⊕

α∈�
�α1+

gcα,dα
α

⊕

α∈�
�α1−

g0α

Assuming that R1 and R2 are non-trivial, we can again prove a similar result.

Lemma 3.23 There is a root γ ∈ �
�α1+ and two roots μ, ν ∈ �

�α1− such that γ +μ ∈
R1 and γ + ν ∈ R2.

Proof Assume the opposite. Then for any fixed γ ∈ �
�α1+ the set

Oγ := {γ + μ ∈ � | μ ∈ �
�α1− } ⊆ R,
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Fig. 6 Orbits related by simple roots

called the orbit of γ , must be contained entirely in one of the sets R1 or R2. If two
orbits have a nonzero intersection Oγ ∩ Oη �= ∅, then both Oγ and Oη are contained
in the same Ri . We say that two orbits Oγ and Oη are connected by a root β ∈ R, if

there are μ, ν ∈ �
�α1− such that γ + μ = η + ν. Connected orbits, in particular, are

contained in the same closed set R1 or R2. Consider the following graph

1. Vertices are the roots in �
�α1+ ;

2. There is an edge between γ and η if there is a simple root αi ∈ R such that αi or
−αi is contained in Oγ ∩ Oη. We label such an edge with αi or −αi , respectively.

It is not hard to see that in our particular case the graph has the form presented in
Fig. 6.

Consequently, all orbits are connected and they contain the set {±α2, . . . ,±αn}.
This means that either R ⊆ R1 or R ⊆ R2 contradicting our assumption that R1 and
R2 were non-trivial. ��

Note that, as in the case of Bn , any two roots γ, η ∈ �
�α1+ can be connected by a

chain of roots μ1, . . . , μ� ∈ R, i.e. we can write η = γ + μ1 + · · · + μ�. Repeating
the argument proceeding Proposition 3.21 we obtain the following statement.

Proposition 3.24 Let g be of type Dn, n � 5. Then any regular subalgebra W ⊆ P1
is necessarily of the form given in Example 3.15. The system �<α1 is a system of type
Dn−1 and �<α1 = �1 � �2 is its regular partition.

Now we turn our attention to the case i = n. As it was mentioned before, the
subsystem R ⊆ � generated by {α1, . . . , αn−1} has type An−1. We now present a
construction of a regular subalgebra W ⊆ Pn with n parameters.

Example 3.25 We start exactly as in Example 3.22 with the finest partition of R:

�0 := {βi | 1 � i � n − 1} and � j := {−β j ,−β j + βi | 1 � i �= j � n − 1},

where βk := α1 + · · · + αk and β0 = 0. We put H0 = 0 and define

g j := FHβ j

⊕

α∈� j

gα
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Fig. 7 Vertices of degree 1 in E6 and E7

for each 0 � j � n − 1. Such a decomposition can be glued to a regular subalgebra
of Pn in the following way:

W :=
n−1⊕

i=0

g
ai
i

n−3⊕

i=0

g
ai ,an−2
βn−βi

n−2⊕

i=0

g
ai ,an−1
βn−αn−1−βi

⊕

0�i< j<n−3

g
ai ,a j
βn+βn−2−βi−β j

⊕

α∈�
�αn−

g0α,

where ai ∈ F . ♦

The endomorphisms R and S are obtained using Eq. (35) with the restriction v ∈
{Hβ j , E±α | 1 � j � n, α ∈ �}.
Type E6, E7. There are only two vertices of degree 1 in E6. Removing any of them
leads to a subsystem of type D5; see Fig. 7.

Furthermore, removing the only node of degree 1 from E7 gives rise to a subsystem
of type E6. In both cases, we can repeat the arguments for Dn and prove the following.

Proposition 3.26 Let g be of type E6 or E7. Then any regular subalgebra W ⊆ P1
(and P6 in E6 case) is necessarily of the form given in Example 3.15.

Remark 3.27 The only difference between proofs for Propositions 3.24 and 3.26 is
that in the latter case we need a more cumbersome calculation to show that all orbits
intersect and contain all the roots {±α1, . . . ,±αn}\{±αi }. However, this can still be
done effectively by hand, using the corresponding Hasse diagrams. ♦

3.4 Regular decompositions g((x)) = g[[x]] ⊕ W of type > 1

When the degree ki of a simple root αi is greater than 1, we can still use the same two
building blocks Examples 3.18 and 3.19 to construct examples of regular subalgebras
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Fig. 8 Sets of type An and Bn−i+1 inside R

W ⊆ Pi . The difference lies only in the “gluing” complexity. We consider g of type
Bn as an example.

Example 3.28 Let g be a simple Lie algebra of type Bn , n � 3, and fix some 1 < i < n.
By Lemma 3.3 any regular subalgebra W ⊆ Pi is of the form

W = Wh

⊕

α∈R

gaα
α

⊕

α∈�
�ki αi+

gcα,dα
α

⊕

α∈�
�αi−

g0α,

where R = �
<kiαi+ � �

<αi− . Note that R is not a subsystem in general, because it
may not be closed under root addition. However, R does contain sets of type An and
Bn−i+1; see Fig. 8.

By that we mean that R1 := {βk − β j | 0 � k �= j � n} is a subset of R and for
any two roots μ, ν ∈ R1 we have μ+ ν ∈ R1 if and only if μ+ ν is a root in An . Here
we again used the notation Eq. (34). Similarly, the set

R2 := {βk − β j ,±(2βn − β� − βp) | i � k �= j � n, i − 1 � p < � � n − 1}

has the property μ + ν ∈ R2 for μ, ν ∈ R2 if and only if μ + ν is a root of Bn−i+1.
A regular subalgebra W must induce regular partitions of the subsets R1 and R2,
respectively. In building an example, we take the opposite path: we decompose the
subsets R1 and R2 and then “glue” them into a regular subalgebra W ⊆ Pi .

Start with a finest partition of R1:

�′
0 := {βk | 1 � k � n} and �′

j := {−β j ,−β j + βk | 1 � k �= j � n}.

Now we extend these sets with the remaining roots of R in the following way

�0 := �′
0 � {2βn − βk | i � k � n − 1}

� j := �′
j � {2βn − β j − βk | i < k � n − 1}, 1 � j � i − 1,
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and

�i := (�
�2αn+ ∩ �

<αi+ ) � (�
�2αn− ∩ �

<2αi− )

n⊔

j=i

�′
j .

In this way, we get a partition R = ⊔i
k=0 �k with the property, that all the roots of

R2 lie within two subsets �i−1 and �i . We now add the Cartan part of g:

g0 := FHβn

⊕

α∈�0

gα,

g j := FHβn−β j

⊕

α∈� j

gα,

gi :=
n−1⊕

k=i

FHβn−βk

⊕

α∈�i

gα

and extend everything to a regular subalgebra W ⊆ Pi

W :=
i−1⊕

k=0

g
ak
k

⊕

0��<m�i−1

g
am ,a�

2βn−βm−β�

⊕
g0i

⊕

α∈�
�2αi−

g0α.

with i parameters. The corresponding endomorphisms R and S are given by Eq. (35)
with v ∈ {Hβn−βk , E±α | 0 � k � n − 1, α ∈ �}. ♦

Therefore, a general approach to constructing regular subalgebras of type > 1 is:

1. Find a subset R1 ⊆ R of type An and consider its finest partition R1 = �n
i=0�

′
i

(see Theorem 2.3);
2. Complete sets �′

i with the remaining roots of R \ R1 in such a way that any subset
R2 ⊆ R of a type different from An is contained in at most two elements of the
partition;

3. AddCartan part and extend the resulting decomposition of g to a regular subalgebra
W .

4 Regular decompositions Lm = D ⊕ W form > 0

In view of Remark 2.12, to study regular subalgebrasW ⊆ Lm it is enough to consider
cases m � 2. Lie algebra L0 was considered in the previous section. Now we turn our
attention to m = 1 and m = 2.

It turns out, that regularW ⊆ L1 of type 0 admit a complete classification. Similar to
Theorem3.11, the classification is obtainedby reducing the problem todecompositions
of g × g.
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4.1 Regular decompositions g × g = d ⊕ w

We say that w ⊆ g × g is regular if it is invariant under {(h, h) | h ∈ h} and
w ⊕ d = g × g, where d = {(a, a) | a ∈ g}. Regular subalgebras are completely
described in the following proposition.

Theorem 4.1 Let w ⊆ g × g be a regular subalgebra. Then there is a 2-regular
partition � = S+ � S− and subspaces of the Cartan subalgebra s± = t± ⊕ r±,
having the properties h = s+ + s− and t+ ∩ t− = {0}, such that

w =
⎛

⎝

⎛

⎝t+
⊕

α∈S+
gα

⎞

⎠ × {0}
⎞

⎠ ⊕
⎛

⎝{0} ×
⎛

⎝t−
⊕

β∈S−
gβ

⎞

⎠

⎞

⎠ ⊕ spanF {(h, φ(h)) | h ∈ r+},

(37)

where φ : r+ → r− is a vector space isomorphism with no nonzero fixed points. In
other words, all regular subalgebras are described by 2-regular partitions of � and
the extra datum (t±, r±, φ).

Proof Consider a regular subalgebraw ⊆ g×g.Write p± for the canonical projections
ofw onto the first and second components of g×g, respectively. Define the following
spaces:

w± := p±(w), I+ := w ∩ (g × {0}) and I− := w ∩ ({0} × g).

It is clear that I± is an ideal in w±. This allows to define an isomorphism ϕ of Lie
algebras:

ϕ : w+/I+ → w−/I−,

[a+] �→ [a−] := [(p− ◦ p−1+ )(a+)]. (38)

The invariance ofw under the adjoint action of {(h, h) | h ∈ h} implies the invariance
of w± under the adjoint action of h. Indeed, applying projections p± to the element

[(h, h), (a+, a−)] = ([h, a+], [h, a−]) ∈ W

we see that [h, a±] ∈ w± for all h ∈ h and all (a+, a−) ∈ W , giving the desired invari-
ance. Moreover, since [h, I±] ⊆ I±, the isomorphism ϕ is an h-module isomorphism.
Consequently, we can write

w± = s±
⊕

α∈S±
gα and I± = t±

⊕

α∈R±
gα

for some subspaces t± ⊆ s± ⊆ h and subsets R± ⊆ S± ⊆ �. Note that since
I+ ∩ I− = {0} we have t+ ∩ t− = {0} and R+ ∩ R− = ∅. The isomorphism ϕ then
means

w+/I+ ∼= s+/t+
⊕

α∈S+\R+
gα

∼= s−/t−
⊕

α∈S−\R−
gα

∼= w−/I−.
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Since ϕ intertwines the h-action, it must act as multiplication by a nonzero scalar on
each nonzero root space and hence S+\R+ = S−\R− ⊆ S+ ∩ S−. Furthermore, since
w+ + w− = g we get

� = S+ ∪ S− = R+ ∪ (S+\R+) ∪ R− ∪ (S−\R−) = R+ ∪ R− ∪ (S+\R+).

Assume S+ \ R+ �= S+ ∩ S−, meaning that there is a root α ∈ R+ ∩ (S+ ∩ S−) and

α /∈ S+\R+ = S−\R−.

Then wemust have the containment α ∈ R−, leading to a contradiction R+ ∩ R− �= ∅.
Therefore, S+\R+ = S+ ∩ S− and R± = S± \ S∓.

Let us write s± = t± ⊕ r± for some vector subspaces r± ⊆ s±. Combining the
results above, we can write

w =
⎛

⎝

⎛

⎝t+
⊕

α∈�1

gα

⎞

⎠ × {0}
⎞

⎠ ⊕
⎛

⎝{0} ×
⎛

⎝t−
⊕

β∈�2

gβ

⎞

⎠

⎞

⎠
⊕

γ∈S+∩S−
spanF {(Eγ , λγ Eγ )}

⊕ spanF {(h1, h2) ∈ r+ × r− | φ([h1]) = [h2]},

where we put �1 := S+\S− and �2 := S−\S+. To complete the proof we need to
show that the intersection S+ ∩ S− is empty. For that assume the opposite and take
γ ∈ S+ ∩ S−. Then either −γ ∈ S+ ∩ S− or −γ /∈ S+ ∩ S−. In the first case the
following elements must be contained in w:

(E±γ , λ±γ E±γ ), (Hγ , λγ λ−γ Hγ ),

(Eγ , λ2γ λ−γ Eγ ), (E−γ , λγ λ2−γ E−γ ).

This is possible if and only if λγ λ−γ = 1. However, this would imply (Hγ , Hγ ) ∈
w ∩ d, which is a contradiction. Therefore, we can without loss of generality assume
−γ ∈ S+ \ S−. Then, by taking appropriate commutators inside w, we see that the
following elements are also in w:

(Eγ , λγ Eγ ), (E−γ , 0),

(Hγ , 0), (γ (Hγ )Eγ , 0),

giving rise to the contradiction γ ∈ S+ \ S−. We can now conclude that such a γ does
not exist implying S+ ∩ S− = ∅.

The isomorphism ϕ cannot have fixed points, because otherwisewe get a non-trivial
intersection of w with the diagonal. Let φ : r+ → r− be the isomorphism that maps
h1 ∈ r+ to a representative of ϕ([h1]) ∈ s−/t− inside r−. This completes the proof. ��
Example 4.2 One straight-forward example of a regular subalgebra of g × g is

w = (n+ × {0}) ⊕ ({0} × n−) ⊕ {(h, φ(h)) | h ∈ h},
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where φ is defined on simple roots by φ(Hαi ) = λαi Hαi for 1 �= λαi ∈ F×. ♦

Example 4.3 The example above can be easily generalized to an arbitrary 2-regular
partition. More precisely, if � = �1 � �2, then we can define

gi := spanF {Eα, Hβ | α ∈ �i , β ∈ �i ∩ (−�i )}.

It is not hard to see that h �⊂ g1 ⊕ g2. In other words, there is always a missing Cartan
part h′. This allows to define

w = (g1 × {0}) ⊕ ({0} × g2) ⊕ {(h, φ(h)) | h ∈ h′},

where φ is any linear isomorphism without nonzero fixed points. ♦

Remark 4.4 Let us make a connection of the proposition above to the GCYBE similar
to Remark 3.13. It is not hard to see that any subspace w ⊆ g × g complementary to
d can be written in the form

w = {(Ra + a, Ra − a) | a ∈ g},

for some unique endomorphism R ∈ EndF (g). The property of w being a subalgebra
is equivalent to the relation

[Ra, Rb] − R([Ra, b] + [a, Rb]) = −[a, b] for all a, b ∈ g. (39)

The Killing form κ on g allows us to identify g ⊗ g with EndF (g), by sending x ⊗ y
to κ(−, y)x . Under this identification, the Eq. (39) becomes

[r12, r13] + [r12, r23] + [r32, r13] = −[�12,�13], (40)

where � ∈ g ⊗ g is the quadratic Casimir element of g.
By Theorem 4.1, all h-invariant solutions to Eq. (40) are classified by 2-regular

partitions and additional datum (S±, t±, r±, φ). Explicitly, consider the tensor

r̃ =
∑

α∈S+
(Eα, 0) ⊗ (E−α, E−α) −

∑

α∈S−
(0, Eα) ⊗ (E−α, E−α)

+
n∑

i=1

(φ(hi ) + hi , φ(hi ) − hi ) ⊗ (hi , hi )

where {hi }ni=1 ⊆ h is an orthonormal basis and φ : h → h is the unique extension
of φ satisfying φ(t+ ⊕ t−) = {0}. The element r̃ corresponds to the map (a, a) �→
(Ra + a, Ra − a) and hence the solution of Eq. (40) associated with R is given by

r(S±,t±,r±,φ) := 1

2
(r+ + r−)
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= 1

2

⎛

⎝
∑

α∈S+
Eα ⊗ E−α −

∑

α∈S−
Eα ⊗ E−α

⎞

⎠ +
n∑

i=1

φ(hi ) ⊗ hi , (41)

where p± : g × g → g, (a+, a−) �→ a± are the canonical projections and r± :=
(p± ⊗ p±)̃r . ♦

4.2 Regular decomposition Lm = D ⊕ Wwithm > 0 of type 0

Let us start with a regular decomposition

L2 = g((x)) × g[x]/x2g[x] = D ⊕ W .

By definition, the projection W+ of W onto the left component is contained in a
maximal order P; see Eq. (22). When W is of type 0, we have W+ ⊆ P0 = g[x−1]
and, consequently,

0 × xg ⊆ W .

Therefore, we can quotientW by the ideal 0× xg and reduce the problem to a regular
decomposition of L1 of type 0.

Consider now a regular subalgebra W ⊆ L1 of type 0. This means that W ⊆
g[x−1] × g. Intersecting it with g × g we get a regular subalgebra w ⊆ g × g. The
latter subalgebras were classified in Theorem 4.1. The following result shows that we
can also extend regular subalgebras of g × g back to type 0 subalgebras of L1.

Theorem 4.5 Let g((x)) × g = D ⊕ W be a regular decomposition such that W ⊆
g[x−1] × g, i.e. W has type 0. Then

W = w ⊕
⎛

⎝

⎛

⎝Wψ

n⊕

i=0

⊕

α∈�i

gaiα

⎞

⎠ × {0}
⎞

⎠ ,

where

• w ⊆ g× g is given by Eq. (37) with a 2-splitting � = S+ � S− and the additional
datum (t±, r±, φ);

• � = �n
i=0�i is a regular decomposition such that S+ ⊆ �0 and S+ + �i are

closed;
• a0, . . . , an ∈ F are distinct constants with a0 = 0;
• ψ : h → h satisfies ψ(r+ ⊕ t+) = {0} and

{
(ψ − ai )Hα = 0 α ∈ S+,−α ∈ �i ,

(ψ − ai )(ψ − a j )Hα = 0 α ∈ �i ,−α ∈ � j .

Moreover, the above datum always defines a regular subalgebra W ⊆ L1 of type 0.
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The r-matrix of W has the form

r(x, y) = y�

x − y
+ r(S±,t±,r±,φ) + 1

2
� +

(
ψ

yψ − 1
⊗ 1

)
�h +

n∑

i=1

ai�i

ai y − 1
,

where �i = ∑
α∈�i

Eα ⊗ E−α and r(S±,t±,r±,φ) is given by formula Eq. (41).

Proof Let W ⊆ L1 be a regular subalgebra contained in g[x−1] × g. Define

w := W ∩ (g × g).

Regularity of W implies regularity of w. By Theorem 4.1 we can find

1. A regular partition � = S+ � S−;
2. Cartan subspaces s± = t± ⊕ r± such that h = s+ + s− and t+ ∩ t− = {0};
3. A linear isomorphism φ : r+ → r− without nonzero fixed points

such that

w =
⎛

⎝

⎛

⎝t+
⊕

α∈S+
gα

⎞

⎠ × {0}
⎞

⎠⊕
⎛

⎝{0} ×
⎛

⎝t−
⊕

β∈S−
gβ

⎞

⎠

⎞

⎠⊕spanF {(h, φ(h)) | h ∈ r+}.

By (x−1, 0)-invariance of W we have

x−k

⎛

⎝s+
⊕

α∈S+
gα

⎞

⎠ × {0} ⊆ W for all k � 1.

Furthermore, for each α ∈ S− we can find unique f ∈ g[[x]] and w ∈ W such that

(x−1Eα, 0) = ( f , [ f ]) + w.

Since W is of type 0 we necessarily have the containment f ∈ g forcing
(x−1Eα − f ,−[ f ]) ∈ W . The h-invariance of W now implies that f = aαEα .
Consequently, ⊕

α∈S−
(x−1 − aα)gα[x−1] × {0} ⊆ W .

Let {aα | α ∈ S−} = {a1, . . . , am} and define �i := {α ∈ S− | aα = ai }. Regularity
ofW implies that S− = �i�i is a regular partition of S−. Summarizing,W must have
the following form

123



Generalized classical Yang-Baxter equation and regular... Page 41 of 55    50 

W =
⎛

⎝

⎛

⎝t+
⊕

α∈S+
gα

⎞

⎠ × {0}
⎞

⎠ ⊕
⎛

⎝{0} ×
⎛

⎝t−
⊕

α∈S−
gα

⎞

⎠

⎞

⎠ ⊕ spanF {(h, φ(h)) | h ∈ r+}

⊕
⎛

⎝
⊕

α∈S+
gα[x−1] × {0}

⎞

⎠ ⊕
⎛

⎝
m⊕

i=1

⊕

α∈�i

gaiα × {0}
⎞

⎠ ⊕ Wψ,

for some Wψ ⊆ h[x−1] × h. To conclude the regularity of � = S+ �i �i we need to
prove the closedness of S+ � �i . For that choose two roots α ∈ S+ and β ∈ �i such
that α + β ∈ � j . This, in particular, would imply the following inclusion

[gα × {0}, gaiβ × {0}] = g
ai
α+β × {0} ⊆ g

a j
α+β × {0} ⊆ W ,

which is possible if and only if ai = a j and hence i = j . Therefore, � = S+ �i �i

is a regular partition of �.
It now remains to understand theCartan partWψ = {x−n(x−1h−ψ(h), 0) | h ∈ h}.

The arguments above imply that

x−1s+[x−1] × {0} ⊆ Wh

giving ψ(s+) = 0. Now take an arbitrary root α ∈ � and consider three cases:

1. For ±α ∈ S+ we must have Hα ∈ s+ and hence ψ(Hα) = 0;
2. When α ∈ S+ and −α ∈ �i the relation [gα, g

ai−α] = (x−1 − ai )FHα implies
ψ(Hα) = ai ;

3. Finally, when α ∈ �i and −α ∈ � j the equality

[gaiα , g
a j
−α] = (x−1 − ai )(x

−1 − a j )FHα

leads to (ψ − ai )(ψ − a j )Hα = 0.

Retracing the arguments above also shows thatW defined byw, ψ and � = ⊔n
i=1 �i

as above provides a regular subalgebra of L1 of type 0. The formula for the r -matrix
is deduced similarly to Eq. (25). ��

Example 4.6 The subalgebra W = W+ × W− with

W+ = (h ⊕ l ⊕ x−1r)[x−1] ⊕
⊕

α∈�
�ki αi+

gaα
α

and W− = r defines a regular decomposition L1 = � ⊕ W of type ki � 0. ♦
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4.3 Weakly regular decompositions for L1

For subalgebras inside Lm ,m � 1, there exists another natural notion of h-invariance.
Precisely, instead of assuming the invariance ofW with respect to the action of (h, h),
one can require the projections W+ and W− onto g((x)) and g[x]/xmg[x] respec-
tively to be h-invariant. For simplicity, we call upper-bounded and F[x−1]-invariant
subalgebras W ⊆ Lm with the requirement above weakly regular. Using a slight gen-
eralization of Belavin-Drinfeld construction [8] we can create examples of weakly
regular subalgebras W ⊆ L1. The construction can be extended to loop algebras to
produce weakly regular subalgebras in Lm , m � 1; See Remark 4.8.

Let A = (ai, j )ni, j=1 be the Cartan matrix of g. We call (�1, �2, τ ) a generalized
Belavin-Drinfeld triple if �1, �2 ⊆ π are subsets of simple roots and τ : �1 → �2 is
a bijection such that:

1. aτ(i),τ ( j) = ai, j for all αi , α j ∈ �1. In other words, τ preserves the entries of the
Cartan matrix corresponding to the roots in �1, i.e.

〈αi , α j 〉
〈αi , αi 〉 = 〈τ(αi ), τ (α j )〉

〈τ(αi ), τ (αi )〉 ;

2. τ(α), . . . , τ k−1(α) ∈ �2 but τ k(α) /∈ �1 holds for every α ∈ �1 and some k ∈ N.

Then τ defines an isomorphism θτ : g�1 → g�2 of the Lie subalgebras g�1 , g�2 ⊆ g
generated by {Eα, E−α | α ∈ �1} and {Eα, E−α | α ∈ �2} respectively. Precisely,
one defines the isomorphism by E±α �→ E±τ(α).

Let us write ��i for the root subsystem of � generated by �i and put �±
�i

:=
��i ∩ �±. We denote the restriction of θτ to

⊕
α∈�±

�1
gα with θ+

τ and the restriction

of its inverse θ−1
τ to

⊕
α∈�±

�2
gα with θ−

τ . Both restrictions can be extended by 0 on

the remaining root vectors to produce two endomorphisms θ±
τ : n± → n±, that we

denote with the same letters. Due to condition 2. on τ , the endomorphisms θ±
τ are

nilpotent. Consequently,

ρ±
τ := θ±

τ /(1 − θ±
τ ) :=

∞∑

k=1

θ±,k
τ : n± → n±

are well-defined endomorphisms as well.
We say that φ : h → h is compatible with (�1, �2, τ ) if

{(hα, hτ(α)) | α ∈ �1} ⊆ {(φ(h) + h, φ(h) − h) | h ∈ h}. (42)

Given a generalized Belavin-Drinfeld triple with a compatible linear map φ, we can
construct a weakly regular subalgebra W ⊆ L1 and the associated r -matrix in a way
similar to Theorem 4.5. To simplify the notation, let us define
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r(�1,�2,τ,φ) := (φ⊗1)�h+2

⎛

⎝
∑

α∈�+
(ρ+

τ − 1)(Eα) ⊗ E−α −
∑

α∈�+
(ρ−

τ − 1)(E−α) ⊗ Eα

⎞

⎠ .

(43)
This is a solution to Eq. (40).

Proposition 4.7 For every linear isomorphism φ : h → h compatible with a general-
ized Belavin-Drinfeld triple (�1, �2, τ ) we can define

w(�1,�2,τ,φ) :=
⎛

⎝
⊕

α∈�+\��1

gα × {0}
⎞

⎠ ⊕
⎛

⎝
⊕

α∈�−\��2

{0} × gα

⎞

⎠

⊕ {(Eα, Eτ(α)) | α ∈ ��1} ⊕ {(φ(h) + h, φ(h) − h) | h ∈ h}.

Then

W := w(�1,�2,τ,φ) ⊕
⎛

⎝

⎛

⎝Wψ

n⊕

i=0

⊕

α∈�i

gaiα

⎞

⎠ × {0}
⎞

⎠ ,

where

• � = �n
i=0�i is a regular partition such that ��1 ⊆ �0 and ��1 +�i are closed;

• a0, . . . , an ∈ F are distinct constants with a0 = 0;
• ψ : h → h is a linear map satisfying ψ(Im(φ + 1)) = {0} and

{
(ψ − ai )Hα = 0 α ∈ ��1 ,−α ∈ �i ,

(ψ − ai )(ψ − a j )Hα = 0 α ∈ �i ,−α ∈ � j ,

is a weakly regular subalgebra of L1.
Furthermore, the associated r-matrix is given by

r(x, y) = y�

x − y
+ r(�1,�2,τ,φ) + 1

2
� +

(
ψ

yψ − 1
⊗ 1

)
�h +

n∑

i=1

ai�i

ai y − 1
,

where �i = ∑
α∈�i

Eα ⊗ E−α and r(�1,�2,τ,φ) is given by Eq. (43).

Remark 4.8 It was shown in [3, 18] that quasi-trigonometric r -matrices, i.e. formal
solutions of the classical Yang-Baxter equation of the form

r(x, y) = y�

x − y
+ p(x, y)

for some p ∈ (g ⊗ g)[x, y], are in bijection with Lagrangian Lie subalgebras of L1
with respect to a certain form. Furthermore, in [3] these solutions were classified in
terms of triples (�1, �2, τ ), where

• �i are subsets of simple roots � of the loop algebra g[x, x−1];
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• The minimal root α0 is not in �1 and
• τ : �1 → �2 is a bijection such that 〈α, β〉 = 〈τ(α), τ (β)〉 and τ k(α) /∈ �1 for all

α, β ∈ �1 and some k ∈ N.

If τ does not preserve the form, but only the extended affine Cartan matrix, i.e.
aτ(i),τ ( j) = ai, j for αi ∈ �1, we can use the same construction with minimal adjust-
ments to produce a weakly regular subalgebra of L1 of type 0 or 1, respectively.

More precisely, if α0 /∈ �2, then we get the generalized Belavin-Drinfeld described
in the beginning of Sect. 4.3. When α0 ∈ �2, we can use the same formulas for
r(�1,�2,τ,φ) and m(�1,�2,τ,φ), where we understand �± and ��i as subsystems of the
affine root system � of g[x, x−1]. The subalgebra m(�1,�2,τ,φ) obtained in this way
will in general be a subalgebra of g[x, x−1]×g[x, x−1] complementary to the diagonal
embedding of g[x, x−1] satisfying the inclusion

m(�1,�2,τ,φ) ⊆ g[x, x−1] × g[x].

Projecting m(�1,�2,τ,φ) onto g[x, x−1] × g we get a weakly regular subalgebra
of L1. ♦

Remark 4.9 More generally, trigonometric solutions of the classical Yang-Baxter
equationwere classified byBelavin-Drinfeld triples in [8] and later in [2, 3].Moreover,
it was shown in [3] that such solutions are in bijection with Lie algebra decompositions

L × L = D ⊕ W ,

where L is a twisted loop algebra, D is the diagonal embedding of it into L × L
and W is a subalgebra of the product complementary to D and Lagrangian with
respect to a certain bilinear form. If we allow the bijection τ : �1 → �2 from a BD
triple (�1, �2, τ ) to preserve only the Cartan matrix, as in Remark 4.8, repeating the
construction from [2, 3] we get a Lie algebra decompositionL×L = D⊕W , whereW
is a non-Lagrangian subalgebra. The latter decomposition corresponds to a non-skew-
symmetric analog of a trigonometric r -matrix. We leave these statements unproven
because we will not pursue this direction further in the paper. ♦

Example 4.10 Assume � is of exceptional type G2. There are two simple roots {α, β}
and, without loss of generality, we assume that α is the shortest root. Put �1 = {α}
and �2 = {β}. The bijection τ given by τ(α) = β trivially satisfies conditions 1.
and 2. above. Consequently, (�1, �2, τ ) is a generalized Belavin-Drinfeld triple. Let
{X±α, X±β, Hα, Hβ} be the Chevalley basis for g(�), then

h⊥
�1

= spanF {3Hα + 2Hβ︸ ︷︷ ︸
=:H1

}, h⊥
�2

= spanF {2Hα + Hβ︸ ︷︷ ︸
=:H2

}.

Consequently, by choosing the trivial ψ and a nonzero λ ∈ F we get the following
weakly regular subalgebra of L1:
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W := {Xβ, Xα+β, X2α+β, X3α+β, X3α+2β} × {0}
⊕ {0} × {X−α, X−α−β, X−2α−β, X−3α−β, X−3α−2β}
⊕ {(Xα, Xβ), (Hα, Hβ), (H1, λH2)}
⊕ x−1g[x−1] × {0}.

We can see that this subalgebra is not regular in our sense, because

(Hα, Hα) · (Xα, Xβ) = (a11Xα, a12Xβ) = (2Xα,−3Xβ)

which is not in W . ♦

Example 4.11 The same construction can be applied to the orthogonal Lie algebra
o(5). Let α and β be two simple roots of B2, such that α is shorter than β, and
{X±α, X±β, Hα, Hβ} be again the Chevalley basis of o(5). Then

W := {Xβ, Xα+β, X2α+β} × {0}
⊕ {0} × {X−α, X−α−β, X−2α−β}
⊕ {(Xα, Xβ), (Hα, Hβ), (Hα + Hβ, λ(2Hα + Hβ))}
⊕ x−1g[x−1] × {0}.

is again a weakly regular subalgebra of L1 for any nonzero λ ∈ F . ♦

4.4 Regular decomposition Lm = D ⊕ Wwithm > 0 of type k > 0

The classification of regular subalgebras W ⊆ Lm of type k > 0 is overly convoluted
to be formulated in detail. However, we can observe that regular subalgebras of Lm

always admit the following standard form.

Theorem 4.12 Let Lm = � ⊕ W be a regular decomposition for m > 0. Then

W = Wh ⊕ (I+ × {0}) ⊕ ({0} × I−), (44)

where Wh ⊆ h[x−1] × h[x]/xmh[x] is an appropriate subspace and

I+ × {0} := W ∩ (xg[x−1] × {0}),
{0} × I− := W ∩ ({0} × g[x]/xmg[x]).

Proof As it was explained in the beginning of Sect. 4, we can restrict our attention
to cases m = 1 and 2. However, for any regular W ⊆ L1 we can define a regular
subalgebra

W̃ := W ⊕ ({0} × xg[x]) ⊆ L2.

If W̃ has the form Eq. (44), then so does W . For this reason, it is sufficient to prove
the statement for m = 2.
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Let W ⊆ L2 be a regular subalgebra. Define a map ϕ : W+/I+ → W−/I− as in
Eq. (38). It is again a Lie algebra isomorphism having no nonzero fixed points and
intertwining the action of the Cartan subalgebra h. Consequently, we can write

W = Wh ⊕ (I+ × {0}) ⊕ ({0} × I−)

⊕ spanF {(pαEα, [qα]Eα) | pαEα + I+ ∈ W+/I+}︸ ︷︷ ︸
D:=

. (45)

Here Wh ⊆ h[x−1] × h[x]/x2h[x], pα ∈ F[x, x−1], qα ∈ F[x] and the elements in
D are glued using ϕ, namely

ϕ(pαEα + I+) = [qα]Eα + I−.

The h-invariance of W implies the h-invariance of W±. Using Lemma 3.3 we can
decompose

W+ = Wh,+
⊕

α∈�

fαgα[x−1],

for some nonzero fα = aαx−1 + bα + cαx and Wh,+ ⊆ h[x−1]. Similarly,

W− = Wh,−
⊕

α∈�

[gα]Eα,

for gα ∈ {0, 1, x} and Wh,− ⊆ h[x]/x2h[x]. The invariance of W under multiplica-
tions by (x−1, 0) and (0, [x]) implies that we can choose the representatives pα and
[qα] in

(pαEα, [qα]Eα) ∈ D

in a way that (after a re-scaling of fα and gα by nonzero constants) we get pα = fα
and [qα] = [gα].

By assumption, W+ is contained in a maximal orderPi corresponding to a simple
root αi . Decompose

g = h ⊕ l ⊕ c ⊕ r

as described in Eq. (21). Let us consider an arbitrary root vector Eα ∈ g. Since W is
complementary to D, we can find unique Aα ∈ g, Bα ∈ c such that

w = (Aα + Bαx, Aα + (Bα + Eα)[x]) ∈ W .

For Eα /∈ c we have fα = aαx−1 + bα and the only way to decompose the element w
into a sum Eq. (45) is

w = (Aα + Bαx, Aα + Bα[x]) + (0, Eα[x]).

As a consequence Aα = Bα = 0 and

{0} × (h ⊕ l ⊕ r)[x] ⊆ W (46)

123



Generalized classical Yang-Baxter equation and regular... Page 47 of 55    50 

For an Eα ∈ c, the element w above lies in W only if

Bα = λ1Eα and Aα = λ2Eα,

for λ1, λ2 ∈ F . In case λ2 �= 0, we get (0, [x]) ·w = (0, λ2Eα[x]) ∈ W . If λ2 �= 0 for
all Eα ∈ c, then {0} × xg[x]/x2g[x] ⊆ W and we can again reduce everything to L1
and Theorem 4.5. Otherwise, there is at least one Eα ∈ c for which λ2 = 0, λ1 �= 0
and

(λ1Eαx, (λ1 + 1)Eαx) ∈ W . (47)

For the negative root −α ∈ r we have

(x−1E−α, 0) = w′ − (g, [g])

for some unique g ∈ g[[x]]. Therefore,

w′ = (x−1E−α + g, g) ∈ W .

the inclusion W+ ⊆ Pi and the explicit form Eq. (22) of Pi implies that g = 0 and
hence

x−1r[x−1] × {0} ⊆ W .

Commuting Eq. (47) with (x−1E−α, 0) we obtain the containments: (λ1Hα, 0),
(λ21xEα, 0) ∈ W . From this we can conclude that for any Eα ∈ c we have either

(Eαx, 0) ∈ W or (0, Eα[x]) ∈ W .

Take an arbitrary Eα ∈ g and assume

( fαEα, [gα]Eα) ∈ D.

Then fα = aαx + bα + cαx−1 with aα = 0 for Eα /∈ c. Moreover, the arguments
above show that [gα] ∈ F×. Indeed, if Eα /∈ c, then fα ∈ F[x−1] by the form of the
maximal order and [gα] ∈ F× due to the inclusion Eq. (46). For Eα ∈ cwe have either
(Eαxk, 0) ∈ W , k � 1, leading to the contradiction fαEα ∈ I+, or (0, Eα[x]) ∈ W
and hence [gα] ∈ F×.

Our next step is to prove that the constant aα vanishes even for Eα ∈ c. Assume
Eα ∈ c is such that

( fαEα, Eα) = ((ax + b + cx−1)Eα, Eα) ∈ D

with a �= 0, then by commuting this element with (x−1E−α, 0) ∈ W we get

(x−1 fαHα, 0), (x−1 f 2α Eα, 0) ∈ W .

Therefore
((x−1 f 2α − a fα)Eα, Eα) ∈ W ,
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where the highest power of x in (x−1 f 2α − a fα) is strictly smaller than in fα . This
means that either

(x−1 f 2α − a fα) = 0 or (x−1 f 2α − a fα) = p fα

for a polynomial p ∈ x−1F[x−1]. In the first case we immediately have (0, Eα) ∈ W .
In the second case

(p, 0) · ( fαEα, Eα) = ((x−1 f 2α − a fα)Eα, 0) ∈ W

which again forces (0, Eα) ∈ W . This contradiction implies that there are no pairs in
D of the form ((ax + b + cx−1)Eα, Eα) with a �= 0. In other words,

D ⊆ g[x−1] × g.

Let w := ((ax−1 − b)Eα, Eα) ∈ D with a �= 0. Then (0, Eα[x]) ∈ W and we can
find unique A ∈ g and B ∈ c such that

((Eα + A) + Bx, A + B[x]) ∈ W .

Again, this is possible only if A = λEα and B = μEα for some λ,μ ∈ F :

((1 + λ + μx)Eα, (λ + μ[x])Eα) ∈ W .

Since fα = ax−1 − b, we must have μ = 0 and hence

((1 + λ)Eα, λEα) ∈ W .

For λ = 0 or −1 we get the inclusions (Eα, 0) or (0, Eα) ∈ W . Since both inclusions
contradict our choice of w ∈ D, we have λ /∈ {0,−1} and

(λ′Eα, Eα) ∈ W

for some nonzero λ′ ∈ F . Subtracting this element from w we get

((ax−1 − b − λ′)Eα, 0) ∈ W .

This means that we must be able to find a polynomial p ∈ F[x−1] such that (ax−1 −
b − λ′) = p(ax−1 − b). This is possible only in the case p = 1 and λ′ = 0, which is
a contradiction.

In other words, we have shown that

D ⊆ g × g.

Now arguing precisely as in the proof of Theorem 4.1 we see that D = 0. ��
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Example 4.13 The proposition above provides us with a strategy of constructing more
examples of regular subalgebras W ⊆ L1 of type k � 1.

Start with a regular subalgebra V+ ⊆ g((x)) of type k � 1, a 2-regular partition
� = S+ � S− of the root system of g and subspaces s± = t± ⊕ r± of the Cartan
subalgebra h subject to the following conditions

1. h = s+ + s−;
2. t+ ∩ t− = {0};
3. v± := t±

⊕
α∈S± gα is a regular subalgebra of g and

4. [v+, V+] ⊆ v+ ⊕ V+
Then the following subspace is a regular subalgebra of L1 of the same type k � 1:

W := Wφ ⊕ ((v+ ⊕ V+) × {0}) ⊕ ({0} × v−) ,

where Wφ := {(h, φ(h)) | h ∈ r+} for any linear isomorphism φ : r+ → r− without
nonzero fixed points. ♦
Example 4.14 Write h = FHα0 ⊕ h′, where α0 is the maximal root of g. Then we can
define

W+ := (x−1g ⊕ n+ ⊕ FHα0 ⊕ xgα0)[x−1]

W− := h′ ⊕ n− ⊕ x

⎛

⎝n− ⊕ h ⊕
⊕

α∈�+\{α0}
gα

⎞

⎠ .
(48)

The product W = W+ × W− is a regular (bounded) subalgebra of L2. ♦
Example 4.15 There are also examples of unbounded regular subalgebras of L2. For
example, for g = sl(3, F) we can define the following spaces

W+ := spanF {xEα+β, x(x−1 − a)Eα}[x−1] ⊕ spanF {Eβ, Hα+β}[x−1]
⊕ spanF {(x−1 − a)Hα, (x−1 − a)E−β}[x−1]
⊕ spanF {x−1E−α, x−1E−α−β}[x−1],

W− := spanF {Hα, E−α, E−β, E−α−β, xEα, xEβ, xHβ}[x]/x2g[x]

and set W := W+ × W−. Here, π = {α, β} ⊆ � are the simple roots and α + β ∈ �

is the only non-simple positive root. ♦

5 Connection to Gaudinmodels

In this section, F = C. At this point, we have constructed Lie algebra decompositions
Lm = D ⊕ W with additional compatibility with a Cartan subalgebra h ⊆ g and
stability under multiplication by x−1. Moreover, we have given explicit formulas for
the associated generalized r -matrices. It is known that for m = 0 these generalized
r -matrices give rise to Gaudin integrable models; see [23]. Moreover, these mod-
els are particularly well-behaved if the generalized r -matrix satisfies the additional
compatibility with the Cartan subalgebra; see [22] for g = gln(C).
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Let r be a generalized r -matrix of the form

r(x, y) = ym�

x − y
+ g(x, y) (49)

which converges to some meromorphic function in some open disk around the origin.
Then for any points u1, . . . , un in the domain of definition of r , we consider

Hi :=
∑

k �=i

r(uk, ui )
(ki) + 1

2
(g(ui , ui )

(i i) + τ(g(ui , ui ))
(i i)) ∈ U (g)⊗n, (50)

where (a ⊗ b)(i j) := ιi (a)ι j (b) for the canonical embedding ιi : U (g) → U (g)⊗n ,
which inserts 1 into every tensor factor except the i-th one where it inserts a.

Elements Hi commute insideU (g) and define a quantum integrable system, which
is a generalization of the usual Gaudin models. The commutativity of Hi ’s is proven in
Sect. 5.1. In the general scheme of integrability, Hi correspond to quadratic invariant
functions on g⊕n . To obtain integrability of the model, one would need to consider the
higher degree invariant functions as well.

The classical limit of such Gaudin models, called classical Gaudin models, simply
replacesU (g) with the symmetric algebra S(g), which can be understood as the space
of regular functions on g∗. In this way we obtain a classical integrable system.

Remark 5.1 Note that in Eq. (50) one of uk’s can be equal 0. However, such a point
is a special point in the sense of [25], because the r -matrix becomes degenerate in
that point. In this case, the corresponding model is not really a Gaudin model, but a
“reduced” Gaudin model. ♦

Example 5.2 Taking n = 1 and u = u1, we obtain a quantum integrable system
defined by one Hamiltonian H = 1

2m(g(u, u) + τ(g(u, u))), where m(a, b) = ab is
the multiplication map of U (g) (resp. S(g) in the classical limit).

Let us assume aα, bα, cα ∈ C are chosen in such a way that Eq. (23) defines
a subalgebra W ⊆ g((x)). The corresponding r -matrix Eq. (25) gives rise to the
Hamiltonian

H = 1

2

⎛

⎜⎝ψu(hi )hi + hiψu(hi ) +
∑

α∈�
<ki αi+ ∪�

<αi−

aα(EαE−α + E−αEα)

aαu − 1

−
∑

α∈�
�ki αi+

cα + dα − 2cαdαu

(u − cα)(u − dα)
(EαE−α + E−αEα)

⎞

⎟⎠ ,

where ψu := φ
uφ−1 .

Let us explicitly calculate this Hamiltonian for the regular decomposition of

g = sl2(C) = SpanC{E, H , F} = (CE ⊕ CH) ⊕ CF .
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For two constants a, b ∈ C we get

H = a
( 1
2H

2 + EF + FE
)

2(au − 1)
+ b(EF + FE)

2(bu − 1)

= a
( 1
2H

2 + (E + F)2 − (E + F)(E − F) − H
)

2(au − 1)

+ b((E + F)2 − (E + F)(E − F) − H)

2(bu − 1)
.

♦

5.1 Commutativity of the generalized Gaudin Hamiltonians

For completeness, we present a proof that the Hamiltonians Eq. (50) commute. This
is a coordinate-free rework of the proof from [23], where m is equal to 0. Such an
approach shows the commutativity of Hamiltonians for any m � 0 and in all the
points, including the special one; see Remark 5.1.

Fix 1 � i < j � n and consider

[Hi , Hj ] =
n∑

k=1
k �=i

n∑

�=1
� �= j

[r(uk, ui )(ki), r(u�, u j )
(� j)]

︸ ︷︷ ︸
S1:=

+ 1

2
[r(u j , ui )

( j i), g(u j , u j )
( j j) + τ(g(u j , u j ))

( j j)]
︸ ︷︷ ︸

S2:=

+ 1

2
[g(ui , ui )(i i) + τ(g(ui , ui ))

(i i), r(u�, u j )
(i j)]

︸ ︷︷ ︸
S3:=

+ 1

4
[g(ui , ui )(i i) + τ(g(ui , ui ))

(i i), g(u j , u j )
( j j) + τ(g(u j , u j ))

( j j)]
︸ ︷︷ ︸

S4:=

.

The summand S4 is equal to 0 because i �= j . Terms in S1 with k �= j, k �= � and
� �= i are equal 0. The remaining terms are

S1 =
n∑

k=1
k �=i, j

[r(uk, ui )(ki), r(uk, u j )
(k j)] +

n∑

�=1
� �=i, j

[r(u j , ui )
( j i), r(u�, u j )

(� j)]

+
n∑

k=1
k �=i

[r(uk, ui )(ki), r(ui , u j )
(i j)]
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=
n∑

k=1
k �=i
k �= j

GCYBi jk(r(uk, ui )) + [r(u j , ui )
( j i), r(ui , u j )

(i j)]

= [r(u j , ui )
( j i), r(ui , u j )

(i j)]
= 1

2

(
m(0 j)([r(u j , ui )

(0i), r(ui , u j )
(i j)] + [r(u j , ui )

( j i), r(ui , u j )
(i0)])

+m(0i)([r(u j , ui )
( j i), r(ui , u j )

(0 j)] + [r(u j , ui )
( j0), r(ui , u j )

(i j)])
)

(51)

where we added an auxiliary copy of U (g) at tensor factor in position 0, defined

m(0k) : U (g)⊗(n+1) −→ U (g)⊗n

a0 ⊗ a1 ⊗ · · · ⊗ an �−→ a1 ⊗ · · · ⊗ ak−1 ⊗ a0ak ⊗ ak ⊗ · · · ⊗ an

and used the identity

n∑

k,�=1

[(ak ⊗ bk)
( j i), (a� ⊗ b�)

(i j)]

=
n∑

k,�=1

([bk , a�] ⊗ akb� + a�bk ⊗ [ak , b�])(i j)

= 1

2

n∑

k,�=1

([bk , a�] ⊗ (akb� + b�ak + [ak , b�])+(a�bk+bka�+[a�, bk ]) ⊗ [ak , b�])(i j)

= 1

2

n∑

k,�=1

([bk , a�] ⊗ (akb� + b�ak) + (a�bk + bka�) ⊗ [ak , b�])(i j)

= 1

2

n∑

k,�=1

(
m(0 j)

(
(ak ⊗ [bk , a�] ⊗ b� + b� ⊗ [bk , a�] ⊗ ak)

(0i j)
)

+m(0i)

(
(a� ⊗ bk ⊗ [ak , b�] + bk ⊗ a� ⊗ [ak , b�])(0i j)

))
.

Now let us again take a look at the GCYBE:

[r(u0, ui )(0i), r(u0, u j )
(0 j)] + [r(u j , ui )

( j i), r(u0, u j )
(0 j)]+

[r(u0, ui )(0i), r(ui , u j )
(i j)] = 0.

Using the explicit form of the r -matrix and using the invariance of the quadratic
Casimir element � we can rewrite the equation above as follows

[
r(u0, ui )

(0i) − r(u j , ui )
(0i),

umj �(0 j)

u0 − u j

]
+ [r(u0, ui )(0i) + r(u j , ui )

( j i), g(u0, u j )
(0 j)]

+ [r(u0, ui )(0i), r(ui , u j )
(i j)] = 0.
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Taking the limit u0 → u j we get

umj [∂u j r(u j , ui )
(0i), �(0 j)] + [r(u j , ui )

(0i) + r(u j , ui )
( j i), g(u j , u j )

(0 j)]
+ [r(u j , ui )

(0i), r(ui , u j )
(i j)] = 0.

Swapping factors j and 0 in the equality above we get

umj [∂u j r(u j , ui )
( j i), �(0 j)] + [r(u j , ui )

(0i) + r(u j , ui )
( j i), τ (g(u j , u j ))

(0 j)]
+ [r(u j , ui )

( j i), r(ui , u j )
(i0)] = 0.

Summing the last two equations and applying the multiplication m(0 j) gives

S2 = 1

2
[r(u j , ui )

( j i), g(u j , u j )
( j j) + τ(g(u j , u j ))

( j j)]

= −1

2
m(0 j)([r(u j , ui )

(0i), r(ui , u j )
(i j)] + [r(u j , ui )

( j i), r(ui , u j )
(i0)]) (52)

Similarly, rewriting GCYBE in the form

[
umi �(0i)

u0 − ui
, r(u0, u j )

(0 j) − r(ui , u j )
(0 j)

]
+ [g(u0, ui )(0i), r(u0, u j )

(0 j) + r(ui , u j )
(i j)]

+ [r(u j , ui )
( j i), r(u0, u j )

(0 j)] = 0,

taking the limit u0 → ui

umi [�(0i), ∂ui r(ui , u j )
(0 j)] + [g(ui , ui )(0i), r(ui , u j )

(0 j) + r(ui , u j )
(i j)]

+ [r(u j , ui )
( j i), r(ui , u j )

(0 j)] = 0

and swapping i and 0 factors results in

umi [�(0i), ∂ui r(ui , u j )
(i j)] + [τ(g(ui , u j ))

(0i), r(ui , u j )
(0 j) + r(ui , u j )

(i j)]
[r(u j , ui )

( j0), r(ui , u j )
(i j)] = 0.

Summing these two terms and applying m0i we get

S3 = 1

2
[g(ui , ui )(i i) + τ(g(ui , ui ))

(i i), r(ui , u j )
(i j)]

= −1

2
m0i ([r(u j , ui )

( j i), r(ui , u j )
(0 j)] + [r(u j , ui )

( j0), r(ui , u j )
(i j)]). (53)

Combining Eqs. (51)–(53) we conclude

[Hi , Hj ] = S1 + S2 + S3 = 0.
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A List of notations

Symbol Meaning

F Algebraically closed field of characteristic 0
g Finite-dimensional simple Lie algebra over F
κ The Killing form on g
� The quadratic Casimir element in g ⊗ g
h Fixed Cartan subalgebra of g
� = �+ � �− Polarized root system of g with respect to h
Hα, E±α E±α ∈ g±α for α ∈ �+ are chosen such that κ(Eα, E−α) = 1 and Hα = [Eα, E−α]
π = {α1, . . . , αn} Simple roots of � = �+ � �−
α0 = ∑n

i=1 kiαi Maximal root in � and its expansion into simple roots
V ∗ Dual of a vector space V
V [x] Polynomials in one variable with coefficients in a vector space V
V [[x]] Formal Taylor power series in one variable with coefficients in a vector space V
V ((x)) Formal Laurent power series in one variable with coefficients in a vector space V
Va , Va,b For a, b ∈ F , Va = (x−1 − a)V [x−1] and Va,b = x(x−1 − a)(x−1 − b)V [x−1]
Lm The Lie algebra g((x)) × g[x]/xmg[x]
d The subalgebra {(a, a) | a ∈ g} of g × g
D The subalgebra {( f , [ f ]) | f ∈ g[[x]]} of Lm
�

<mαi± {α ∈ �± | α = ±∑n
i=1 ciαi , 0 � ci < m} ⊆ �±

�
�mαi± {α ∈ �± | α = ±∑n

i=1 ciαi , ci � m} ⊆ �±
Pi Maximal parabolic subalgebra of g((x)) corresponding to αi ∈ {α0, . . . , αn}
Wφ For a linear map φ : h → h it is {x−n(x−1h − φ(h)) | h ∈ h, n ∈ Z�0}
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