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Using Neural Network for Improving 
an Explicit Algebraic Stress Model 
in 2D Flow 

Lars Davidson 

Abstract Neural Network (NN) is used to improve an Explicit Algebraic Reynolds 
Stress Model (EARSM). The turbulent kinetic energy and its dissipation are predicted 
using the standard.k − ω model. The NN model is trained in channel flow of . Reτ =
10,000. The NN model is stored to disk and subsequently loaded into the CFD code. 
The NN model is called every iteration to compute the. β coefficients in the EARSM, 
i.e. the CFD solver and the NN model are fully coupled. The Reynolds stresses are 
used in the momentum equations and the production term in the. k and. ω equations. It 
is found that when training the NN model, the target data cannot only be taken from 
DNS. The reason is that the stress-strain relation and the turbulent kinetic energy of 
the DNS data are different from those of the.k − ω model. Hence, the target data are 
taken both from DNS and a .k − ω simulation. The new EARSM-NN model is used 
for predicting channel flow at.Reτ = 2000, 5200 and.10,000 and flat-plate boundary 
layer at.2500 ≤ Reθ ≤ 8000. The EARSM-NN model gives much better results than 
the standard EARSM. 

1 Introduction 

The relation between strain rate and Reynolds stresses in two-equation eddy-viscosity 
turbulence models is usually linear (the Boussinesq assumption). Non-linear turbu-
lence models were developed in the 1990s, see e.g. [ 1]. These non-linear models 
are based on a subset of the generalized nonlinear form given by Pope [ 2] which is 
expressed in ten tensors, .T n

i j and five invariants, i.e. 

.ai j =
10∑

n=1

G(n)T n
i j , ai j = v'

iv
'
j − 2

3
kδi j (1) 
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where.ai j is the anisotropy tensor. Ling et al. [ 3] seem to be the first who used neural 
networks (NN) and the generalized nonlinear for predicting the turbulent Reynolds 
stress. They use a general non-linear Reynolds stress model in which the stresses 
are expressed by Eq. (1). They trained their neural network using the five invariants 
as input and the 10 tensors as output. Six cases were used for training, namely duct 
flow, channel flow, a jet in cross-flow, an inclined jet in cross-flow, flow around a 
square cylinder and flow through a converging-diverging channel. However, when 
they include their NN model into their CFD solver, they apply the NN model only 
once and inject the NN stresses and then keep them frozen (sometimes called the 
frozen substitution [ 4]). 

The objective of [ 5] was also to develop a model for the turbulent stress tensor, 
.v'
iv

'
j . Contrary  to the work by [  3], they include more influence parameters. They 

include also the gradients of pressure and turbulent kinetic energy, i.e. 

. bi j = f
(|s̄|, |Ω̄|, ∂ p̄/∂xi , ∂k/∂xi

)

where.|s̄| = (s̄i j s̄i j )1/2 and.|Ω̄| = (Ω̄i j Ω̄i j )
1/2. They propose another three influence 

variables to account for viscous (low-Re number) effects near walls; they use local 
Reynolds number, .k1/2y/ν (. y denotes wall-distance), turbulent kinetic energy and 
the ratio of turbulent to mean flow time scales. They use a machine learning method 
based on random forest regression. 

Duraisamy et al. [ 6] gives a comprehensive review on Machine Learning and 
turbulence modeling. They survey recent developments in bounding uncertainties 
in RANS models using physical constraints and they present methods how to use 
machine learning to improve turbulence models. 

Weatheritt and Sandberg [ 7] employed Genetic Expression Programming (GEP) 
to train an EARSM. The improvement of the Reynolds stress is chosen as the target 
application. They train the model in backward facing step and periodic hill flow. 
Then they do à posteriori simulations of the hill flow. However, when applying the 
GPA model they use a frozen velocity field predicted by a SST.k − ω model. 

Akoleka et al. [ 8] use the methodology developed in [ 7]. They train an EARSM 
using data of a DNS of a low-pressure turbine blade. Then they used the EARSM-
GEP model to carry out 2D URANS simulations of the same turbine blade. The 
underlying turbulence model was the .k − v'2 − ω transition model. However, they 
used the frozen concept, solving only .v'2 and . ω and taking the remaining variables 
from DNS. 

Neural Network (NN) is used in the present work to improve an EARSM. The 
turbulent kinetic energy and its dissipation are predicted by the standard.k − ωmodel. 
The NN model is trained in channel flow of .Reτ = 10,000. The NN model is stored 
to disk and subsequently loaded into the CFD code. The NN model is called every 
iteration to compute the . β coefficients in the EARSM. Then the Reynolds stresses 
are computed which are used in the momentum equations and the production term 
in the . k and . ω equation.
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It is found that when training the NN model, the target data cannot only be taken 
from DNS. The reason is that stress-strain relation and the turbulent kinetic energy 
of the DNS data are different from those of the .k − ω model. Hence, the target data 
are taken both from DNS and a .k − ω simulation. 

2 Flow Equations 

The momentum equations read 

.
∂v̄ j v̄i

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ∂

∂x j

[(
ν + νe f f

) (
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)]
− ∂(v'

iv
'
j )r

∂x j
(2) 

When EARSM is used, .νe f f is the effective viscosity including the EARSM coef-
ficient . β1, see  Eq.  (16). The last term includes .(v'

iv
'
j )r which is the residual stress 

tensor in EARSM. The total stress tensor is 

.v'
iv

'
j = −νe f f

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
+ (v'

iv
'
j )r (3) 

When the standard .k − ω is used without EARSM the residual stress vanishes and 
.νe f f = νt . 

2.1 The Numerical Solver 

The pyCALC-RANS code is used [ 9]. It is an incompressible, finite volume code 
written in Python. It is fully vectorized (i.e. no for loops). The convective terms in all 
equations are discretized using the Hybrid central/upwind scheme. The numerical 
procedure is based on the pressure-correction method, SIMPLEC, and a collocated 
grid arrangement using Rhie-Chow interpolation [ 10]. 

2.2 The .k − ω Model 

The Wilcox .k − ω turbulence model reads [ 11]
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.

∂v̄ j k

∂x j
= Pk + ∂

∂x j

[(
ν + νt

σk

)
∂k

∂x j

]
− Cμkω

∂v̄ jω

∂x j
= Cω1

ω

k
Pk + ∂

∂x j

[(
ν + νt

σω

)
∂ω

∂x j

]
− Cω2ω

2

νt = k

ω

(4) 

The standard coefficients are used, i.e. .Cω1 = 5/9, .Cω2 = 3/40, .σk = σω = 2 and 
.Cμ = 0.09. When EARSM is used, the production term is computed as 

.Pk = −v'
iv

'
j

∂v̄i

∂x j
(5) 

and the dissipation in the EARSM reads 

.ε = Cμkω (6) 

In the .k − ω model (without EARSM), the production term is computed as 

.Pk = νt

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
∂v̄i

∂x j
(7) 

3 The EARSM 

The Algebraic Stress Model (ASM) [ 12] with the LRR pressure-strain model [ 13] 
reads [ 14] 

.

(
c1 − 1 + Pk/ε

)
ai j = − 8

15
s̄i j + 7c2 + 1

11
(aikΩ̄k j − Ω̄ikak j )

− 5 − 9c2
11

(
aik s̄k j + s̄ikak j − 2

3
amns̄nmδi j

)

ai j = v'
iv

'
j

k
− 2

3
δi j , s̄i j = 1

2

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
, Ω̄i j = 1

2

(
∂v̄i

∂x j
− ∂v̄ j

∂xi

)
(8) 

Note that the last term in Eq. (8) is zero if .c2 is set to .5/9 [ 15]. Equation (8) can be 
written as [ 16] 

.

Nai j = −A1s̄
∗
i j + (aikΩ̄

∗
k j − Ω̄∗

ikak j ) − A2

(
s̄∗
ikak j + aik s̄

∗
k j − 2

3
δi j s̄

∗
mnanm

)

s̄∗
i j = k

ε
s̄i j , Ω̄∗

i j = k

ε
Ω̄i j

(9)
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where 
. A1 = 1.54, A2 = 0.37, A3 = 1.45, A4 = 2.89 (10) 

In order to get an explicit form of Eq. 9, Girimaji [ 17, 18] and Wallin & Johansson 
[ 16, 19], formulated.ai j in terms of the strain-rate tensor (.s̄i j ) and the vorticity tensor 
(.Ω̄i j ). In 2D, it reads [ 2] 

.ai j = β1s̄
∗
i j + β2

(
s̄∗
ik s̄

∗
k j − 1

3
s̄∗
mns̄

∗
nmδi j

)
+ β4(s̄

∗
ikΩ̄

∗
k j − Ω̄∗

ik s̄
∗
k j ) (11) 

By inserting Eq. (11) in Eq.  (9), Girimaji [ 17, 18] and Wallin & Johansson [ 16] 
derived an explicit form which in 2D reads [ 16] (a detailed derivation is given in 
[ 14]) 

. β1 = − A1N

Q
, β2 = 2

A1A2

Q
, β4 = − A1

Q
, Q = N 2 − 2I IΩ − 2

3
A2
2 I IS (12) 

where .N is given by the cubic equation 

. 
N 3 − A3N

2 −
((

A1A4 + 2

3
A2
2

)
I IS + 2I IΩ

)
N + 2A3

(
1

3
A2
2 I IS + I IΩ

)
= 0

I IS = s̄∗
mns̄

∗
nm, I IΩ = Ω̄∗

mnΩ̄
∗
nm .

(13) 
Equation (13) can be solved analytically. The analytical solution for the positive root 
reads [ 16] 

.N =
⎧
⎨

⎩

A3
3 + (

P1 + √
P2

)1/3 + sign
(
P1 − √

P2
) ||P1 − √

P2
||1/3 , P2 ≥ 0

A3
3 + 2

(
P2
1 − P2

)1/6
cos

[
1
3 arccos

(
P1√
P2
1 −P2

)]
, P2 < 0

(14) 

where 

. 

P1 =
(
A3

27
+

(
A1A4

6
− 2

9
A2
2

)
I IS − 2

3
I IΩ

)
A3

P2 = P2
1 −

(
A3

9
+

(
A1A4

3
+ 2

9
A2
2

)
I IS + 2

3
I IΩ

)3

The Reynolds stress tensor including only the first term in Eq. (11) reads (see 
Eq. 8) 

.v'
iv

'
j = β1ks̄

∗
i j + 2

3
kδi j = β1

k2

ε
s̄i j + 2

3
kδi j = −νe f f s̄i j + 2

3
kδi j (15) 

where 

.νe f f = −0.5β1
k2

ε
(16)
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is the effective viscosity and .ε = Cμkω, see  Eq.  (6). Equation (15) corresponds to 
the Boussinesq assumption with .β1 = −2Cμ. The discretized momentum equation 
on matrix form reads 

.AW = b (17) 

where .W is .v̄1 or . v̄2. The term including the effective viscosity, .νe f f , in Eq.  (15) is  
included in . A which greatly improves the numerical stability of the CFD code. 

3.1 The Neural Network Model 

Instead of computing. β1,.β2 and.β4 from Eqs. (12) and (13), I will in the present work 
make them functions of some input parameter(s) (to be determined) using Neural 
Network (NN). The process can be depicted as: 

1. Choose input parameter(s) involving e.g. the velocity gradient, the shear stress, 
the dissipation, the wall distance which should all be non-dimensional. 

2. The output (target) parameters are . β1, . β2, . β4. 
3. Train the NN model in fully-developed channel flow. 
4. Use the NN model to compute . β1, . β2, .β4 in the EARSM (. k and. ω predicted with 

the .k − ω model) in the pyCALC-RANS CFD code. 

In fully-developed channel flow the EARSM (Eq. 11) reads: 

.

a11 = 1

12

(
∂v̄∗

1

∂y

)2

(β2 − 6β4), a22 = 1

12

(
∂v̄∗

1

∂y

)2

(β2 + 6β4)

a33 = −2β2

12

(
∂v̄∗

1

∂y

)2

, a12 = β1

2

∂v̄∗
1

∂y
,

∂v̄∗
1

∂y
= k

ε

∂v̄1

∂y

(18) 

From the relations above, I get the targets for the NN model 

.β1 = 2a12
∂v̄∗

1
∂y

, β2 = 6(a11 + a22)
(

∂v̄∗
1

∂y

)2 , β4 = a22 − a11
(

∂v̄∗
1

∂y

)2 (19) 

.ai j , .k/ε ≡ (ωCμ)−1 and.
∂v̄1
∂y are computed from DNS data of channel flow. Note that 

.a33 is defined by .aii = 0. 
The output parameters of the NN model are. β1,.β2 and. β4. What input parameters 

should be used? The NN model should be applicable at difference Reynolds numbers 
so it should be a good idea to choose input parameters which also are Reynolds 
number independent. The NN model will be used in the CFD code and validated 
against DNS data in channel flow at .Reτ = 2000 [ 20], .Reτ = 5200 [ 21] . Reτ =
10,000 [ 22] and flat-plate boundary-layer flow.Reτ = 5 500 [ 23].
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Fig. 1 DNS data. ε̃ = ε − ν∂2k/∂y2

Figure 1 presents four possible dimensionless input parameters..I IS = 1
2

(
k
ε̃

∂v̄1
∂y

)2
, 

.
∂U+
∂y+ , .N = Pk/ε̃ and.Pk+. Note that.ε̃ = ε − ν∂2k/∂y2 is used because its near-wall 
behaviour is similar to that of the dissipation tern in the .k − ω model. The velocity 
gradient seems to be best (i.e. least .Re number dependent), but it turns out that it is 
very difficult to get the NN model to converge with this input variable. The reason 
is probably its large gradient near the wall, see Fig. 1b. I choose the second best, 
i.e. the production term together with .y+ as input parameters. I scale the two input 
parameters using MinMaxScaler() so that they are in the range . [0, 1]

I use the NN in Python’s pytorch. Figure 2 shows the NN model schematically. 
The optimizer is set as 
optimizer = torch.optim.SGD(neural_net.parameters(), lr=l_rate) 

with learning rate l_rate = 0.07; the number of epochs is.5000. When predict-
ing the . β coefficientsusing the .20% of DNS data the maximum error, . ei , defined as 
(.i = 1, 2, or . 4) 

. ei = max

( |βi − βi,DNS|
βi,DNS

)

is less than .2.5%. More detail on the use of pytorch can be found in [ 24]. 
Since I use.y+ as input variable, I must train the NN model at the largest Reynolds 

number (which has the largest .y+ value), i.e. channel flow at .Reτ = 10,000. An  
option could be to train the model at all Reynolds numbers. I exclude data in the 
viscous sublayer (.y+ ≤ 5) because the gradient of .β2 and .β4 (see Eq. 19) are very 
large near the wall. I also exclude data near the center (.y+ > 9 800) where. ∂v̄∗

1
∂y is very
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Fig. 2 The Neural Network with two inputs variables,.a(0)
1 = y+ and.a(0)

2 = P+ and three output 

variables, .a(3)
1 = β1, .a

(3)
2 = β2 and .a(3)

3 = β4. There are three neurons and two hidden layers in 
this figure; in the simulations I use.50 neurons 

Fig. 3 Predicted with NN model (no CFD)..Reτ = 10,000. Markers: DNS data [ 22] 

small. The turbulence is negligible in both these regions. I train on .80% of the data 
(approximately.800 randomly chosen data points) and test on (predict) the remaining 
.20%. 

Figure 3 presents the predicted stresses. The agreement is—as it should—almost 
perfect. However, Fig. 3d shows that there are some small discrepancies near the 
wall. Figure 3c presents the EARSM coefficients predicted by the NN model.
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4 The NN Model Incorporated in the CFD Solver 

The prediction of Reynolds stresses presented in the previous section is à priori  study. 
In the literature, these studies are very common. But they are of little use unless the 
NN model is coupled to a CFD code because in channel flow the velocity profile is 
entirely determined by the turbulent shear stress (see discussion in the next section). 

Hence, in the next step I save the NN model to disk and then a load it into the 
CFD code. I include the NN model in the CFD code as follows: 

1. Load the NN model 
2. Solve . v̄1, .v̄2 and .P ' equations. The Reynolds stresses .v'2

1 , .v
'2
2 , .v

'
1v

'
2 in the .v̄1 and 

.v̄2 equations (see Eq. 2) are taken from the previous iteration. 
3. Compute . β1, . β2, .β4 using the NN model. Limits are set on both input and output 

parameters corresponding to min and max values during the training process. 
4. Compute the anisotropic Reynolds stresses (.a11,.a22,.a12) using  the. β coefficients, 

see Eq. (18). 
5. Compute the Reynolds stresses .v'2

1 = ka11 + 2
3k, .v

'2
2 = ka22 + 2

3k, .v
'
1v

'
2 = ka12. 

6. Solve the . k and . ω equations. The Reynolds stresses are used in the production 
term, see Eq. (5). In fully-developed channel flow.v'2

1 and.v'2
2 have no effect since 

.∂v̄1/∂x1 = ∂v̄2/∂x2 = 0, but in flat-plate boundary layer flow they have a small 
effect. 

7. End of iteration. Repeat from Item 2 until convergence (1000 s of iterations). 

4.1 Channel Flow with the NN Model Trained on DNS Data 

Channel flow simulations are made. The grid has .110 cells in the . y direction and 
is stretched by .10% from the walls. The first cell center is at .y+ ≃ 0.5. Figure 4 
presents the predicted mean flow and the Reynolds stresses. The agreement of the 
predicted mean flow with the DNS data is poor. The shear stress agrees well DNS 
data but that does not signify anything. When using a finite volume CFD method, the 
shear stress will always agree with DNS data. Integrating the momentum equation 
the total shear stress, .τ12,tot (viscous plus turbulent), reads [ 14] 

.τ12,tot = τw + 1

ρ

∂ p̄

∂x1
x2 = τw

(
1 − x2

δ

)
(20) 

where . δ is the half-channel width and the total shear stress is defined as 

.τ12,tot = ν
∂v̄1

∂x2
− v'

1v
'
2. (21) 

At the last step in Eq. (20), I used the fact that the pressure gradient balances the wall 
shear stress. The velocity gradient will adapt so that Eq. (20) is satisfied.



46 L. Davidson

Fig. 4 The NN model incorporated in the CFD code..Reτ = 10,000. Dashed lines: DNS data [ 22] 

Why is the velocity so poorly predicted? To find out, I make a CFD simulation 
using the.k − ω model (no EARSM, no NN model). Figure 5a, b show the predicted 
velocity and shear stress and the agreement with DNS data is (or seems to be) 
excellent. The relation between the velocity gradient and the shear stress in the 
.k − ω model is given by the Boussinesq assumption, see Eq. (15) 

.v'
1v

'
2 = −2νt s̄12 = −2k

ω
s̄12 = −2Cμk2

ε
s̄12 (22) 

using .ε = Cμkω, see  Eq.  (6). Comparing Eqs. (22) and (15) gives that 

.β1 = −2Cμ (23) 

The poor agreement in Fig. 4a can now be understood. The.k − ω models predicts an 
(seemingly) excellent velocity profile (Fig. 5a) where the relation in Eq. (22) is used  
with .Cμ = 0.09. If the CFD and NN should give the same results, then the relation 
in Eq. (23) must be satisfied; Fig. 4d shows that this is not the case. The reason is 
that although the total shear stresses in the.k − ω predictions and the DNS data both 
follow the linear law in Eq. (20), the velocity gradients are different. Figure 5c shows  
that the discrepancy is more than .20%.
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Fig. 5 CFD using the.k − ω model. Channel flow,.Reτ = 10,000. Markers: DNS data [ 22] 

4.2 Channel Flow with the NN Model Trained on . k − ω

and DNS Data 

Instead of training the NN model on DNS data as in Sect. 4.1, I will train on data 
taken both from DNS and the .k − ω simulation shown in Fig. 5. The fact that this 
may be necessary was noted in [ 25]. I will use the following data: 

• Input: .Pk and .y+ from.k − ω prediction 
• Target: . β1, .β2 and .β4 computed from .v'2

1 , v'2
2

DNS

and . v'
1v

'
2, k, ε
k−ω

This will ensure that the relation between the shear stress and the velocity gradient 
as well as the turbulent kinetic energy are the same in the training process as in 
the CFD simulation. Note that .kDNS = 0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS) is not equal 
to the turbulent kinetic energy, .kk−ω, predicted by the .k − ω model. The spanwise 
normal stress, .v'2

3 , predicted by the NN model will adapt in order to satisfy . kk−ω =
0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS). Hence, .v
'2
3 will be incorrectly predicted by the NN 

model (it even goes negative near the wall). Thus, the proposed EARSM-NN model 
is applicable only in two-dimension flows. In order to make the model applicable in 
three dimension, a new .k − ω (or .k − ε) model must be developed which satisfies 
.kDNS = kk−ω. This is out of the scope of the present work.
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Fig. 6 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained 
using DNS and.k − ω data. Channel flow,.Reτ = 10,000. Dashed lines: DNS 

Figure 6 presents CFD prediction using the EARSM-NN and the standard EARSM 
(see Eqs. (10), (12) and (14)). Both models predict the velocity well although the stan-
dard EARSM gives a slight overprediction near the center and the EARSM-NN pro-
file exhibits somewhat too low values in the buffer layer. However, the EARSM-NN 
predicts much better normal stresses than the standard EARSM. Figure 6e presents 
the .β1 coefficient and its values are close to .−2Cμ as it should. Setting . β1 = −2Cμ

in EARSM-NN gives very similar results (not shown) as in Fig. 8a, c. 
At .Reτ = 5200 (Fig. 7) and .Reτ = 2000 (Fig. 8) the EARSM-NN model pre-

dicts much better velocity profiles and normal Reynolds stresses than the standard 
EARSM. At the lower Reynolds number, The EARSM-NN model (Fig. 8c) over-
predicts the streamwise normal stress by some .15%, whereas the standard EARSM 
(Fig. 8d) model predicts up to .50% too small values.
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Fig. 7 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained 
using DNS and.k − ω data..Reτ = 5200. Dashed lines: DNS 

Fig. 8 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained 
using DNS and.k − ω data. Channel flow,.Reτ = 2000. Dashed lines: DNS
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4.3 Flat-Plate Boundary-Layer Flow 

In this section I present simulations of a flat-plate boundary layer. The grid has 
.300 × 90 (.x, y) cells and is stretched by.10% from the wall but limiting the cell size 
to .Δymax = 0.5. The first cell center is at .y+ ≃ 0.5. The streamwise grid spacing is 
constant,.Δx = 0.5. The inlet boundary-layer thickness is.δin ≃ 0.8. A refined mesh 
(.600 × 180) gives identical results as the coarse mesh. 

A pre-cursor.k − ω simulation of a flat-plate boundary layer is carried out and. v̄1, 
. v̄1,. k and. ω are stored at.Reθ = 2 500where. θ denotes the boundary-layer momentum 
thickness. These stored data are used as inlet boundary condition in the subsequent 
flat-plate boundary-layer simulations using the two EARSM models. 

Figure 9 presents the predicted skin friction along with velocity and normal 
stresses at .Reθ = 2 500. Again, the EARSM-NN model performs much better than 
the standard EARSM although the normal stresses are less well predicted than for 
the channel flow. But the EARSM-NN model predicts the skin friction within.5% of 
experimental data whereas the standard EARSM gives some.14% too large values. 

The channel flow simulations at.Reτ = 10,000 were also carried out setting. β1 =
−2Cμ and it was noted that the results were similar to those in Figs. 8a, c. This was 
also found for the other two Reynolds numbers, .Reτ = 5 200 and.Reτ = 2 000 (not 
shown). However, in the boundary layer flow the results are somewhat worse setting 
.β1 = −2Cμ; the skin friction is then over-predicted by .6%, see Fig. 10a. The skin 
friction predicted with the Wilcox .k − ω model is also .6% too large (see Fig. 10b), 
but the trend is much worse. The.β1 coefficient predicted with EARSM-NN is shown 
in Fig. 10c and it can be seen that near the wall it is larger than .−2Cμ. 

5 Conclusions 

An Explicit Algebraic Reynolds Stress Model (together with Wilcox .k − ω model) 
has been improved using Neural Network (NN). The NN model is trained in channel 
flow at .Reτ = 10,000. It is found that target data cannot be taken only from DNS 
because the stress-strain relation and the turbulent kinetic energy are not the same in 
DNS and.k − ω predictions. Hence the target data are taken both from DNS (.v'2

1 and 

.v'2
2 ) and a .k − ω simulation (. ∂v̄1

∂y , .v
'
1v

'
2, . k, .ε = Cμkω). In this way the strain-stress 

relation and the turbulent kinetic energy are the same in the training process as in the 
CFD-NN predictions. Since. k in the training process is taken from the.k − ω results 
it means that .k /= 0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS). In the NN model, the spanwise 

Reynolds stress adapts to satisfy .aii = 0 which means that .v'2
3 is not correctly pre-

dicted (it even goes negative in the near-wall region). Hence, the EARSM-NN model 
is applicable only to two-dimensional flow where.v'2

3 is not used. One way to make the 
model applicable in three-dimensional flow is to develop a .k − ω (or .k − ε model) 
which accurately predicts the turbulent kinetic energy.
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Fig. 9 CFD predictions with EARSM-NN and standard EARSM. The NN model is trained using 
DNS and.k − ω data. Flat-plate boundary layer, .Reθ = 5 500. Dashed lines: DNS 

Fig. 10 CFD predictions. Flat-plate boundary layer
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