
Using Neural Network for Improving an Explicit Algebraic Stress Model in
2D Flow

Downloaded from: https://research.chalmers.se, 2025-06-07 21:27 UTC

Citation for the original published paper (version of record):
Davidson, L. (2025). Using Neural Network for Improving an Explicit Algebraic Stress Model in 2D
Flow. Proceedings of the Cambridge Unsteady Flow Symposium 2024 .
http://dx.doi.org/10.1007/978-3-031-69035-8_2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Using Neural Network for Improving
an Explicit Algebraic Stress Model
in 2D Flow

Lars Davidson

Abstract Neural Network (NN) is used to improve an Explicit Algebraic Reynolds
Stress Model (EARSM). The turbulent kinetic energy and its dissipation are predicted
using the standard.k − ω model. The NN model is trained in channel flow of . Reτ =
10,000. The NN model is stored to disk and subsequently loaded into the CFD code.
The NN model is called every iteration to compute the. β coefficients in the EARSM,
i.e. the CFD solver and the NN model are fully coupled. The Reynolds stresses are
used in the momentum equations and the production term in the. k and. ω equations. It
is found that when training the NN model, the target data cannot only be taken from
DNS. The reason is that the stress-strain relation and the turbulent kinetic energy of
the DNS data are different from those of the.k − ω model. Hence, the target data are
taken both from DNS and a .k − ω simulation. The new EARSM-NN model is used
for predicting channel flow at.Reτ = 2000, 5200 and.10,000 and flat-plate boundary
layer at.2500 ≤ Reθ ≤ 8000. The EARSM-NN model gives much better results than
the standard EARSM.

1 Introduction

The relation between strain rate and Reynolds stresses in two-equation eddy-viscosity
turbulence models is usually linear (the Boussinesq assumption). Non-linear turbu-
lence models were developed in the 1990s, see e.g. [1]. These non-linear models
are based on a subset of the generalized nonlinear form given by Pope [2] which is
expressed in ten tensors, .T n

i j and five invariants, i.e.

.ai j =
10∑

n=1

G(n)T n
i j , ai j = v'

iv
'
j − 2

3
kδi j (1)

CUFS-2024-PAPER ID, Cambridge, United Kingdom, 4-5 March 2024.

L. Davidson (B)
Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences,
Chalmers University of Technology, 412 96 Gothenburg, Sweden
e-mail: lada@chalmers.se

© The Author(s) 2025
J. C. Tyacke and N. R. Vadlamani (eds.), Proceedings of the Cambridge Unsteady Flow
Symposium 2024, https://doi.org/10.1007/978-3-031-69035-8_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-69035-8_2&domain=pdf
mailto:lada@chalmers.se
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2
https://doi.org/10.1007/978-3-031-69035-8_2

38 L. Davidson

where.ai j is the anisotropy tensor. Ling et al. [3] seem to be the first who used neural
networks (NN) and the generalized nonlinear for predicting the turbulent Reynolds
stress. They use a general non-linear Reynolds stress model in which the stresses
are expressed by Eq. (1). They trained their neural network using the five invariants
as input and the 10 tensors as output. Six cases were used for training, namely duct
flow, channel flow, a jet in cross-flow, an inclined jet in cross-flow, flow around a
square cylinder and flow through a converging-diverging channel. However, when
they include their NN model into their CFD solver, they apply the NN model only
once and inject the NN stresses and then keep them frozen (sometimes called the
frozen substitution [4]).

The objective of [5] was also to develop a model for the turbulent stress tensor,
.v'
iv

'
j . Contrary to the work by [3], they include more influence parameters. They

include also the gradients of pressure and turbulent kinetic energy, i.e.

. bi j = f
(|s̄|, |Ω̄|, ∂ p̄/∂xi , ∂k/∂xi

)

where.|s̄| = (s̄i j s̄i j)1/2 and.|Ω̄| = (Ω̄i j Ω̄i j)
1/2. They propose another three influence

variables to account for viscous (low-Re number) effects near walls; they use local
Reynolds number, .k1/2y/ν (. y denotes wall-distance), turbulent kinetic energy and
the ratio of turbulent to mean flow time scales. They use a machine learning method
based on random forest regression.

Duraisamy et al. [6] gives a comprehensive review on Machine Learning and
turbulence modeling. They survey recent developments in bounding uncertainties
in RANS models using physical constraints and they present methods how to use
machine learning to improve turbulence models.

Weatheritt and Sandberg [7] employed Genetic Expression Programming (GEP)
to train an EARSM. The improvement of the Reynolds stress is chosen as the target
application. They train the model in backward facing step and periodic hill flow.
Then they do à posteriori simulations of the hill flow. However, when applying the
GPA model they use a frozen velocity field predicted by a SST.k − ω model.

Akoleka et al. [8] use the methodology developed in [7]. They train an EARSM
using data of a DNS of a low-pressure turbine blade. Then they used the EARSM-
GEP model to carry out 2D URANS simulations of the same turbine blade. The
underlying turbulence model was the .k − v'2 − ω transition model. However, they
used the frozen concept, solving only .v'2 and . ω and taking the remaining variables
from DNS.

Neural Network (NN) is used in the present work to improve an EARSM. The
turbulent kinetic energy and its dissipation are predicted by the standard.k − ωmodel.
The NN model is trained in channel flow of .Reτ = 10,000. The NN model is stored
to disk and subsequently loaded into the CFD code. The NN model is called every
iteration to compute the . β coefficients in the EARSM. Then the Reynolds stresses
are computed which are used in the momentum equations and the production term
in the . k and . ω equation.

Using Neural Network for Improving … 39

It is found that when training the NN model, the target data cannot only be taken
from DNS. The reason is that stress-strain relation and the turbulent kinetic energy
of the DNS data are different from those of the .k − ω model. Hence, the target data
are taken both from DNS and a .k − ω simulation.

2 Flow Equations

The momentum equations read

.
∂v̄ j v̄i

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ∂

∂x j

[(
ν + νe f f

) (
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)]
− ∂(v'

iv
'
j)r

∂x j
(2)

When EARSM is used, .νe f f is the effective viscosity including the EARSM coef-
ficient . β1, see Eq. (16). The last term includes .(v'

iv
'
j)r which is the residual stress

tensor in EARSM. The total stress tensor is

.v'
iv

'
j = −νe f f

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
+ (v'

iv
'
j)r (3)

When the standard .k − ω is used without EARSM the residual stress vanishes and
.νe f f = νt .

2.1 The Numerical Solver

The pyCALC-RANS code is used [9]. It is an incompressible, finite volume code
written in Python. It is fully vectorized (i.e. no for loops). The convective terms in all
equations are discretized using the Hybrid central/upwind scheme. The numerical
procedure is based on the pressure-correction method, SIMPLEC, and a collocated
grid arrangement using Rhie-Chow interpolation [10].

2.2 The .k − ω Model

The Wilcox .k − ω turbulence model reads [11]

40 L. Davidson

.

∂v̄ j k

∂x j
= Pk + ∂

∂x j

[(
ν + νt

σk

)
∂k

∂x j

]
− Cμkω

∂v̄ jω

∂x j
= Cω1

ω

k
Pk + ∂

∂x j

[(
ν + νt

σω

)
∂ω

∂x j

]
− Cω2ω

2

νt = k

ω

(4)

The standard coefficients are used, i.e. .Cω1 = 5/9, .Cω2 = 3/40, .σk = σω = 2 and
.Cμ = 0.09. When EARSM is used, the production term is computed as

.Pk = −v'
iv

'
j

∂v̄i

∂x j
(5)

and the dissipation in the EARSM reads

.ε = Cμkω (6)

In the .k − ω model (without EARSM), the production term is computed as

.Pk = νt

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
∂v̄i

∂x j
(7)

3 The EARSM

The Algebraic Stress Model (ASM) [12] with the LRR pressure-strain model [13]
reads [14]

.

(
c1 − 1 + Pk/ε

)
ai j = − 8

15
s̄i j + 7c2 + 1

11
(aikΩ̄k j − Ω̄ikak j)

− 5 − 9c2
11

(
aik s̄k j + s̄ikak j − 2

3
amns̄nmδi j

)

ai j = v'
iv

'
j

k
− 2

3
δi j , s̄i j = 1

2

(
∂v̄i

∂x j
+ ∂v̄ j

∂xi

)
, Ω̄i j = 1

2

(
∂v̄i

∂x j
− ∂v̄ j

∂xi

)
(8)

Note that the last term in Eq. (8) is zero if .c2 is set to .5/9 [15]. Equation (8) can be
written as [16]

.

Nai j = −A1s̄
∗
i j + (aikΩ̄

∗
k j − Ω̄∗

ikak j) − A2

(
s̄∗
ikak j + aik s̄

∗
k j − 2

3
δi j s̄

∗
mnanm

)

s̄∗
i j = k

ε
s̄i j , Ω̄∗

i j = k

ε
Ω̄i j

(9)

Using Neural Network for Improving … 41

where
. A1 = 1.54, A2 = 0.37, A3 = 1.45, A4 = 2.89 (10)

In order to get an explicit form of Eq. 9, Girimaji [17, 18] and Wallin & Johansson
[16, 19], formulated.ai j in terms of the strain-rate tensor (.s̄i j) and the vorticity tensor
(.Ω̄i j). In 2D, it reads [2]

.ai j = β1s̄
∗
i j + β2

(
s̄∗
ik s̄

∗
k j − 1

3
s̄∗
mns̄

∗
nmδi j

)
+ β4(s̄

∗
ikΩ̄

∗
k j − Ω̄∗

ik s̄
∗
k j) (11)

By inserting Eq. (11) in Eq. (9), Girimaji [17, 18] and Wallin & Johansson [16]
derived an explicit form which in 2D reads [16] (a detailed derivation is given in
[14])

. β1 = − A1N

Q
, β2 = 2

A1A2

Q
, β4 = − A1

Q
, Q = N 2 − 2I IΩ − 2

3
A2
2 I IS (12)

where .N is given by the cubic equation

.
N 3 − A3N

2 −
((

A1A4 + 2

3
A2
2

)
I IS + 2I IΩ

)
N + 2A3

(
1

3
A2
2 I IS + I IΩ

)
= 0

I IS = s̄∗
mns̄

∗
nm, I IΩ = Ω̄∗

mnΩ̄
∗
nm .

(13)
Equation (13) can be solved analytically. The analytical solution for the positive root
reads [16]

.N =
⎧
⎨

⎩

A3
3 + (

P1 + √
P2

)1/3 + sign
(
P1 − √

P2
) ||P1 − √

P2
||1/3 , P2 ≥ 0

A3
3 + 2

(
P2
1 − P2

)1/6
cos

[
1
3 arccos

(
P1√
P2
1 −P2

)]
, P2 < 0

(14)

where

.

P1 =
(
A3

27
+

(
A1A4

6
− 2

9
A2
2

)
I IS − 2

3
I IΩ

)
A3

P2 = P2
1 −

(
A3

9
+

(
A1A4

3
+ 2

9
A2
2

)
I IS + 2

3
I IΩ

)3

The Reynolds stress tensor including only the first term in Eq. (11) reads (see
Eq. 8)

.v'
iv

'
j = β1ks̄

∗
i j + 2

3
kδi j = β1

k2

ε
s̄i j + 2

3
kδi j = −νe f f s̄i j + 2

3
kδi j (15)

where

.νe f f = −0.5β1
k2

ε
(16)

42 L. Davidson

is the effective viscosity and .ε = Cμkω, see Eq. (6). Equation (15) corresponds to
the Boussinesq assumption with .β1 = −2Cμ. The discretized momentum equation
on matrix form reads

.AW = b (17)

where .W is .v̄1 or . v̄2. The term including the effective viscosity, .νe f f , in Eq. (15) is
included in . A which greatly improves the numerical stability of the CFD code.

3.1 The Neural Network Model

Instead of computing. β1,.β2 and.β4 from Eqs. (12) and (13), I will in the present work
make them functions of some input parameter(s) (to be determined) using Neural
Network (NN). The process can be depicted as:

1. Choose input parameter(s) involving e.g. the velocity gradient, the shear stress,
the dissipation, the wall distance which should all be non-dimensional.

2. The output (target) parameters are . β1, . β2, . β4.
3. Train the NN model in fully-developed channel flow.
4. Use the NN model to compute . β1, . β2, .β4 in the EARSM (. k and. ω predicted with

the .k − ω model) in the pyCALC-RANS CFD code.

In fully-developed channel flow the EARSM (Eq. 11) reads:

.

a11 = 1

12

(
∂v̄∗

1

∂y

)2

(β2 − 6β4), a22 = 1

12

(
∂v̄∗

1

∂y

)2

(β2 + 6β4)

a33 = −2β2

12

(
∂v̄∗

1

∂y

)2

, a12 = β1

2

∂v̄∗
1

∂y
,

∂v̄∗
1

∂y
= k

ε

∂v̄1

∂y

(18)

From the relations above, I get the targets for the NN model

.β1 = 2a12
∂v̄∗

1
∂y

, β2 = 6(a11 + a22)
(

∂v̄∗
1

∂y

)2 , β4 = a22 − a11
(

∂v̄∗
1

∂y

)2 (19)

.ai j , .k/ε ≡ (ωCμ)−1 and.
∂v̄1
∂y are computed from DNS data of channel flow. Note that

.a33 is defined by .aii = 0.
The output parameters of the NN model are. β1,.β2 and. β4. What input parameters

should be used? The NN model should be applicable at difference Reynolds numbers
so it should be a good idea to choose input parameters which also are Reynolds
number independent. The NN model will be used in the CFD code and validated
against DNS data in channel flow at .Reτ = 2000 [20], .Reτ = 5200 [21] . Reτ =
10,000 [22] and flat-plate boundary-layer flow.Reτ = 5 500 [23].

Using Neural Network for Improving … 43

Fig. 1 DNS data. ε̃ = ε − ν∂2k/∂y2

Figure 1 presents four possible dimensionless input parameters..I IS = 1
2

(
k
ε̃

∂v̄1
∂y

)2
,

.
∂U+
∂y+ , .N = Pk/ε̃ and.Pk+. Note that.ε̃ = ε − ν∂2k/∂y2 is used because its near-wall
behaviour is similar to that of the dissipation tern in the .k − ω model. The velocity
gradient seems to be best (i.e. least .Re number dependent), but it turns out that it is
very difficult to get the NN model to converge with this input variable. The reason
is probably its large gradient near the wall, see Fig. 1b. I choose the second best,
i.e. the production term together with .y+ as input parameters. I scale the two input
parameters using MinMaxScaler() so that they are in the range . [0, 1]

I use the NN in Python’s pytorch. Figure 2 shows the NN model schematically.
The optimizer is set as
optimizer = torch.optim.SGD(neural_net.parameters(), lr=l_rate)

with learning rate l_rate = 0.07; the number of epochs is.5000. When predict-
ing the . β coefficientsusing the .20% of DNS data the maximum error, . ei , defined as
(.i = 1, 2, or . 4)

. ei = max

(|βi − βi,DNS|
βi,DNS

)

is less than .2.5%. More detail on the use of pytorch can be found in [24].
Since I use.y+ as input variable, I must train the NN model at the largest Reynolds

number (which has the largest .y+ value), i.e. channel flow at .Reτ = 10,000. An
option could be to train the model at all Reynolds numbers. I exclude data in the
viscous sublayer (.y+ ≤ 5) because the gradient of .β2 and .β4 (see Eq. 19) are very
large near the wall. I also exclude data near the center (.y+ > 9 800) where. ∂v̄∗

1
∂y is very

44 L. Davidson

Fig. 2 The Neural Network with two inputs variables,.a(0)
1 = y+ and.a(0)

2 = P+ and three output

variables, .a(3)
1 = β1, .a

(3)
2 = β2 and .a(3)

3 = β4. There are three neurons and two hidden layers in
this figure; in the simulations I use.50 neurons

Fig. 3 Predicted with NN model (no CFD)..Reτ = 10,000. Markers: DNS data [22]

small. The turbulence is negligible in both these regions. I train on .80% of the data
(approximately.800 randomly chosen data points) and test on (predict) the remaining
.20%.

Figure 3 presents the predicted stresses. The agreement is—as it should—almost
perfect. However, Fig. 3d shows that there are some small discrepancies near the
wall. Figure 3c presents the EARSM coefficients predicted by the NN model.

Using Neural Network for Improving … 45

4 The NN Model Incorporated in the CFD Solver

The prediction of Reynolds stresses presented in the previous section is à priori study.
In the literature, these studies are very common. But they are of little use unless the
NN model is coupled to a CFD code because in channel flow the velocity profile is
entirely determined by the turbulent shear stress (see discussion in the next section).

Hence, in the next step I save the NN model to disk and then a load it into the
CFD code. I include the NN model in the CFD code as follows:

1. Load the NN model
2. Solve . v̄1, .v̄2 and .P ' equations. The Reynolds stresses .v'2

1 , .v
'2
2 , .v

'
1v

'
2 in the .v̄1 and

.v̄2 equations (see Eq. 2) are taken from the previous iteration.
3. Compute . β1, . β2, .β4 using the NN model. Limits are set on both input and output

parameters corresponding to min and max values during the training process.
4. Compute the anisotropic Reynolds stresses (.a11,.a22,.a12) using the. β coefficients,

see Eq. (18).
5. Compute the Reynolds stresses .v'2

1 = ka11 + 2
3k, .v

'2
2 = ka22 + 2

3k, .v
'
1v

'
2 = ka12.

6. Solve the . k and . ω equations. The Reynolds stresses are used in the production
term, see Eq. (5). In fully-developed channel flow.v'2

1 and.v'2
2 have no effect since

.∂v̄1/∂x1 = ∂v̄2/∂x2 = 0, but in flat-plate boundary layer flow they have a small
effect.

7. End of iteration. Repeat from Item 2 until convergence (1000 s of iterations).

4.1 Channel Flow with the NN Model Trained on DNS Data

Channel flow simulations are made. The grid has .110 cells in the . y direction and
is stretched by .10% from the walls. The first cell center is at .y+ ≃ 0.5. Figure 4
presents the predicted mean flow and the Reynolds stresses. The agreement of the
predicted mean flow with the DNS data is poor. The shear stress agrees well DNS
data but that does not signify anything. When using a finite volume CFD method, the
shear stress will always agree with DNS data. Integrating the momentum equation
the total shear stress, .τ12,tot (viscous plus turbulent), reads [14]

.τ12,tot = τw + 1

ρ

∂ p̄

∂x1
x2 = τw

(
1 − x2

δ

)
(20)

where . δ is the half-channel width and the total shear stress is defined as

.τ12,tot = ν
∂v̄1

∂x2
− v'

1v
'
2. (21)

At the last step in Eq. (20), I used the fact that the pressure gradient balances the wall
shear stress. The velocity gradient will adapt so that Eq. (20) is satisfied.

46 L. Davidson

Fig. 4 The NN model incorporated in the CFD code..Reτ = 10,000. Dashed lines: DNS data [22]

Why is the velocity so poorly predicted? To find out, I make a CFD simulation
using the.k − ω model (no EARSM, no NN model). Figure 5a, b show the predicted
velocity and shear stress and the agreement with DNS data is (or seems to be)
excellent. The relation between the velocity gradient and the shear stress in the
.k − ω model is given by the Boussinesq assumption, see Eq. (15)

.v'
1v

'
2 = −2νt s̄12 = −2k

ω
s̄12 = −2Cμk2

ε
s̄12 (22)

using .ε = Cμkω, see Eq. (6). Comparing Eqs. (22) and (15) gives that

.β1 = −2Cμ (23)

The poor agreement in Fig. 4a can now be understood. The.k − ω models predicts an
(seemingly) excellent velocity profile (Fig. 5a) where the relation in Eq. (22) is used
with .Cμ = 0.09. If the CFD and NN should give the same results, then the relation
in Eq. (23) must be satisfied; Fig. 4d shows that this is not the case. The reason is
that although the total shear stresses in the.k − ω predictions and the DNS data both
follow the linear law in Eq. (20), the velocity gradients are different. Figure 5c shows
that the discrepancy is more than .20%.

Using Neural Network for Improving … 47

Fig. 5 CFD using the.k − ω model. Channel flow,.Reτ = 10,000. Markers: DNS data [22]

4.2 Channel Flow with the NN Model Trained on . k − ω

and DNS Data

Instead of training the NN model on DNS data as in Sect. 4.1, I will train on data
taken both from DNS and the .k − ω simulation shown in Fig. 5. The fact that this
may be necessary was noted in [25]. I will use the following data:

• Input: .Pk and .y+ from.k − ω prediction
• Target: . β1, .β2 and .β4 computed from .v'2

1 , v'2
2

DNS

and . v'
1v

'
2, k, ε
k−ω

This will ensure that the relation between the shear stress and the velocity gradient
as well as the turbulent kinetic energy are the same in the training process as in
the CFD simulation. Note that .kDNS = 0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS) is not equal
to the turbulent kinetic energy, .kk−ω, predicted by the .k − ω model. The spanwise
normal stress, .v'2

3 , predicted by the NN model will adapt in order to satisfy . kk−ω =
0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS). Hence, .v
'2
3 will be incorrectly predicted by the NN

model (it even goes negative near the wall). Thus, the proposed EARSM-NN model
is applicable only in two-dimension flows. In order to make the model applicable in
three dimension, a new .k − ω (or .k − ε) model must be developed which satisfies
.kDNS = kk−ω. This is out of the scope of the present work.

48 L. Davidson

Fig. 6 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained
using DNS and.k − ω data. Channel flow,.Reτ = 10,000. Dashed lines: DNS

Figure 6 presents CFD prediction using the EARSM-NN and the standard EARSM
(see Eqs. (10), (12) and (14)). Both models predict the velocity well although the stan-
dard EARSM gives a slight overprediction near the center and the EARSM-NN pro-
file exhibits somewhat too low values in the buffer layer. However, the EARSM-NN
predicts much better normal stresses than the standard EARSM. Figure 6e presents
the .β1 coefficient and its values are close to .−2Cμ as it should. Setting . β1 = −2Cμ

in EARSM-NN gives very similar results (not shown) as in Fig. 8a, c.
At .Reτ = 5200 (Fig. 7) and .Reτ = 2000 (Fig. 8) the EARSM-NN model pre-

dicts much better velocity profiles and normal Reynolds stresses than the standard
EARSM. At the lower Reynolds number, The EARSM-NN model (Fig. 8c) over-
predicts the streamwise normal stress by some .15%, whereas the standard EARSM
(Fig. 8d) model predicts up to .50% too small values.

Using Neural Network for Improving … 49

Fig. 7 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained
using DNS and.k − ω data..Reτ = 5200. Dashed lines: DNS

Fig. 8 CFD predictions with EARSM-NN model and standard EARSM. The NN model is trained
using DNS and.k − ω data. Channel flow,.Reτ = 2000. Dashed lines: DNS

50 L. Davidson

4.3 Flat-Plate Boundary-Layer Flow

In this section I present simulations of a flat-plate boundary layer. The grid has
.300 × 90 (.x, y) cells and is stretched by.10% from the wall but limiting the cell size
to .Δymax = 0.5. The first cell center is at .y+ ≃ 0.5. The streamwise grid spacing is
constant,.Δx = 0.5. The inlet boundary-layer thickness is.δin ≃ 0.8. A refined mesh
(.600 × 180) gives identical results as the coarse mesh.

A pre-cursor.k − ω simulation of a flat-plate boundary layer is carried out and. v̄1,
. v̄1,. k and. ω are stored at.Reθ = 2 500where. θ denotes the boundary-layer momentum
thickness. These stored data are used as inlet boundary condition in the subsequent
flat-plate boundary-layer simulations using the two EARSM models.

Figure 9 presents the predicted skin friction along with velocity and normal
stresses at .Reθ = 2 500. Again, the EARSM-NN model performs much better than
the standard EARSM although the normal stresses are less well predicted than for
the channel flow. But the EARSM-NN model predicts the skin friction within.5% of
experimental data whereas the standard EARSM gives some.14% too large values.

The channel flow simulations at.Reτ = 10,000 were also carried out setting. β1 =
−2Cμ and it was noted that the results were similar to those in Figs. 8a, c. This was
also found for the other two Reynolds numbers, .Reτ = 5 200 and.Reτ = 2 000 (not
shown). However, in the boundary layer flow the results are somewhat worse setting
.β1 = −2Cμ; the skin friction is then over-predicted by .6%, see Fig. 10a. The skin
friction predicted with the Wilcox .k − ω model is also .6% too large (see Fig. 10b),
but the trend is much worse. The.β1 coefficient predicted with EARSM-NN is shown
in Fig. 10c and it can be seen that near the wall it is larger than .−2Cμ.

5 Conclusions

An Explicit Algebraic Reynolds Stress Model (together with Wilcox .k − ω model)
has been improved using Neural Network (NN). The NN model is trained in channel
flow at .Reτ = 10,000. It is found that target data cannot be taken only from DNS
because the stress-strain relation and the turbulent kinetic energy are not the same in
DNS and.k − ω predictions. Hence the target data are taken both from DNS (.v'2

1 and

.v'2
2) and a .k − ω simulation (. ∂v̄1

∂y , .v
'
1v

'
2, . k, .ε = Cμkω). In this way the strain-stress

relation and the turbulent kinetic energy are the same in the training process as in the
CFD-NN predictions. Since. k in the training process is taken from the.k − ω results
it means that .k /= 0.5(v'2

1 DNS + v'2
2 DNS + v'2

3 DNS). In the NN model, the spanwise

Reynolds stress adapts to satisfy .aii = 0 which means that .v'2
3 is not correctly pre-

dicted (it even goes negative in the near-wall region). Hence, the EARSM-NN model
is applicable only to two-dimensional flow where.v'2

3 is not used. One way to make the
model applicable in three-dimensional flow is to develop a .k − ω (or .k − ε model)
which accurately predicts the turbulent kinetic energy.

Using Neural Network for Improving … 51

Fig. 9 CFD predictions with EARSM-NN and standard EARSM. The NN model is trained using
DNS and.k − ω data. Flat-plate boundary layer, .Reθ = 5 500. Dashed lines: DNS

Fig. 10 CFD predictions. Flat-plate boundary layer

52 L. Davidson

Acknowledgement This study was partly financed by the Strategic research project on Chalmers
on hydro- and aerodynamics and Chalmers Transport Area of Advance, Grant No. C 2023-0125-19.

The computations were enabled by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through
grant agreement no. 2022-06725.

References

1. Craft, T.J., Launder, B.E., Suga, K.: Prediction of turbulent transitional phenomena with a
nonlinear eddy-viscosity model. Int. J. Heat Fluid Flow 18, 15–28 (1997)

2. Pope, S.B.: A more general effective-viscosity hypothesis. J. Fluid Mech. 472, 331–340 (1975)
3. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep

neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016). https://doi.
org/10.1017/jfm.2016.615

4. Yin, Y., Shen, Z., Zhang, Y., Chen, H., Fu, S.: An iterative data-driven turbulence modeling
framework based on reynolds stress representation. Theor. Appl. Mech. Lett. 12(5), 100381
(2022). https://doi.org/10.1016/j.taml.2022.100381

5. Wu, J.-L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting
turbulence models: a comprehensive framework. Phys. Rev. Fluids 3, 074602 (2018). https://
doi.org/10.1103/PhysRevFluids.3.074602

6. Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Annu. Rev.
Fluid Mech. 51(1), 357–377 (2019). https://doi.org/10.1146/annurev-fluid-010518-040547

7. Weatheritt, J., Sandberg, R.: A novel evolutionary algorithm applied to algebraic modifications
of the rans stress-strain relationship. J. Comput. Phys. 325, 22–37 (2016). https://doi.org/10.
1016/j.jcp.2016.08.015

8. Akolekar, H.D., Weatheritt, J., Hutchins, N., Sandberg, R.D., Laskowski, G., Michelassi, V.:
Development and use of machine-learnt algebraic reynolds stress models for enhanced predic-
tion of wake mixing in low-pressure turbines. J. Turbomach. 141(4), 041010 (2019). https://
doi.org/10.1115/1.4041753

9. Davidson, L.: pyCALC-RANS: a 2D python code for RANS, Division of Fluid Dynamics,
Dept. of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg
(2021)

10. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA J. 21, 1525–1532 (1983)

11. Wilcox, D.C.: Reassessment of the scale-determining equation. AIAA J. 26(11), 1299–1310
(1988)

12. Rodi, W.: A new algebraic relation for calculating the Reynolds stresses. ZAMM 56, T219–
T221 (1976)

13. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbu-
lence closure. J. Fluid Mech. 68(3), 537–566 (1975)

14. Davidson, L.: Fluid mechanics, turbulent flow and turbulence modeling, eBook, Division of
Fluid Dynamics. Chalmers University of Technology, Gothenburg, Dept. of Mechanics and
Maritime Sciences (2021)

15. Taulbee, D.B.: An improved algebraic Reynolds stress model and corresponding nonlinear
stress model. Phys. Fluids A 4, 2555–2561 (1992)

16. Wallin, S., Johansson, A.V.: A new explicit algebraic Reynolds stress model for incompressible
and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

17. Girimaji, S.S.: Fully-explicit and self-consistent algebraic Reynolds stress model. Theoret.
Comput. Fluid Dyn. 8, 387–402 (1996)

https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1016/j.taml.2022.100381
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753
https://doi.org/10.1115/1.4041753

Using Neural Network for Improving … 53

18. Girimaji, S.: Fully-explicit and self-consistent algebraic Reynolds stress model, ICASE Rep.
95-82, Institute for Computer Applications in Science and Engineering NASA Langley
Research Center, Hampton, VA, USA (1995)

19. Wallin, S., Johansson, A.: A new explicit algebraic Reynolds stress turbulence model including
an improved near-wall treatment, in: C.-J. Chen, C. Shih, J. Lienau, R. J. Kung (Eds.), Proc.
Flow Modeling and Turbulence Measurements VI, Tallahassee F. L., Balkema, pp. 399–406
(1996)

20. Hoyas, S., Jimenez, J.: Reynolds number effects on the reynolds-stress budgets in turbulent
channels, Physics of Fluids A 20 (101511) (2008)

21. Lee, M., Moser, R.D.: Direct numerical simulation of turbulent channel flow up to.Reτ ≈ 5200.
J. Fluid Mech. 774, 395–415 (2015). https://doi.org/10.1017/jfm.2015.268

22. Hoyas, S., Oberlack, M., Alcántara-Ávila, F., Kraheberger, S.V., Laux, J.: Wall turbulence at
high friction Reynolds numbers. Phys. Rev. Fluids 7, 014602 (2022). https://doi.org/10.1103/
PhysRevFluids.7.014602

23. Sillero, J., Jimenez, J., Moser, R.: One-point statistics for turbulent wall-bounded flows at
Reynolds numbers up to.δ+ ≃ 2000, Phys. Fluids 25 (105102) (2014)

24. Davidson, L.: Using machine learning for improving a non-linear.k − ε model: a first attempt,
Tech. rep., Division of Fluid Dynamics, Dept. of Mechanics and Maritime Sciences, Chalmers
University of Technology, Gothenburg (2023)

25. Duraisamy, K.: Perspectives on machine learning-augmented reynolds-averaged and large
eddy simulation models of turbulence. Phys. Rev. Fluids (2021). https://doi.org/10.1103/
PhysRevFluids.6.050504

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.7.014602
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
https://doi.org/10.1103/PhysRevFluids.6.050504
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Using Neural Network for Improving an Explicit Algebraic Stress Model in 2D Flow
	1 Introduction
	2 Flow Equations
	2.1 The Numerical Solver
	2.2 The k minus omegak-ω Model

	3 The EARSM
	3.1 The Neural Network Model

	4 The NN Model Incorporated in the CFD Solver
	4.1 Channel Flow with the NN Model Trained on DNS Data
	4.2 Channel Flow with the NN Model Trained on k minus omegak-ω and DNS Data
	4.3 Flat-Plate Boundary-Layer Flow

	5 Conclusions
	References

