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Abstract
We prove a matrix inequality for convex functions of a Hermitian matrix on a bipartite
space. As an application, we reprove and extend some theorems about eigenvalue
asymptotics of Schrödinger operators with homogeneous potentials. The case of main
interest is where the Weyl expression is infinite and a partially semiclassical limit
occurs.
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1 Introduction andmain results

1.1 A Jensen inequality for partial traces

A simple, yet very useful inequality says that if H is a Hermitian matrix in a finite-
dimensional Hilbert spaceH and f is a convex function defined on the convex hull of
the spectrum of H , then for any normalized ψ ∈ H

f (〈ψ |H |ψ〉) ≤ 〈ψ | f (H)|ψ〉 . (1)

This well-known result easily follows from Jensen’s inequality, applied to the spectral
measure of H , see, e.g., [5, Proof of Theorem 2.9] or [6, Lemma 3.2].

Our goal in this paper is to extend this inequality to the bipartite setting where
H = H1 ⊗ H2 is the tensor product of two spaces. As usual, we denote by Tr j ,
j = 1, 2, the partial traces. For background on these matters, we refer to [5, Section
5] and [6, Chapter 2]. The extension is motivated by a specific application that we also
discuss here.

The inequality that we will prove says that for any normalized ϕ ∈ H1, and self-
adjoint H on H1 ⊗ H2

Tr2 f (〈ϕ|H |ϕ〉) ≤ 〈ϕ|Tr2 f (H)|ϕ〉 , (2)

where 〈ϕ|H |ϕ〉 on the left side denotes the operator Tr1[(|ϕ〉〈ϕ| ⊗ 1H2)H ] on H2.
Clearly, when the space H2 is trivial, inequality (2) reduces to (1).

In fact, we will prove the following extension of (2), where |ϕ〉〈ϕ| is replaced by a
density matrix (that is, a nonnegative operator of unit trace).

Theorem 1 Let H1, H2 be finite-dimensional Hilbert spaces, let H be a Hermitian
matrix inH1 ⊗ H2 and let f be a convex function on the convex hull of the spectrum
of H. Then for any density matrix ρ on H1

Tr2 f (Tr1(ρ ⊗ 1)
1
2 H(ρ ⊗ 1)

1
2 ) ≤ Tr1 ρ

1
2 (Tr2 f (H)) ρ

1
2 .

Since the partial trace Tr1 is cyclic with respect to operators that act trivially on
H2, we can write the inequality in the theorem equivalently as

Tr2 f (Tr1(ρ ⊗ 1)H) ≤ Tr1 ρ Tr2 f (H) .

We will prove this theorem in Sect. 2.

1.2 Partially semiclassical limits

Our interest in inequality (2) comes from what we call a partially semiclassical limit
and from three recent papers, discussed below, where this limit appears naturally
in applications. We are concerned with the asymptotic behavior of eigenvalues of
differential operators. The leading term in these asymptotics is often given by Weyl’s
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law, but in our applications this expression for the leading term given byWeyl’s law is
infinite. In some situations where this happens, an asymptotic separation of variables
occurs. For one group of variables,Weyl’s law is applicable and these variables become
‘semiclassical’, while the complementary set of variables remains ‘quantum’, that is,
there appear differential operators that act with respect to the ‘quantum variables’ and
depend parametrically on the ‘semiclassical variables’. We call this phenomenon a
‘partially semiclassical limit’ and give more references where this is studied later on
in this introduction.

The description may seem vague at this point, but we hope it becomes clearer after
stating Theorems 2 and 3.We emphasize that these theorems are known, at least under
certain additional regularity assumptions, and that our goal is to provide simple proofs
for them, in the spirit of works of Berezin [2] and Lieb [13], based on inequalities (1)
and (2).

Both theorems concern Schrödinger operators

H = −� + V in L2(Rd)

with potentials V ≥ 0 that are homogeneous of positive degree. More specifically,
we are interested in the asymptotic growth as λ → ∞ of the number N (λ, H) of
eigenvalues< λ, counting multiplicities. The following constant appears in the limits,

Cγ,d := (4π)−
d
2 γ −1

	( d
γ
)

	( d
γ

+ d
2 + 1)

.

The first theorem, which we state as a warmup, involves a standard semiclassical
limit.

Theorem 2 Let d ∈ N and γ > 0. Let 0 ≤ V ∈ L1
loc(R

d) be homogeneous of degree γ .
Then,

lim
λ→∞ λ

− d(γ+2)
2γ N (λ, H) = Cγ,d

∫
Sd−1

V (ω)
− d

γ dω .

We emphasize that this theorem is valid whether or not the integral on the right side
is finite. In the next theorem, we consider a situationwhere it is infinite (see Remark 7),
which gives rise to a partially semiclassical limit. We write d = m + n, γ = α + β

and denote coordinates in Rm+n by (x, y) ∈ R
m × R

n .

Theorem 3 Let n,m ∈ N and α, β > 0with mα−1 > nβ−1. Let 0 ≤ V ∈ L1
loc(R

n+m)

be separately homogeneous of degrees α and β with respect to x and y, respectively.
Then,

lim
λ→∞ λ−m(α+β+2)

2α N (λ, H) = C 2α
β+2 ,m

∫
Sm−1

Tr
(
(−�y′ + V (ω, y′))−

m(β+2)
2α

)
dω .

As before, the theorem is valid whether or not the integral on the right side is finite.
Also, a similar theorem holds when mα−1 < nβ−1 by switching the roles of x and y.
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One can also compute the asymptotics when mα−1 = nβ−1, but they do not involve
a partially semiclassical limit; see the references given below.

Theorem 2 describes a semiclassical limit, since the leading term

Cγ,d λ
d(γ+2)

2γ

∫
Sd−1

V (ω)
− d

γ dω =
∫∫

Rd×Rd
1(|ξ |2 + V (x) < λ)

dx dξ

(2π)d
(3)

is given by an integral over semiclassical phase space. In contrast, Theorem 3 describes
a partially semiclassical limit, since the leading term

C 2α
β+2 ,mλ

m(α+β+2)
2α

∫
Sm−1

Tr
(
(−�y′ + V (ω, y′))−

m(β+2)
2α

)
dω

=
∫∫

Rm×Rm
N (λ, |ξ |2 − �y + V (x, y))

dx dξ

(2π)m

(4)

is given by an integral over part of the semiclassical phase space, namely R
m × R

m .
Associated to each given (x, ξ) ∈ R

m × R
m is an effective Schrödinger operator

|ξ |2 − �y + V (x, y) in L2(Rn), and the limit depends on the spectrum of these
operators.

The proof of identities (3) and (4) follows by straightforward computations with
beta functions, using also the explicit expression for the volume of the unit ball. Similar
computations appear in the proofs of Theorems 4 and 5, and here we omit the details.

The partially semiclassical limit phenomenon has been studied since the early
1960s, and we refer to [3, Chapter 5, Section: Commentary and references to the
literature] for many references. Those include, in particular, results by Solomyak and
Vulis concerning a power-like degeneration of the coefficients of an operator close
to the boundary of a domain; see [3, Theorem 5.19]. See also [22]. The same phe-
nomenon in the setting of Schrödinger operators was studied by Robert [17] and by
Simon [20]. The latter studied the operators −� + |x |α|y|β in L2(R2) with α, β > 0,
which is a special case of Theorem 3 with m = n = 1. In Solomyak’s paper [21],
Theorems 2 and 3 appear under certain additional technical assumptions (continuity
of V in both cases; d ≥ 3 and finiteness of the integral in Theorem 3; nonvanishing
of V outside the set (Rm × {0}) ∪ ({0} × R

n)). Simon [20] and Solomyak [21] also
study the case mα−1 = nβ−1.

The three recent papers that motivated us are [7, 11, 16]. In [16], the author com-
putes the asymptotic number of low-lying states in a two-dimensional confined Stark
effect and finds an asymptotic separation of variables. In [7], the authors compute the
asymptotic growth of eigenvalues for manifolds whose metric degenerates near the
boundary. In passing, we also mention the related paper [8] where techniques from
[16] and [7] are combined. In [11], two of us computed the asymptotic number of
eigenvalues of Laplace operators less than λ j on a sequence of convex bounded open

sets � j satisfying λ
d
2
j |� j | � 1 ∼ λ

1
2
j rin(� j ). (Here rin(� j ) is the inradius of � j .)

The results obtained in the present paper allow us to reprove the asymptotics in [11]
in the case of Dirichlet boundary conditions, but do not appear to yield the results

123



A Jensen inequality for partial traces and applications … Page 5 of 15    52 

obtained in [11] for Neumann boundary conditions; the approach in [11], based on
Dirichlet–Neumann bracketing, gives a unified proof.

We emphasize again that in the present paper, while we remove some unnecessary
assumptions from [21], we do not strive at obtaining the most general results. Rather,
we aim to present an approach to partially semiclassical limits that maintains as close
as possible a parallel with methods that yield semiclassical limits, and would like to
present our method in the simplest possible setting. For this reason, we first present
the method in the setting of Theorem 2, which only uses arguments that are already
present in the semiclassical limit literature. Then, we show how a natural extension of
these arguments leads, through Theorem 1, to Theorem 3.

Our proof is based on heat kernel asymptotics and coherent states. The idea of
deducing asymptotics for N (λ, H) as λ → ∞ from asymptotics for Tr e−t H as t → 0
goes back to Carleman [4] and is based on a Tauberian theorem. (More precisely,
Carleman used the closely related resolvent trace asymptotics instead of heat trace
asymptotics.)We recall theHardy–Littlewood–KaramataTauberian theorem (see, e.g.,
[18, Theorem 10.3]), which says that if μ is a nonnegative measure on [0,∞) whose
Laplace transform is finite on (0,∞) and if p,C ≥ 0, then

lim
λ→∞ λ−pμ([0, λ)) = C if and only if lim

t→0
t p

∫
[0,∞)

e−tλdμ(λ) = 	(p+1)C .

Denoting

C ′
γ,d := 	

(
d
γ

+ d
2 + 1

)
Cγ,d = (4π)−

d
2 γ −1	

(
d
γ

)
,

we see that Theorems 2 and 3 are equivalent to the following two theorems.

Theorem 4 Let H be as in Theorem 2. Then,

lim
t→0

t
d(γ+2)

2γ Tr e−t H = C ′
γ,d

∫
Sd−1

V (ω)
− d

γ dω .

Theorem 5 Let H be as in Theorem 3. Then,

lim
t→0

t
m(α+β+2)

2α Tr e−t H = C ′
2α

β+2 ,m

∫
Sm−1

Tr
(
(−�y′ + V (ω, y′))−

m(β+2)
2α

)
dω .

To emphasize the (partially) semiclassical character of these asymptotics, we note
that we can write

C ′
γ,d t

− d(γ+2)
2γ

∫
Sd−1

V (ω)
d
γ dω =

∫∫
Rd×Rd

e−t(|ξ |2+V (x)) dx dξ

(2π)d

and

C ′
2α

β+2 ,m
t−

m(α+β+2)
2α

∫
Sm−1

Tr
(
(−�y′ + V (ω, y′))−

m(β+2)
2α

)
dω

=
∫∫

Rm×Rm
TrL2(Rn)

(
e−t(|ξ |2−�y+V (x,y))) dx dξ

(2π)m
.
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These identities will be derived in the course of the proof of Theorems 4 and 5.
From now on, we will focus on the proofs of the latter two theorems. The advantage

of working with heat traces is that the ‘difficult’ upper bound comes for free by means
of the Golden–Thompson inequality. In the setting of Theorem 2, this is the standard
Golden–Thompson inequality, while in that of Theorem 5 it is a partial variant of it,
noted by Simon in [20].

As an aside, wemention that we could also consider the asymptotics of Tr(H−λ)
γ
−

for some γ ≥ 3
2 . On the one hand, by a Tauberian-type argument this would give the

asymptotics of N (H , λ). On the other hand, we could use the sharp Lieb–Thirring
inequality (for operator-valued potentials [12] in the setting of Theorem 3) to obtain
the ‘difficult’ upper bound by the limiting expression. For a recent implementation of
this idea in a special case, see [1].

Thus, the only thing that needs to be proved is the lower bound in Theorems 4
and 5. As we will show, this can be accomplished rather easily using coherent states.
It is for this purpose that we need (1) in the proof of Theorem 4. Our new inequality
(2) plays the analogous role in the proof of Theorem 5.

This proof of the lower bound in Theorem 5 using coherent states differs from that
of Simon who uses the Feynman–Kac formula. We hope that our proof retains some
of the elegance of Simon’s proof of the upper bound. The use of coherent states in
the context of eigenvalue asymptotics goes back at least to the celebrated papers by
Berezin [2] and Lieb [13]. The usefulness of this method is further explained in [14,
19]; see also [9] for a recent application to Weyl laws for Schrödinger operators on
domains under minimal assumptions on the potential.

2 Proof of Theorem 1

Wework under the assumptions of Theorem 1, that is, letH1,H2 be finite-dimensional
Hilbert spaces, let H be a Hermitian matrix inH1 ⊗H2 and let ρ be a density matrix
onH1. We set

K := Tr1(ρ ⊗ 1)
1
2 H(ρ ⊗ 1)

1
2

and chose an orthonormal basis (v1, . . . , vN ) of H2 consisting of eigenvectors of K .
Then, for any convex function f on the convex hull of the spectrum of H ,

Tr2 f (K ) =
N∑

n=1

〈vn| f (K )|vn〉 =
N∑

n=1

f (〈vn|K |vn〉) . (5)

Now we write

ρ =
M∑

m=1

λm |um〉〈um |
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with an orthonormal basis (u1, . . . , uM ) of H1. Then, for any v ∈ H2, we have

〈v|K |v〉 =
M∑

m=1

〈
um ⊗ v

∣∣(ρ ⊗ 1)
1
2 H(ρ ⊗ 1)

1
2
∣∣um ⊗ v

〉

=
M∑

m=1

λm 〈um ⊗ v |H | um ⊗ v〉 .

We fix n ∈ {1, . . . , N } and apply this identity with v = vn . Using Jensen’s inequality
twice, we find

f (〈vn|K |vn〉) = f

(
M∑

m=1

λm 〈um ⊗ vn |H | um ⊗ vn〉
)

≤
M∑

m=1

λm f (〈um ⊗ vn |H | um ⊗ vn〉)

≤
M∑

m=1

λm 〈um ⊗ vn | f (H)| um ⊗ vn〉 .

Here, the first application of Jensen’s inequality usesλm ≥ 0 and
∑M

m=1 λm = Tr1 ρ =
1, while the second application is inequality (1). Summing this inequality with respect
to n, interchanging the two sums and recalling (5), we obtain

Tr2 f (K ) ≤
M∑

m=1

λm

N∑
n=1

〈um ⊗ vn | f (H)| um ⊗ vn〉

=
M∑

m=1

λm〈um |Tr2 f (H)|um〉

= Tr1 ρ
1
2 (Tr2 f (H)) ρ

1
2 .

This completes the proof of the claimed inequality.

Remark 6 Wewill need an extension of Theorem 1 to the infinite-dimensional setting.
We assume that the operator H and the function f are nonnegative and that the operator

Tr1(ρ ⊗ 1)
1
2 H(ρ ⊗ 1)

1
2 has discrete spectrum. Then, the above proof goes through

unchanged, except that now N and/or M are possibly infinite. Since all quantities are
nonnegative under our assumptions, all manipulations are allowed even if some of the
sums are infinite. There are more subtle extensions to the infinite-dimensional context,
but this one is good enough for our purposes.
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3 Semiclassical limit: proof of Theorem 4

In this section, we prove Theorem 4 and thereby also Theorem 2. It serves as a warmup
for the next section and is included mostly for pedagogical purposes. In particular, we
want to highlight the role of inequality (1) in this proof, which in the next section will
be replaced by the new inequality (2).

We proceed by proving an upper and a lower bound on Tr e−t H . To do so, we argue
similarly as in [19], but a different choice of coherent states will allow us to relax the
assumptions on V imposed there.

The upper bound follows immediately from the Golden–Thompson inequality; see,
e.g., [6, Theorem 4.49]. Specifically,

Tr e−t H ≤ Tr et�/2e−tV et�/2 = (4π t)−
d
2

∫
Rd

e−tV (x) dx .

Introducing spherical coordinates x = rω with r > 0, ω ∈ S
d−1 and then changing

variables by letting s = trγ , we obtain

∫
Rd

e−tV (x) dx =
∫
Sd−1

∫ ∞

0
e−trγ V (ω)rd−1 dr dω

= γ −1 t−
d
γ

∫
Sd−1

∫ ∞

0
e−sV (ω)s

d
γ

−1 ds dω

= γ −1 t−
d
γ 	

(
d
γ

) ∫
Sd−1

V (ω)
− d

γ dω .

This proves the upper bound. To express it as semiclassical bound and connect it with
the lower bound that follows, we note that

(4π t)−
d
2

∫
Rd

e−tV (x) dx =
∫∫

Rd×Rd
e−t(|ξ |2+V (x)) dx dξ

(2π)d
.

For the lower bound,wefixa symmetric decreasing function g ∈ H1(Rd)∩L∞(Rd)

with ‖g‖L2(Rd ) = 1 and compact support, and we set, for (x, ξ) ∈ R
d × R

d ,

ψξ,x (x
′) := eiξ ·x g(x ′ − x) .

Then, by a well-known consequence of Plancherel’s theorem,

∫
Rd×Rd

|ψξ,x 〉〈ψξ,x | dx dξ
(2π)d

= 1L2(Rd ) . (6)

Thus,

Tr e−t H =
∫∫

Rd×Rd
Tr

(|ψξ,x 〉〈ψξ,x |e−t H ) dx dξ

(2π)d
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and, by Jensen’s inequality (1) (generalized to the infinite-dimensional setting),

Tr
(|ψξ,x 〉〈ψξ,x |e−t H ) ≥ e−t〈ψξ,x |H |ψξ,x 〉 .

Standard computationswith coherent states (see, e.g, [15, Chapter 12] or [9, 19]) imply
that

〈ψξ,x |H |ψξ,x 〉 = |ξ |2 + ‖∇g‖2L2(Rd )
+ g2 ∗ V (x) .

Thus, we have shown that

Tr e−t H ≥ e
−t‖∇g‖2

L2(Rd )

∫∫
Rd×Rd

e−t(|ξ |2+g2∗V (x)) dx dξ

(2π)d

= (4π t)−
d
2 e

−t‖∇g‖2
L2(Rd )

∫
Rd

e−t(g2∗V )(x) dx .

Similarly as in the proof of the upper bound,we introduce spherical coordinates x = rω
and change variables s = trγ to obtain

∫
Rd

e−t(g2∗V )(x) dx =
∫
Sd−1

∫ ∞

0
e−t(g2∗V )(rω)rd−1 dr dω

= γ −1t−
d
γ

∫
Sd−1

∫ ∞

0
e−t(g2∗V )((s/t)

1
γ ω)s

d
γ

−1 ds dω .

It follows from Fatou’s lemma that

lim inf
t→0

t
d
2 + d

γ Tr e−t H ≥ (4π)−
d
2 γ −1

∫
Sd−1

∫ ∞

0
lim inf
t→0

e−t(g2∗V )((s/t)
1
γ ω)s

d
γ

−1 ds dω .

(7)
It follows by Lebesgue’s differentiation theorem that, for a.e. ω ∈ S

d−1,

lim
ε→0

εγ (g2 ∗ V )(ε−1ω) = lim
ε→0

∫
Rd

ε−dg2((ω − x ′)/ε) εγ V (x ′/ε) dx ′

= lim
ε→0

∫
Rd

ε−dg2((ω − x ′)/ε) V (x ′) dx ′

= V (ω) .

(Note that due to the fact that g is symmetric decreasing, by the layer cake formula
[15] the convolution with g2 can be written as a superposition of convolutions with
characteristic functions of balls, and therefore, Lebesgue’s differentiation theorem is
applicable. Initially, this theorem gives convergence for a.e. x ∈ R

d , but since V is
homogeneous this implies convergence for a.e. ω with respect to surface measure on

S
d−1.) Setting ε = (t/s)

1
γ , we deduce that

∫ ∞

0
lim inf
t→0

e−t(g2∗V )((s/t)
1
γ ω)s

d
γ

−1 ds =
∫ ∞

0
e−sV (ω)s

d
γ

−1 ds = 	( d
γ
) V (ω)

− d
γ .
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When inserted in (7), this completes the proof of the claimed lower bound.

Remark 7 We claimed that for potentials of the form considered in Theorem 3 the inte-
gral in Theorem 2 is infinite. Let us justify this. Consider F ∈ L1(Sm−1 ×S

n−1) such
that V (x, y) = |x |α|y|βF(x/|x |, y/|y|). We parametrize ω ∈ S

m+n−1 ⊂ R
m ×R

n as
(� sin ϕ,� cos ϕ) with � ∈ S

m−1, � ∈ S
n−1 and ϕ ∈ [0, π

2 ]. For the corresponding
surface measure, we have dω = (sin ϕ)m−1(cosϕ)n−1 d� d� dϕ and consequently

∫
Sm+n−1

V (ω)
−m+n

α+β dω = c
∫∫

Sm−1×Sn−1
F(�,�)

−m+n
α+β d� d�

with

c =
∫ π

2

0
(sin ϕ)

m−1− (m+n)α
α+β (cosϕ)

n−1− (m+n)β
α+β dϕ .

The claim now follows from the fact that c = ∞ for the range of parameters in
Theorem 3. Indeed, if m

α
≥ n

β
(resp. m

α
≤ n

β
), then the integral diverges at ϕ = π

2
(resp. ϕ = 0).

4 Partially semiclassical limit: proof of Theorem 5

We now turn to the main application of our new inequality (2), namely the proof of
Theorem 5 (and thereby also that of Theorem 3).

As in the previous section, we proceed by proving an upper and a lower bound on
Tr e−t H . The upper bound is already contained in Simon’s paper [20], but we repeat
the short argument to emphasize the similarity of the upper and lower bounds.

For the upper bound, we apply the Golden–Thompson inequality, separating −�x

from the rest of the operator H . This iswhat Simon calls the ‘slicedGolden–Thompson
inequality’. We obtain

Tr e−t H ≤
∫∫

Rm×Rm
TrL2(Rn)

(
e−t(|ξ |2−�y+V (x,y))) dx dξ

(2π)m

= (4π t)−
m
2

∫
Rm

TrL2(Rn)

(
e−t(−�y+V (x,y))) dx .

Introducing spherical coordinates x = rω with r > 0, ω ∈ S
m−1, we obtain

∫
Rm

TrL2(Rn )

(
e−t(−�y+V (x,y))) dx =

∫
Sm−1

∫ ∞

0
TrL2(Rn )

(
e−t(−�y+rαV (ω,y)))rm−1 dr dω .

Changing variables y = g− 1
β+2 y′, we see that−�y+rαV (ω, y) is unitarily equivalent

to g
2

β+2 (−�y′ + rαg−1V (ω, y′)) in L2(Rn). We apply this observation with g = rα

and find

TrL2(Rn)

(
e−t(−�y+rαV (ω,y))) = TrL2(Rn)

(
e−tr

2α
β+2 Kω

)
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with the operator Kω := −�y′ + V (ω, y′) in L2(Rn). Changing variables s = tr
2α

β+2 ,
we obtain

∫ ∞
0

TrL2(Rn)

(
e−t(−�y+rαV (ω,y)))rm−1 dr =

∫ ∞
0

TrL2(Rn)

(
e−tr

2α
β+2 Kω

)
rm−1 dr

= β + 2

2α
t−

m(β+2)
2α

∫ ∞
0

TrL2(Rn )

(
e−sKω

)
s
m(β+2)

2α −1 ds

= β + 2

2α
t−

m(β+2)
2α 	(

m(β+2)
2α ) TrL2(Rn )

(
K

−m(β+2)
2α

ω

)
.

To summarize, we have shown that

Tr e−t H ≤ C ′
2α

β+2 ,m
t−

m(α+β+2)
2α

∫
Sm−1

TrL2(Rn)

(
K

−m(β+2)
2α

ω

)
dω ,

which is the claimed upper bound.

We now turn to the proof of the lower bound. We fix a symmetric decreasing
function g ∈ H1(Rm) with ‖g‖L2(Rm ) = 1 and set, for (x, ξ) ∈ R

m × R
m ,

ψξ,x (x
′) = eiξ ·x g(x ′ − x) .

Then, by (6) with d replaced by m, we find

Tr e−t H =
∫∫

Rm×Rm
TrL2(Rm)

(
|ψξ,x 〉〈ψξ,x |TrL2(Rn) e

−t H
) dx dξ

(2π)m
.

We now apply Theorem 1 with ϕ(E) = e−t E and ρ = |ψξ,x 〉〈ψξ,x | (see also Remark
6) and obtain

TrL2(Rm )

(|ψξ,x 〉〈ψξ,x |TrL2(Rn) e
−t H ) ≥ TrL2(Rn) e

−t〈ψξ,x |H |ψξ,x 〉 .

Note that 〈ψξ,x |H |ψξ,x 〉 is an operator in L2(Rn). Using standard computations with
coherent states, we find

〈ψξ,x |H |ψξ,x 〉 = −�y + |ξ |2 + ‖∇g‖2L2(Rm )
+ Ṽ (x, y) ,

where

Ṽ (x, y) :=
∫
Rm

g(x − x ′)2V (x ′, y) dx ′ .

Thus, we have shown that

Tr e−t H ≥
∫∫

Rm×Rm
TrL2(Rn)

(
e
−t(−�y+|ξ |2+‖∇g‖2

L2(Rm )
+Ṽ (x,y))) dx dξ

(2π)m

= (4π t)−
m
2 e

−t‖∇g‖2
L2(Rm )

∫
Rm

TrL2(Rn)

(
e−t(−�y+Ṽ (x,y))) dx .
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We now proceed similarly as in the upper bound. We introduce spherical coordinates

x = rω, change variables by letting y = r− α
β+2 y′ and s = tr

2α
β+2 . This gives

∫
Rm

TrL2(Rn) e
−t(−�y+Ṽ (x,y)) dx

=
∫
Sm−1

∫ ∞

0
TrL2(Rn)

(
e−t(−�y+Ṽ (rω,y)))rm−1 dr dω

=
∫
Sm−1

∫ ∞

0
TrL2(Rn)

(
e−tr

2α
β+2 (−�y′+r−α Ṽ (rω,y′))

)
rm−1 dr dω

= β + 2

2α
t−

m(β+2)
2α

∫
Sm−1

∫ ∞

0
TrL2(Rn)

(
e−sK

(εs,t )
ω

)
s
m(β+2)

2α −1 ds dω ,

where εs,t := (t/s)
β+2
2α and

K (ε)
ω := −�y′ + εα Ṽ (ε−1ω, y′) in L2(Rn) .

We shall show below that for a.e. ω ∈ S
m−1 and every s > 0

lim inf
ε→0

TrL2(Rn) e
−sK (ε)

ω ≥ Tr e−sKω (8)

with the same operator Kω as in the upper bound. Therefore, by Fatou’s lemma,

lim inf
t→0

t
m(α+β+2)

2α Tr e−t H ≥ β + 2

2α(4π)
m
2

∫
Sm−1

∫ ∞
0

lim inf
t→0

TrL2(Rn )

(
e−sK

(εs,t )
ω

)
s
m(β+2)

2α −1 ds dω

≥ β + 2

2α(4π)
m
2

∫
Sm−1

∫ ∞
0

TrL2(Rn )

(
e−sKω

)
s
m(β+2)

2α −1 ds dω

= C ′
2α

β+2 ,m

∫
Sm−1

TrL2(Rn)

(
K

−m(β+2)
2α

ω

)
dω .

This is the claimed lower bound.
It remains to prove (8). To this end, we use the following lemma.

Lemma 8 Let A j , j ∈ N, and A be self-adjoint, lower-bounded operators in a
Hilbert space with a common form core Q and assume that for all ψ ∈ Q we have
lim sup j→∞〈ψ |A j |ψ〉 ≤ 〈ψ |A|ψ〉. Then,

lim inf
j→∞ Tr e−A j ≥ Tr e−A .

The following proof of the lemma relies on the Gibbs variational principle (see,
e.g., [5, Theorem 2.13] or [6, Theorem 7.45]), which says that for any self-adjoint,
lower semibounded operator H

inf
ρ density matrix

(
Tr ρ

1
2 Hρ

1
2 + Tr ρ ln ρ

)
= − ln Tr e−H ,
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where the infimum is taken over all density matrices with Tr ρ ln ρ > −∞. Note that

Tr ρ
1
2 Hρ

1
2 is well defined, but possibly +∞.

Proof Let ρ be a finite rank density matrix with range in Q. Then, by assumption,

Tr ρ
1
2 Aρ

1
2 + Tr ρ ln ρ ≥ lim sup

j→∞

(
Tr ρ

1
2 A jρ

1
2 + Tr ρ ln ρ

)
.

Bounding the right side from below by the Gibbs variational principle, we find

Tr ρ
1
2 Aρ

1
2 + Tr ρ ln ρ ≥ − lim inf

j→∞ ln Tr e−A j .

By density this lower bound extends to any density matrix ρ with Tr ρ ln ρ > −∞.
Taking the infimum over all such ρ and employing again the Gibbs variational princi-
ple, we arrive at

− ln Tr e−A ≥ − lim inf
j→∞ ln Tr e−A j ,

which is the claimed inequality. ��
Let us provide an alternative proof of Lemma 8, which was suggested to us by the

referee. It relies on the fact that

Tr e−H = sup

{∑
n

e−〈ψn |H |ψn〉 : (ψn) finite orthonormal system

}
. (9)

Indeed, ≤ is clear by taking (ψn) consisting of eigenfunctions of H and ≥ follows by
applying (1) with f (E) = e−E to ψ = ψn and summing over n.

With (9) at hand, we notice that for all finite orthonormal systems (ψn), we have

lim inf
j→∞ Tr e−A j ≥ lim inf

j→∞
∑
n

e−〈ψn |A j |ψn〉 ≥
∑
n

e−〈ψn |A|ψn〉 .

Taking the supremum over (ψn) on the right side and using (9), we arrive again at the
conclusion of Lemma 8.

We return to the proof of (8). By Fubini’s theorem and homogeneity of V , there
is a full measure subset of Sm−1 such that for any ω from this set and any ε > 0 the
function y′ �→ εα Ṽ (ε−1ω, y′) is locally integrable onRn . Since it is also nonnegative,
it follows that C∞

c (Rn) is a form core for K (ε)
ω ; see, e.g., [10, Proposition 4.1]. We

claim that for ψ ∈ C∞
c (Rn) we have

lim
ε→0

〈ψ |εα Ṽ (ε−1ω, ·)|ψ〉 = 〈ψ |V (ω, ·)|ψ〉 . (10)

Once we have shown (10), we can apply Lemma 8 with A j = sK
(ε j )
ω and obtain (8).
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To prove (10), we set W (x) := ∫
Rn V (x, y)|ψ(y)|2 dy and note that (10) is equiv-

alent to
lim
ε→0

εα(g2 ∗ W )(ε−1ω) = W (ω) .

This holds for a.e. ω ∈ S
m−1 as shown in the proof of the lower bound in Theorem 4.

This concludes the proof.
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