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ABSTRACT Millimeter wave (mmWave) multiple-input-multi-output (MIMO) is now a reality with great
potential for further improvement. We study full-duplex transmissions as an effective way to improve
mmWaveMIMO systems. Compared to half-duplex systems, full-duplex transmissions may offer higher data
rates and lower latency. However, full-duplex transmission is hindered by self-interference (SI) at the receive
antennas, and SI channel estimation becomes a crucial step to make the full-duplex systems feasible. In this
paper, we address the problem of channel estimation in full-duplex mmWave MIMO systems using neural
networks (NNs). Our approach involves sharing pilot resources between user equipments (UEs) and transmit
antennas at the base station (BS), aiming to reduce the pilot overhead in full-duplex systems and to achieve a
comparable level to that of a half-duplex system. Additionally, in the case of separate antenna configurations
in a full-duplex BS, providing channel estimates of transmit antenna (TX) arrays to the downlink UEs poses
another challenge, as the TX arrays are not capable of receiving pilot signals. To address this, we employ
an NN to map the channel from the downlink UEs to the receive antenna (RX) arrays to the channel from
the TX arrays to the downlink UEs. We further elaborate on how NNs perform the estimation with different
architectures, (e.g., different numbers of hidden layers), the introduction of non-linear distortion (e.g., with
a 1-bit analog-to-digital converter (ADC)), and different channel conditions (e.g., low-correlated and high-
correlated channels). Our work provides novel insights into NN-based channel estimators.

INDEX TERMS Channel estimation, full-duplex, mmWave MIMO, neural networks.

I. INTRODUCTION

CURRENT key enabling wireless technologies, such
as massive multiple-input-multi-output (MIMO),

millimeter-wave (mmWave) communication, and ultra-dense
networks have significantly improved the throughput of
wireless communications [1]. Thanks to the huge bandwidth
available in the mmWave band, we can meet the high data
rate requirements for future cellular networks, and the high
path loss at these frequencies can be compensated by utilizing
the beamforming gain of MIMO antennas. Nonetheless,
these technologies have been mainly studied for half-duplex

communication, and the potential of utilizing full-duplex
communication has been widely overlooked. In full-duplex
transmission, a transceiver can simultaneously transmit and
receive over the same carrier frequency, in principle dou-
bling the spectral efficiency. Besides, the delay associated
with half-duplex transmission is not present in full-duplex
systems, thereby enabling the low latency requirements of
5G and beyond [2], [3].

To realize full-duplex transmission, self-interference (SI)
caused by each transmit element over the receive array
has to be canceled out. Consecutive cancellation procedures
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are usually considered in three domains: propagation, ana-
log, and digital [4]. In propagation domain cancellation,
SI power is suppressed before reaching the receive chain
circuit. Analog domain cancellation is performed before
the analog-to-digital converter (ADC) in the receiver ana-
log chain. Finally, digital domain cancellation suppresses
the SI power remaining from the propagation and analog
domains [5]. Implementing full-duplex in mmWave sys-
tems poses unique challenges distinct from lower-frequency
counterparts. Unlike lower-frequency systems, mmWave
transceivers utilize dense antenna arrays and wide band-
widths, necessitating tailored solutions for handling the SI
and exploiting spatial degrees of freedom. While lower-
frequency full-duplex solutions often rely on analog SI
cancellation, mmWave systems require novel approaches due
to their unique transceiver architectures and propagation char-
acteristics.

There are two main antenna configurations used for full-
duplex systems: separate and shared. In the separate antenna
configuration, separate antennas are dedicated to transmis-
sion and reception, yielding high isolation and relatively low
interference. In contrast, in the latter configuration, a single
antenna is utilized for both transmission and reception, facil-
itated by the use of circulators to separate the incoming and
outgoing signals. This setup offers a simpler overall design
and reduced hardware costs, albeit with potential challenges
in managing interference and maintaining signal integrity.

Due to the large number of antenna elements in massive
MIMO systems, channel estimation is a complex process with
a high pilot overhead. This is the case even in half-duplex sys-
tems, but is more pronounced in full-duplex systems due to
the critical need for SI cancellation, which requires estimation
of the large SI channel. Several studies have been conducted
to address channel estimation in full-duplex systems. In [6],
a channel estimation scheme based on least squares (LS) esti-
mation is proposed for bidirectional communication between
a pair of transceivers. The achievable sum rate was analyzed
considering the limited dynamic range of the transmitter
and receiver and channel estimation error. In [7], an LS-
based scheme was utilized for a multi-pair two-way amplify
and forward (AF) relaying system. Additionally, a low-pilot
overhead scheme was proposed, where two user equipments
(UEs) employ the same pilot sequence, while different UE
pairs adopt orthogonal pilot sequences.

In [8], an expectation-maximization algorithm is utilized
to address the channel estimation problem in a large-scale
MIMO system with a full-duplex relay. The authors explore
two different scenarios: in the first scenario, both the base
station (BS) and the relay estimate their respective individual
channels, while in the second scenario, only the BS esti-
mates the cascaded channel between the transmitter, relay,
and receiver. In [9], channel estimation is performed in both
the radio frequency (RF) and baseband domains. In the RF
domain, the authors employ the LS technique to estimate
the SI channel. Subsequently, a subspace-based algorithm is

employed in the baseband to estimate the residual SI and BS-
UE channels. The study in [10] proposes a specific frame
structure for full-duplex systems, for which the achievable
rate and SI channel estimation are analyzed. Furthermore, the
impact of the calibration period on SI channel estimation is
investigated in [11].

In [12], the authors have studied the problem of
hybrid beamforming with low-resolution phase shifters for
full-duplex mmWave large-scale MIMO systems and opti-
mized the sum spectral efficiency (SE) of uplink and down-
link UEs, assuming perfect channel state information (CSI)
knowledge. Two different SI cancellation approaches, namely
spatial suppression and SI subtraction, have been compared
in [13], taking into account channel estimation errors and
channel spatial correlation. The uplink and downlink achiev-
able rates have been obtained in [14], considering both the
perfect CSI and imperfect CSI cases in full-duplex massive
MIMO systems with low-resolution ADCs. A study has been
conducted in [15] for full-duplex large-scale MIMO cellular
systems, considering both non-cooperative and cooperative
scenarios. Minimum mean squared error (MMSE) channel
estimation is employed for SI and UE channels. Analytical
expressions have been derived for the ergodic achievable
rate using linear filters such as matched filter (MF) and
zero-forcing (ZF). Authors in [16] have introduced a hybrid
beamforming design for mmWave full-duplex, addressing
several practical aspects such as codebook-based analog
beamforming and beam alignment.

A neural network (NN) is a specialized tool within the
field of machine learning that has demonstrated remarkable
effectiveness in solving a wide range of tasks, including
computer vision, speech recognition, and autonomous driv-
ing [17]. Thanks to the versatility of NNs, they have also
found applications in wireless communication, either in a
block-structured manner or in an end-to-end scenario [18].
Research in the wireless communication community has
explored optimizing traditional processing blocks, such
as channel estimation [19], precoding [20], signal detec-
tion [21], and CSI feedback [22], using deep learning
techniques. Moreover, in [23], an end-to-end communication
system has been represented by an autoencoder. In [24],
a communication system model is developed without prior
information on the channel, with the assistance of conditional
generative adversarial networks (GANs).

Numerous studies have focused on NN-based channel
estimation. In [25], convolutional neural networks (CNNs)
are employed to estimate the mmWave massive MIMO
channel, demonstrating that CNNs can achieve superior
performance compared to MMSE by effectively exploiting
spatial and frequency correlation. In [26], the authors utilize
a specifically designed CNN called ‘‘deep image prior’’ to
denoise the LS estimated massive MIMO channel. Their
findings indicate that deep learning can successfully esti-
mate pilot-contaminated massiveMIMO channels. In another
work, [27], fully connected neural networks (FNNs) are
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utilized to estimate the massive MIMO channel from quan-
tized received measurements with low-resolution ADCs. The
study reveals that with sufficiently large antenna arrays, fewer
pilots are required for channel estimation. For beamspace
mmWave massive MIMO systems, a learned denoising-
based approximate message passing network is used to
solve the channel estimation problem [28]. Simulation results
demonstrate that deep learning-based channel estimation out-
performs compressed sensing (CS)-based schemes in this
context.

As highlighted in several papers, such as [2], [3], and [12],
the channel estimation problem in full-duplex transmission
has not received extensive research attention in the litera-
ture. The few existing works mentioned above are primarily
focused on simple channel estimation techniques, like LS
estimators, which may not ensure high-quality channel esti-
mates in low signal-to-noise ratios (SNRs). On the other
hand, theMMSE channel estimator requires knowledge of the
channel correlation matrix and is burdened with high com-
putational complexity. More importantly, classical channel
estimation techniques require long pilot dimensions in order
to perform well. But as we pointed out, in full-duplex sys-
tems, the SI channel is a largeMIMO channel, and estimating
this channel together with UE channels is extremely costly,
rendering the realization of full-duplex systems impractical.
Furthermore, interference or residual error from SI and UE
signals can heavily disrupt the received pilot signal in full-
duplex systems. Another challenge is acquiring the channel
from transmit antenna (TX) arrays to the downlink UEs in
separate antenna configurations.

In order to circumvent the aforementioned critical prob-
lems in channel estimation for full-duplex systems, we exam-
ine NNs to estimate both SI and UE channels. The main
motivation for adopting NNs for this problem can be summa-
rized as follows: 1) It has been shown in various studies that
deep learning can provide remarkably good performance in
channel estimationwith a short pilot dimension, see e.g., [27],
2) Deep learning has demonstrated impressive performance
in noisy conditions [26], holding promise for addressing the
problem of heavy interference in the received pilot signal of
full-duplex systems. 3) Finally, NNs have been successfully
utilized to approximate the mapping of channels in frequency
and spatial domains [29]. Therefore, NNs are a good candi-
date for obtaining the channel from TX arrays to downlink
UEs by approximating the spatial mapping of the channel
from downlink UEs to receive antenna (RX) arrays, to the
channel of TX arrays and to downlink UEs.

The role of the number of hidden layers in NN-based chan-
nel estimators is not well understood. The general belief in
the advantages of depth stems from experiments in machine
learning on data modalities such as images or text, which can
be far more complex than wireless channels. The latency con-
straints in wireless systems are also radically different from
those in computer vision tasks. As such, the same advantages
of depth may not hold for channel estimation. Additionally,
the computational complexity and generalization capabilities

of deep NNs are significant bottlenecks in implementing
NN estimators in practice. Hence, we concentrate on simple
NNs ranging from zero to a few hidden layers. We aim to
investigate how these simple NNs perform across various
channel conditions and system scenarios compared to deep
NNs. Additionally, to approximate the channel mapping from
TX arrays to downlink UEs to the channel of RX arrays to
downlink UEs, we employ FNNs with different numbers of
hidden layers.

The summary of the contributions made in this paper is as
follows:

• First, we examine the performance of the NN-based
channel estimator with varying numbers of hidden layers
and compare them to traditional LS and MMSE tech-
niques, as well as state-of-the-art deepNNs.We consider
architectures with 0, 1, 2, and 10 convolutional hid-
den layers, with the latter corresponding to the deep
NN architecture described in [25]. To further explore
NN-based estimators, we introduce 1-bit ADCs at the
full-duplex BS to introduce nonlinear distortion to the
received pilot signal. Additionally, to delve deeper into
the problem of channel estimation with low-resolution
ADCs, we consider cases with 2-bit and 3-bit ADCs.
Furthermore, we investigate the performance of NNs
under different channel spatial correlation regimes,
namely, low-correlation and high-correlation regimes.

• In order to reduce the pilot overhead imposed by full-
duplex transmission, we share pilot resources between
TX arrays of BS and UEs and explore different pilot
dimensions. First, we estimate the SI channel and then
cancel out the SI signal from the received pilot signal
to estimate the UE channels. We discuss how the SI
power influences the channel estimates of UEs when
pilot resources are shared between TX arrays and UEs.
We further analyze the effect of SI cancellation during
the pilot phase for UE channel estimation.

• To acquire channel estimates from transmit arrays
to downlink UEs in separate antenna configurations,
we seek a mapping from the channel of downlink UEs
to the RX arrays to the channel of TX arrays to the
downlink UEs. Due to the multi-path effect and random
scattering environment, there is no simple mathematical
formulation for this mapping. Instead, we utilize an NN
to approximate it based on the universal approxima-
tion [30] theory. Accordingly, we estimate the channels
of downlink UEs at the RX arrays as well and then map
them to the channel from TX arrays to the downlink
UEs using NNs. Simulation results show that the NN can
learn this mapping successfully.

• We analyze how our trained models perform when there
is a significant distribution shift between the training and
test phases. We utilize the DeepMIMO dataset [31] to
generate channel samples that differ from the data used
for training. As expected, the performance of the trained
model degrades due to the distribution shift. Moreover,
we observe that simpler NNs with fewer hidden layers
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FIGURE 1. System model with a full-duplex BS serving Ku
single-antenna UEs in the uplink and Kd single-antenna UEs in
the downlink channel.

exhibit better generalization ability compared to deeper
NNs, since the number of trainable variables is much
lower in shallow NNs. This underscores the advantages
of utilizing simpler NN architectures for channel estima-
tion problems.

• Finally, we compare the computational complexity of
LS, MMSE, and NN channel estimators in terms of
floating point operations (FLOPs). This comparison
indicates that the number of FLOPs increases quadrat-
ically with the number of received antennas in MMSE
estimation, whereas in LS and NN-based estimation,
it grows linearly. Furthermore, the comparison of
the computational complexity of NNs with different
numbers of hidden layers indicates that NNs with a
few hidden layers can significantly save computational
resources while employing a deep NN poses a major
challenge in practice.

The rest of this paper is organized as follows. Section II
introduces the channel models for SI and UEs, as well as
pilot transmission schemes. We examine different channel
estimation approaches such as LS and MMSE, and intro-
duce the NN-based estimator for SI and UE channels in
Section III, and the RX-TX mapping for separate antenna
configurations. In Section IV, we provide extensive numer-
ical simulations and compare different channel estimators
in terms of normalized mean squared error (NMSE) and
computational complexity. Section V concludes the paper.

Throughout the paper the following notations are used:
Matrices are represented using bold uppercase letters, while
bold lowercase letters denote vectors. Transpose, transpose
conjugate (Hermitian), and matrix inversion operations are
denoted by the superscripts (·)T , (·)H , and (·)−1, respectively.
We use E to denote expectation, || · ||F to represent the
Frobenius norm, and ⊗ to denote Kronecker product. The
identity matrix of size n×n is represented by In. For a generic
matrix A ∈ Cn×m, [A]ij refers to the element in the (i, j)-

th position. The operation vec(A) denotes a column vector
obtained by stacking the columns of A one below the other.

II. SYSTEM MODEL
A. CHANNEL MODELING
We consider a single-cell system with one full-duplex
mmWave MIMO BS, serving Ku uplink UEs and Kd down-
link UEs as depicted in the Fig. 1. Both uplink and downlink
UEs are half-duplex devices and the total number of UEs
in the cell is K = Ku + Kd. We consider separate antenna
configurations, where the BS is equipped with two uniform
linear arrays to enable full-duplex transmission. The number
of transmit and receive antennas are Nt and Nr, respectively,
and they are linearly placed with a uniform distance.

In order to fully investigate different estimators within
various scenarios, in this work, the UE channels follow a
geometrical channel model as follows [32]:

h(u)k =

√
Nr

P

√
βu,k

P−1∑
i=0

αi,kaa(θi,k ), k = 1, 2, . . . ,Ku, (1)

h(d)k =

√
Nt

P

√
βd,k

P−1∑
i=0

αi,kad(θi,k ), k = 1, 2, . . . ,Kd, (2)

where h(u)k (h(d)k ) is the uplink (downlink) channel between
the k-th uplink (downlink) UE and receive (transmit) antenna
arrays at BS. Furthermore, P represents the number of multi-
path components, αi,k ∼ CN (0, 1) are the small-scale fading
factors of individual paths, and βu(d),k stands for the large-
scale fading

βu(d),k = 0 − 10ηlog(ru(d),k ) + χk , (3)

where 0 denotes the average channel gain in dB at a refer-
ence distance of 1 m and specific carrier frequency, ru(d),k
is the uplink (downlink) distance between transmitter and
receiver, χk is the shadow fading with a lognormal distri-
bution LN (0, σsf), where σsf is standard deviation, and η

is the path loss exponent. Furthermore, aa(θ ) and ad(θ ) are,
respectively, the uniform linear array (ULA) responses of the
receive and transmit antennas, given by

aa(θ ) =

√
1
Nr

[
1, exp

(
j2π

d
λ
(sin θ)

)
,

. . . , exp
(
j2π

d
λ
(Nr − 1) sin θ

)]T
, (4)

and

ad(θ ) =

√
1
Nt

[
1, exp

(
j2π

d
λ
(sin θ )

)
,

. . . , exp
(
j2π

d
λ
(Nt − 1) sin θ

)]T
, (5)

where θ is the angle of arrival/departure (AoA/AoD) to/from
the receive/transmit antenna arrays at the BS, and d and λ are
the antenna spacing and wavelength, respectively.We assume
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that the AoA and AoD follow the local scattering model with
a uniform distribution

[
−

θAS
2 ,

θAS
2

]
[33], where θAS is the

angular spread (AS) of the multi-path components.
In the full-duplex transmission, there is cross-link inter-

ference between uplink and downlink UEs that needs to be
carefully modeled. Nonetheless, since the focus of the paper
is channel estimation using uplink pilots, we are neglecting
the cross-link interference in our study.

We denote the SI channel from the transmit antenna arrays
to the receive antenna arrays as HSI, which is modeled as a
Rician fading channel due to the presence of a strong line-
of-sight (LoS) path. Hence, the SI channel consists of two
components: the near-field and the far-field terms [2]:

HSI =
√

ϵSI

√
κ

κ + 1
HSI,NF +

√
1

κ + 1
HSI,FF. (6)

We assume that SI is sufficiently suppressed in the prop-
agation domain and the received signal at the baseband does
not exceed the dynamic range of the ADCs. We refer to the
propagation domain SI suppression factor as ϵSI. Note that in
the propagation domain, only the near field channel from the
transmit antenna arrays to the receive antenna arrays can be
suppressed. In the digital domain, the residual near-field and
far-field SI channels can be further suppressed after estimat-
ing the SI channel. The near-field term HSI,NF arises from
the close-in placement of the transmit and receive antennas,
while the far-field term HSI,FF is a result of the reflections
in the environment. Here, κ is the Rician factor and HSI,FF
follows a similar geometrical channel modeling as the UE
channels [32]:

HSI,FF =

√
NtNr

P

√
βSI

P−1∑
i=0

αiaa(θi)adT (θi), (7)

and βSI follows a similar formulation to βu(d),k .
The near-field term does not satisfy the far-field condition

and therefore requires a completely different channel mod-
eling approach [34], [35]. In this paper, we adopt the model
in [36], given by[

HSI,NF
]
nm =

ρ

rnm
exp

(
−2π j

rnm
λ

)
, (8)

where rnm is the distance between the n-th receive antenna
and the m-th transmit antenna, and ρ is a constant for power
normalization.

B. PILOT TRANSMISSION SCHEMES
We consider various pilot dimensions for channel estimation
in full-duplex MIMO systems. Since uplink and downlink
transmissions happen at the same time and frequency in
full-duplex systems, only uplink pilots will be transmitted
from UEs. To estimate the channels of UEs and SI, both
downlink and uplink UEs, along with transmit antennas at
the BS, transmit pilot signals to the receive antennas at the
BS. Specifically, we assume that all the K UEs transmit their
pilot signals to the RX arrays in the channel estimation phase,

FIGURE 2. Different pilot dimensions. T is the frame dimension
during one coherence block and τ is the pilot dimension for
estimating SI and UE channels.

whereas in the payload data transmission phase, a subset of
Ku UEs will be in the uplink mode and Kd UEs will be in the
downlink mode.

In the baseline scenario, we assume UEs and transmit
antennas of the BS send their pilot signals at different pilot
resources. Due to large antenna arrays, with this pilot trans-
mission, the pilot overhead will be extremely high. In the
second scenario, we assume the available pilot resources will
be equal to the number of transmit antennas at the BS, and
UEs will reuse the same pilot resources utilized by the BS to
estimate BS-UE channels. Compared to the first scenario, the
pilot overheadwill be lower, but the received pilot signals will
be contaminated by UEs/TX arrays when estimating SI/UE
channels. To further reduce the pilot overhead, we reduce
the number of pilots to the number of UEs. In this case,
besides interference, the SI channel must be estimated with
fewer pilots than the channel dimension, but with some per-
formance loss, we can achieve a comparable pilot overhead as
half-duplex systems. Three different pilot dimensions consid-
ered for estimating SI and UE channels are depicted in Fig. 2.
We assume that the received SI signal power remains

stronger than the received UE signal power, even after SI
cancellation in the propagation domain. Hence, our approach
involves initially estimating the SI channel and subsequently
subtracting the estimated SI signal from the received pilot
signal to estimate the UE channels.

C. SI CHANNEL ESTIMATION
For SI channel estimation, the received pilot signal at the RX
arrays can be written as

YSI =

√
SNRSIHSIFXSI +

√
SNRUEHUEXUE + N, (9)

where YSI ∈ CNr×τ is the received pilot signal at receive
antennas of BS during τ pilot transmissions. XUE ∈ CK×τ

is the transmitted pilot signal from the K UEs, XSI ∈ Cτ×τ

is a diagonal matrix whose diagonal elements are transmitted
pilot signals from the transmit antennas at BS, F ∈ CNt×τ
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is the precoding matrix of transmit antennas of BS, and
HUE =

[
h(u)1 ,h(u)2 , . . . ,h(u)Ku

,h(d)1 ,h(d)2 , . . . ,h(d)Kd

]
∈ CNr×K

is the concatenated uplink and downlink channel response
matrix, where the k-th column corresponds to the channel
between the k-th uplink or downlink UE and the receive
antenna at the BS. In this paper, we assume fully digital
beamforming at the full-duplex BS, and considering analog
or hybrid precoding is left for future work. We assume all
UEs have the same transmit power pUE, and pSI denotes
the transmit power from transmit antenna arrays. We define
SNRSI and SNRUE as

SNRSI =
pSI|HSI|

2

σ 2
n

, (10)

SNRUE =
pUE|HUE|

2

σ 2
n

, (11)

where σ 2
n is the noise variance. The matrix N ∈ CNr×τ is the

additive noise comprised of independent and identically dis-
tributed (i.i.d.) elements following a zero-mean unit variance
Gaussian distribution.

Note that when the pilot dimension is τ = Nt + K , the
SI and UE channel estimation happens at orthogonal pilot
resources. Hence, the received pilot signal for SI channel
estimation does not interfere with the pilots transmitted by
UEs.

During pilot transmission, we apply an orthogonal pilot
codebook for the precoded SI signals from the transmit
antenna arrays and pilot signals from UEs. Specifically,
we utilize the discrete Fourier transform (DFT) pilot code-
book, given by FXSI = WNt×τ ,XUE = WK×τ , where,

WM×τ

=
1

√
M



1 1 1 · · · 1
1 ω ω2

· · · ωτ−1

1 ω2 ω4
· · · ω2(τ−1)

1 ω3 ω6
· · · ω3(τ−1)

...
...

...
. . .

...

1 ωM−1 ω2(M−1)
· · · ω(M−1)(τ−1)


(12)

and ω = e−2π j/τ .

D. UE CHANNEL ESTIMATION
To estimate the UE channels, we use the estimated SI channel
and cancel out the SI signal power from the received pilot
signal. Therefore, the received pilot signal for UE channel
estimation becomes

YUE =

√
SNRUEHUEXUE +

√
SNRSIESIFXSI + N, (13)

where ESI ≜ HSI − ĤSI is the SI cancelation error and ĤSI is
the estimated SI channel.

Similarly, for the pilot dimension τ = Nt+K , the received
pilot signal does not contain the signal from the SI channel.

Typically, the channels of nearby UEs are correlated, and
for the pilot dimension τ = Nt and τ = K , the resid-
ual error of SI cancellation introduces further correlation in
the received pilot signals used for UE channel estimation.
We estimate the entire UE channel matrix HUE. In this way,
we take advantage of the correlation resulting from imperfect
SI cancellation and leverage the additional information for
more accurate estimation of the UE channels.

III. LS, MMSE, NN-BASED CHANNEL ESTIMATION
In this section, we present three channel estimation methods:
LS, MMSE, and NN-based estimators for both SI and UE
channels. First, we will recall the LS andMMSE channel esti-
mators. Subsequently, we present channel estimation using
NNs for estimating the SI and UE channels. For SI channel
estimation, we correlate the received pilot signal with the pilot
matrix transmitted from transmit antenna arrays, therefore,
we define

ŶSI = YSIWH
Nt×τ . (14)

Similarly for the UE channel estimation, we have

ŶUE = YUEWH
K×τ . (15)

A. LS CHANNEL ESTIMATOR
The LS channel estimator is the most simple channel esti-
mation technique that does not need any prior knowledge
about channel statistics and finds the channel coefficients that
minimize themean square error (MSE) between the estimated
channel and the received pilot signal. The LS channel estima-
tor can be calculated as follows

Ĥq,LS =
1

τ
√
SNRq

Ŷq, (16)

where q ∈ {SI,UE}.

B. MMSE CHANNEL ESTIMATOR
MMSE is a Bayesian estimator that aims to minimize the
MSE between the estimated channel and the true channel.
It offers improved performance compared to the LS estimator
by taking into account the statistical properties of the channel
and noise. To derive theMMSE channel estimator, we rewrite
the received pilot signal for SI and UE channel estimation in
a vector form

vec(YSI) =

√
SNRSIX̃SIvec(HSI)

+

√
SNRUEX̃UEvec(HUE) + vec(N), (17)

vec(YUE) =

√
SNRUEX̃UEvec(HUE)

+

√
SNRSIX̃SIvec(ESI) + vec(N), (18)

where X̃SI = (FXSI)T ⊗ INr and X̃UE = (XUE)T ⊗ INr .
The channel covariance matrix is defined as follows

Rq ≜ E
[
vec(Hq)vec(Hq)H

]
. (19)
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The channel covariance matrix for the MIMO channel can
be related to the transmit and receive covariance matrix via
the Kronecker product

R = Rt ⊗ Rr, (20)

where Rt and Rr are the transmit and receive covariance
matrices.

The MMSE channel estimator for Hq, Ĥq,MMSE, mini-

mizes the mean square error (MSE) E
[
||Hq − Ĥq,MMSE||

2
]
.

We have

vec(Ĥq,MMSE) = RHqYqR
−1
Yq
vec(Yq), (21)

where

RHqYq ≜ E
[
vec(Hq)vec(Yq)H

]
, (22)

RYq ≜ E
[
vec(Yq)vec(Yq)H

]
. (23)

We can formulate theMMSE estimates of SI andUE channels
as in equations (24) and (25), shown at the bottom of the next
page, respectively. In (25),RE represents the error covariance
matrix of SI cancellation, which can be calculated as in (26),
shown at the bottom of the next page.

Note that for pilot dimension τ = Nt + K , the MMSE
estimates of the SI and UE channels simplify to the following
equations using Woodbury matrix identity [37],

vec(ĤSI,MMSE)

=

√
SNRSI

(
RSI

−1
+ τSNRSIINtNr

)−1
X̃H
SIvec(YSI), (27)

vec(ĤUE,MMSE)

=

√
SNRUE

(
RSI

−1
+τSNRUEINtNr

)−1
X̃H
SIvec(YSI). (28)

C. NN CHANNEL ESTIMATOR
Although conventional channel estimation techniques such as
MMSE can leverage the spatial correlation present in large
antenna arrays, they require prior knowledge of the channel
covariance matrix and are computationally intensive due to
matrix inversion involving a large matrix. In various fields
of research, it has been demonstrated that NNs can utilize
the inherent structure of data by solely observing a sufficient
number of data points. Different network architectures, such
as FNNs, CNNs, recurrent neural networks (RNNs), etc.,
can be utilized depending on the characteristics of the data.
For instance, CNNs are suitable for addressing problems
with feature correlation and local dependencies among them,
while RNNs are more effective for handling memory-based
features like time series [17].
It has been shown in various studies that the wireless chan-

nel with large antenna arrays is spatially correlated, see e.g.,
[38]. To exploit this spatial correlation for channel estimation,
we employ CNNs, which are suitable for capturing the local
dependency of features among data points.

The overall architecture of CNN for SI and UE channel
estimation is depicted in Fig. 3.

The input to the CNN is the correlated pilot signal, i.e.,
Ŷq, and the output is the estimated channel, Ĥq,NN, q ∈

{SI,UE}. In convolutional layers, we apply a 3 × 3 window
size sliding through the whole input features with a unit stride
size. Different numbers of hidden layers are employed, where
each layer applies 64 convolutional kernels to extract features
from the successive windows of its input features. The effect
of the number of hidden layers will be carefully examined in
Section IV.
To keep the dimensions of the output and input fixed,

we utilize padding after convolution processing. We apply
rectified linear unit (ReLU) as the activation function for the
hidden layers, while for the output layer, linear activation is
used. Since tensors do not support complex operations, the
input to the CNN is converted to three-dimensional tensors,
where the third dimension stores the real and imaginary parts
of the complex data samples. Therefore, if we define Xtr
and Ytr as the input and labels of the CNN during training,
we have

Xtr [:, :, 0] ≜ ℜ

{
Ŷq

}
,

Xtr [:, :, 1] ≜ ℑ

{
Ŷq

}
. (29)

Ytr [:, :, 0] ≜ ℜ
{
Hq

}
,

Ytr [:, :, 1] ≜ ℑ
{
Hq

}
. (30)

For training, a dataset consisting of Mtr samples is
generated, with (Ŷ(n)

q ,H(n)
q ) representing the n-th sample.

We employ supervised learning, where Hq is regarded as
the label during training. To obtain the ground truth chan-
nel samples, H(n)

q , for SI and UE channels, we follow the
channel model introduced in Section II. Each realization of
data samples in the dataset is generated based on this channel
model, where, in each realization, the small-scale fading
coefficient, large-scale fading, and AoA/AoD take on a new
realization based on their corresponding distributions. Specif-
ically, we draw samples from CN (0, 1) for every multi-path
component for small-scale fading, U

[
−

θAS
2 ,

θAS
2

]
for every

multi-path component for AoA/AoD, and LN (0, σsf ) for
shadow fading in large-scale fading. After generating channel
realizations, the received pilot signal for SI and UE channel
estimation, Ŷ(n)

q , is generated by adding Gaussian noise to
every realization and multiplying by the pilot matrix corre-
sponding to different pilot dimensions. We apply min-max
scaling to scale the dataset in the range (0, 1). Such normal-
ization is highly recommended for training machine learning
models. We consider MSE as the loss function

MSE =
1
Mtr

Mtr∑
i=1

||Xtr − Ytr||
2
F . (31)

D. RX-TX CHANNEL MAPPING
Since in separate antenna configurations, two different
antenna arrays are utilized for uplink reception and down-
link transmission, uplink and downlink channels experience
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FIGURE 3. The CNN architecture employed for SI and UE channel estimation. we apply n (n = 0,1,2,10)
convolutional hidden layer(s) each with a 3 × 3 window size and 64 convolutional kernels.

FIGURE 4. Phase shift between the RX and TX arrays in the
separate antenna configuration in a full-duplex BS.

different channel realizations. So far we have assumed that
RX arrays at BS receive pilot signals from both uplink and
downlink UEs and estimate all channels from both uplink and
downlink UEs to the RX arrays. For downlink transmission,
the full-duplex BS needs the CSI from the TX arrays to
downlink UEs. The TX arrays are not capable of receiving
and processing pilot signals and implementing a separate
receive RF chain and ADC at the TX arrays for just pilot
processing will be costly. As a result, we need to somehow
map the channel from the downlink UEs to the RX arrays to
the channel from the TX arrays to the downlink UEs. Due to
the multi-path effect and random scattering environment, it is
not straightforward to derive mathematically the relation of
such mapping. More specifically, we assume that the RX-UE

channel is

hUE,RX =

√
1
Nr

√
βu

P−1∑
i=0

αiaa(θi), (32)

where ai and θi are the amplitude and the AoA of i-th path,
respectively. As shown in Fig. 4, TX and RX arrays are
at a close distance in the order of a few wavelengths from
each other; Therefore, the channel amplitude for each path is
essentially the same for both the RX and TX arrays, while the
antenna separation creates a delay depending on the AoA of
each path. Thus, the TX-UE channel will be

hUE,TX =

√
1
Nt

√
βd

P−1∑
i=0

αiad(θi)e−j
2π
λ lcosθi . (33)

Themathematical relationship between hUE,TX and hUE,RX
is not well-defined due to the random AoA and the effects of
multi-path propagation. On the other hand, based on universal
approximation theory [30], feedforward NNs are capable of
approximating any continuous function. This theory suggests
that, given enough computational resources and data, it is pos-
sible to build NNmodels that can accurately approximate any
function. Therefore, universal approximation theory inspires
us to employ NNs to map the channel from the downlink
UEs to the RX array to the channel from the TX array to the
downlink UEs. Furthermore, recent studies [29] have demon-
strated the existence of a spatial mapping function that can
effectively map the channel from one set of antenna arrays to
another. To accomplish this, we utilize an FNN with varying
numbers of hidden layers. The input for FNN is the channel
from the downlinkUEs to the RX array, while the output is the
channel from the TX array to the downlink UEs. Therefore,
for the training of FNN, we collectMtr samples of hUE,RX as
the input and hUE,TX as the corresponding label. To generate

vec(ĤSI,MMSE) =

√
SNRSIRSIX̃H

SI

(
SNRSIX̃SIRSIX̃H

SI + SNRUEX̃UERUEX̃H
UE + INtNr

)−1
vec(YSI). (24)

vec(ĤUE,MMSE) =

√
SNRUERUEX̃H

UE

(
SNRUEX̃UERUEX̃H

UE + SNRSIX̃SIREX̃H
UE + INtNr

)−1
vec(YUE). (25)

RE = RSI − SNRSIRSIX̃H
SI

(
SNRSIX̃SIRSIX̃H

SI + SNRUEX̃UERUEX̃H
UE + INtNr

)−1
X̃SIRSI. (26)
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data samples for RX-TX channel mapping, we first generate
the ground truth channel realizations for hUE,RX, and their
corresponding labels for hUE,TX are generated by adding its
corresponding delay to each multi-path component. Again,
we apply min-max normalization and MSE loss function for
training. We create the following data samples as the input
and label of FNN to work with real-valued tensors:

xtr[0 : Nr] = ℜ
{
hUE,RX

}
,

xtr[Nr : 2Nr] = ℑ
{
hUE,RX

}
. (34)

ytr[0 : Nt] = ℜ
{
hUE,TX

}
,

ytr[Nt : 2Nt] = ℑ
{
hUE,TX

}
. (35)

IV. SIMULATION RESULTS
In this section, we present our simulation results for SI and
UE channel estimation. We compare channel estimators that
we introduced in previous sections, i.e., LS, MMSE, and NN
for different pilot dimensions. The NMSE is considered the
performance metric to compare the different channel estima-
tors, and it is defined as

NMSE ≜ E

[
||Htrue − Hest||

2
F

||Htrue||
2
F

]
, (36)

where Htrue and Hest are the true and estimated channel
matrices, respectively.

We consider an operating frequency is 28 GHz, corre-
sponding to a wavelength of λ = 10.71 mm. We set the
number of TX and RX arrays to 16, with a distance of 10λ
between them, and antenna spacing in the transmit and the
receive arrays is d =

λ
2 . The total number of downlink and

uplink UEs is set to K = 8 and we assume all UEs are
uniformly distributed within 20 m2. The path loss parameters
are based on experimental results from [39], where the path
loss constant at the reference distance is 0 = −72 dB, the
path loss exponent is η = 2.92, and the shadow fading
standard deviation is σsf = 8.7 dB. Unless otherwise claimed,
the number of multi-path components is P = 5 and AS is
θAS = 60◦. The SI Rician factor is κ = 40 dB and we assume
that the propagation SI cancellation is ϵSI = −40 dB [12].
The NN-based channel estimators are trained on Python

3.7.16 and implemented using the Keras libraries with a
TensorFlow backend in the Jupyter Notebook environment.
We employ Adam optimizer with a batch size of 512 to
update the network parameters. A dataset of 50, 000 samples
is collected based on the channel model and it is split into
20, 000 samples for training, 20, 000 samples for validation,
and 10, 000 samples for testing. The validation data is used to
ensure that the model does not simply memorize the training
data but learns meaningful aspects of the data for effective
prediction.

A. ANALYSING NN-BASED CHANNEL ESTIMATOR
Before examining the different channel estimators for various
pilot dimensions discussed in subsection B, we conducted
several experiments to understand the behavior of NN-based

FIGURE 5. NMSESI vs SNRSI with a varying number of hidden
layers.

channel estimators under different channel conditions and
NN architectures for training. The following results are spe-
cific to SI channel estimation with a pilot dimension of τ =

Nt + K . For the sake of brevity, we have not included plots
for other pilot dimensions and UE channel estimation. For the
MMSE channel estimator, we obtain the empirical channel
covariance matrix estimated throughM channel realizations,
i.e.,

Rq =
1
M

M∑
i=1

vec(H(i)
q )vec(H(i)

q )H , (37)

where throughout our simulation, we setM = 1000.
Fig. 5 illustrates the NMSESI versus SNRSI with different

numbers of hidden layers. We can observe that NN-based
channel estimator outperforms the LS and MMSE estima-
tion. Furthermore, utilizing hidden layers slightly improves
the NMSE of channel estimates. For instance, CNN with
2 hidden layers decreases the NMSE by about 1 dB com-
pared to CNN with no hidden layer. However, comparing
CNN with 10 hidden layers (DeepCNN) with that of 1 or
2 hidden layers suggests that using very deep CNNs does
not noticeably improve the channel estimates (about 0.3 dB
NMSE improvement), while significantly increasing com-
putational complexity. Furthermore, the erratic behavior of
DeepCNN at high SNRs can be rectified through fine-tuning,
for example, by using a different number of convolutional
kernels, adjusting the learning rate, etc. However, for the sake
of comparison, we applied the exact same parameters to all
CNNs with different numbers of hidden layers.

In practical scenarios, various non-linear distortions in
hardware components exist, adding complexity to the prob-
lem of channel estimation. To further analyze the impact of
the number of hidden layers, we consider the introduction of
1-bit ADCs at the BS to incorporate a non-linear distortion
effect into the received pilot signal. When employing 1-bit
ADCs, the received pilot signal becomes [27]

Y1-bit = sgn(YSI), (38)
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FIGURE 6. NMSESI vs SNRSI with a varying number of hidden
layers for a full-duplex BS with 1-bit ADCs.

where sgn(·) is the element-wise signum function.
Once again, we apply CNN with a varying number of

hidden layers to address the channel estimation problem with
1-bit ADCs. In this case, the input to the CNN is ˆY1-bit =

Y1-bitWH
Nt×τ , and the output is the estimated channel. Fig. 6

presents the NMSE of LS, MMSE, and NN-based channel
estimators. As observed in the figure, the addition of hidden
layers improves the NMSE by approximately 1 dB, which is
similar to the improvement observed in the case of infinite-bit
ADCs in Fig. 5.

To delve deeper into the problem of channel estimation
with low-resolution ADCs, we followed the study in [40].
We assume that ADCs apply b-bit uniform scalar quantization
with a set of 2b−1 thresholds denoted as {τ1, . . . , τ2b−1}. The
thresholds of the uniform quantizer will be

τl = (−2b−1
+ l)1b, l ∈ L = {1, . . . , 2b − 1}, (39)

where 1b is the step size.
The quantization function is independently applied to the

real and imaginary components of the signal, with its defini-
tion as follows:

Qb(r) =


τl −

1b

2
if r ∈ (τl−1, τl] with l ∈ L

(2b − 1)
1b

2
if r ∈ (τ2b−1, τ2b ]

(40)

Therefore, the received pilot signal after b-bit ADC
follows:

Yb-bit = Qb(YSI), (41)

The quantization step size is usually chosen to minimize
the quantization MSE, and the optimal values are listed in
Table 1 for their corresponding bits. The quantization distor-
tion, ηb is defined as

ηb ≜ E

[
||Qb(r) − r||2F

||r||2F

]
, (42)

TABLE 1. Optimal uniform quantizer [40].

FIGURE 7. NMSESI vs SNRSI with a varying number of hidden
layers for a full-duplex BS with few-bit ADCs.

We conducted simulations for 2-bit and 3-bit ADCs, and
similar results can be extrapolated for higher resolutions.
From Fig. 7, we can observe that increasing the number
of hidden layers improves estimation with 2-bit and 3-bit
ADCs, similar to the results for the 1-bit case. Furthermore,
as expected, the higher the resolution of ADCs, the better the
NMSE of channel estimates.

Then, we examine the behavior of the NN-based channel
estimator under two distinct channel correlation conditions:
high-correlated and low-correlated scenarios. The plots in
Fig. 8 illustrate how the LS, MMSE, and NN-based esti-
mators perform under different spatial channel correlation
strengths. Larger θAS corresponds to lower spatial corre-
lations, and vice versa. In the high-correlated scenario,
the MMSE estimator can explicitly leverage the channel
covariance matrix, resulting in a significant improvement in
estimation quality. This leads to a substantial gap between the
LS and MMSE estimations. However, in the low-correlated
channel, both the LS and MMSE estimations converge to
the same NMSE at high SNRs. Comparing the NN-based
estimation with the LS and MMSE estimations in both
low-correlated and high-correlated channel conditions pro-
vides interesting insights into the behavior of the NN-based
estimator. In the low-correlated scenario, the NN-based esti-
mator outperforms both the MMSE and LS estimations.
However, in highly correlated channel conditions, theMMSE
estimator consistently outperforms the NN-based estimator.
This observation suggests that the NN-based estimator, in a
data-driven fashion, struggles to utilize the second-order
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FIGURE 8. NMSESI vs SNRSI for (a) low-correlated and (b) high-correlated channels.

FIGURE 9. NMSESI vs κ with different values of κ during training
(κtrain).

statistics of the channel for estimation, as well as the MMSE
estimator does. Furthermore, the plots suggest that in a low-
correlated scenario, increasing the number of hidden layers
does not yield any noticeable improvement. However, in a
highly correlated channel condition, the NMSE decreases
with the addition of more hidden layers to the NN architec-
ture.

Therefore, the choice of the depth of NN architecture is
subject to the channel condition and cannot be regarded as
universally applicable. Nevertheless, this observation under-
scores the significance of channel statistics in determining the
architecture of NN for the channel estimation problem.

Finally, Fig. 9 shows the NMSE of SI channel estima-
tion versus κ with different values of κtrain during training.
We exclude the plots with 1, 2, and 10 hidden layers for
enhanced clarity. As seen in this figure, the NMSE of SI
channel estimates behaves differently depending on the value
of κtrain. Specifically, when the NN is trained on low κtrain,
the NMSESI increases as κ increases. Conversely, when
the NN is trained on high κtrain, the NMSESI decreases as
κ increases. However, training on different values of κtrain

FIGURE 10. NMSESI vs SNRSI for different pilot dimensions,
SNRUE = 0 dB.

ranging from 20 to 100 dB shows that higher values of κ

lead to higher NMSESI. While it seems that in the large κ

regime, estimating the SI channel would be simpler for the
NN because it is dominated by the near-field component
HSI,NF and thus more deterministic, we should highlight that
we trained our NN with various values of κ in the black dash-
dot curve. Therefore, the training data included the stochastic
HSI,FF. During testing, the NN encounters a deterministic
channel in the very large κ regime, which differs from the
training conditions, leading to suboptimal performance com-
pared to when κ is not very large. This behavior can be
connected to the distribution shifts in theNNs that wewill dis-
cuss in subsection C. Specifically, in the very large κ regime,
the data distribution becomesmore deterministic, whereas the
training data included stochastic data from smaller κ values.

B. SI AND UE CHANNEL ESTIMATION FOR DIFFERENT
PILOT DIMENSIONS
Next, we examine the performance of SI channel estimation
for different pilot dimensions, as described in Section B. For
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FIGURE 11. NMSESI vs SNRUE for different pilot dimensions,
SNRSI = 0 dB.

the following simulations, we applied a CNN with no hidden
layers and set θAS = 60◦.

The NMSE of SI channel estimation vs SNRSI and SNRUE
are provided in Figs. 10 and 11 for different pilot dimensions,
respectively. The results demonstrate that the NN-based esti-
mator outperforms the LS and MMSE estimators across
considered pilot dimensions. Moreover, from Fig. 11, it is
evident that the NN-based approach is more resilient to inter-
ference from UEs when compared to the MMSE and LS
estimation methods. Using fewer pilot dimensions leads to a
significant reduction in the quality of channel estimates for all
three approaches. However, the reduction in pilot dimensions
can allow more resources to be allocated to transmitting pay-
load data. The trade-off between the performance of channel
estimates and the number of pilot dimensions used depends
on the required accuracy threshold for channel estimates and
the system data rate.

We have also generated similar plots for UE channel
estimation, showing the NMSE with respect to SNRUE and
SNRSI. The plots are presented in Figs. 12 and 13, respec-
tively, with varying pilot dimensions. We employ the MMSE
estimator to cancel out the SI signal from the received pilot
signal in LS, MMSE, and NN-based channel estimators for
UE channel estimation, specifically when the pilot dimen-
sions are τ = Nt and τ = K . Note that we also utilize the error
covariance matrix for the MMSE estimator when estimating
UE channels as denoted in (25). From the results, it is evident
that the NN-based approach using shorter pilot dimensions
like τ = Nt or τ = K , outperforms LS channel estimation
with a pilot dimension of τ = Nt + K . Even the MMSE
channel estimator with longer pilot dimensions (e.g., τ =

Nt+K ), is unable to outperform the NN-based technique with
shorter pilot dimensions (e.g., τ = Nt). These findings clearly
demonstrate the superiority of NN in accurately estimating
wireless channels, particularly in scenarios with lower SNRs
and higher interference.

A higher SNRSI results in better SI channel estimation and,
consequently, less error in SI cancellation for UE channel

FIGURE 12. NMSEUE vs SNRUE for different pilot dimensions,
SNRSI = 10 dB.

FIGURE 13. NMSEUE vs SNRSI for different pilot dimensions,
SNRUE = 5 dB.

estimation. Conversely, a higher SNRUE increases the NMSE
of SI channel estimation, leading to an increase in error for
UE channel estimation. On the other hand, a higher SNRUE
leads to improved UE channel estimates, while a higher
SNRSI increases the power of interference during UE channel
estimation. To understand the joint effect of SNRUE and
SNRSI for UE channel estimation, we generated the color
bar plots in Fig. 14 for LS, MMSE, and NN-based estimation
considering a pilot dimension τ = K . Based on the results in
this figure, we can conclude that a lower SI signal power or
higher SI cancelationwill lead to better UE channel estimates.

To further analyze the effect of SI cancelation on UE
channel estimation, we considered two cases: in the first case,
we cancel out the effect of the SI signal from the received
pilot signal with the estimated SI channel, while in the sec-
ond scenario, we estimate UE channels in the presence of
interference from the SI channel. The results are shown in
Fig 15. Note that for the MMSE estimation, in the case of
SI cancellation, we incoporate the error covariance matrix
of the estimated SI channel together with the covariance
matrix of the UE channels, while for the scenario without
SI cancellation, we exploit the covariance matrix of both SI
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FIGURE 14. NMSEUE vs SNRSI and SNRUE for (a) LS and (b) MMSE (c) NN channel estimators, τ = K .

FIGURE 15. UE channel estimation with/without SI cancellation,
τ = K , SNRSI = 20 dB.

FIGURE 16. NMSE of channel mapping between RX and TX
arrays vs angular spread.

and UE channels. We can observe that MMSE estimations for
these two scenarios result in the same NMSE of UE channel
estimates. By comparing the results for LS, MMSE, and NN
channel estimators, we observe that SI cancellation during
the pilot transmission phase does not provide significant
improvement, while estimating the large SI channel matrix
is costly.

To assess the performance of the NN-based channel map-
ping between RX and TX arrays at the BS in the separate

TABLE 2. DeepMIMO dataset parameters.

antenna configuration, we present the NMSE of this map-
ping concerning varying angular spreads and two different
numbers of antennas in Fig. 16. We trained an FNN with
a varying number of hidden layers at angular spreads of
[10, 100, 190, 280] degrees during training. From this figure,
we can conclude that an NN effectively predicts the channel
from the TX arrays to downlink UEs, given the CSI from
downlink UEs to the RX arrays. The prediction accuracy is
higher in scenarios with lower angular spread, attributed to
increased spatial correlation, and vice versa. Furthermore, the
quality of prediction improves with an increased number of
antennas, as angular resolutions increase with a larger array.

C. DISTRIBUTION SHIFT
When a learning model is trained on a particular dataset with
a specific distribution of features, it learns to make predic-
tions based on the patterns inherent in that dataset. However,
deploying such models in real-world scenarios often involves
testing them with datasets that may differ in distribution from
the training data. This misalignment between training and test
distributions can lead to a phenomenon known as distribution
shift, where the model’s performance deteriorates due to its
inability to generalize effectively to unseen data and it poses
significant challenges in testing the efficacy and reliability of
learning models.

To analyze the effect of distribution shift on our trained
models, we utilize the DeepMIMO dataset in the test
phase. This dataset constructs the MIMO channels based on
ray-tracing simulation from Remcom Wireless InSite [41].
Specifically, we use the ‘O1’ scenario at 28 GHz with the
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FIGURE 17. Performance of NN channel estimator for UE channel
estimation with distribution shift.

parameters specified in Table 2. We generate 4977 chan-
nel realizations from the DeepMIMO dataset to test the
NN model for UE channel estimation trained based on the
channel data from geometrical channel models introduced in
Section A. The same can be applied for SI channel estimation,
but for brevity, we do not include the results for this case.
As seen from Fig. 17, due to distribution mismatch, the
NMSE degrades in the test phase. Furthermore, we observe
that NNswith fewer hidden layers generalize better compared
to deeper CNNs since the number of trainable parameters is
much higher in deep CNNs. This underscores the benefits of
utilizing simpler NN architectures in terms of generalization
abilities.

D. COMPLEXITY ANALYSIS
Finally, we compare the computational complexity of the LS,
MMSE, and NN channel estimators in terms of FLOPs. The
results are summarized in Table 3, where ζ represents the side
length of the convolutional window, and fl−1 and fl denote
the numbers of input and output convolutional kernel of the
l-th layer. A bar plot is shown in Fig. 18 for SI channel
estimation and pilot dimension τ = Nt based on the CNN
architecture used in the simulation, i.e., ζ = 3, f0 = fL = 2,
and fi = 64 for the remaining layers (i = 1, 2, . . . ,L − 1).
Note that we have ignored the computational complexity
of the covariance matrix calculation for MMSE estimation,
as the channel statistics do not typically change during several
coherence blocks. For the same reasons, we also ignored
the computational complexity of the matrices in the MMSE
formula that depend on spatial correlation matrices, assuming
they can be pre-computed and used until the channel statistics
change substantially. According to table 3, the number of
FLOPs exhibits quadratic growth with the number of received
antennas in MMSE estimation, while for LS and NN-based
estimation, it is linear. Furthermore, CNNswith no or one hid-
den layer require fewer FLOPs thanMMSE estimation, while
increasing the number of hidden layers significantly increases
the computational complexity. In particular, adding a hidden
layer with 64 convolutional kernels and a 3 × 3 window size

TABLE 3. Number of FLOPs for SI and UE channel estimation
using LS, MMSE, and NN estimators.

FIGURE 18. Number of FLOPs for SI channel estimation of
different estimators. CNNx represents a CNN with x hidden
layer(s).

requires about 1.5×108 more FLOPs for estimating aMIMO
channel with 16 antennas.

V. CONCLUSION
In this paper, we studied the channel estimation problem for
full-duplex mmWave MIMO systems using NNs. We show
that simple NNs with no or few hidden layers can achieve
comparable NMSE to deep NNs. This conclusion holds to
some extent even in the presence of few-bit ADC distortion,
with additional hidden layers only slightly improving the
NMSE of channel estimates. Furthermore, simpler NN archi-
tectures with fewer hidden layers demonstrate more robust
generalization abilities compared to deep NNs. The compari-
son between the NN andMMSE channel estimators indicates
a notable difference. In the high-correlated regime, MMSE is
the preferable channel estimator compared to LS andNN, as it
can leverage the explicit channel covariancematrix. However,
in scenarios where spatial correlation is not extremely high,
our results demonstrate that NNs outperform MMSE estima-
tion. Additionally, the NN-based channel estimator performs
remarkably better than MMSE when fewer pilot resources
are utilized for channel estimation. This performance allows
for a reduction in pilot overhead in full-duplex systems.
We applied FNNs to approximate RX-TX channel mapping
for the separate antenna configurations in full-duplex sys-
tems. Simulation results demonstrate that NNs effectively
map channels from downlink UEs to the receive arrays to
the channel from the transmit arrays to downlink UEs, par-
ticularly in scenarios with high correlation and large antenna
arrays. Finally, the complexity analysis reveals that NN-based
estimation with fewer than two convolutional hidden layers
requires fewer FLOPs compared to MMSE estimation.
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