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Abstract

Complex materials, such as amorphous solids, liquid-solid mixtures, or aggregates of
organic molecules, offer vast possibilities for scientific and technological advancement.
In recent years, the capabilities of computationally understanding and predictingmate-
rial properties have experienced rapid progress, but these are inmany cases still limited
to ordered crystalline solids. Complex materials exhibit relevant structure and dynam-
ics on a wide range of spatio-temporal scales, so for investigating them a multi-scale
modeling approach is necessary. In this context, efficient methods for sampling and
computation of observables are crucial. Additionally, understanding of complex mate-
rials can benefit from close comparisons between computational predictions and exper-
imental observations.

This thesis contains contributions to the study of dynamics of complex materials at dif-
ferent length and time scales and is based on three papers. The first paper revolves
around atomic-scale investigations and accompanies a software package developed for
computing correlation functions from molecular dynamics trajectories, which have a
strong tie to experimental observables. The second paper studies nuclear quantum ef-
fects on thermal properties through large-scale simulations. The third paper is a case
study of applying a multi-scale modeling approach to investigate surfactant-surface
phase behavior, which dictates the functionality in many applications. This behavior
is challenging to model due to the combination of inorganic surfaces, liquid solvent,
and supramolecular assemblies of organic molecules. Thus, a multi-scale modeling ap-
proach is required, which spans the atomic and continuum level. In this case, compari-
son to experiment is enabled via the computation of the optical response.

Keywords: multi-scale dynamics, computational modeling, molecular dynamics, cor-
relation functions, nuclear quantum effects, optical response
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1
Introduction

It was the hardest of dynamics, it was the softest of dynamics...

Anonymous, 2025

Understanding the linkbetween themacroscopicpropertiesof amaterial and its struc-
ture and dynamics at small length scales permeates materials physics. Indeed, a major
goal of computational materials physics has historically been—and still is—to investi-
gate this link by systematically improving methods such as density-functional theory
(DFT) for studying the electronic level [1–5] and molecular dynamics (MD) for gaining
insight into the atomic level [6–10]. With the increase of computer power and ever-
improving algorithms, the predictive possibilities of computational materials physics
have rapidly progressed, approaching the semi- or even fully quantitative level [11–13].
This has led to the ability of designing new materials in silico, albeit largely limited to
ordered crystalline materials [14]. Amorphous, mixed solid-liquid, or other complex
materials still prove challenging, not only for interpretation but particularly for predic-
tion, largely due to the wide range of time and length scales involved in governing their
macroscopic behavior. Such materials are, however, prevalent in many systems and
processes of fundamental and technological relevance, which means that there is great
interest in extending the interpretative and predictive possibilities in this direction.
The span of length and time scales involved requires a combination of computational

techniques to investigate the behavior of such complex materials. At the atomic scale,
the electronic degrees of freedom are generally coarse-grained and the nuclei are often
treated as classical particles. In practice, the common method of choice at this scale is
the aforementioned MD approach. To analyze the microscopic structure and dynam-
ics and relate them to macroscopic properties, physically relevant observables must be
obtained from the simulations. Many such observables can be expressed in the form
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Chapter 1. Introduction

of correlation functions, which turns the problem of obtaining observables into one of
sampling. For complex systems, however, sampling the potential energy surface (PES)
is challengingdue to thehigh likelihoodof getting stuck inoneof themany localminima.
Thismeans that long simulation times and efficient techniques for calculating the corre-
lation functions are needed. Additionally, it can be beneficial to connect to experiment.
This is not only helpful for validating simulations, but can also serve to aid the inter-
pretation or even prediction of experimental results. In fact, many of the computable
correlation functions are also observable in experiment. One example is the dynamic
structure factor, which is thematerial response recorded when probing dynamics with,
e.g., neutron or electron probes.
Treating the nuclei as classical particles is not always a suitable modeling approach.

When the material contains light atoms or when low temperatures are of interest, nu-
clear quantum effects (NQEs) alter thematerial response [15–18]. In this situation, clas-
sicalMDno longer suffices, and othermethods such as path-integralmolecular dynam-
ics (PIMD) are needed. Methods accounting for NQEs are in general more computa-
tionally expensive, which can put limitations on the time and length scales accessible
in simulations. For complex materials this poses a hurdle, which necessitates efficient
implementations to reach the relevant scales.
Another type of material response is that to visible light or other electromagnetic ra-

diation, which is described by the dielectric function [19]. Depending on the frequency
of the radiation, different constituents of thematerial react to the electromagnetic field,
with resonances when the frequencymatches material-specific oscillations at, e.g., the
electronic or ionic scales. Taking all degrees of freedom into account, both for the mat-
ter and the light, quickly becomes intractable, but luckily the continuum level often suf-
ficeswhen studyingmaterial response to electromagnetic fields. At this level,Maxwell’s
equations canbe solved toobtain theabsorptionandscatteringof light,which is achieved
computationally through, e.g., thefinite-difference time-domain (FDTD)method. There
are also plenty of opportunities for experimental connections here because light scatter-
ing, absorption, and extinction are commonmeasurement outputs.
When computationally investigating a complex material with interesting structure

and dynamics on multiple spatio-temporal scales, there are thus many considerations:
Which length and time scales are of interest? Which techniques do we combine into
a multi-scale modeling approach to study the particular system? How do we sample
efficiently enough to reach the relevant scales?
In this context, surfactant surface-phases pose a suitable platform for exploration.

Not only do these phases and the transitions between them exhibit dynamics on multi-
ple length and time scales, but surfactants are also interesting in their own right as they
govern thebehavior ofmany systems,with applications ranging from improving the sta-
bility of perovskite solar cells [20] to promoting nucleation and growth of clathrate hy-
drate [21]. Self-assembling at a liquid-solid interface, surfactants reside on the thresh-
old between hard and soft matter. They decrease the surface tension, which fundamen-
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1.1. Fundamental Questions and Thesis Overview

tally alters the structure and dynamics of the system, opening up to awealth of possibil-
ities for tuning the functionality if their phase behavior is understood.

1.1 Fundamental Questions and Thesis Overview
Having set the stage,we can capture the topic of this thesis in the following fundamental
questions:

• How can insight be gained into multi-scale dynamics of complex materials?
In particular, how can simulation and experiment be connected?

• How can these approaches be applied to study a complex system, such as one
involving surfactant surface-phases?

The thesis is based on three attached papers, where I and II are related to the first
question, as the focus of these is methodological, each targeting the study of materials
at different scales. In particular the former of the two treats the topic of connecting sim-
ulation and experiment. Paper III relates to the second question, as it is about studying
the behavior of surfactant surface-phases using a multi-scale approach, although the
topic of connection to experiment is also at its core.
To tackle these fundamental questions throughout the thesis, we first turn to a chap-

ter outlining the relevance of studyingmulti-scale dynamics in general and the interest
in surfactant surface-phases inparticular (Chapter 2). Next,we turn to the theory ofma-
terial response (Chapter 3). Taking the atomic level as a startingpoint forunderstanding
connections betweenmacroscopic functionality andmicroscopic structure and dynam-
ics, we encounter a number of ways for gaining insight into the mechanisms at these
scales (Sect. 3.2). Atomistic insight is, however, not enough to capture the full picture,
missing NQEs that are particularly relevant when working with lighter atoms. As such,
NQEs are treated next (Sect. 3.3). Furthermore, light is often employed as a probe for
studyingmaterial properties, whichmakes it relevant to also consider the theory of opti-
cal responseofmaterials (Sect. 3.4). Equippedwithknowledge about the relevant theory
of material response, we devote the subsequent chapter (Chapter 4) to discuss the com-
putational methods suitable for studying such response at each of the aforementioned
scales. Thereafter, the three papers around which this thesis is built are summarized
(Chapter 5), followed by a concluding chapter (Chapter 6).
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2
Multi-Scale Dynamics

The chemical elements as the fundamental building blocks of materials are ordered in
the periodic table and the vast range ofmaterial properties thatwe encounter stem from
the endless possibilities for combining these into larger structures. It is not only the
structural arrangement of the atoms that determines material properties, but also how
they move around, i.e., their dynamics. The atoms, however, include even tinier build-
ing blocks such as neutrons, protons, and electrons. Turning an atom into an ion by
removing an electron fundamentally alters theway it interactswith its surroundings, af-
fecting both structure and dynamics. The electrons determine how atoms interact with
each other through bonded and non-bonded forces, e.g., electrostatically in the case of
ions. Atoms that bind together can, in turn, form molecules, which can subsequently
order into supramolecular structures, or nanoparticles (NPs), with completely differ-
ent properties or emergent behavior that is not present in the individual constituents.
Here, in just a few sentences, we have already touched upon fundamentally different
scales that affect material properties and depending on what we wish to know about a
material, the dynamics must be studied at one, or a combination, of these scales.
If therewere endless computational resources, themany-body Schrödinger equation

for interacting electrons and atomic nuclei could simply be solved no matter the com-
plexity of the system, to in principle obtain everything there is to know about it. As this
is very far from reality, a balancemust be struck between computational cost and the in-
terpretative and predictive possibilities. For ordered crystalline materials, a small unit
cell can be used to represent the entire system, which allows for studying it quantum
mechanically. But even then, if the aim is to investigate a rare event or, e.g., how the
material interacts with light or other probes, a quantum mechanical treatment might
be too costly.
This is especially true for soft matter systems and many different approaches have

been devised to circumvent the issue. One example is coarse-graining, where certain
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Chapter 2. Multi-Scale Dynamics

degrees of freedom are treated in detail at shorter length and time scales, while others,
which are too costly or not relevant for the investigation at hand, are treated at larger
spatio-temporal scales. Another approach is to use computational methods specialized
for each scale, but combine them such that the outcome from one is used as input to
another, together providing an overall picture of the dynamics of a system. This is called
a multi-scale approach.
There aremany examples of systemswheremulti-scale dynamics are relevant. In pro-

teins, for instance, binding at active sites and macroscopic folding occur at very differ-
ent length and time scales. There is not a single computational approach that can cap-
ture all of these processes, and many multi-scale modeling techniques have been used
to investigate protein behavior [22–25]. Another example is glasses, where the individ-
ual disordered atoms vibrate and diffuse on comparatively short length and time scales,
but where macroscopic processes such as relaxation lead to glassy dynamics and aging.
The extremely long time scales onwhich glassy dynamics occursmeans thatmulti-scale
approaches are necessary [26–28]. A third example is surfactants and their ordering
into supramolecular phases on surfaces.

2.1 Surfactant Surface-Phases
Aqueous surfactant-surface systems exhibit structure and dynamics relevant for their
macroscopic functionality on a wide range of scales. There are chemical bonds within

Figure 2.1: An example of a cationic surfactant, cetyltrimethylammoniumbromide (CTAB),with
a hydrophilic quaternary ammonium head group, hydrophobic hydrocarbon tail, and a Br–

counter ion. This prototypical surfactant is used in paper III.

the surfactants and the surface, respectively, around which the atoms vibrate. Further-
more, surfactants are generally organic molecules, often with hydrophilic head groups
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2.1. Surfactant Surface-Phases

and hydrophobic tails (Fig. 2.1). This means that surfactants, in pure water, collectively
order into liquid-crystal like phases due to the hydrophobicity of the tails, with the head
groups pointing towards thewater [29]. This ordering is called self-assembly and the re-
sulting phases, depending on the surfactant concentration, include micelles, cylinders,
and lamellar structures, to name a few. A common measure of characterization for a
surfactant is the critical micelle concentration (CMC), i.e., the concentration at which
micelles begin to form.
When aqueous surfactant solutions also include surfaces, made up of, e.g., metals

or other inorganic materials, the situation becomes even more complex. Now, there
is not just the hydrophobicity of the tails driving the formation of supramolecular sur-
factant structures, but also the interaction between the head groups and the surface.
This is an electrostatic interaction due to the small counter-ion diffusing around much
more than the comparatively sluggish head group and its hydrocarbon tail, leaving the
charged head group bare. There are thus two competingmechanisms, the hydrophobic-
ity of the tails and the electrostatic interaction between the head group and the surface.
These types of interactions lead to surfactants accumulating on the surface even below

CTA+Au SiO2 H2O 

Figure 2.2: Schematic examples of surfactant surface-phases for CTAB on silica, encountered in
paper III. The surface-phases, from left to right, are a bilayer, a hemispherically capped bilayer,
and cylindrical micelles.

the CMC, in for example bilayers, hemispherically capped bilayers, or cylindrical mi-
celles (Fig. 2.2). Two models exist in the literature for how this adsorption progresses
with increasing surfactant concentration: the two-step and four-regionmodels [29, 30].
The first step in both of the models, at low concentration, is the adsorption of single
surfactant molecules due to the electrostatic interaction. In the two-step model the
electrostatic interaction dominates, causing the formation of aggregates of adsorbed
surfactants with bare tails pointing towards the water. Only at higher surfactant con-
centrations, these tails are covered by other surfactantswith their head groups pointing
towards the water, forming closed structures such as bilayers or micelles. In the four-
region model the hydrophobic interaction governs the behavior, such that the tails of
adsorbed surfactants are covered by other surfactants with their head group pointing
towards the water early on, forming small clusters which at sufficiently high concen-
trations fuse into a bilayer of form close-packed micellar structures. Which of the two
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Chapter 2. Multi-Scale Dynamics

models best describes the actual adsorption process is still debated, and depending on
the type of surface, the surfactant, the temperature and other variables, one of them
might seemmore likely than the other on a case-to-case basis [29–33].
The lack of a unified picture of the surfactant surface-phases is unfortunate, as sur-

factants have large implications for the structure and dynamics of a system due to their
reductionof the surface tension at interfaces. Inparticular, thesemodels donot capture
the qualitative difference between the bilayer-like and micellar phase at higher concen-
trations, which can affect the functionality in distinct ways due to one being surface-
covering while the other is not. An example of where this is believed to be relevant is
during NP growth, where surfactants play a crucial yet elusive role for the morphology
of the resulting NPs [34–38]. Changes in structure and dynamics affect the function-
ality, so to be able to understand and control the functionality of a system containing
surfactants, it is desirable to gain insight into their surface-phase behavior. This in-
cludes understanding when the different surface phases occur, but also the dynamics
of the phase transitions between them, as these can be expected to be slow due to the
large rearrangements involved. Thus, surfactant-surface complexes are interesting yet
challenging systems exhibitingdynamics onmultiple spatio-temporal scales, calling for
the application of a multi-scale approach to gain deeper insight into their behavior.
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3
Theory of Material Response

When setting out to understand the structure and dynamics of a material the general
approach is to study how the material responds to its environment, which could entail
anything from changes in temperature or pressure to variations in solvation condition.
To record the material response, observables must be measured or calculated. Experi-
mentally, this is done by employing some sort of probe that interacts with the system
of interest. Common probes include neutrons, electrons, X-rays, visible light or other
forms of electromagnetic radiation. Each interacts in a unique way with the material,
providing access to, e.g., atomic or electronic structure and dynamics depending on
the type of interaction. In this chapter, theory of material response relevant to the in-
cluded papers is introduced, split by spatio-temporal scale, and theoretical concepts are
connected to experimental observables.

3.1 Separation of Scales
Thestructure and dynamics of amaterial depend on the positions andmovements of its
constituents, i.e., the electrons and nuclei. The total energy of the system is captured by
the Hamiltonianℋ , which (non-relativistically) reads [39, Chapter 3]

ℋ = − ℏ2
2𝑚𝑒

∑
𝑖
∇2𝑖 + 1

2 ∑𝑖≠𝑗
𝑒2

4𝜋𝜀0|𝒓𝑖 − 𝒓𝑗 |
−∑

𝑖,𝐼
𝑍𝐼 𝑒2

4𝜋𝜀0|𝒓𝑖 − 𝑹𝐼 |

−∑
𝐼

ℏ2
2𝑀𝐼

∇2𝐼 + 1
2 ∑𝐼≠𝐽

𝑍𝐼𝑍𝐽 𝑒2
4𝜋𝜀0|𝑹𝐼 − 𝑹𝐽 |

.
(3.1)

The first and fourth term describe the kinetic energies 𝒯e and 𝒯n of the electrons and
nuclei (also called ions), respectively, and the other termsdescribe, in turn, theCoulomb
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Chapter 3. Theory of Material Response

interactions 𝒱ee for electron pairs, 𝒱ne between the nuclei and the electrons, and 𝒱nn
for nucleus pairs.
Solving the Schrödinger equationℋ |Ψ⟩ = 𝐸 |Ψ⟩with this generalHamiltonian yields

the allowed energies 𝐸 and eigenstates |Ψ⟩. With |Ψ⟩ as a basis, any many-body state
|Ψ(𝑡)⟩ can be constructed, which in principle contains information about every property
of the system. Finding a solution is, however, no easy task for any but the very simplest
systems. Luckily, we can simplify matters due to the large mass difference between
the electrons and nuclei, which means that it is possible to treat them separately. This
is called the Born-Oppenheimer approximation [40], and the electronic Hamiltonian
reads

ℋe = 𝒯e + 𝒱int + 𝒱ext, (3.2)

where 𝒱int is the potential energy between electrons, i.e., 𝒱ee, while 𝒱ext is the static
potential from the fixed ions. The corresponding Hamiltonian for the nuclei reads

ℋn = 𝒯n + 𝒰, (3.3)

where 𝒰 = 𝒱nn + 𝐸0e is the effective potential energy from combining the nucleus-
nucleus interactions with 𝐸0e , which is the ground-state energy of the electrons for a
fixed position of the ions obtained by solving Schrödinger’s equation with Hamiltonian
ℋe in Eq. (3.2). Thismeans that the nuclei can be thought of asmoving on the potential
energy surface (PES) generated by the electrons.
When computationally studying complex systems such as amorphous ormixed solid-

liquid materials, the number of atoms that must be included often reaches far into the
tensof thousandsor evenhigher. Therefore, the startingpoint in this thesis is theatomic
scale, as treating such systems at the electronic level quickly becomes unfeasible. We
thus concernourselveswithℋn inEq. (3.3). In fact,wecan simplifymatters even further
by describing the ions classically, which is a good approximation, especially for heavier
atom types and at high temperatures. Having motivated a classical treatment of the
atoms,we are now ready to ask the question: What are suitable observables for studying
material response at this scale?

3.2 Atomistic Response
To address the question regarding which observables are suitable for studyingmaterial
response at the atomic scale,wemust take amoment to reflect onwhatweactuallymean
by atomistic response. At any given time 𝑡, the𝑁 atoms in amaterial reside at some po-
sitions 𝑹(𝑡). Each atom 𝐼 has a position 𝑹𝐼 (𝑡) and an associated velocity 𝒗𝐼 (𝑡). Together,
these positions and velocities make up the 6𝑁 -dimensional phase space, in which the
state of the system at time 𝑡 is a point [41, 42]. When atoms move, the state changes,
generating a trajectory in phase space. Observables 𝑂 are determined by the state and
can be expressed as a function of the point or curve in phase space, i.e., 𝑂(𝑹(𝑡), 𝒗(𝑡)).
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3.2. Atomistic Response

In this context, statics and dynamics are two common terms. When discussing stat-
ics, it is the structural arrangement of the atoms in the system that is of interest. Many
material properties are directly determined by the ordering of its atoms. In thermody-
namic equilibrium, there is in general one macroscopic phase that minimizes the free
energy, which is thus the stable structure. In solids, these stable structures often form
high-symmetry ordered arrangements, which are phases with well-known names such
as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed
(HCP). In more complex systems, for example the structure of organic molecules in
solution, the phases formed are supramolecular assemblies like bilayers and micelles.
Some of these supramolecular assemblies can, in turn, order into larger-scale collec-
tions, forming, e.g., a BCC-structure made up of micelles. Based on external stimuli,
the system might change from one equilibrium structure to another, which signifies a
phase transition. Understanding phase transitions is a cornerstone of describing the
behavior of a material. In fact, paper I contains several examples of understanding
the phase transition behavior throughMD-based correlation functions and in paper III
phase transitions of supramolecular surfactant arrangements are studied.
Dynamics is a term referring to the time dependence of material properties. It de-

scribeshowasystemchanges in time in response to, e.g., stresses or temperature fluctu-
ations. Even in equilibrium, for a system at a finite temperature, atoms vibrate around
their equilibrium positions in a periodic manner, commonly seen in solids, or move
around on larger scales, such as atoms diffusing in a liquid. In a soft matter system,
like organic molecules in solution, there can also, for example, be folding or breath-
ing modes. Vibrations are commonly understood through phonons, which are quasi-
particles describing the atomic dynamics.
So, atomistic responsecovers the structural rearrangementsanddynamicalprocesses

that make up the atomic-scale behavior of a material. With this sorted out, we can re-
turn to the observables𝑂(𝑹(𝑡), 𝒗(𝑡)). An example is the density of the system, which can
be expressed as

𝑛(𝑹, 𝑡) =
𝑁
∑
𝐼
𝛿(𝑹 − 𝑹𝐼 (𝑡)) (3.4)

and thus is a direct function of the atomic positions. At a given time, many physical
quantities depend on the collective behavior of the atoms, and the individual atomic
positions and velocities are not necessarily relevant. It is rather the expectation value
or ensemble average of an observable ⟨𝑂(𝑡)⟩ that is related to a multitude of physical
quantities such as temperature, kinetic energy, and pressure.
Inpractice, it isnotusually the instantaneousvalueasa functionof the6𝑁 -dimensional

space that ismeasured, but an average collected over time. Asmentioned, dynamics oc-
curs even in thermal equilibrium. Thus, quantities of interest are commonly expressed
as expectation values of the time development of the observable, ⟨𝑂(𝑡)⟩𝑡 . When a sys-
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Chapter 3. Theory of Material Response

tem is ergodic, which is usually assumed when computationally investigating a mate-
rial, such a time average equals the ensemble average.
For studying structure and dynamics, many common properties might actually be

expressed as spatial, temporal, or spatio-temporal correlation functions of observables.
The general form of such a two-point correlation function reads

𝐶(𝑹′, 𝜏 ) = ⟨𝑂1(𝑹, 𝑡) ⋅ 𝑂2(𝑹 + 𝑹′, 𝑡 + 𝜏)⟩ . (3.5)

When 𝑂1 and 𝑂2 are the same, Eq. (3.5) is referred to as an autocorrelation function
(ACF). Many transport properties, such as viscosity or conductivity, are also closely re-
lated to ACFs, as described by the fluctuation-dissipation theorem and linear response
theory [43, 44].
A common ACF for describing structure is the radial distribution function (RDF)

𝑔(𝑹′) = ⟨𝑛(𝑹, 𝑡) ⋅ 𝑛(𝑹 + 𝑹′, 𝑡)⟩ , (3.6)

which captures the spatial correlation between atoms. For example, solvation shells in

Figure 3.1: The dynamic structure factor 𝑆(𝒒, 𝑤) for a) solid Ni3Al and b) liquid Ni3Al. Note the
spherical averaging in the liquid case. Slices in the c) liquid intermediate scattering function
𝐹(𝑞, 𝑡) and d) liquid structure factor. Current correlations for the same material are shown in
Fig. 3 in paper I.

liquid systems are clearly seen as areas of higher density followed by areas of lower den-
sity (see the dashed lines in Fig. 3.2 for an example). There is a generalized version of
the RDF called the van Hove function 𝐺(𝒓′, 𝜏 ) = ⟨𝑛(𝑹, 𝑡) ⋅ 𝑛(𝑹 + 𝒓′, 𝑡 + 𝜏)⟩, which also
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3.2. Atomistic Response

captures time dependence. Instead of working in real space, it can be beneficial to
Fourier transform correlation functions, which, if done for the van Hove function in
space, yields the so-called intermediate scattering function

𝐹(𝒒, 𝜏 ) = ⟨𝑛(𝒒, 𝑡) ⋅ 𝑛(−𝒒, 𝑡 + 𝜏)⟩ . (3.7)

Moreover, Fourier transforming in time yields the dynamic structure factor

𝑆(𝒒, 𝜔) = ∫
∞

−∞
𝐹(𝒒, 𝑡) 𝑒−𝑖𝜔𝑡d𝑡 . (3.8)

An example of 𝑆(𝒒, 𝜔) for solid and liquid Ni3Al is shown in Fig. 3.1ab, as well as slices
in 𝑞-space of 𝐹(𝑞, 𝑡) and 𝑆(𝑞, 𝜔) for the liquid phase in Fig. 3.1cd. This illustrates the
difference between the solid, exhibiting vibrational motion in the form of a phonon dis-
persion, and the liquid, which has a diffusional motion at low frequencies and vibra-
tional motion at higher frequencies. The low-frequency diffusional part resembles that
of a gas, while the vibrational part at higher frequencies is solid-like, as it resembles the
acoustic branch in the solid dispersion [45].
The structure factor has strong ties to experiment, as this quantity is directly probed

in neutron, X-ray or electron scattering and diffraction measurements. However, each
probe interacts in its uniquewaywith the sample,meaning that onlydistinct parts of the
dynamics can be picked up depending on the type of measurement. The fundamental
mechanism through which neutrons interact with a material is the short-range strong
nuclear force, whereas X-rays sense the electron cloud through electromagnetic forces,
and electrons interactwith amaterial via long-range electrostatics. The scattering cross
section of an atom describes its scattering strength and the value varies depending on
the type of probe, due to the different interaction mechanisms. The theoretical struc-
ture factor in Eq. (3.8) contains information about the full dynamics of the system, but
to compare with experimental results it needs to be weighted by probe-specific cross-
sections for each atom type (𝐴 and 𝐵)

𝑆𝑤 (𝑞, 𝜔) = ∑
𝐴

∑
𝐵

𝑤𝐴(𝑞)𝑤𝐵(𝑞)𝑆𝐴𝐵(𝑞, 𝜔). (3.9)

Being able to obtain probe-weighted structure factors allows for direct comparison be-
tween theory and experiment, which is very useful, especially in the study of complex
materials. If 𝑆𝑤 (𝑞, 𝜔) is computed, this comparison allows for validation of the under-
lying simulation components, such as the interatomic potential that is discussed in
Sect. 4.1.1-4.1.2. It is, on the other hand, also beneficial for interpreting experimental
results. Computed dynamic structure factors and the underlying simulations can aid in
disentangling microscopic processes. An example is to understand what drives certain
phase transitions, which is studied for a few perovskites in paper I, contributing to the
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Chapter 3. Theory of Material Response

explanation of experimental results. Eventually, this can even aid the prediction and
design of experiments, see, e.g., Ref. [46].
The dynamic structure factor is an example of an important spatially-resolved corre-

lation function, but there are many others. Among these, we find current correlations,
which are calculated from the velocity instead of the density. While structure factors
are limited to longitudinal modes, current correlations also contain transversal modes
of vibration (compare, e.g., Fig. 3 in paper I and Fig. 3.1). How to efficiently compute
correlation functions from atomic simulations is the topic of paper I and is described in
the next chapter.
To conclude this section, we can note that atomic response encompasses both how

the atoms respond to changes in the environment, be it a phase transition from one
equilibrium structure to the next or a change in the dynamics, as well as how the atoms
interact with the probes used to measure the structure and dynamics.

3.3 Nuclear Quantum Effects
Everything in Sect. 3.2 relied on the approximation that the atoms could be treated clas-
sically. When a complex material contains lighter atoms, such as hydrogen, or when
lower temperatures are relevant, this approximation can turn out to be insufficient. In
this regime, NQEs come into play, which can drastically alter material response.
NQEs capture the quantum nature of the nuclei, and describe the differences aris-

ing from treating the nuclei as quantum particles when applying the Hamiltonian in
Eq. (3.3). Instead of a fixed position, the location of the nuclei is then described by a
distribution, which alters the value of a wide range of observables, including, in partic-
ular, correlation-function based observables. Changes can be seen in properties such
as diffusion and viscosity [16], elastic constant, and consequently bulk modulus [17], as
well as RDFs and hopping rate [47], to name a few.

Whether aquantumdescription is required canbedeterminedby thedeBrogliewave-
length of the nucleus. For a non-interacting particle, the de Broglie wavelength relates
to temperature 𝑇 andmass𝑚 via [41, chapter 7]

𝜆 = ℎ
√2𝜋𝑚𝑘B𝑇

. (3.10)

Inserting numbers for a quick “back-of-the-envelope” calculation yields 𝜆 ≈ 1Å for a
hydrogen atom at room temperature. This is on the order of the interatomic distance,
e.g., the O–H bond length in water is just below this value, and it thus suggests that a
quantum mechanical treatment might be warranted. Indeed, in paper II, we see that
partial RDFs (Eq. (3.6)) forwater aredrastically alteredwhen includingNQEs, compared
to the classical treatment (Fig. 3.2). When the temperature decreases, the de Broglie
wavelength becomes even larger, further emphasizing the importance of accounting
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Figure 3.2: Example from paper II, illustrating the difference between classical (dashed lines)
partial RDFs compared to those (solid lines) taking NQEs into account, for water at three dif-
ferent temperatures. (a) shows the partial oxygen-hydrogen RDF and (b) the partial hydrogen-
hydrogen RDF.

for NQEs. Continuing with our hydrogen example, this is illustrated by the de Broglie
wavelength reaching 𝜆 ≈ 5.5Å at 10K. For atoms with increasing mass, the de Broglie
wavelength instead decreases, eventually becoming smaller than the typical scale of in-
teratomic interactions, and a classical treatmentworkswell. Already for heliumat room
temperature, the de Broglie wavelength is 𝜆 ≈ 0.5Å.
The topic of efficiently accounting forNQEs in simulations,which allows for studying

how they influence different observables, is treated in thenext chapter and is the subject
of paper II.

3.4 Optical Response
X-rays, which is one of the probes that we encountered in Sect. 3.2 for measuring ma-
terial behavior, interacts with materials through electromagnetic forces. Another com-
monly used material probe is light with optical frequencies, which interacts with the
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Chapter 3. Theory of Material Response

probedmaterial through the samemechanisms. Due to the differences in frequency be-
tween these types of electromagnetic radiation, optical light is useful for studying other
types of dynamics in a material. It is usually not employed as a probe to gain insight

105 107 109 1011 1013 1015

Frequency (Hz)
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′ (
)+

i
′′ (

)

′

′′

Figure 3.3: Schematic view of the complex, frequency-dependent dielectric function. Reso-
nances are observed in several frequency ranges, with the imaginary part of the dielectric func-
tion indicating absorption of the electromagnetic radiation. The highest resonance peak to the
right indicates electronic absorption. The next indicates absorption by atomic vibrations. The
third one from the right stems from dipolar (also called reorientational) motion, and the lowest
frequency peak is due to space charge polarization or (direct current) conductivity.

in the overall atomic structure in diffraction or scattering measurements, but instead
the degree of reflected and absorbed light reveals how the electronic degrees of freedom
respond to the radiation. Understanding the interactions between light and matter is
thus of importance and, in fact, plays a central role in paper III. While it is entirely pos-
sible from a theoretical point of view to study light-matter interaction microscopically,
the complexmaterials of interest in this thesis, such as surfactant surface-phases onNP
surfaces in paper III, arewaybeyond the sizeswhere this is a feasible approach. Instead,
a mesoscopic view of the optical response is required.

16



3.4. Optical Response

The interplay between light andmatter is described byMaxwell’s equations [48, 49]

𝜕𝑫
𝜕𝑡 = ∇ × 𝑯 − 𝑱 , (3.11)

𝜕𝑩
𝜕𝑡 = −∇ × 𝑬 − 𝑴, (3.12)

∇ ⋅ 𝑫 = 𝜌, (3.13)
∇ ⋅ 𝑩 = 0. (3.14)

Here, 𝑬 and 𝑩 are the electric field and magnetic flux density, respectively. The cor-
responding derived fields, 𝑫 and 𝑯 , are called the electric displacement field and the
magnetic field, and are related to 𝑬 and 𝑩 through the constitutive relations

𝑫 = 𝜀𝑬, (3.15)
𝑩 = 𝜇𝑯. (3.16)

In vacuum, 𝜀 = 𝜀0 is the vacuum permittivity and 𝜇 = 𝜇0 is the vacuum magnetic per-
meability. In matter, however, these are complex, frequency-dependent functions that
describe the response of a material to the incoming radiation. In this thesis, magnetic
response is not considered (so 𝜇 ≈ 𝜇0), and the optical response of a system to ap-
plied electromagnetic radiation is captured through the permittivity. This is also known
as the dielectric function, and a schematic view of the frequency-dependent response
𝜀(𝜔) = 𝜀′(𝜔) + 𝑖𝜀″(𝜔) over a wide frequency range is seen in Fig. 3.3. At certain frequen-
cies, the radiation matches characteristic material degrees of freedom, e.g., atomic or
electronic vibrational motion, causing the resonance peaks in the dielectric function
that indicate strong absorption.
One resonance is when free electrons are collectively excited by the external electric

field, moving in opposite directions to the field to screen it. This is called a plasmon. In
small geometries, suchas aNPwitha volume𝑉 that is small compared to thewavelength
of light, the electron cloud is confined, leading to a special case of this phenomenon
called localized surface plasmon resonance (LSPR), which is visualized in Fig. 3.4. The
dynamics of this electron cloud can be described classically through the equation ofmo-
tion

𝑚 ̈𝒙 + 𝛾𝑚 ̇𝒙 = −𝑒𝑬, (3.17)

where 𝑚 is the mass of the electrons, 𝒙 their displacement, 𝛾 a damping factor, 𝑒 the
elementary charge, and 𝑬 the total electric field as a sum of the external and the inter-
nal electric field created by the displacing electrons. Looking from the outside, these
displacing electrons (with charge density 𝑛) generate a dipole with dipole moment 𝒑 =
−𝑉𝑛𝑒𝒙. Inside the NP they result in a uniform electric field 𝑬int = 𝑛𝑒𝒙/3𝜀0 [50, Chapter
4], which makes it possible to rewrite Eq. (3.17) as

𝑚 ̈𝒙 + 𝛾𝑚 ̇𝒙 = −𝑒 ( 𝑛𝑒
3𝜀0

𝒙 + 𝑬ext) , (3.18)
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Figure 3.4: Schematic view of a localized surface plasmon resonance. When the electric field
oscillates, the electron cloud of the nanoparticle oscillates with it, canceling the external field
inside the nanoparticle.

The solution in Fourier space reveals the dynamics of the electron cloud

𝒙(𝜔) = 𝑒/𝑚
𝜔2 + 𝑖𝛾𝜔 − 𝜔2𝑝/3

𝑬ext(𝜔), (3.19)

where 𝜔𝑝 = √𝑛𝑒2/𝑚𝜀0 denotes the plasma frequency. Dividing the dipole moment and
the external electric field yields the polarizability

𝛼(𝜔) = 𝒑(𝜔)
𝑬ext(𝜔)

= −𝑉 𝜀0
𝜔2𝑝

𝜔2 + 𝑖𝛾𝜔 − 𝜔2𝑝/3
, (3.20)

which is a measure of how easily the NP is polarized. Exploiting the Drude model for
the dielectric function [51, Chapter 9]

𝜀(𝜔) = 1 − 𝜔2𝑝
𝜔2 + 𝑖𝛾𝜔 , (3.21)

the polarizability can be rewritten as

𝛼(𝜔) = 3𝑉 𝜀0 𝜀(𝜔) − 1
𝜀(𝜔) + 2. (3.22)

In we, instead of vacuum, assume that the surrounding medium has permittivity 𝜀𝑚,
this takes the form

𝛼(𝜔) = 3𝑉 𝜀𝑚
𝜀(𝜔) − 𝜀𝑚
𝜀(𝜔) + 2𝜀𝑚

. (3.23)
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3.4. Optical Response

This form of the polarizability reveals the resonance criterion for a LSPR, i.e., it occurs
if ℜ(𝜀(𝜔)) = −2𝜀𝑚 (if ℑ(𝜀(𝜔)) is small). Furthermore, the polarizability dictates the
scattering and absorption cross sections of the NP [51, Chapter 5]

𝜎sca(𝜔) = 1
6𝜋𝜀2𝑚

(𝜔𝑐 )
4
|𝛼(𝜔)|2, (3.24)

𝜎abs(𝜔) = 𝜔
𝜀𝑚𝑐

ℑ(𝛼(𝜔)). (3.25)

Summing these yields the cross section for total extinction

𝜎ext(𝜔) = 𝜎sca(𝜔) + 𝜎abs(𝜔). (3.26)

Since the polarizability is maximized at the LSPR, the extinction is maximized there
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Figure 3.5: Schematic view of the basic principle of plasmonic sensing. When the dielectric en-
vironment of the plasmonic particle changes, the extinction spectrum is shifted, allowing this
mechanism to be used as a probe of the dielectric environment. Magnitude of shift exagerrated
for clarity.

as well, providing a large signal that is very sensitive to small changes in the dielectric
function 𝜀𝑚 of the environment. This fact is exploited in plasmonic sensing (Fig. 3.5).
Since the permittivity of the system changes if something adheres to the surface of the
nanoparticle, the plasmonic response changes along with it. This allows for a very sen-
sitive probe of the immediate surrounding of a nanoparticle, which has been used to,
for example, measure antibody-antigen binding [52] or to detect hydrogen [53]. In pa-
per III, plasmonic sensing is proposed as a method for measuring surfactant surface-
phases and the dynamics of the transitions between them. In this context, computa-
tionally solvingMaxwell’s equations to obtain extinction spectra is needed, which is dis-
cussed in detail in the next chapter.
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4
Computational Methods for Studying

Material Response

Equipped with the theory ofmaterial response at different spatio-temporal scales from
Chapter 3, the question remains how to actually perform computations at each of these
scales. This chapter is devoted to precisely that, covering MD for simulations at the
atomic level, PIMDfor those includingNQEs, andelectrodynamics simulations for com-
puting the optical response at the continuum level.

4.1 Molecular Dynamics
Computationally, it is possible to study the structure and dynamics at the atomic level
through a technique called molecular dynamics (MD), in which the time evolution of
a system of atoms is determined by integrating Newton’s equations of motion [42, 44].
The force on each atom is given by an interatomic potential𝒰(𝑹(𝑡)), which we already
encountered in Eq. (3.3). As from any other classical potential, the force acting on an
atom (with index 𝐼 ) is thus

𝑭𝐼 (𝑡) = −∇𝐼𝒰(𝑹(𝑡)). (4.1)

Knowing the force on each atom, Newton’s equations of motion can be numerically in-
tegrated using a time stepΔ𝑡, to update the current atomic positions𝑹(𝑡) to the new po-
sitions 𝑹(𝑡 + Δ𝑡). For this, a symplectic integrator is needed, which preserves the phase
space volume and, thus, permits near conservation of the total energy during very long
simulation times [44, 54]. In practice, a commonmethod of choice is velocity Verlet [55].
In this algorithm, the new positions 𝑹(𝑡 + Δ𝑡) are Taylor expanded and expressed in
terms of the current positions 𝑹(𝑡), forces 𝑭(𝑡), and velocities 𝒗(𝑡). This allows for the
computation of the new forces 𝑭(𝑡 + Δ𝑡) using Eq. (4.1) and, subsequently the velocities
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𝒗(𝑡 + Δ𝑡), which both go into the computation of the positions at the next time 𝑡 + 2Δ𝑡,
and so forth. For atom 𝐼 this can be expressed as

𝑹𝐼 (𝑡 + Δ𝑡) = 𝑹𝐼 (𝑡) + 𝒗𝐼 (𝑡)Δ𝑡 +
𝑭𝑰 (𝑡)
2𝑚𝐼

Δ𝑡2, (4.2)

𝒗𝐼 (𝑡 + Δ𝑡) = 𝒗𝐼 (𝑡) +
𝑭𝐼 (𝑡 + Δ𝑡) + 𝑭𝐼 (𝑡)

2𝑚𝐼
Δ𝑡. (4.3)

Note that to perform the computation in Eq. (4.3) for atom 𝐼 , all new positions must
be calculated with Eq. (4.2) to know the total force on atom 𝐼 . Using this approach, the
positions and velocities are incrementally generated for the simulated system, forming
a so-called trajectory. There is a mathematically equivalent algorithm called leap-frog
[56], which in principle generates identical trajectories but where the positions and ve-
locities are instead stored with a time difference of Δ𝑡/2, with the disadvantage that,
e.g., kinetic and potential energy are not known at the same times.
Apart from integrating Newton’s equation of motion, there are other considerations

when performing MD simulations. Despite our best efforts to apply suitable approxi-
mations to reach sufficient scales, we are no where near the approximately 1023 atoms
in a real material. Luckily, we do not have to simulate this many, partly because we ap-
ply periodic boundary conditions to our simulation cell, which allows for using a smaller
cell that is representative of the structure and dynamics of the larger system. For com-
plex systems, these cells can still be rather large, but nonetheless the periodic boundary
conditions assist in reducing the required simulation size.
In practice, the user also needs to supply an initial condition for the MD simulation,

from which the integration of Newton’s equation of motion begins. As discussed in
Sect. 3.2, this is a point in phase space. However, from a physical perspective, exactly
how the initial value is chosen has consequences for how the MD simulation is con-
ducted. Note that, when integrating Newton’s equation of motion as discussed above,
the energy of the system is preserved (up to small oscillations from the symplectic inte-
grator), i.e., it is themicrocanonical (𝑁𝑉𝐸) ensemble that is sampled. The initial state is
often supplied from, e.g., electronic structure calculations, experiment, or it is simply
randomized within the space of “reasonable” starting points for the system. Running
MDdirectly from such an initial condition results in theNewtonian dynamics on an iso-
surface of fixed 𝑁 , 𝑉 , and 𝐸, where the energy of the system does not change from the
initial one. If the desire is to compute structural or dynamical observables at a specific
thermodynamic condition, such as room temperature, the simulation must instead be
performed in the 𝑁𝑉𝑇 ensemble, keeping the number of atoms, volume and tempera-
ture fixed. If we aim to closely match experimental conditions, it is the 𝑁𝑃𝑇 ensemble
thatmost closely adheres to the situation in the lab, keeping the number of atoms, pres-
sure and temperature constant. To sample other ensembles than𝑁𝑉𝐸, the equations of
motionmust be altered,which is doneby applying a thermostat for the temperature and
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a barostat for the pressure. However, this way of keeping the temperature or pressure
fixed directly influences the dynamics of the atoms, for example leading to an artificial
decorrelationof the velocities. As such, it is generally not a good idea to immediately cal-
culate observables from a simulation performed under such conditions. To both be able
to sample the desired thermodynamic state and obtain observables that reflect the true
dynamics of the system, equilibration is generally first performed in, e.g., the𝑁𝑃𝑇 en-
semble. When the target pressure and temperature are reached, we switch to the 𝑁𝑉𝐸
ensemble to generate trajectories that reflect the unperturbed dynamics of the system.
We have yet to return to 𝒰 required for the force computation. The form of 𝒰 in

Eq. (3.3) is based on the evaluation of the ground state energy 𝐸0e of the electrons for a
fixed position of the ions. This can be computed using a technique called ab initio MD
[57], but even that quickly becomes too costly for large systems with many electrons,
which is an inherent feature when modeling complex materials. This means that we
might not be able to reach the time and length scales required to properly study these
materials. Instead of the pure ion-ion Coulomb interaction in combination with the
ground state energy of the electrons,many different ways of expressing the interatomic
potential have been developed to overcome this hurdle.

4.1.1 Interatomic Potentials
There aremany ways in which the effective potential𝒰 (Eq. (3.3)) has been traditionally
modeled, including so-called classical or empirical interatomic potentials or forcefields.
Such interatomic potentials have been systematically parametrized and developed for
describing theway atoms interact, and different functional forms are suitable for differ-
ent types ofmaterials. The simplest one is a pair potential, where the energy depends on
the interatomic distance between atoms and only interactions between pairs are consid-
ered, excluding triplets and higher order terms. Common ones are the Lennard-Jones
[58] and Buckingham [59] potentials, which have a repulsive region for very short dis-
tances and an attractive region for slightly larger ones. The Lennard-Jones potential,
for instance, can be expressed as

𝒰LJ(𝑹) =
𝐶(12)𝐼 𝐽
𝑅𝐼 𝐽

−
𝐶(6)𝐼 𝐽
𝑅𝐼 𝐽

= 4𝜖 [( 𝜎
𝑅𝐼 𝐽

)
12

− ( 𝜎
𝑅𝐼 𝐽

)
6
] , (4.4)

and is visualized in Fig. 4.1. Pair potentials are suitable for, e.g., noble gases, but are
not applicable in systemswheremany-body effects are important. Formetallic systems,
embedded atom method (EAM) potentials [60–62] are commonly employed, which in
addition to a pair potential term take into account the energetic gain of embedding an
atom in the electrondensity of its neighbors. In covalently bonded systems,wheredirec-
tional bonding must be properly described, bond order potentials [63, 64] are favored.
For molecular systems, especially organic ones, non-reactive force fields are popular,
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and well-known ones include GROMOS [65, 66], OPLS [67, 68], CHARMM [69–71], and AM-
BER [72, 73]. Commonly, their functional form can be written ad

𝒰(𝑹) = 𝒰bond(𝑹) + 𝒰angle(𝑹) + 𝒰dihedral(𝑹) + 𝒰vdW(𝑹) + 𝒰electrostatic(𝑹), (4.5)

where the first three terms describe the two-body (bond), three-body (angle), and four-
body (dihedral) forces, respectively. These three terms together form the bonded forces,
and there are a plethora of ways to parametrize each term. A common approach is to
use harmonic oscillator-type expressions, or, when needed to properly describe the vi-
brational behavior, anharmonic ones such as a Morse potential [74]. The last two terms
describe non-bonded forces, split by van der Waals (vdW) and electrostatic ones. The
former is commonly described using a Lennard-Jones potential (Eq. (4.4)) and the latter
describes the Coulomb interaction, based on the (effective) charges of the ions.
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Figure 4.1:The Lennard-Jones potential, with the contribution from the attractive and repulsive
terms illustrated separately.

For systems where a larger-scale process is of interest, it is common to coarse-grain
the highest-frequency vibrations that are not crucial formodeling the property of inter-
est. An example of such a larger-scale process is the surface-phase formation of surfac-
tants. There, one way to coarse-grain is to replace (non-aromatic) hydrocarbons with
CHx superatoms, with suitably modified interaction potentials. Such force fields are
called united atom models, as opposed to the all-atom case where no coarse-graining
is performed. With united atom potentials, simulations contain fewer particles and
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longer time steps Δ𝑡 can be used, reducing the computational cost and making it pos-
sible to reach longer simulation times. In paper III, we therefore use a united atom
potential for CTAB.
Non-reactive force fields are often very good for the systems forwhich they have been

parametrizedandare stillwidelyused today [75]. For complexmaterials, however,many
different components are usually required, and it is rarely the case that an empirical po-
tential has been parametrized for a full complex system. The main system of interest
in this thesis comprises an aqueous solution of organicmolecules, in combination with
an inorganic surface. For each of these components—the water, the surfactant, and
the surface—there exist classical interatomic potentials, but what about the full sys-
tem? In some cases it can be sufficient for the components to only interact with each
other through non-bonded forces, as no new bonds are expected to form. The vdW
forces between the components are estimated through combination rules. Depending
on the functional form of𝒰vdW, different combination rules are employed, commonly
in the form of geometric or arithmetic averages [76–79]. For instance in GROMOS, the
interatomic potential used in paper III, the Lennard-Jones parameters are combined
through geometric averages

𝐶(6)𝐼 𝐽 = √𝐶(6)𝐼 𝐼 𝐶(6)𝐽 𝐽 , 𝐶(12)𝐼 𝐽 = √𝐶(12)𝐼 𝐼 𝐶(12)𝐽 𝐽 . (4.6)

This approach for combining potentials into one that works for a full complex system
can be skipped by switching to machine-learned interatomic potentials (MLIPs).

4.1.2 Machine-Learned Interatomic Potentials
Theparameters in classical potentials are fitted using experimental data tomatchmate-
rials properties such as density, surface tension, or othermeasurable quantities. MLIPs,
on the other hand, are trained on electronic structure data, obtained by solving Eq. (3.2)
using for instance DFT [1, 2]. This allows for training one potential specifically for a
system of interest, even a complex one with many constituents. Compared to classical
potentials, which are limited by the choice of functional form, MLIPs are highly flexi-
ble withmanymore parameters, allowing them to reach the accuracy of the underlying
electronic structure data, at a computational cost similar to classical interatomic poten-
tials.
MLIPs exist inmany forms, but they can be categorized into twomain classes: kernel-

basedmethods and neural-network based ones. Both of these offer highly flexible func-
tional forms that are fitted using a training data set. There exist many different real-
izations of kernel-based methods, such as GAP [80] and (s)GDML [81–83], as well as
neural-network based ones, including BPNN [84, 85], EANN [86], MACE [87], SchNet
[88], DeePMD [89], and NequIP [90]. Here, the focus is on a specific type of neural-
network based MLIP called neuroevolution potential (NEP), which is implemented in
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Chapter 4. Computational Methods for Studying Material Response

the GPUMD package [91]. The NEP formalism is used to perform all the MD simulations
in paper I, as well as being the basis for the efficient implementation of methods ac-
counting for NQEs in paper II, which is discussed in more detail in Sect. 4.3.
In MLIPs, the descriptors of the material are usually not taken to be the atomic po-

sitions 𝑹, of which the classical potential is a function (Eq. (4.5)). Instead, a descriptor
vector 𝒒 that is a function of interatomic distances 𝑅𝐼 𝐽 and distance vectors 𝑹𝐼 𝐽 is used.
This descriptor vector captures the environment surrounding each atom and is intro-
duced to make sure that physical symmetries and invariances are fulfilled by the model
[92]. There are many different ways of expressing these descriptors, but in NEP the de-
scriptor for atom 𝐼 consists of 𝑛𝑅max + 1 radial components

𝑞𝐼𝑛 = ∑
𝐽≠𝐼

𝑔𝑛(𝑅𝐼 𝐽 ), 0 ≤ 𝑛 ≤ 𝑛𝑅max, (4.7)

and (𝑛𝐴max + 1)𝑙3bmax angular ones, which, for three-body interactions, take the form

𝑞𝐼𝑛𝑙 =
2𝑙 + 1
4𝜋 ∑

𝐽≠𝐼
∑
𝐾≠𝐼

𝑔𝑛(𝑅𝐼 𝐽 )𝑔𝑛(𝑅𝐼𝐾 )𝑃𝑙(cos 𝜃𝐼 𝐽𝐾 ), 0 ≤ 𝑛 ≤ 𝑛𝐴max, 1 ≤ 𝑙 ≤ 𝑙3bmax. (4.8)

For the radial descriptors, the summation is taken over all neighbors 𝐽 to atom 𝐼 within
a cutoff distance 𝑅𝑅𝑐 . Similarly, for the angular descriptor components, the summation
is over all neighbors 𝐽 and𝐾 to atom 𝐼 within a cutoff𝑅𝐴𝑐 and 𝜃𝐼 𝐽𝐾 is the angle formed by
the 𝐼 𝐽 and 𝐼𝐾 distance vectors. 𝑃𝑙 denotes the Legendre polynomial of order 𝑙. Higher
order interactions, such as four-body and five-body descriptor components can be op-
tionally included [91]. Furthermore, both the radial and the angular descriptors con-
tain the radial function 𝑔𝑛(𝑅𝐼 𝐽 ), which in the NEP formalism is given by 𝑁 𝑅

bas + 1 basis
functions in the radial case and 𝑁𝐴

bas + 1 ones in the angular case. Mathematically, it is
expressed as

𝑔𝑛(𝑅𝐼 𝐽 ) =
𝑁bas

∑
𝑘

𝑐𝐼 𝐽𝑛𝑘 𝑓𝑘(𝑅𝐼 𝐽 ), (4.9)

𝑓𝑘(𝑅𝐼 𝐽 ) = 1
2 [𝑇𝑘 (2 (

𝑅𝐼 𝐽
𝑅𝑐

− 1)
2
− 1) + 1] 𝑓𝑐(𝑅𝐼 𝐽 ), (4.10)

with the cutoff function

𝑓𝑐(𝑅𝐼 𝐽 ) = {
1
2 [1 + cos (𝜋 𝑅𝐼 𝐽

𝑅𝑐 )] , 𝑅𝐼 𝐽 ≤ 𝑅𝑐 ,
0, 𝑅𝐼 𝐽 > 𝑅𝑐 .

(4.11)

Here, 𝑇𝑘 is the 𝑘-th Chebyshev polynomial of the first kind and 𝑁bas and 𝑅𝑐 are either
the radial number of basis functions and cutoff (𝑁 𝑅

bas, 𝑅𝑅𝑐 ) or the angular ones (𝑁𝐴
bas,
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𝑅𝐴𝑐 ). Crucially, the expansion coefficients 𝑐𝐼 𝐽𝑛𝑘 are free parameters in the NEP approach,
and are optimized alongside the weights of the neural network. The number of radial
and angular descriptor components, the cutoff distances as well as the number of basis
functions are hyperparameters set during model construction.
On that note, we now introduce the neural network used to predict the atomic en-

ergies with the descriptor vector as input. The energy per atom 𝒰𝐼 is obtained as a
function of the descriptor vector with its 𝑁des = (𝑛𝑅max + 1) + (𝑛𝐴max + 1)𝑙3bmax compo-
nents, following the original approach for a neural-network based MLIP by Behler and
Parinello [84]. In the NEP formalism, a single-layer feedforward neural network is em-
ployed, with𝑁neu neurons in the hidden layer, yielding the energy of atom 𝐼 through

𝒰𝐼 (𝒒) = 𝒰𝐼 ({𝑞𝐼𝑛}𝑁des𝑛=1 ) =
𝑁neu

∑
𝜇=1

𝑤 (1)𝜇 tanh(
𝑁des

∑
𝑛=1

𝑤 (0)𝜇𝑛 𝑞𝐼𝑛 − 𝑏(0)𝜇 ) − 𝑏(1), (4.12)

where the weights 𝑤 and biases 𝑏 are trainable parameters. Partial forces are obtained
as the derivative of𝒰𝐼 with respect to 𝑅𝐼 𝐽 and from this the per-atom force 𝑭𝐼 and virial
𝑾𝐼 are accessible.
There aremany options for how to optimize a loss function, but in the NEP approach

the separable natural evolution strategy [93] is employed, which does not require the
loss function to be analytical. The loss function in the NEP formalism is

𝐿(𝒛) = 𝜆𝑒 ( 1
𝑁str

𝑁str

∑
𝑛=1

(𝒰NEP(𝑛, 𝒛) − 𝒰 tar)2)
1/2

+ 𝜆𝑓 ( 1
3𝑁

𝑁
∑
𝑖=1

(𝑭NEP𝑖 (𝒛) − 𝑭 tar𝑖 )2)
1/2

+ 𝜆𝑣 ( 1
6𝑁str

𝑁str

∑
𝑛=1

∑
𝜇𝜈

(𝑊NEP𝜇𝜈 (𝑛, 𝒛) − 𝑊 tar𝜇𝜈 )
2)

1/2

+ 𝜆1 1
𝑁par

𝑁par

∑
𝑛=1

|𝑧𝑛| + 𝜆2 ( 1
𝑁par

𝑁par

∑
𝑛=1

𝑧2𝑛)
1/2

,

(4.13)

where the set of parameters 𝒛 that optimizes the problem thusminimizes the rootmean
squared errors for the energies, forces and virials, under the constraint of 𝐿1- and 𝐿2-
regularization. In practice, the training is generally performedusing anumber of cycles
where the training data set is augmented, usually by including structures for which the
MLIP has a large error, indicating that such a structurewas far outside the training data
set. Neural networks in general perform poorly when extrapolating, so this serves to
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Chapter 4. Computational Methods for Studying Material Response

enlarge the space spanned by the training data, reducing the risk of hallucination. This
process of iteratively training a MLIP is called active learning and for complex systems
it can be expected to take a fewmore training cycles than for simpler systems to achieve
a potential that performs well. In papers I and II, the MD simulations are performed
using NEPmodels that are trained via this approach.
As a final note on the subject of MLIPs, consider the matter of locality, i.e., the de-

scriptors being 0 beyond a cutoff (Eq. (4.11)). This is a cornerstone for being able to apply
MLIPs to complex system, as it allows for identifying representative smaller units of the
large complex system for which electronic structure calculations can be run and train-
ing data can be generated. The MD can then be run for much larger systems. There
are, however, a few cases to be aware of, especially for complex materials, where the
assumption of locality is a poor one, such asmaterials containing unscreened Coulomb
interactions or other explicitly long-range phenomena. In such cases, additional treat-
ments of long-range interactions are required in the formulation of the MLIP [94, 95].

4.2 Correlation Functions fromMolecular Dynamics
To gain some physical insight from the trajectories generated in MD simulations, ob-
servables must be computed. As discussed in Sect. 3.2 many of these can be expressed
in terms of correlation functions of phase space properties. Such correlation functions
can be computed from the trajectory, but because it contains positions and velocities at
discrete times, a computed ACF is an approximation of the true one. The intermediate
scattering function encountered in Eq. (3.7), for instance, takes the form

𝐹(𝒒, 𝑡) = 1
𝑁

𝑁
∑
𝐼

𝑁
∑
𝐽

⟨exp [𝑖𝒒 ⋅ (𝑹𝐼 (𝑡) − 𝑅𝐽 (0))]⟩ . (4.14)

How well a computed correlation function approximates the true one depends on how
we have sampled phase space during the MD simulation, which might be affected by
metastability of the system hindering a thorough sampling of phase space in the avail-
able simulation time as well as the time step of the velocity Verlet integration algorithm
(Eqs. (4.2)-(4.3)).

The time step, togetherwith the frequency ofwriting the trajectory tofile, determines
the limit of resolution for the computed correlation function. According to the Nyquist-
Shannon sampling theorem [96, 97], the time between two subsequent entries in the
trajectory must be such that the dynamical process with the highest frequency is sam-
pledmore than twiceperperiod tonot risk aliasing (Fig. 4.2). The lengthof the trajectory
determines the slowest resolvable process,which is relevant to keep inmind for complex
systems as they possibly exhibit slow dynamics or rare events. If a generated trajectory
is longer than the slowest dynamics of interest, statistics can be improved by not com-
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Figure 4.2: Illustration of Nyquist-Shannon’s sampling theorem. Consider the black solid line
as the highest frequency process that we would like to sample. a) The sampling frequency is
too low (less than two per period), resulting in an erroneous reconstruction of the signal (blue
dashed line). b) The sampling frequency fulfills the Nyquist criterion, being exactly double the
signal frequency. At this sampling frequency the signal can be reconstructed properly (green
dashed line), but aliasing can also occur if we happen to sample precisely when the amplitude
of the signal is 0, resulting in the reconstruction giving no signal at all (blue dashed line). c)The
signal is sampled more than twice per period, fulfilling the theorem and leading to a correct
reconstruction of the signal.

puting a single ACF over the full trajectory, but rather windowing the trajectory with
some overlap and computing the ACF within each of these windows, after which they
can be averaged. Furthermore, the size of the simulation cell sets a limit on the smallest
availablewave vector 𝒒 in the computation of, e.g., the intermediate scattering function
obtained via Eq. (3.7) or the dynamic structure factor in Eq. (3.8). For certain physical
properties it might be the long-wavelength limit that is of interest, in which case the
convergence with cell size must be carefully considered.
Thereare several softwarepackagesavailable for extractingcorrelation functions from

MD, suchasNMOLDYN [98–100],MDANSE [101], andFREUD [102],whichoften target spe-
cific ones, for instance the dynamic structure factor in the context of neutron scattering
(Eq. (3.9) with neutron scattering lengths). The DYNASOR package, of which the recent
developments are presented in paper I, is designed to extract spatially-resolved corre-
lation functions fromMD simulations, including the intermediate scattering function,
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dynamic structure factor, and current correlations mentioned in Sect. 3.2, but also sev-
eral others. In addition, the computed correlation functions are not probe-specific in
DYNASOR, but there is functionality for weighting themwith, e.g., neutron, electron, or
X-ray form factors, facilitating comparison with multiple types of experiments.

4.3 Path-Integral Molecular Dynamics
As discussed in Sect. 3.3, the classical treatment in MD does not suffice for light atoms
and low temperatures and taking NQEs into account can alter many of the observables
available fromMD. A solution to this is the PIMDmethod, where the main idea is that

Quantum particle

Classical replicas

Figure 4.3: The basic idea behind the PIMD method: representing every quantum particle by a
number of replicas connected by springs, which can be treated classically.

every quantum particle is represented by a number of classical replicas connected by
springs (Fig. 4.3). The replicas, also called beads, are then evolved separately using the
same equations of motion as in classical MD, but with an added term taking into ac-
count the interaction with neighboring beads via the springs. Mathematically, this en-
tails that the kinetic and potential energy parts of the Hamiltonian in Eq. (3.3) are re-
placed with a sum of the kinetic energies of each individual bead and a sum of the po-
tential energies of each individual bead, respectively. The potential energy of each bead
still follows the potential energy function of the system, e.g., Eq. (4.5) or Eq. (4.12). Addi-
tionally, a term for the interaction between the connected beads is added to the Hamil-
tonian, which for atomwith index 𝐼 takes the form

𝒱 𝑃,int
𝐼 =

𝑃
∑
𝐽=1

1
2𝑚𝐼𝜔2𝑃 (𝑹𝐽 − 𝑹𝐽+1)2, (4.15)

where the sum runs over the 𝑃 replicas of atom 𝐼 and 𝜔𝑃 = 𝑘B𝑇𝑃/ℏ is the spring fre-
quency.
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4.3. Path-Integral Molecular Dynamics

In the limit of an infinite number of beads (𝑃 → ∞), the quantumnature of the nuclei
is reproduced. During PIMD simulations, we cannot use an infinite number of replicas
to denote every atom, so, in practice, the number of beads is a convergence parameter
that needs to be carefully considered for accurately capturing the NQEs. This means
that a PIMD simulation quickly becomes expensive, especially for complex materials
which generally need large simulation cells. For this reason, the PIMD method is im-
plemented into GPUMD, as presented in paper II, which allows for the combination of
PIMD with the NEP formalism described in Sect. 4.1.2. This facilitates efficient large-
scale PIMD simulations, allowing for computation of observables that include NQEs,
even for complex systems.
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Figure 4.4:The full width at half maximum for the first partial RDF peaks in water at 300K, as a
function of the number of beads used in the PIMD simulation. The H-H and O-H lines are also
part of Fig. 7 in paper II.

As an example, the convergence behavior of the full width at half maximum (FWHM)
values of the first peak in the partial RDFs of water are shown in Fig. 4.4. This illustrates
the larger effect ofNQEson light atoms, discussed inSect. 3.3, as thedifferencebetween
a PIMD simulation with 1 beads (classical MD) and 64 beads is the largest for the H-H
RDF (∼0.07Å), then for the O-H RDF (∼0.04Å), and almost nothing for the O-O RDF.
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4.4 Electrodynamic Simulations
To study macroscopic light-matter interactions computationally, Maxwell’s equations
(Eqs. (3.11)-(3.14)) are solved at the continuum level using the FDTD, or Yee, method
[103], as implemented in the MEEP software [104]. The Yeemethod is a finite-difference
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Figure 4.5:The Yee grid used for discretization of Maxwell’s equations.

approach for solving time-dependent partial differential equations, in which the six-
dimensional system in Eqs. (3.11) and (3.12) is solved by integration in time. To do so,
a discretization scheme called a Yee grid is used, where the components of the electric
field 𝑬 andmagnetic field𝑯 are placed in a staggered fashion (Fig. 4.5). Everymagnetic
field component is surroundedby the corresponding electric field components, and vice
versa. By ordering the field components on this three-dimensional grid and using the
leap-frog integration algorithm [56] that wasmentioned in Sect. 4.1, the values of 𝑬 are
known with a difference of half a time step compared to the values of𝑯 , meaning that
central-differences to second-order can be used to compute the derivatives in Eqs. (3.11)
and (3.12).
To perform these computations, a continuum representation of the studied system is

needed, which is placed in a finite cell with electrodynamic boundary conditions. There
are several different options of boundary conditions, including an artificial absorbing
medium with no reflection at its interface, called a perfectly matched layer [104]. This
boundary condition is employed in paper III, where a continuum representation of the
surfactant- and silica-covered gold NPs are defined as one part of the multi-scale ap-
proach, allowing for performing FDTD simulations with MEEP. The continuum repre-
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Figure 4.6: Extinction spectra calculated using FDTD in paper III for the different surfactant
phases in Fig. 2.2.

sentations are based on the geometry obtained in MD simulations. These simulations
yield the computed extinction spectra (Eq. (3.26)), revealing that the plasmonic reso-
nancepeak is sensitive to the surfactant-surfacephase (Fig. 4.6) andqualitativelymatch-
ing the observed behavior in plasmonic sensing measurements of the same system.
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5
Summary of Papers

Paper I
Dynasor 2: From Simulation to ExperimentThrough Correlation Functions

We present a substantial development of the DYNASOR software, which is designed for
the computationof spatially-resolved correlation functions introduced inSect. 3.2, such
as structure factors 𝑆(𝒒, 𝜔) (Eq. (3.8)) and current correlations 𝐶(𝒒, 𝜔). The paper ac-
companies version 2.X of the software, which has seen somemajor developments com-
pared to earlier versions. These developments include a completely new Python inter-
face, added support forweightingwith formfactors or scattering lengths (Eq. (3.9)) to fa-
cilitate comparison with experiment, and the implementation of new correlation func-
tions, such asmode projection ACFs and the spectral energy densitymethod. The paper
outlines both the underlying theory as well as the utility of DYNASOR through a com-
prehensive set of examples that range from ordered solid systems to both disordered
solid and liquid systems. This illustrates an advantage of MD-based correlation func-
tions over perturbative methods, which would not be applicable for the latter of these
systems. Computed correlation functions are also compared to experimentswithX-ray,
neutron, and electron probes, showcasing the versatility of the software, being applica-
ble both in fundamental research and for experimental planning.
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Paper II
Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolu-
tion potentials: Case studies on thermal properties of materials

The efficient implementation of PIMD into the open-sourceMD package GPUMD is pre-
sented. Using the NEP framework introduced in Sect. 4.1.2, the resulting computa-
tional cost of the PIMD simulations (introduced in Sect. 4.3) is comparatively low. This
allows for running large-scale simulations that account for NQEs, which we discussed
in Sect. 3.3.
The NEP-PIMD approach is demonstrated in the paper for different types of materi-

als. This includes solids of various degrees of complexity, such as elemental aluminum,
lithium hydride, and different metal-organic frameworks, as well as water to showcase
its application to a liquid system.
A number of structural and thermal properties are computed for the different mate-

rials, including lattice parameters, RDFs (see Fig. 3.2), thermal expansion coefficient
as well as phonon frequencies and damping parameters. The simulations confirm or
reveal how NQEs affect these systems and pave the way for running large-scale PIMD
simulations with MLIPs of the NEP form for other systems in the future.
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Paper III
In-situ Plasmonic Sensing of Surfactant Structures

Weemploy amulti-scalemodeling approach to gain insight into a complexmaterial and
also connect to experiment by proposing a non-intrusive, in-situ method for studying
the surface-phase behavior of surfactant structures. These surfactant structures, such
as bilayers or micelles, which we discussed in Sect. 2.1, have phase transitions that are
inherently slow, due to the large restructuring involved and the competition between
entropy and energy that comeswith being confined to a surface. Thus, they exhibit com-
plex behavior over long time and length scales, and reside at a solid-liquid interface.
The method we propose for studying the surface-phase behavior of the surfactant

structures relies on plasmonic sensing, in which the extinction spectrum (Eq. (3.26)) is
measured. As discussed in Sect. 3.4, this spectrum exhibits a peak at the plasmonic res-
onance of a nanoparticle, which is sensitive to its dielectric environment. The approach
offers access to not only structural information, but also the kinetics of the phase tran-
sitions between surfactant surface-phases. The multi-scale modeling approach we de-
ploy for showing that it is possible tomeasure the surfactant structures usingplasmonic
sensing includes an atomistic level, to find the relevant structures in MD simulations
(Sect. 4.1), and an optical response part using FDTD (Sect. 4.4) to show that the surfac-
tant structures are distinguishable using plasmonic sensing. Furthermore, the paper
contains experimental results from employing in-situ plasmonic sensing of surfactant
structures, which are in agreement with the multi-scale modeling outcome.
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6
Conclusions and Outlook

Having arrived at the final chapter, we are able to return to the fundamental questions
posed in Chapter 1, beginning with the first one.

How can insight be gained into multi-scale dynamics of complex materials? In par-
ticular, how can simulation and experiment be connected?

There are many computational techniques for studying multi-scale dynamics of com-
plexmaterials, and in this thesiswehaveencountereda selection;MDat theatomic level,
PIMD for including NQEs, and FDTD for solving Maxwell’s macroscopic equations. To
actually understand the dynamics, physically relevant observables must be computed
from the simulations. As we have discussed in the case of MD, spatio-temporal corre-
lation functions offer a versatile approach for gaining insight into the dynamics of a
material. Computing such correlation functions is the purpose of DYNASOR, the soft-
ware package of which substantial developments were presented in paper I. Further-
more, when computing such observables from simulations at low temperatures and/or
for light atoms, NQEsmust be accounted for, as their inclusion can have a drastic effect,
whichwe saw for, e.g., theRDFofwater aswell as other examples in paper II. In the case
of FDTD simulations, spectra for the scattering, absorption, or extinction of light can
be extracted, providing information about light-matter interaction and indirectly the
atomic structure, such as the LSPR of a NP.
These techniquesalsooffer several possibilities for experimental connection. Dynamic

structure factors, i.e., density-density correlation functions, have strong ties to scatter-
ing and diffraction experiments, as it is the quantity probed there as well. Weighting
computed structure factors with probe-specific cross sections to allow for amore direct
comparison is therefore one of the key developments of DYNASOR in paper I. In addi-
tion, computed scattering, absorption, or extinction spectra from FDTD can be directly
compared with experimental measurements of such optical spectra.
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The second fundamental question in Chapter 1 was:

How can these approaches be applied to study a complex system, such as one involv-
ing surfactant surface-phases?

In this complex system, a multi-scale modeling approach comprising MD and FDTD
proved successful for understanding the change in plasmonic response accompanying
a change in surfactant surface-phase. Thismulti-scale approach in paper III, combined
with experimentalmeasurements of the plasmonic response, showed that the structure
as well as the dynamics of the phase transitions of surfactant surface-phases are acces-
sible in situ by means of plasmonic sensing.

6.1 Outlook
As there is a vast range of scales at which materials in general, and complex materials
in particular, can exhibit dynamics of interest, this thesis is in no way comprehensive.
We could go to smaller scales than the ones treated here, investigating aspects of, e.g.,
electronic response. An example of where this would be relevant is the permittivity of
the surfactant in paper III,which could be computed at the electronic level throughDFT,
ideally in combination with methods such as GW [105, 106]. This would go beyond the
current approach of scanning a range of permittivities, and would add another level to
the multi-scale modeling approach currently containing an atomistic and continuum
level.
It would also be possible to go to larger scales. Sticking with the example of surfac-

tant surface-phases, if a surface phase diagram is established, it could be possible to use
this information to coarse-grain the surfactants and zoom out to simulate not only sur-
faces, as currently in paper III, but surfactant-covered NPs to investigate other aspects
affecting NP growth and howNPs arrange into larger supramolecular structures.
When determining which scales are of interest for computationally investigating a

complex material, the inclusion of certain scales necessitates the exclusion of others.
This always comes with a risk ofmissing some dynamics relevant to the investigation at
hand, so when choosing which techniques to combine into a multi-scale modeling ap-
proach for a particular system, these aspectsmust be carefully considered. Additionally,
there is a decision to bemade about which observables to compute. In this thesis, at the
atomic scale, the focus has been on spatially-resolved correlation functions such as the
dynamic structure factor. There aremany other possible observables, including the con-
ductivity obtainable through the temporal ACF of the ionic current, the IR absorption
spectrum available from the temporal ACF of the dipolemoment, or the Raman absorp-
tion spectrumvia the temporal ACFof the polarizability of a system. All of these are very
useful correlation functions-based quantities for gaining insight into the dynamics of
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a material, each with possibilities for connecting to different experiments, which can
elucidate distinct aspects of the dynamics of a complex system.
Computing correlation functions from MD comes with several convergence consid-

erations, some of which are discussed in Sect. 4.2. A possibility to overcome the issues
related to sampling would be to employ, e.g., Boltzmann Generators [107] to model the
entire PES at once or the Implicit Transfer Operator technique [108] for learning amul-
tiple time-scale surrogate of MD, making much longer time-scales available and pro-
viding a platform for accelerating the computation of correlation functions and related
observables.
For the complex system of interest in this thesis—aqueous surfactant structures on

inorganic surfaces—there are also several other aspects that would be interesting to ex-
plore. Tobeginwith, goingbeyond the classical interatomicpotential by trainingaMLIP
for the full systemwould provide several advantages. Thiswould allow for bonds to form
and break during theMD, which is particularly relevant for the system at hand because
ionic exchange at the surface is thought to play a role in the adsorption of surfactants
[29]. Furthermore, a MLIP with an additional treatment of the long-range contribu-
tions discussed at the end of Sect. 4.1.2, could facilitate simulations during which the
charge state of the ions is allowed to vary, providing additional insights into the growth
mechanism of the underlying NP and possibly aiding in the investigation of why Br–

and Cl– appear to have different effects on the surfactant structures and NP growth
[35, 109–111].
On a final note, it is important to emphasize that themulti-scalemodeling of dynam-

ics in complex systems involves a large methodological “toolbox” and many choices to
make on how to combine different techniques. This is not only true for systems contain-
ing surfactant surface-phases, but whenever we aim to computationally investigate a
complexmaterial with interesting structure and dynamics of multiple spatio-temporal
scales. For this reason, the advancement of methodologies in combination with the ap-
plication of them is crucial, bridging length and time scales and gradually extending the
interpretative and predictive possibilities in the direction of complex materials. This is
actively pursued, so, for now, the tale of scales is far from concluded.
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