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A B S T R A C T

A ship’s fuel consumption is significantly affected due to ship motions caused by waves and wind when sailing 
under ocean weather conditions. An essential step to develop certain energy efficiency measures is to understand, 
model and estimate how much extra fuel consumption is caused by encountering weather conditions, and from 
which components of a ship’s energy system that extra consumption is attributed to. In this study, experimental 
tests of added resistance in waves during the past decades in open literature are collected and a Gaussian process 
regression (GPR) model is developed to describe a generic ship’s added resistance in head waves. The proposed 
GPR model achieves better prediction accuracy than semi-empirical formulas (white box) and gives more 
rational transfer function of added wave resistance coefficient than those produced by the artificial neural 
networks (ANN), especially in the short-wave regime. The proposed GPR model is integrated into a grey box 
prediction framework for ship fuel consumption using several years of performance monitoring data collected 
onboard a chemical tanker. The prediction results indicate an improvement in model performance when moving 
from the white box to the grey box model, with R2 increasing by 38 % and Root Mean Square Error (RMSE) 
decreasing by 65 %. Finally, the investigation of weather impact on the ship’s extra fuel cost is demonstrated by 
the proposed model.

1. Introduction

The International Maritime Organization (IMO) adopted its updated 
GHG strategy to significantly reduce GHG emissions from ships [1]. The 
new targets were set to reduce 20 % by 2030, 70 % by 2040, and achieve 
zero emissions by 2050. The technical indicator, i.e., Energy Efficiency 
Existing Ship Index (EEXI) [2], and the operational indicator, i.e., Car
bon Intensity Indicator (CII) [2], were introduced to monitor the 
decarbonization process in the shipping industry. Before the supply of 
zero-emission fuel is fully available for the shipping market by 2050 [3], 
market uptakes of measures to increase shipping energy efficiency are 
essential to fulfil the intermediate IMO emission goals [1]. Since most of 
a ship’s service time is sailing at sea, the weather conditions contribute 
to about 15 % of a ship’s total fuel consumption [4]. Furthermore, for 
the better development, installation, and evaluation of energy efficiency 
measures [5], it is essential to understand and model how the encoun
tered sea environments affect different energy system components [4]. 
These effects, often referred to as the “weather impact”, include added 

resistance, varying propulsion efficiency, and involuntary speed re
ductions, all of which influence the values of CII and EEXI [6]. One 
challenging task to evaluate a ship’s weather impact is accurate 
modelling and estimating added resistance in waves, which causes 
additional fuel consumption [7]. Various models/methods are available 
for such estimation, such as experimental model tests, computational 
fluid dynamics (CFD) and potential-flow based numerical analysis 
[8–11]. Tank model tests are often regarded as the most reliable pre
diction method for added resistance, but they are very expensive in 
terms of test facilities and personnel costs. High-fidelity CFD simulations 
may provide reliable results but are time-consuming and computation
ally intensive. Lee et al. [12] employed CFD simulations to analyze 
diffraction-induced added resistance and wake characteristics in head 
waves for two ship types. Potential flow methods are often used to 
evaluate added wave resistance. For example, Kim and Kim [8] utilized a 
higher-order Rankine panel method to predict added resistance on ships 
in irregular waves. Kim et al. [13] conducted experimental and nu
merical investigations using potential flow and CFD methods to evaluate 
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the motions and added resistance of an LNG carrier in oblique waves. 
Chen et al. [14] applied the Taylor Expansion Boundary Element 
Method to solve 3D unsteady potential flow for ships in waves to predict 
wave forces. However, these methods are still time-consuming and 
require comprehensive data of hull geometry.

Alternatively, empirical or semi-empirical formulations are often 
used for fast prediction of added resistance in waves for the ship design 
purpose [11], which recommends an integration method to estimate a 
ship’s added resistance in waves based on the empirical formulas to 
describe the added wave resistance transfer function, i.e., wave resis
tance under a series of wave frequencies. Fujii and Takahashi [15] was 
the first to introduce the semi-empirical formulas to account for the 
added resistance caused by wave reflection. Liu and Papanikolaou [10,
16] improved existing formulas by adding correction terms for ship 
characteristics such as waterline entrance angle and block coefficient 
various ship types. Lang and Mao [17] proposed a semi-empirical model 
for predicting add wave resistance. They introduced a correction factor 
for significant wave height to account for high wave impacts due to 
nonlinear ship motions at rough sea environments. The parameters 
within those empirical formulas were often derived from many model 
tests by some least square. However, obvious discrepancies cannot be 
avoided due to the characters of least square used in the empirical 
formulas.

For the past few years, artificial neural networks (ANNs) have been 
utilized for estimating added resistance. These models offer computa
tional efficiency and accuracy [18,19]. ANNs perform fast predictions 
through simple nonlinear operations at each neuron, fitting any function 
by combining a large number of neurons. Cepowski [18] investigated 
the application of two-layer ANN to predict added resistance in regular 
head waves, using ship design parameters like length, breadth, draught, 
and Froude number. The developed ANN was trained based on pub
lished experimental data and presented as a mathematical function. 
Cepowski [20] further advanced this research by developing a set of five 
ANNs trained on fundamental design parameters. Results indicated that 
using a set of five ANNs provided more accurate estimates than a single 
ANN. Duan et al. [19] proposed a method using deep feedforward neural 
networks (DFNs) with optimized activation function for fast prediction 

of added resistance in heading waves. They addressed the complexity of 
semi-empirical formulas and the limitations of single hidden layer 
neural networks. Sun et al. [21] designed an ANN to estimate ship 
resistance in ice-covered waters. The Radial Basis Function - Particle 
Swarm Optimization (RBF-PSO) algorithm with seven features was 
found to set as input variables. While the above ANN based methods 
treated each test, i.e., wave resistance at each individual wave frequency 
as an independent sample/inputs, the correlation of added wave resis
tance under a series of wave frequency for the same speed should be 
reflected.

In this study, we developed a Gaussian process regression (GPR) 
model to predict the added wave resistance for ships. Like the ap
proaches by Cepowski [20] and Duan et al. [19], our data comes from 
experimental tests published in open literature. These experimental 
datasets are organized according to individual experiments. Thus, in 
each experimental dataset, the data points have high correlations with 
each other. This GPR-based approach is motivated by the need to 
effectively capture these correlations through kernel functions, 
improving the model’s predictive performance [22]. Additionally, the 
inputs of the GPR model are expanded to include more ship geometry 
features. To ensure robust validation, we defined several data parti
tioning strategies for model’s training and test. The proposed GPR model 
is subsequently integrated into a grey box prediction framework for ship 
fuel consumption using several years of performance monitoring data 
collected onboard a chemical tanker. The workflow of this paper is 
shown in Fig. 1.

The rest of the article is organized as follows. Section 2 introduces 
the method to evaluate fuel consumption due to weather impact, and 
different models for predicting added wave resistance. The dataset used 
for training the model is described in Sections 3. The results of wave 
resistance prediction are presented in Section 4. In Section 5, the 
application of proposed method is proposed for ship performance pre
diction, and a grey box model is proposed for ship fuel consumption 
prediction and weather impact analysis.

Fig. 1. Workflow of this paper.
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2. Ship technical and operational indicators

During navigation, the ship’s propulsion system provides power 
while the ship encounters resistance from the environment. In addition 
to wave resistance, the ship also experiences calm water resistance, wind 
resistance, and other forms of resistance, as shown in Fig. 2.

2.1. Problem formulation of weather influence factor fw

Ship fuel consumption during navigation FC can be considered as 
consisting of calm water resistance FCcalm, wind resistance FCwind, and 
wave resistance FCwave. The sum of the latter two can be considered as 
fuel consumption due to weather conditions FCweather: 

FC= FCcalm +(FCwave + FCwind)= FCcalm + FCweather (1) 

Now we can define weather influence factor fw: 

fw =
FCweather

FC
(2) 

To get a good estimation of such fw, calm water resistance and added 
resistance due to wind and waves are needed to be estimated. We define 
W = [Hs,Tz, θ,Vwr,ψ ] to describe weather conditions, where Hs is the 
significant wave height; Tz is the mean wave period; θ is the mean wave 
direction; Vwr is the relative wind speed; ψ is the relative wind direction. 
The fuel consumption under the weather condition of W and ship speed 
V is estimated by: 

FC(V,W)=
Pe(V,W)

η × SFOC=
(Rcalm(V) + Rweather(V,W)) × V

η × SFOC

(3) 

where SFOC is the specific fuel consumption, η represents the power 
transition coefficient, which is a composite coefficient derived from the 
product of various efficiencies, including shaft transmission efficiency, 
rotative efficiency, open water propeller efficiency, and ship hull effi
ciency. The calm water resistance primarily consists of frictional resis
tance caused by the viscosity of the water and wave-making resistance 
due to pressure changes around the hull. According to the semi- 
empirical formula recommended by the ITTC [23], the calculation for
mula for still water resistance is as follows: 

Rcalm =
1
2
Cf ρwSVcw

2 (4) 

where Cf represents the calm water resistance coefficient of a specific 
vessel from towing tank tests; ρw denotes the density of seawater; S is the 
wetted surface area; and Vcw is the calm water speed.

2.1.1. Added resistance due to wind
The resistance increase due to the wind effect on the ship above 

waterline and superstructure, is predicted using formula Eq. (5), given 
by the International Organization for Standardization [24]: 

RAA =
1
2

ρA
[
CA(ψ)AXVVwr

2 − CA(0)AXVVG
2] (5) 

where ρA represents the air density; AXV denotes the projected area of the 
portion of the hull above the waterline on the transverse section; Vwr is 
the relative wind speed, ψ indicates the angle between the wind direc
tion and the ship’s heading, and VG is the ship’s speed. The wind 
resistance coefficient CA measured through wind tunnel tests is given by 
shipowners for this study. The above added wind resistance is relatively 
easier to estimate in comparison with the added wave resistance. In the 
following, different ways to estimate the added resistance due to wave 
will be presented, as well as the one proposed by this study.

2.2. Added resistance due to wave

In Liu and Papanikolaou (2016), a fast estimation method of added 
resistance due to wave is introduced and compared to model tests, with a 
good agreement. The actual sea state experienced by a ship during 
navigation consists of irregular waves, which can be considered as a 
superposition of a series of regular waves with frequencies ω. Therefore, 
the average resistance of a ship in irregular waves (Raw) can be estimated 
by integrating the transfer function of added resistance in regular waves 
(Raw) with the wave spectrum S(ω). The transfer function of added 
resistance in regular waves at different speeds can be obtained using 
different methods (such as semi-empirical formulas, black-box models, 
and CFD). The wave spectrum S(ω) is characterized by the significant 
wave height (Hs) and the characteristic wave period (T), which describe 
the actual sea conditions. The total added resistance in irregular waves 
due to wave spectrum S(ω) can be computed by the linear integration of 
the resistances from its regular wave components as shown: 

Raw(V,W) =2
∫∞

0

S(ω|W)
Raw(w|V,W)

ζa(ω)
2 dω (6) 

Caw(w|V,W) =
Raw(w|V,W)

ρwgζ2
aB2
/
L

(7) 

Where Caw is the nondimensional transfer function of added wave 
resistance in regular waves; B is the breadth of the ship; ζa is the wave 
amplitude. In this study, the JONSWAP wave spectrum is employed for 
the calculations, and it is defined as follows: 

S(ω)=
320Hs

2

T4
p ω5 exp

(
− 1950
T4

p ω4

)

γ
exp

[
− (ω− ωp)

2

2σ2ω2
p

]

(8) 

where Hs is the significant wave height; Tp is wave peak period; γ is extra 
peak enhancement factor; ωp is spectral peak frequency; σ is spectral 
width parameter.

Fig. 2. Resistance component for ship navigation.
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2.2.1. Semi-empirical models for Caw transfer function
The changing of added wave resistance on a ship depends on factors, 

including hull geometry, operating conditions, and wave characteristics. 
Regarding the nondimensional transfer function for mean resistance in 
regular waves, its primary determinants are wave frequency, heading, 
and speed. Thus, different methods’ performance for predicting Caw are 
usually assessed by grouping the prediction according to Froude number 
and wavelength ratio for different ship types. For developing semi- 
empirical models, Liu and Papanikolaou [10] initially introduced a 
statistical approach that merges Faltinsen [25] with Jinkine and Ferdi
nande [26]. In their subsequent studies [16], they incorporated 
heading-based trigonometric functions into the original formulation and 
broadened its applicability to shallow draft, ballast conditions, and 
arbitrary wave scenarios through regression analysis on extensive 
experimental data. Meanwhile, Lang and Mao [17] proposed an added 
wave resistance model for head seas, drawing on Tsujimoto et al. [27] as 
well as Jinkine and Ferdinande [26]. Their model was influenced by 
equations presented by Liu and Papanikolaou [10], and certain calcu
lations were refined using relevant experimental datasets. Later, this 
model was updated to account for arbitrary waves by incorporating an 
encountered-frequency correction factor [28]. For detailed formulas and 
application guidelines, see the original publications [16,17].

2.2.2. Data-driven models for Caw transfer function and architecture of 
GPR model

Unlike semi-empirical formulas, data-driven models rely entirely on 
data to modelling. For added wave resistance coefficient prediction, all 
data-driven approaches reported to date in this field have been based on 
neural networks [18–20]. The choice of input variables is more flexible 
and driven by the available dataset; nonetheless, nearly all models 
incorporate the Froude number and the principal geometric parameters 
(length, beam, and draft) as inputs.

In this study, we develop a GPR model to predict additional wave 
resistance for ships. The experimental data derived from public litera
ture is organized according to individual experiments, resulting in high 
correlations within each dataset. Through the implementation of this 
approach, the correlations within the dataset can be effectively captured 
for better model performance. The input and output variables are shown 
in Table 1.

In Table 1, LE is length of entrance. LE is described as the horizontal 
distance from the point where the waterline surface length attains 99 % 
of the ship’s breadth to the Forepeak, which is considered as an 
important parameter for wave resistance prediction in semi-empirical 
formulas developed by Liu and Papanikolaou (2019), and Lang and 
Mao [17], as shown in Fig. 3. The variables in GPR model are all 
dimensionless, which is necessary because the numerical range of 
different input parameters varies significantly. For example, ship length 
L values range from 121 to 325, while Fn values are between 0 and 0.5. If 
left unaddressed, this issue could result in the model failing to learn 
input information with smaller numerical values.

Gaussian process regression is a non-parametric Bayesian approach 
to regression problems [22], which can provide probabilistic predictions 
along with uncertainty estimates. A GPR model can be defined as follows 
with an i-th input xi: 

Ci
aw = f(xi) + εi (9) 

where εi ∼ N
(
0, σ2

n
)
, σ2

n is the noise variance. The unknown latent 
function f( ⋅) is assumed Gaussian process prior where f( ⋅) ∼ G P (μ( ⋅),
k( ⋅)). μ( ⋅) refers to the mean function, which is usually set to zero for 
simplicity, and k( ⋅) is the covariance (kernel) function. All the input 
variables in the training data set are denoted as: 

X={xi, i=1,…, n} (10) 

f =
[
f1, f2, f3,…, fn

]T
= [f(x1), f(x2), f(x3),…, f(xn)]

T (11) 

where f ∼ N (μ(X),K(X,X)). All the values of Caw in the data set can be 
defined as: 

Caw =
{
Ci

aw, i=1,…, n
}

(12) 

Caw ∼ N
(
μ(X),K(X,X) + σ2

nI
)

(13) 

where Caw is joint Gaussian distributed, i.e., and I is an identity matrix.
For a new input x* to be predicted, a prior assumption is that there 

exists the same Gaussian distribution, and Caw and f(x*) follow the joint 
Gaussian prior distribution: 
[

Caw
f*

]

∼ N

((
μ(X)
μ(x*)

)

,

(
K(X,X) + σ2

nI K(X,x*)

K(x*,X) k(x*,x*)

))

(14) 

In a Bayesian framework, the key equation of GPR is the conditional 
distribution given the observed data samples, described as: 

f*
⃒
⃒X,Caw,x* ∼ N

(
f*,Σf*

)
(15) 

where: 

f* =K(x*,X)
[
K(X,X) + σ2

nI
]− 1Caw (16) 

Var (f*)= k(x*,x*) − K(x*,X)
[
K(X,X) + σ2

nI
]− 1K(X, x*) (17) 

where f* is the predicted mean value of wave resistance coefficient based 
on input x*, and Var (f*) is the variance to incorporate the uncertainty 
into the predictions. Using the above method, the mean value f* and 
variance Var (f*) of wave resistance coefficient for different ship types 
under various speed and wavelength can be predicted.

3. Estimation of various models for Caw

In this study, the list of ship particulars with experimental tests used 
here is shown in Table 2.

3.1. Experimental database for modelling

In this context, [λ/L, Fn, CB, B/T, L/B, Kyy/L, LE/L] serve as model 
inputs, while the output is the non-dimensional wave added resistance, 
represented as Caw. The datasets used for predicting added wave resis
tance in head seas comprise model experimental data from published 
studies. This dataset comprises 2096 samples from approximately 45 
ships and 175 distinct experimental cases. Fig. 4 illustrates the distri
bution of these parameters for the ships used in the study.

For example, the datasets collected from Chen et al. [29], Lee et al. 
[30] and Park et al. [31] are shown in Fig. 5. Data points from different 
experiments can be regarded as independent. But they will be highly 
correlated if coming from the same test, revealing a distinct trend of Caw 
changing with λ/L.

Table 1 
Input and output variables in the GPR model for Caw prediction.

Description Attributes

Input Wavelength-to-ship length ratio λ/L
Froude number Fn

Block coefficient CB

Beam-to-draft ratio B/T
Non-dimensional radius of gyration in yaw Kyy/L
Effective ship length ratio LE/L

Output Added wave resistance coefficient Caw
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3.2. Different strategies of splitting data for model training

The entire input set is a matrix with dimensions of 7 × 2096. To 
investigate the potential of different models, we designed two data 
partitioning strategies, as shown in Fig. 6: 

• Strategy 1: The entire dataset is randomly shuffled, and then 10 % of 
the data is randomly selected to form the test set.

• Strategy 2: Entire sets of experimental data for different ship types (e. 
g., KVLCC, S175 and Hull 2020, etc.) are randomly selected to form 
the test set, comprising approximately 10 % of the total dataset, 
which means a complete set of experimental data for any ship type 
might be included in the test set. The main parameters of these ship 
types, such as length, breadth, draft, and block coefficient, are listed 
in Table 2. This strategy allows for a focused evaluation of the 
model’s performance on ship types.

To measure the accuracy of the predictive models, the Root Mean 
Square Error (RMSE) and R2 are employed to assess their performance: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pi − ai)

2

n

√
√
√
√
√

(19) 

R2 =1 −

∑n

i=1
(pi − ai)

2

∑n

i=1
(ai − a)2

(20) 

Fig. 3. Definition of LE.

Table 2 
Main parameters of the studied ships.

Ship type L (m) B (m) T (m) CB

KVLCC 320 58 20.8 0.81
S175 175 25.4 9.5 0.57
KCS 230 32.2 10.8 0.65
Hull 2020 187.3 32.28 12 0.82
JBC 280 45 16.5 0.86
SR108 3.5 0.508 0.19 0.57
Aframax 248 43 14.3 0.84
SCb87 178 32.26 14.46 0.87
Supramax 192 36 11.2 0.81

Fig. 4. The distribution of input and output parameters in the datasets.

Fig. 5. Data points of experimental tests collected from public literature.
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Where pi is the predicted value; ai denotes the actual value; n is the 
number of samples.

4. Overall results by different strategies 1&2

ANN and CTH models are utilized as comparisons to evaluate the 
performance of the GPR model. These models are chosen based on their 
established characteristics and application in wave resistance predic
tion. The CTH method refers to the semi-empirical formulas proposed by 
Lang and Mao [17].

4.1. Results using data partitioning strategy 1

For GPR modelling, we employ a four-fold cross validation to 
determine the hyperparameter settings, which is a commonly used 
method for machine learning method. By dividing the dataset into four 
subsets, each sample in the dataset serves as a validation set once. The 
model is then built based on the scores of the four different validation 
(unseen) datasets. This approach can help to avoid overfitting and 
improve the model’s generalization capability. The Matern kernel [32] 
is chosen in this study from various covariance functions to calculate the 
kernel matrix.

50 samples, representing 25 % of the test set, are selected to provide 
detailed comparisons between predictions from the different models, as 
illustrated in Fig. 7. The results of whole test set are illustrated in Fig. 8. 
The RMSE values for the GPR, ANN, and CTH models are 0.95, 0.97, and 
2.45, respectively. These results indicate that the semi-empirical for
mula method (CTH model) exhibits bigger uncertainty compared to the 
machine learning approaches (GPR and ANN). This result further sug
gests that, when modeling solely on the existing database, the predicted 

wave resistance coefficients will be accurate for ships whose ship types 
are included within the database. Moreover, as the database is contin
uously expanded with new entries, the model’s predictive accuracy will 
further improve. This capacity for iterative update is an important 
advantage of machine learning–based approaches over semi-empirical 
formula methods.

4.2. Results using data partitioning strategy 2

The strategy is to test the models’ ability to predict resistance co
efficients and plot reasonable resistance coefficient curves for different 
ship types and Froude numbers. Moreover, because the same ship type 
may be tested at different Froude numbers, it is possible during data 
selection to extract all test data corresponding to a particular ship type at 
a specific Froude number. In the extreme case where a ship type has only 
one set of experimental data, all those data may end up in the test set. 
Thus, this data splitting strategy can test the extrapolation capabilities of 
the two machine learning methods when dealing with ship types and 
Froude numbers that have not been observed. After several tests, the 
matern kernel is chosen for this case to calculate the covariance matrix.

The results on the test set obtained using Strategy 2 are presented in 
Figs. 9 and 10 and Table 3. It can be seen from the results that all three 
methods can capture the characteristic that the peak point of wave 
added resistance is around λ/L = 1, because the body’s response to a 
wave field reaches its peak when the dimensions of wave are comparable 
to the body’s dimensions. The CTH model achieves a “perfect” fit for the 
wave resistance coefficient curves of both the S175 and HSVA. This is 
because the CTH model uses similar datasets and statistical methods to 
determine its parameters [17]. Thus, for these two ship types, the CTH 
model can be regarded as an ideal model and serves as a benchmark for 
evaluating the other two machine learning models. For the S175 ship, 
the ANN model appears to overfit the data points, producing a strange 
curve shape. In contrast, although the GPR model exhibits slightly 
weaker predictive performance compared to the ANN, it generates a 
more reasonable curve. Furthermore, in the short-wave region, the GPR 
model successfully captures the correct trend, whereas the ANN model 
remains nearly constant. In estimating the HSVA wave resistance curve, 
the GPR model performs nearly as well as the ideal CTH model across 
long-wave, short-wave, and regions near λ/L = 1. In addition to these 
two ship types, data for KVLCC are also incorporated into the CTH 
model; however, it cannot match the performance to GPR model, 
whereas the ANN model once again exhibits peculiar behavior near λ/L 
= 1. A possible explanation is that even for the same ship type, varia
tions in experimental conditions can lead to different results. Thus, for 
these three ship types which have benchmarks, GPR model gives lower 
errors and produces a reasonable curve shape.

Aside from the S175, HSVA, and KVLCC, the CTH method does not 
include test data for other ship types considered in this study, thereby 

Fig. 6. Data partitioning strategies.

Fig. 7. The comparison between different methods and true values for 50 
samples (25 % of test set) using data partitioning Strategy 1.
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Fig. 8. Results using data partitioning Strategy 1.

Fig. 9. Results for S175, HSVA and KVLCC using data partitioning Strategy 2.
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naturally failing to predict their wave resistance coefficients, as shown 
in Fig. 10. Nevertheless, the wave resistance curves generated by the 
CTH model still provide a valuable reference for examining the overall 
trend.

Both the ANN and GPR models exhibit good predictive accuracy. 
However, the ANN model still fails in estimating the shape of the wave 
resistance curve, particularly in the short-wave region, where most of 
the ANN-generated curves appear as straight lines. In contrast, the GPR 
model often captures the correct variation trend. Moreover, when pre
dicting the JBC wave resistance curve, only the GPR model produces 
acceptable results, while the other two methods fail. From the results 
above, the Gaussian process regression (GPR) model outperforms the 
artificial neural network (ANN) both in predictive accuracy and in 
plotting realistic curves for the wave resistance coefficients. Because the 

wave resistance coefficients exhibit an obvious correlation across 
consecutive wavelength/frequencies, the GPR model can capture this 
inherent dependency via its kernel function. In contrast, a standard ANN 
approach treats each sample as independent, which hinders its ability to 
reflect nature of wave resistance.

5. Application in ship performance prediction and weather 
impact

Due to environmental and economic considerations, the shipping 
industry has a growing demand for fuel consumption prediction under 
operational conditions. Given this background, reliable ship perfor
mance prediction in waves is crucial for ensuring optimal vessel 
operation.

In this section, the proposed GPR model is integrated into a ship 
performance model to calculate the fuel consumption during the ship’s 
voyage. The results are then compared with full scale measurement data 
from a chemical tanker equipped with various sensors and devices to 
determine the deviation between the estimated and actual power. The 
weather impact on fuel consumption is also investigated in this section.

5.1. Case study full-scale measurements and metocean data

A 45000 DWT chemistry tanker with both self-propulsion test results 
and full-scale energy consumption measurements shown in Fig. 11 will 
be used for this study. This chemical tanker is equipped with various 
sensors and devices for data collection, with data being stored every 

Fig. 10. Results for Supramax, Afamax, 2020 Hull, SR108, Scb87 and JBC using data partitioning Strategy 2.

Table 3 
RMSE of different methods.

Model Fn GPR ANN CTH

S175 0.15 0.53 0.39 0.55
JBC 0.156 0.34 1.84 5.75
KVLCC 0.1 0.69 0.87 1.25
Supramax 0.17 0.71 0.61 1.25
HSVA 0.233 0.68 086 0.64
Aframax 0.156 0.39 0.69 2.07
2020 Hull 0.12 0.20 0.22 1.85
Scb87 0.166 0.45 0.54 1.48
SR108 0.25 0.88 0.82 2.21
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second. The primary variables collected include propulsion system pa
rameters (shaft power, torque, and RPM); navigational and operational 
information (latitude, longitude, course over ground, heading, draft at 
the bow and stern, speed over ground, and speed through water). 
Additionally, the ship is equipped with a data cleaning system that 
performs data cleaning on the raw measurements every 15 min. The self- 
propulsion model tests were carried out during her design stage to 
investigate the engine power needed for the vessel. Here it will serve as a 
baseline of ship power required for operation in calm water conditions. 
The main dimension of the ship is listed in Table 4.

Environmental information encountered by the ship during its 
voyage is needed for calculating the resistance. In this study, wind 
speed, wind direction, mean wave direction, wave period, and signifi
cant wave height are obtained from the European Centre for Medium- 
Range Weather Forecasts (ECMWF) reanalysis dataset, ERA5. Current 
velocity data were sourced from the Copernicus Marine Service. All data 
are based on a spatial resolution of 0.25 × 0.25◦, with a temporal res
olution of 24 h for current velocity data and hourly for other data. The 
environmental data encountered by the vessel can be interpolated based 
on the ship’s location and time to obtain the actual encountered 
conditions.

The entire dataset spans from 2014 to 2019. The raw measurements 
have been resampled at 15-min intervals and took the average of each 
interval, resulting in a total of 55,251 records. 5410 correspond to head 
sea conditions (in this study, relative wave angles between 0◦ and 10◦

are considered as head seas). Fig. 12 displays the ship’s trajectories 
during this period, with the waypoints encountered by head seas high
lighted. Fig. 13 illustrates the probability of distribution of various 
relative wave angles encountered during navigation. The dataset 
employed in this section encompasses diverse navigational routes, 
metocean conditions, and operational strategies. After removing outliers 
and observations recorded during non-sailing periods, the final dataset 
comprises 3936 observations.

Moreover, in addition to ship’s principal dimensions and perfor
mance measurements, the shipowners provided baseline data from both 
model tests and sea trials—namely, the calm water resistance curve and 
wind resistance coefficients (Fig. 14). The wind resistance coefficient 
CAA shown in Fig. 14 was measured in wind tunnel tests, while the calm 
water resistance and propulsive efficiency η was obtained from self- 
propulsion trials at the design draft across the operating speed range. 
The variables retained for subsequent modelling are shown in Table 5.

5.2. Comparison of a white box model with full-scale measurements

In a white box model, various ship resistances are determined in 
terms of ship speed, such as speed through water, metocean conditions 
(wind, wave, and current), etc. [17]. The engine shaft power is then 
estimated by effective propulsive power divided by various ship pro
pulsion efficiencies [33]. Finally, fuel consumption is obtained through 
SFOC as in Eq. (3) [33]. In this study, we treat the GPR and 
semi-empirical models used for calculating fuel consumption as white 
box model based on prior knowledge (ship resistance and energy 
transfer), as shown in Fig. 15. Fig. 16 presents an example of fuel con
sumption estimations for head seas during the case ship’s voyage, and 

Fig. 17 shows the distribution of estimation residuals, indicating that 
most estimates are underestimated. One potential cause of this under
estimation could be the ship’s extensive motions in rough seas, which 
may cause the propeller to emerge from the water, thereby reducing 
propulsion efficiency. Another possible reason is the ship’s lack of reg
ular maintenance in dry dock, leading to significant hull and propeller 
fouling. Furthermore, as mentioned before, the dataset spans a five-year 
period during which ship performance varied considerably; thus, these 
imprecise estimates are foreseeable. Moreover, we can assume that in 
actual operations, a ship’s fuel consumption increases nonlinearly with 
increasing resistance.

5.3. A grey-box model for improving fuel consumption prediction

The uncertainties (the significant underestimation) observed in 
Figs. 16 and 17 may suggest that additional factors remain unaccounted 
when computing fuel consumption, as well as other nonlinear re
lationships within the ship propulsion system that require further 
investigation. Furthermore, since calm water resistance accounts for the 
largest proportion (as shown in Fig. 18), there is a high possibility that 
this discrepancy arises from the estimation of calm water resistance.

Because of bad prediction performance of white box model, a deep 
neural network (DNN), a black-box model, is introduced to model the 
residuals of the white box model, thereby forming a grey-box model [34,
35]. The grey-box model has two advantages for predicting fuel con
sumption: (1) it achieves higher predictive accuracy for most samples 
compared to the white box model, and (2) by incorporating prior 
knowledge, it has better extrapolation performance relative to the 
black-box model [36].

Similar grey box modelling approaches were investigated by various 
scholars in literature. For example, Leifsson et al. [37] first proposed 
serial and parallel grey box structures for ship fuel consumption pre
diction, showing that they outperform white box models in interpolation 
and black box models in extrapolation. Coraddu et al. [38] introduced a 
grey box method that reduces reliance on historical data. The authors 
conducted feature ranking analysis to check the physical plausibility of 
the model and ultimately applied the model as an online 
trim-optimization tool. Odendaal et al. [39] built a serial grey box model 
whose predictive accuracy and extrapolation capability exceeded those 
of black box models, although its performance still depended on the 

Fig. 11. The ship (left) and her model test (right) for case study.

Table 4 
Main parameters for model tests to determine engine power in calm water 
conditions self-propulsion tests for two loading conditions with model scale is 
1:24.

Main parameters Value

Length L [m] 176.0
Breadth B [m] 32.2
Designed draft T [m] 11.0
Maximum continuous power [kW] 8200
Deadweight DWT [tons] 46067
Wetted surface [m2] 8166
Non-dimensional radius of gyration in yaw Kyy [− ] 0.25
Block coefficient CB [− ] 0.80

C. Zhang et al.                                                                                                                                                                                                                                   Energy 328 (2025) 136533 

9 



strength of dynamic input–output correlations in the white box 
component. Duan et al. (2025) introduced a methodological innovation 
in grey box modelling by designing a two-stage stacking framework that 
enhances predictive performance. By classifying operating conditions 
based on preliminary prediction errors, Fan et al. [36] employed 
Bayesian optimization to calculate optimal weights for each category 
and aggregate these weights for the final fuel consumption predictions. 

In this study, the parallel grey box structure is established to integrate 
the developed GPR model for added wave resistance and time-related 
variables from monitoring data to model ship fuel consumption.

A purely black-box model for predicting total fuel consumption from 
ship speed and metocean conditions is not applicable for this study, as it 
cannot estimate wave resistance. Thus, a pure black-box fuel con
sumption prediction model will not be developed in the subsequent 
sections. The structure of the proposed grey-box fuel consumption 
model is illustrated in Fig. 19, which employs a parallel approach. The 
output of the grey-box model, FCpred_G, is composed of the output from 
the white box model, FCpred_W, plus the residual predicted by the black- 
box model, where the residual is computed as the difference between the 
measured fuel consumption FCm and FCpred_W [40].

Fig. 12. Ship trajectories and waypoints encountered head seas from 2014 to 2019.

Fig. 13. The probability of different relative wave angles.

Fig. 14. Model test results of calm water resistance (left) and wind resistance coefficient (right).

Table 5 
Variables for fuel consumption calculation.

Description Data source

Engine shaft power [kW] Full-scale measurements
Speed through water [kn] Full-scale measurements
Heading [◦] Full-scale measurements
Mean draft [m] Full-scale measurements
Specific fuel oil consumption (SFOC) [g/kWh] Full-scale measurements
Significant wave height [m] Hindcast
Mean wave period [s] Hindcast
Wind speed [m/s] Hindcast
Wind direction [◦] Hindcast
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Artificial neural networks (ANNs) simulate the operational patterns 
of human brain neurons by integrating many artificial neurons. In ANNs, 
the combination of each artificial neuron incorporating simple linear 
computations and nonlinear activation functions can approximate 
complex mapping relationships [41]. Compared to standard ANNs, deep 
neural networks (DNNs) have more hidden layers and thus greater 
learning capacity, making them more suitable for the large-sample, 
multi-feature regression tasks in this study. The modeling problem of 
DNN in this paper can be defined as follows, assuming for the i-th input 
data xi: 

ri = fDNN(xi) + ρi (21) 

where ρi is the noise; fp( ⋅) represents the function of DNN model to 
predict residual ri by the n-dimensional input xi. After entering the 
hidden layer in DNN, the output of the hidden layer hj can be obtained: 

hj = fa

(
∑n

k=1

ωjkxk − θj

)

(22) 

where fa is the activation function; xk represents the k-th input variable’ 
s value; ωjk is the weight; θj is the threshold in this layer. The output of 
the hidden layer is then passed to the output layer, which produces the 
final prediction: 

r̂ = ga

(
∑l

j=1
ωjhj − bj

)

(23) 

where r̂ is the predicted residual; ga( ⋅) serves as the output-layer acti
vation; ωj and bj are the corresponding weights and bias terms. The 
prediction error (the difference between the true and predicted value) ε 
can be calculated as: 

ε=1
2
(r − r̂)2

=
1
2

[

r − ga

(
∑l

j=1
ωjfa

(
∑n

k=1
ωjkxk − θj

)

− bj

)]2

(24) 

The error ε aggregates the individual output deviations of all neu
rons. During back-propagation, this error is sent from the output layer 
toward the input layer using the designed learning rate, and gradient 
descent method updates to the weights and biases iteratively shrink the 
network error until it satisfies the preset tolerance [41]. The hyper
parameters of DNN are determined using Bayesian optimization, and the 
results are shown in Table 6. The training set and test set are split in a 7:3 
ratio, and all data has been standardized.

The prediction results of grey box model are presented in Fig. 20, 
with an R2 of 0.95, representing a 38 % improvement over the white box 
model, and an RMSE of 45.65, indicating a 65 % reduction in error. This 
reveals a significant improvement from the white box model to the grey 
box model. The white box model ensures that predictions follow the 
basic physical principles, while its necessity to accommodate generic 
applications disadvantages it when applied to individual ship. In 
contrast, the significant improvement of the grey box model is because 
the black box component forces the model to transition from a generic 
framework to a ship-specific scope.

As previously discussed, the data set used in this study spans a large 
time range, and the ship’s performance may change several times during 
this period. Thus, we consider including a time-related feature [42]. 
However, since the study focuses on head sea conditions, the dataset is 
not continuous in time. In addition, we prefer not to use “strong” fea
tures such as the speed at the previous time step (vt-1). The reason is that 
using vt-1 as a feature would limit the model’s applicability, making it, 
for instance, unsuitable for weather routing. There are various 

Fig. 15. Procedures for calculation fuel consumption.

Fig. 16. Estimation of fuel consumption of studied chemical tanker.

C. Zhang et al.                                                                                                                                                                                                                                   Energy 328 (2025) 136533 

11 



alternative ways to incorporate temporal aspects, such as developing 
separate models for different voyages. Our goal is to enable the machine 
learning model to “understand” that ship performance becomes more 
similar when data points are closer in time. Therefore, we simply 
convert the time of each data point into a numeric timestamp and add it 
as an input feature. The timestamp-featured grey box model has further 
improvement on prediction.

By incorporating the timestamp feature, the grey-box model has 
achieved an additional performance boost, with R2 increasing by 3 % 
and RMSE decreasing by 24 %, as illustrated in Fig. 21. This result in
dicates that even adding a “weak” feature, such as the timestamp, can 
improve model performance.

Although adding time-related features improves the model’s pre
diction performance, it limits its applicability—for instance, making it 
unsuitable for weather routing [43]. This study proposes grey-box fuel 
consumption prediction models both with and without time features for 
different purposes. The model without time features can be directly 
applied to weather routing since the inputs to the grey-box model are 
either known (e.g., metocean information) or decision variables (e.g., 
speed and heading) in weather routing. While, the model that includes 
time features usually has better prediction performance, which is more 

suitable for ship performance monitoring and real-time operational 
optimization. In this study, the grey box model is used without a time
table to predict ship fuel consumption, and the results are shown in 
Fig. 22. We can see from Fig. 22 that the grey box model’s predictions 
are reasonable, and the trend of fuel consumption varies with speed, 
draft, and wave height is consistent with real-world observations.

5.4. Weather impact on ship fuel consumption

The white box component of the grey box model can provide infor
mation, such as the various sources of resistance and the impact of 
weather on fuel consumption, for further applications. We calculate the 
distribution of wave-induced and wind-induced resistance when the 
case-study ship encountered head seas, as illustrated in Fig. 23, in which 
they show a clear positive correlation.

Weather-induced variations in resistance can lead to changes in a 
ship’s fuel consumption. Figs. 24 and 25 illustrate the relationships 
between the ratio of fuel consumption due to weather impact to total 
fuel consumption, significant wave height, sailing speed, and draft 
under head sea conditions. As shown in these two figures, the weather- 
induced fuel consumption increases with rising wave height but 

Fig. 17. Probability distribution of estimation residual.

Fig. 18. Wave resistance, wind resistance, calm water resistance, and speed encountered during voyage.
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decreases as sailing speed increases. The former phenomenon is intui
tive, since wave resistance generally grows with increasing wave height. 
The latter can be attributed to the fact that, at higher speeds, calm water 

resistance rises sharply, leading to a rapid increase in overall power 
demand. Thus, even though the additional resistance from wind and 
waves also increases, its relative proportion of the total resistance (or 
total fuel consumption) decreases.

As seen in Fig. 26, under head sea conditions, weather-induced fuel 
consumption can reach up to 39 % and averages around 8 %. These data 
demonstrate the impact of weather on fuel consumption, which is 
important for weather routing and for shipping companies seeking to 
reduce fuel costs.

Fig. 19. Structure of grey box model.

Table 6 
Hyperparameters for DNN.

Hyperparameters Selection

Number of hidden layers 5
Number of hidden layer neurons 48
Activation function ReLU
Learning rate 0.002

Fig. 20. Results of white and grey box model.
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6. Conclusion

Predicting the added resistance of ships in head waves using publicly 
available experimental data has long been a challenging task. In this 
study, we addressed the correlations within these datasets and proposed 
a GPR model for predicting wave resistance coefficients across multiple 
ship types.

First, we introduce the dataset used for modeling, the model inputs 
and outputs, as well as the correlations among data points from the same 
experimental series. We then describe the working mechanism of the 
GPR model proposed in this paper. To validate the model’s effectiveness, 
two different data splitting strategies are adopted. The simulation results 
show that, under a random splitting strategy, both the ANN and GPR 
machine learning methods outperform the semi-empirical method. For a 
customized dataset (Strategy 2), we evaluate all three methods in pre
dicting wave resistance coefficient curves for different combinations of 
ship types and Froude numbers, and the findings are as follows: 

• The semi-empirical approach can provide correct curve shapes but 
produces accurate estimates only for the ship types it considers.

• The ANN model achieves acceptable prediction errors for the wave 
resistance coefficients but fails to capture the curve shapes.

• The GPR method not only maintains sufficient accuracy but also 
captures the trends of wave resistance curves. In cases which have 
benchmarks (S175, HSVA, and KVLCC), its predictions and curve 
shapes are nearly on par with the “ideal” CTH model. Furthermore, 
the GPR model achieves satisfactory estimates even in situations (e. 
g., the JBC ship type) where both the ANN and CTH models fail.

Moreover, we incorporate the proposed GPR model into a white box 
model for estimating fuel consumption of a case study ship. The results 
indicate widespread underestimation, which lead us to introduce a grey 
box fuel consumption prediction model by integrating a DNN. The 
developed grey box model shows high accuracy for fuel consumption 
prediction. By applying the GPR model and the subsequent grey box 
model to the case-studied ship, the additional fuel consumption caused 
by weather conditions can be estimated, which may serve as a reference 
for ship energy saving and emission reduction.

It should be noted that the proposed GPR model sometimes performs 
incorrectly in the long-wavelength region. In future research, collecting 

Fig. 21. Results of timestamp-featured grey box model.

Fig. 22. The relationship between ship fuel consumption and external condi
tions (speed, draft, wave).
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more experimental data to enrich the model or incorporating the 
physical mechanisms of hull–wave interactions into the machine 
learning model could further enhance its generalization capability. 
Moreover, this study is currently limited to head seas. In future work, we 
will incorporate data collected at other wave encounter angles into the 
modeling framework to predict added wave resistance for arbitrary 
headings. To address the scarcity of data for wave encounter angles 
other than head seas, we will explore integrating physical mechanisms 

(e.g., semi-empirical formulations) within the machine learning 
approach. In addition, the influence of weather impact factors on the 
optimization of ship routing and speed will be investigated in future 
work.
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