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A B S T R A C T

To reduce the environmental impact of short sea shipping, this study introduces a two-stage propulsion power 
allocation method aimed at enhancing ship operational efficiency in various weather environments. The first 
stage utilizes a metocean score-based pruned explicit linear time (MS-PELT) algorithm to segment the trajectory 
into several legs based on metocean conditions, thereby minimizing frequent engine setting adjustments and 
simplifying the optimization process. In the second stage, a parallel coupling Dynamic Programming (PCDP) 
method is introduced to optimize power allocation in each leg using machine learning-based ship performance 
models. The proposed approach is evaluated using three years of full-scale operational data from a case study 
chemical tanker. Results show that the MS-PELT method outperforms the state-of-the-art multivariate clustering 
algorithm by providing practical and efficient segmentation. The optimized power allocation strategy demon
strates a promising average of 8 % emission and environmental impact reductions for case study short sea 
voyages with good computational efficiency. It is suitable for real-time applications, providing the maritime 
industry with tools to optimize ship engine settings, reducing emissions and environmental impact.

Abbreviation

COA Contract of 
Affreightments

LFO Light Fuel Oil

DP Dynamic Programming MILP Mixed Integer Linear Programming
ECA Energy Control Area PELT Pruned Explicit Linear Time
EEM Energy Efficiency 

Measure
IMO International Maritime 

Organisation
ETA Estimated Time of 

Arrival
TICC Toeplitz Inverse Covariance 

Clustering
GHG Greenhouse Gas 1-D One-Dimensional
RMSE Root Mean Square Error MAPE Mean Absolute Percentage Error

Nomenclature

αcurrent [
◦
] Relative current angle H Number of parallel 

scenarios
αHs [

◦
] Relative wave angle Hs [m] Significant wave height

(continued on next column)

(continued )

αwind [
◦
] Relative wind angle Lpp [m] Length between 

perpendiculars
β Metocean direction score ll Log likelihood
Δ
[
m3] Ship displacement m Number of waypoints in 

a leg
ΔT Maximum deviation time 

for one leg
mfuel [ton/ 
h]

Fuel consumption rate

γ⋅g() PELT penalty factor MCR [kW] Maximum continuous 
rating

Γ Discrete power setting 
candidate

MS Metocean score

ι Metocean intensity score MS Ensemble metocean 
score

Λfuel Fuel prediction model n Number of legs
ΛV Speed prediction model l Loss function
ω TICC subsequence length P [kW] Ship propulsion power
Ω TICC temporal consistency 

parameter
Q Number of simulated 

voyages
φ PELT cost function RPM Engine speed
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(continued )

σ PELT cluster assignment set t Time
τ Change point Tdesign [m] Design draught
Θ Toeplitz covariance matrix Tmean [m] Mean draught
a Number of waypoints Tz [s] Wave period
b Number of change points V [kn] Speed over ground
Bm [m] Moulded breadth Vaverage 

[kn]
Average sailing speed

C Constraint function Vcurrent 

[m/s]
Sea current speed

CB Block coefficient Vmax [kn] Maximum sailing speed
d [km] Accumulated sailing 

distance
Vmin [kn] Minimum sailing speed

DWT 
[tons]

Deadweight Vwind [m/ 
s]

Absolute wind speed

e Number of discrete 
candidates

w Mean metocean 
condition

f [tons] Emission for one leg W Metocean matrix
F [tons] Accumulated emission x [

◦
] Longitude

G Decision tree in XGBoost y [
◦
] Latitude

1. Introduction

Shipping contributes to 3 % of global greenhouse gas (GHG) emis
sions, and this share is projected to continue rising without intervention 
(UNCTAD, 2023; IMO, 2020). The International Maritime Organisation 
(IMO) has imposed stricter regulations to reduce shipping emissions, 
and shipping companies are all prioritizing energy efficiency measures 
(EEM) to comply with regulations and reduce operational costs (IMO, 
2023). It impacts all shipping stages, from initial planning to real-time 
decision-making at sea. For instance, shipping companies use the de
parture and destination ports, and the estimated time of arrival (ETA) 
specified by the contract of affreightment (COA) to select the optimal 
route and speed before the journey (Wang et al., 2021).

Despite careful planning, onboard crews often need to adjust the 
power settings based on actual weather conditions to meet the ETA, and 
reduce GHG emission/fuel consumption (Lang et al., 2024). During 
navigation at sea, onboard crews adjust propulsion settings less 
frequently compared to operations near ports, typically for several 
hours, depending on environmental changes, traffic, or operational 
needs (Wang et al., 2017, 2018; Fan et al., 2024). Automatic control 
mechanisms, such as autopilot, usually manage navigation, ensuring the 
ship maintains its set course or follows a predetermined route (Fossen, 
2002). Currently, most ship operation optimization research has focused 
on speed as the primary control variable. However, these methods face 
challenges in practical application. The propulsion system indirectly 
controls ship speed, and maintaining a constant or piecewise set-point 
speed requires continuous propulsion adjustments to respond to fluc
tuating metocean conditions (Fan et al., 2022). Frequent adjustments to 
engine speed, engine power, and propeller pitch can reduce energy ef
ficiency and accelerate component wear (Sørensen et al., 1997; 
Sørensen, 2013; Yu et al., 2024).

Therefore, introducing a method to efficiently segment a voyage into 
an optimal number of legs (characterized by relatively uniform sailing 
environments), and then optimizing power allocation for these segments 
becomes meaningful. Currently, research has seldom explored power 
allocation optimization combined with voyage segmentation based on 
real metocean conditions. Processing large volumes of metocean data 
can negatively impact computational performance, leading to overly 
segmented routes that are inefficient for practical application. This study 
proposes a novel power allocation optimization method for short sea 
shipping, which typically follows a predefined and fixed trajectory. The 
method addresses the one-dimensional (1-D) power allocation problem 
in two stages. First, the fixed route is segmented into legs using the 
pruned exact linear time (PELT) algorithm (Killick et al., 2012), based 
on an ensemble metocean score derived from metocean conditions. 
Next, ship performance models, built using the XGBoost algorithm, are 
combined with a newly developed parallel coupling Dynamic 

Programming to determine the optimal power setting for each leg, 
minimizing GHG, more specifically, CO2 emissions. This approach re
duces the number of transients experienced by the propulsion system 
during the voyage while ensuring that the ETA is met.

The remainder of this paper is organized as follows: Section 2 re
views and discusses the related literature, Section 3 introduces the 
proposed framework for optimal power allocation, and Section 4 shows 
the full-scale measurements and details of performance modeling. Sec
tion 5 presents case studies demonstrating the effectiveness of the pro
posed method. Finally, Section 6 draws the conclusions.

2. Literature review

2.1. Ship operation optimization

Choosing the optimization variable is indeed fundamental to deter
mining the optimal sailing strategy. Most existing studies chose speed as 
the optimization variable, since it is easier for the optimization algo
rithms to search for waypoints and weather conditions for candidate 
routes and ensure accurate arrival time. (Zheng et al., 2019; Ma et al., 
2021; Jimenez et al., 2022; Luo et al., 2023; Yan et al., 2024). These 
research address methods for solving speed allocation optimization 
problems to identify optimal speed profiles that minimize fuel con
sumption and enhance computational efficiency. Common approaches 
include genetic algorithms (Wang et al., 2020; Yeh and Tan, 2021; Han 
et al., 2023), proxy optimization (Vergara et al., 2023; Yu et al., 2024), 
mixed integer linear programming (MILP) (Psaraftis and Kontovas, 
2014; Fagerholt et al., 2015; Kim et al., 2019; Ma et al., 2021; Xie et al., 
2023), and reinforcement learning (Shang et al., 2024).

Dynamic Programming (DP), based on Bellman’s principle of opti
mality (Bellman, 1952), has also been extensively applied to this pur
pose. By discretizing the navigation process into a constructed grid, DP 
decomposes the global optimization problem into a series of stage-wise 
subproblems. Specifically, the voyage is divided into multiple time 
and/or spatial stages, where recursive calculations are performed to 
determine the optimal solutions for each subproblem and then form the 
optimal solution for the entire voyage. Early applications of DP for 
voyage optimization focused on integrating environmental data to 
minimize fuel costs. Calvert et al. (1991) employed isochrones to 
partition the route into stages, aligning weather forecasts with each 
segment, and then applying DP to optimize fuel consumption for 
transatlantic crossings. Shao et al. (2012) developed a 
three-dimensional DP (3DDP) for ship weather routing using fixed dis
tance intervals along a great circle route. Kim and Lee (2018) applied DP 
to optimize ship speed along predetermined routes for energy efficient 
navigation. Zaccone et al. (2018) proposed a 3DDP algorithm to opti
mize ship speed profiles that segmented the route spatially along a great 
circle path, defining alternative states based on transverse deviation and 
discrete arrival times. Recent studies have focused on improving DP 
efficiency through optimization techniques. Du et al. (2022) employed a 
3DDP algorithm for weather routing, incorporating multi-objective 
optimization and dynamic route updates using real-time weather fore
casts. Jeong and Kim (2023) introduced a graph-based optimization 
approach using AIS-derived waypoints, calculating fuel costs under 
time-varying conditions to optimize ship route and speed by DP.

Despite these advancements, a fundamental limitation persists across 
these studies: the recursive nature of DP inherently reduces efficiency 
due to strong temporal coupling. Each stage’s computation relies on the 
results from previous stages, enforcing a strict sequential order. This 
dependency significantly reduces computational efficiency, especially 
when real-time updates are required. The inability to decouple sub
problems along the time dimension prevents parallel processing, 
resulting in longer computation times and reduced scalability.

Moreover, the propulsion system only indirectly controls the ship’s 
speed. For speed-based optimization, maintaining a constant or piece
wise set-point speed under fluctuating metocean conditions requires 
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continuous engine power adjustments, which can reduce energy effi
ciency and increase engine wear (Yu et al., 2024). On the other hand, 
speed-based optimization allows for direct estimation of sailing time and 
ETA, but it also requires ship performance models to predict required 
propulsion power and fuel consumption. An alternative approach is to 
directly optimize engine power, which provides a more stable engine 
load and is easier to implement onboard. This method requires reliable 
models to predict ship speed based on power and environmental con
ditions to meet ETA requirements (Wang et al., 2017; Wang, 2020). 
Regardless of the strategy, speed-based or power-based optimization, 
uncertainties arising from the ship performance model are inevitable.

Exploring power-based optimization as a more straightforward 
alternative is therefore meaningful, especially as it remains underex
plored in current research. It offers a more straightforward and practical 
solution for onboard implementation and mitigates inefficiencies by 
minimizing the need for frequent adjustments through proper voyage 
segmentation. Recent advances in machine learning and big data ana
lytics have helped address performance modeling challenges, enabling 
more accurate ETA predictions and more energy-efficient engine power 
settings (Yan et al., 2020; Laurie et al., 2021; Lang et al., 2022; Zhang 
et al., 2024; Shu et al., 2024). Methods developed for speed allocation 
optimization can also be adapted for power allocation. For instance, DP 
has proven effective in identifying optimal ship speed discrete set-points 
to meet ETA constraints while minimizing fuel consumption (Wang 
et al., 2018). A common limitation of many speed optimization ap
proaches is the assumption of static metocean conditions for computa
tional simplicity. In reality, dynamic conditions often require frequent 
speed adjustments, slowing in harsh weather and accelerating in calm 
seas (Li et al., 2020, 2023; Wei et al., 2022). In contrast, power-based 
optimization aims to minimize such adjustments, and determining an 
optimal number of voyage segments is essential to balance performance 
and accuracy.

2.2. Voyage segmentation

For liner shipping networks with speed adjustments, each route 
segment is defined as the trajectory between two ports (Wang et al., 
2019; Qi and Song, 2012; Guericke and Tierney, 2015; Wang et al., 
2018; Wu, 2020; Sung et al., 2022). Over time, different methods have 
been proposed for segmenting a fixed route, and the most common ap
proaches are summarized in Fig. 1.

When allocating speed for different legs within a voyage, most 
existing methods divide the route into segments with equal distance or 
time based on grids or waypoints (Tzortzis and Sakalis, 2021; Wang 
et al., 2021; Lee et al., 2023). With the advent of digitalization and big 
data analytics in shipping, newer approaches use clustering algorithms 
applied to time series data to identify different operational patterns. A 
widely used technique for segmenting routes and extracting route 
structures from data is the turning point method. Zhang et al. (2018) and 
He et al. (2019) utilized turning points to identify route segments and 
detect potential collision points, while Wen et al. (2019) combined 
turning points with DBSCAN clustering on historical route data to define 
segments. Zhang et al. (2021) linked sequences of turning point regions 
to delineate complete routes, and Yan et al. (2020) utilized turning 
points to define critical waypoints along a route. Integrating this 
approach with optimization, Li et al. (2022, 2023) employed turning 
points to achieve trajectory segmentation and minimize fuel consump
tion, and Zhang et al. (2024) similarly used turning points to divide 
routes into effective legs. However, these approaches often overlook the 
impact of metocean conditions on ship performance, even though 
metocean conditions vary significantly during a single voyage. Despite 
the extensive literature on speed optimization and a variety of seg
mentation methods, the sequential integration of route segmentation 
and power allocation optimization remains underexplored.

Fig. 1. Common segmentation approach used in the voyage optimization literature.
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2.3. Contribution of this study

To sum up, most existing ship operation optimization methods focus 
on speed-based strategies, which require continuous propulsion adjust
ments under dynamic metocean conditions, and may lead to reduced 
energy efficiency and operational complexity. Existing segmentation 
techniques also tend to oversimplify route partitioning by ignoring 
environmental variability, and traditional DP methods suffer from 
computation efficiency due to their sequential nature and inability to 
parallelize across time stages.

To bridge these gaps, we propose a novel two-stage framework for 
ship power allocation in short-sea shipping that combines metocean- 
based voyage segmentation with a parallel coupled DP method. The 
key contributions are as follows: 

• Introduce a data-driven voyage segmentation method based on an 
ensemble metocean score derived from encountered environmental 
conditions (e.g., wind, wave, and current). This approach segments 
the voyage into spatially and temporally contiguous legs with ho
mogeneous metocean conditions, addressing the limitations of 
traditional equal-distance/time or turning-point methods that over
look environmental variability.

• Propose a more practical and straightforward power-based optimi
zation strategy that directly allocates ship propulsion power instead 
of ship speed. This method reduces the need for frequent engine 
adjustments in dynamic conditions, offering a stable engine load and 
simpler onboard implementation.

• Develop a parallel coupled DP algorithm that integrates pre- 
simulated sailing scenarios and links route segments through pre
defined arrival time ranges. This design improves computational 
efficiency, enabling partial parallelization of the optimization pro
cess while accounting for metocean uncertainties. The method sup
ports near-real-time decision making and enhances scalability.

The proposed framework is validated using full-scale operational 
data from a short-sea chemical tanker. Results demonstrate reduced 
emissions, confirming the practical value of the method for ship oper
ation optimization in real world.

3. Methodology

3.1. Workflow of the proposed propulsion power allocation method for 
short sea shipping

Short sea shipping involves transporting cargo and passengers by sea 
without crossing an ocean, using ports and inland waterways to com
plement traditional cargo transport methods (Papadimitriou et al., 
2019). This mode of transport offers an alternative to road and rail, 
aiming to alleviate congestion, reduce emissions, and lower trans
portation costs. Fig. 2 illustrates the 166 routes of a case study chemical 
tanker over three years within Europe.

It is clear that short sea shipping often follows consistent trajectories 
between the same departure and destination ports, with considerable 
overlap among different voyages. This consistency can be attributed, in 
part, to the relatively moderate wave conditions typically encountered 
in short sea shipping, as compared to transoceanic voyages. These 
conditions reduce the need for voyage alterations to avoid severe 
weather, enabling vessels to adhere to predefined sailing trajectories in 
accordance with the emission control area (ECA).

Given that the sailing trajectory for short sea shipping is typically 
predefined, propulsion power allocation is assumed to be a 1-D opti
mization problem along a fixed route in this study. The detailed 
framework of the proposed two-stage power allocation optimization 
method for short sea shipping is illustrated in Fig. 3. This method ad
dresses the allocation in two stages: 

• Stage I: Voyage segmentation. In this stage, the predefined fixed 
route is divided into several legs using a metocean based segmen
tation algorithm to minimize frequent adjustments to the power 
setting. The trajectory (longitude and latitude) and ETA (determines 
the timestamps for each waypoint) are used to match wind, wave, 
and current data encountered along the route. Segmentation is then 
performed based on a novel ensemble metocean score, which ac
counts for the overall environmental variability. The output of this 
stage is a set of voyage legs, each characterized by relatively 
consistent metocean conditions. These segments serve as the input 
for the stage II, ensuring a natural transition and reducing the 
complexity of the subsequent optimization task.

Fig. 2. Typical trajectories of a case study chemical tanker over three years sailing.
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• Stage II: Power allocation optimization. Using the segmented legs 
generated in Stage I, the optimal power allocation for each leg is 
determined via a newly proposed parallel coupling DP algorithm. 
Ship speed and fuel consumption are evaluated through machine 
learning models. Multiple parallel sailing scenarios are pre-simulated 
and stored, with each leg interconnected by defined arrival time 
ranges to help mitigate uncertainties in metocean conditions. These 
pre-simulations enable fast and efficient propulsion power allocation 
optimization across the entire voyage, aiming to reduce CO2 
emissions.

In the following subsections, the proposed voyage segmentation 
method is detailed in Section 3.2, followed by the parallel coupling DP 
approach for power allocation optimization in Section 3.3.

3.2. Voyage segmentation

This study proposes a voyage segmentation method, namely meto
cean score-based Pruned Exact Linear Time (MS-PELT) algorithm, to 
provide the optimal number of legs. To evaluate its effectiveness and 
efficiency, the proposed method is compared to a well-known multi
variate time series clustering algorithm known as Toeplitz inverse 
covariance-based clustering (TICC).

3.2.1. MS-PELT algorithm
The proposed MS-PELT algorithm consists of four steps, as illustrated 

in Fig. 4. In step 1, the average speed Vaverage required to meet the ETA 

based on the total distance D of the predefined trajectory is determined. 
Next, Monte Carlo simulations are applied to generate a series of 
reference voyages. These voyages feature different speed profiles, but all 
maintain an average speed Vaverage within a sailing speed range con
strained by [Vmin,Vmax]. These randomized reference voyages help es
timate the metocean conditions the ship will likely encounter at each 
waypoint along the route. In step 2, the corresponding metocean con
ditions for each waypoint (timestamps updated based on Monte Carlo 
simulated speed) are extracted across each reference voyage. Step 3 
calculates a metocean score for each waypoint, representing the aggre
gated impact of various metocean factors. This score results in an 
ensemble metocean signal that integrates the variability of all metocean 
variables across all reference voyages. Finally, step 4 applies the PELT 
algorithm to this ensemble signal to detect change points, thus seg
menting the route into optimal legs. These segments are designed to 
minimize metocean variability within each leg, thereby supporting 
power allocation decisions.

During the Monte Carlo generation of reference voyages, the voyage 
is not yet divided into legs. The waypoints are predetermined based on 
their locations (longitudes x and latitudes y), spaced at equal intervals 
corresponding to approximately 1 h of sailing at the average speed 
Vaverage. The metocean score for each waypoint consists of two compo
nents: a direction score (β), associated with the relative angle of meto
cean variables (wind, wave, current), and an intensity score (ι), related 
to the magnitude of the metocean variables. The considered metocean 
variables at and k-th waypoint on the q-th reference voyage are denoted 
as 

Fig. 3. The proposed two-stage propulsion power allocation optimization framework for short sea shipping.

Fig. 4. The workflow of the proposed MS-PELT voyage segmentation method.
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MOq,k =
[
Hs(q,k),αHs (q,k),Vwind(q,k),αwind(q,k),Vcurrent (q,k),αcurrent (q,k)

]
, (1) 

where Hs is the significant wave height, αHs is the relative wave angle, 
Vwind is the absolute wind speed, αwind is the relative wind angle, Vcurrent is 
the absolute current speed, and αcurrent is the relative current angle. All 
these values are determined using trilinear interpolation (location and 
time) of hindcast data. The direction score β classifies the favourability 
of metocean direction on a scale ranging from − 5 to +5 for every 30 ◦

interval, as shown in Table 1.
The intensity score ι is determined using well-established scales, such 

as the Beaufort scale for wind speed and the Douglas sea scale for sig
nificant wave height. For sea current, a simple numerical scale ranging 
from 0 to 10 is used, as presented in Table 2.

For the k-th waypoint on the q-th reference voyage, the metocean 
score MSq,k is calculated as 

MSq,k = β
[
αHs (q,k)

]
ι
[
Hs(q,k)

]
+ β
[
αwind(q,k)

]
ι
[
Vwind(q,k)

]

+ β
[
αcurrent (q,k)

]
ι
[
Vcurrent (q,k)

]
. (2) 

The final ensemble metocean score for the k-th waypoint, MSk, is 
obtained by averaging the metocean scores across all Q reference voy
ages as 

MSk =
1
Q
∑Q

q=1
MSq,k. (3) 

Given the obtained 1-D series data of ensemble metocean score of all 
waypoints along the route, MS1:a = (MS1, MS2, ⋯MSa), where a is the 
total number of the waypoints. The series data are split into b+ 1 seg
ments with b change points (not including the first and last point) at 
positions τ = (τ1,τ2,⋯,τb). τj is integer, and 0 = τ0 < τ1 < τ2 < ⋯ < τb <

τb+1 = a. The j-th segment is denoted as MS(τj− 1+1):τj
. The multiple 

change points detection is formulated as an optimization problem 
finding a feasible sequence segmentation τ that minimizes the function 
given by 

τ = argmin
τ

(
∑b+1

j=1
φ
(

MS(τj− 1+1):τj

)
+ γ ⋅ g(b)

)

, (4) 

where φ is the cost function for each segment, and γ⋅ g(b) is a penalty 
factor that considers the complexity of the segmentation against over
fitting. The cost function φ is defined as the L2-norm in this study 
expressed by 

φ
(

MS(τj− 1+1):τj

)
=

∑τj

i=τj− 1+1

(
MSi − u

(
MS(τj− 1+1):τj

))2
, (5) 

where u
(
MS(τj− 1+1):τj

)
represents the mean value of the j-th segment 

sequence MS(τj− 1+1):τj
. This study employs the PELT algorithm to mini

mize Eq. (4), which utilizes DP to search for optimal change points, 

balancing computational cost and accuracy. A key assumption is that the 
penalty factor is linear with the number of change points, i.e., g(b) = b. 
Substituting Eq. (5) into Eq. (4), we have the objective function for the 
voyage segmentation given by 

τ = argmin
τ

⎧
⎨

⎩

∑b+1

j=1

∑τj

i=τj− 1+1

(
MSi − u

(
MS(τj− 1+1):τj

))2
+γ ⋅ b}. (6) 

The PELT algorithm is designed to find a balance between accurately 
fitting data and maintaining segmentation that is not excessively com
plex. This equilibrium is achieved by identifying a set of change points τ 
(both in quantity and location) that minimize Eq. (6). Its pruning tech
nique is a distinctive feature of the PELT algorithm. More details can be 
found in Killick et al. (2012). During the computational process, it dis
cards specific candidate change points, effectively reducing the number 
of potential segments that require evaluation. Finally, the total number 
of legs n = b + 1 is obtained through the PELT algorithm. The imple
mentation of voyage segmentation using the proposed metocean 
score-based PELT algorithm is provided in Appendix Table A1 for 
reference.

3.2.2. TICC algorithm
The TICC algorithm, proposed by Hallac et al. (2017), is a 

well-established method for clustering multivariate time series and 
identifying repeating patterns in time-series data. Compared to the 
proposed MS-PELT algorithm, TICC uses a different input format, spe
cifically, the average of metocean conditions across all reference voy
ages for each waypoint, rather than the ensembled metocean score, as a 
6 × a matrix by 

w=

⎡

⎢
⎢
⎣

Hs(1) Hs(2) ⋯ Hs(a)
αHs (1) αHs (2) ⋯ αHs (a)

⋮ ⋮ ⋱ ⋮
αcurrent (1) αcurrent (2) ⋯ αcurrent (a)

⎤

⎥
⎥
⎦, (7) 

where a is the total number of the waypoints. Then the original series 
data are divided into short subsequences of fixed length ω to facilitate 
the analysis of correlations between them. The subsequence at k-th 
waypoint is represented as a 6 × ω vector by 

wk =

⎡

⎢
⎢
⎣

Hs(k− ω+1) Hs(k− ω+2) ⋯ Hs(k)
αHs (k− ω+1) αHs (k− ω+2) ⋯ αHs (k)

⋮ ⋮ ⋱ ⋮
αcurrent (k− ω+1) αcurrent (k− ω+2) ⋯ αcurrent (k)

⎤

⎥
⎥
⎦. (8) 

As such, rather than clustering the individual waypoints directly, 
TICC instead consists of clustering these subsequences [w1, w2, … wa]. 
In TICC, each cluster is defined by a Gaussian inverse covariance Θj, and 
it defines a Markov random field (MRF) encoding the structural repre
sentation of the j-th cluster. The objective is to solve these n inverse 
covariances Θ = {Θ1,…,Θn}, one per cluster, and the resulting assign
ment sets σ = { σ1,…, σn}, where σi⊂{1,2,…, a}. The overall optimi
zation problem is defined as 

Θ, σ = argmin
Θ,σ

∑n

j=1

⎡

⎣
⃒
⃒
⃒|λ∘Θj‖1

⏞̅̅̅̅ ⏟⏟̅̅̅̅ ⏞
sparsity

+
∑

wk∈σj

(

− ll
(
wk,Θj

)⏞̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅⏞
log likelihood

+Ω1
{
wk− 1 ∕∈ σj

}⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
temporal consistency )⎤

⎦,

(9) 

where 
⃒
⃒
⃒|λ∘Θj‖1 is an L1-norm penalty, ll

(
wk,Θj

)
is the log likelihood that 

wk came from the j-th cluster, and Ω is a parameter that enforces tem
poral consistency, and 1

{
wk− 1 ∕∈ σj

}
is an indicator function checking 

whether neighbouring points are assigned to the same cluster.

3.3. Power allocation optimization

After voyage segmentation, a voyage can be mathematically repre

Table 1 
The direction score β assigned 
to different metocean direc
tion intervals.
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sented as a sequence of legs, power settings, and encountered metocean 
conditions. The waypoint vector S is represented as 

Sj,k =
[
xj,k, yj,k, tj,k

]
, (10) 

where xj,k, yj,k, and tj,k denote the longitude, latitude, and timestamp, 
respectively, for the k-th waypoint within the j-th leg, as Fig. 5 shows.

The power setting P represents the propulsion power allocation for 
each leg of the route, expressed as 

P=
[
P1,⋯,Pj,⋯,Pn

]
, (11) 

where n is the total number of legs in the route obtained by voyage 
segmentation. For each leg, the power setting is assumed to be constant. 
The metocean matrix W represents the encountered metocean condi
tions at each waypoint along the route, defined as 

W=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
W1,1,⋯,W1,m1

]

⋮
[
Wj,1,⋯,Wj,mj

]

⋮
[
Wn,1,⋯,Wn,mn

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12) 

where mj denotes the total number of waypoints in the j-th leg, and the 
metocean condition at waypoint Sj,k is defined by 

Wj,k =
[
Hs(j,k), αHs (j,k),Tz(j,k),Vwind(j,k), αwind(j,k),Vcurrent (j,k), αcurrent (j,k)

]
, (13) 

where the wave period Tz, is included in the power allocation optimi
zation for ship speed and fuel consumption modeling. To optimize 
power allocation for each segment and minimize total CO2 emission, the 
cost function representing the emission for the j-th leg is denoted as fj

(
Pj,

W1,1→mj

)
, and is defined as 

fj

(
Pj,Wj,1→mj

)
=
∑mj − 1

k=1
rco2 ⋅mfuel

(
Pj,Wj,k

)
tj,k→k+1, (14) 

where rco2 denotes the emission factor, mfuel
(
Pj,Wj,k

)
represents the fuel 

consumption rate at the k-th waypoint within the j-th leg, tj,k→k+1, is the 
sailing time between (k + 1)-th and k-th waypoints. Additionally, the 
optimization is subject to a set of constraints C(P,W), which considers 
arrival punctuality and operational limits as 

C(P,W) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pmin ≤ Pj ≤ Pmax,

Vmin ≤ V
(
Pj,Wj,k

)
≤ Vmax,

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

1 −

∑n

j=1

∑mj − 1

k=1
tj,k→k+1

ETA

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⋅100% ≤ 1%.

(15) 

Here, the constraints C(P,W) ensure that the power setting Pj at each 
leg, and ship speed V

(
Pj,Wj,k

)
at any waypoint are kept within opera

tional limits. In this study, a 1 % deviation of the original ETA was 
selected based on practical considerations to accommodate sailing time 
constraints. The sailing times of different voyages for the case study 
vessels range from 100 to 150 h. Communication with ship operators 
indicated that a deviation of approximately 1–2 h is generally accept
able. A 1 % deviation corresponds to 1–1.5 h, aligning well with oper
ational expectations. If the constraint margin is larger, it would be 
extremely difficult (sometimes impossible) for the optimization algo
rithm to find an optimal route with exact ETA due to uncertainties in 
various models. The optimization algorithm requires some flexibility 
during the search process to discretize the sailing area and time along 
the voyage. If the search space is too large, such as allowing a 5–10 % 
deviation, the voyage planning would effectively become a slow 
steaming problem, that is, the voyage planning would no longer align 
with the operators’ expectations for a predefined ETA.

For connecting consecutive legs, a traditional method is exact 
coupling, as illustrated in Fig. 6. The last waypoint of the (j − 1)-th leg 
coincides with the first waypoint of the j-th leg, expressed as 

Sj− 1,mj− 1 =
[
xj− 1,mj− 1 , yj− 1,mj− 1 , tj− 1,mj− 1

]
= Sj,1 =

[
xj,1, yj,1, tj,1

]
. (16) 

Table 2 
The intensity score ι assigned to different ranges of wind speed, significant wave height, and 
current speed.

Fig. 5. Illustration of a route, including the k-th waypoint within the j-th leg, 
showing the division of the voyage into smaller navigational segments.

Fig. 6. Exact coupling between consecutive legs, where the last waypoint of 
(j − 1)-th leg coincides with the first waypoint of the j-th leg.
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However, this approach requires sequential computation of each leg, 
where the starting time of each leg must be determined by the ending 
time of the previous one. Therefore, this method is computationally 
inefficient and impractical for voyages with many waypoints, as it 
cannot be parallelized. Therefore, this study proposes a parallel coupling 
DP algorithm to optimize power allocation and minimize CO2 emission, 
as illustrated in Fig. 7.

First, a constant speed simulation determines each segment’s pre
defined nominal departure time. For example, the nominal departure 
time t(0)j,1 for the j-th leg is calculated as follows 

t(0)j,1 =
d1→j− 1

Vaverage
, (17) 

where d1→j− 1 represents the accumulated sailing distance from the de
parture to the end of the (j − 1)-th leg. In these parallel scenarios, the 
ending time of the previous segment only needs to fall within a specific 
time interval, defined as 

tj− 1,mj− 1 ∈

[

t(0)j,1 −
ΔTj

2
, t(0)j,1 +

ΔTj

2

]

. (18) 

Suppose there are H parallel scenarios, the starting time candidates 
of the j-th leg can be defined by 

t(h)j,1 = t(0)j,1 + h ⋅ Δtj, h ∈

[

0, ± 1, ±2,…, ±

⌊
H
2

⌋]

, (19) 

where Δtj =
ΔTj
H− 1, and ΔTj is the max deviation time for the j-th leg, given 

by, 

ΔTj =max
(

10 minutes,
⌈
0.25 ⋅ t(0)j,1

⌉ )
. (20) 

For each starting candidate, simulations are conducted with different 
power settings for that leg. Assume the power setting is selected from a 
discrete set, denoted from low to high as [Γ1,Γ2,…Γe], where there are e 
possible values. In all simulations, only the scenarios where the arrival 
time is within the specific time interval defined by Eq. (18) are 
considered valid. For all legs (except the first and the last), each starting 
candidate for the leg is paired with all power setting from [Γ1,Γ2,…Γe] to 
simulate e possible sub-voyages, which are eventually connected to the 
destination within the ETA tolerance, as Fig. 8 shows.

From all these parallel scenarios, the optimal power allocation for all 

legs is determined to minimize the total CO2 emission of the entire 
voyage, which is achieved using DP. Specifically, the problem can be 
written in the form of the Bellman’s equation as 

Fj =min
Pj

{
fj

(
Pj,Wj,1→mj

)
+ Fj− 1

}
, (21) 

where Fj is the accumulated CO2 emission until the end of the j-th leg. 
fj
(
Pj,Wj,1→mj

)
denotes the emission for the j-th leg, where Pj ∈ [Γ1, Γ2,

…Γe]. The DP approach iteratively solves for the minimum CO2 emis
sion, leveraging the recursive relationship between subsequent legs. The 
implementation of propulsion power allocation optimization using the 
proposed parallel coupling DP is provided in Appendix Table A2 for 
reference.

4. Case study and details of performance modeling

This section introduces the case study ship, along with its full-scale 
measurements. The data processing steps and the development of ship 
performance models using XGBoost machine learning techniques are 
also briefly presented.

4.1. Data acquisition

The case study ship is a chemical tanker operating in European wa
ters, with three years of operational data available from November 2020 
to March 2024. The sailing regions include the Baltic Sea, North Sea, 
English Channel. The three-year sailing trajectories are illustrated in 
Fig. 1, and the main characteristics of the chemical tanker are provided 
in Table 3.

The case study vessel’s main engine is a MAN B&W Diesel AG - 
Augsburg 1 x 6L48/60B, with an MCR of 7200 kW. According to in
formation provided by the shipowner, one of the auxiliary generators is 
driven by the main engine through the shaft generator system and 
consumes 1875 kW under a constant power take off regime. Therefore, 
normally, the maximum ship propulsion power for this ship is 5325 kW. 
In the full-scale measurement used in this study, the ship propulsion 
power was measured by a shaft power meter system. The raw mea
surements were recorded at a frequency of 1 min and subsequently 
down-sampled to 10-min mean values for the case study ship.

The full-scale measurements influenced by voluntary acceleration, 
deceleration, and transient conditions were filtered out using the 3- 
sigma (rolling standard deviation) method on ship propulsion power P 
and ship speed V. Fig. 9 presents a one-month example showing the raw 
measurements and processed data after 3-sigma filtering for ship speed 
V. The spike values and transient fluctuations caused by acceleration 
and deceleration have been effectively removed, leaving only relatively 
stable variations in the ship’s operational profile.

The distribution comparison between the raw and processed data for 
fuel consumption rate, propulsion power, and RPM is presented in 
Fig. 10. It is evident that the 3-sigma filtering process effectively 
removed many low RPM data typically associated with transient, such as 
acceleration. As a result, the processed data predominantly reflects 
normal sailing conditions, with RPM values concentrated around 400 or 
500. This filtering ensures that only stable operating conditions are 
retained for subsequent modeling and analysis, improving the reliability 
of the data-driven performance evaluation.

The metocean data, including wind and waves, were extracted from 
the ERA5 reanalysis dataset, which provides hourly data at a 5◦ × 5◦

spatial resolution (Copernicus, 2020). Ocean current velocity and di
rection were obtained from the Global Ocean Physics Analysis and 
Forecast dataset (CMEMS, 2023), with a geographical resolution of 
0.083◦ × 0.083◦ and a temporal resolution of 30 min. The required 
relative wave angles, i.e., αHs , αwind, and αcurrent , were then calculated 
using the extracted metocean data and ship operation data.

The proposed power allocation optimization requires a discrete set 

Fig. 7. Parallel coupling between consecutive legs, where the last waypoint of 
(j − 1)-th leg (with power setting Pj− 1) is connected to the starting candidate of 
the j-th leg based on a closest time.
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[Γ1,Γ2,…Γe], from which the power setting for each leg must be chosen. 
In this study, the discrete set is determined based on the statistics of the 
measured ship propulsion power P over the 3-year sailing period, as 
presented in Fig. 11. The ship e propulsion power primarily ranges from 
1000 kW to 4300 kW, with the majority of data concentrated between 
2000 kW and 3000 kW. Therefore, the bounds of the discrete set for the 
power setting candidates are defined with a lower bound of 1000 kW 
and an upper bound of 4300 kW, with increments of 100 kW, and [Γ1,Γ2,

…Γe] = [1000 kW,1100 kW,…4300 kW], to ensure the power allocation 

feasibility.

4.2. Data-driven ship performance modeling

The machine learning model to predict ship speed V and fuel con
sumption rate mfuel at each waypoint, under different power settings and 
metocean conditions, are established using XGBoost regression models 
in this study, due to it has superior performance and efficiency in ship 
speed-power modeling (Lang et al., 2022). XGBoost is a machine 
learning technique designed to construct an ensemble of regression trees 
using a procedure known as gradient tree boosting. Its main objective is 
to link a set of input features, denoted by X, to a target measure. In this 
study, the target values are the ship’s speed V and the fuel consumption 
rate mfuel. The input features of the XGBoost model for predicting ship 
speed, ΛV , and for predicting fuel consumption, Λfuel, are defined as 
follows 

XV = [P,RPM,Tmean,Hs,αHs ,Tz,Vwind,αwind,Vcurrent, αcurrent ], (22) 

Xfuel = [P,V,RPM,Tmean,Hs, αHs ,Tz,Vwind,αwind,Vcurrent ,αcurrent], (23) 

where RPM is the engine speed, and Tmean represents the ship’s mean 
draft. Assume that the XGBoost model comprises a total of U decision 

Fig. 8. Illustration of parallel coupling for optimizing power allocation across voyage legs.

Table 3 
Main characteristics of the case study chemical tanker.

Parameter Symbol Unit Value

Length Between Perpendiculars Lpp m 138.22
Breadth Moulded Bm m 23.76
Design draft Tdesign m 9.27
Block Coefficient CB − 0.827
Displacement Δ tons 25174
Deadweight DWT tons 18561
Maximum continuous rating (main engine) MCR kW 7200
Power Take Off from main engine (power of shaft 

generator)
PTO kW 1875

Service speed Vs knots 14

Fig. 9. Raw and processed ship speed data after 3-sigma filtering over a one-month period.
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trees. For the i-th sample, the predicted speed V̂ is given by 

V̂ i =
∑U

u=1
Gu
(
XVi
)
, i=1, 2,⋯,R, (24) 

where R is the total number of the training samples, and Gu is the u-th 
decision tree. The XGBoost objective function is expressed as 

Obj=
∑R

i=1
l(Vi, V̂ i) +

∑U

u=1
Ω(Gu). (25) 

In this expression, the first term l(Vi, V̂ i) represents the conventional 
loss function, which quantifies the residual (error) between the 
measured speed Vi and the predicted speed V̂ i. The second term Ω(Gu)

evaluates the complexity of each tree, which is influenced by the 
structure of the decision trees. XGBoost employs an additive training 
method, iteratively incorporating each new tree based on the results 
from the previous iteration. At the δ-th iteration, the loss function is 

evaluated as l
(
Vδ

i , V̂
δ− 1
i + Gδ

(
XVi
))

, where Gδ is the newly added tree in 
the δ-th iteration. Traditional machine learning objective functions are 
generally limited in their ability to measure both model accuracy and 
computational efficiency. By including a complexity term, XGBoost 
finds a balance between model performance and training efficiency. 
Prior to model training, data preprocessing is carried out to ensure high- 
quality input data. Additionally, hyperparameter tuning is performed to 
maintain generalizability. Further details about hyperparameters can be 
found in Chen and Guestrin (2016).

4.3. Model establishment and evaluation

This study used Bayesian optimization to determine the optimal 
combination of XGBoost hyperparameters. The considered hyper
parameters and the corresponding tuning domains of the XGBoost 
modeling are listed in Table 4. The processed data was divided into 
training and test sets, with five individual voyages reserved exclusively 
for testing. During model training, five-fold cross-validation was 

Fig. 10. Distribution comparison of raw and processed data for fuel consumption rate (left), propulsion power (middle), and RPM (right).

Fig. 11. Distribution of measured ship propulsion power P over the 3-year 
sailing period, showing the mean, maximum, and minimum power levels.

Table 4 
Hyperparameters used in XGBoost modeling and tuning ranges applied in this 
study.

Parameter Tuning domain

Step size (learning rate) [0.01, 1]
Maximum depth of a tree [3, 12]
Number of trees [500, 5000]
Minimum loss reduction required to make a split [0, 3]
L1 regularization term [0, 50]
L2 regularization term [0, 50]
Minimum sum of instance weight required in a child [0, 10]
Subsample ratio [0.5, 1]
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employed to identify the optimal hyperparameters through Bayesian 
optimization. The final hyperparameter configurations for both the 
speed prediction model and the fuel consumption rate prediction model 
are provided in Appendix Table A3.

To evaluate model performance on the test set, root mean square 
error (RMSE) and mean absolute percentage error (MAPE) were used as 
evaluation metrics. The fuel consumption rate prediction model ach
ieved an RMSE of 0.1877 and a MAPE of 0.87 %, while the speed pre
diction model yielded an RMSE of 0.5727 and a MAPE of 3.66 %. Fig. 12
presents the prediction results of the two test voyages compared with the 
corresponding measured data. The left figures illustrate the results for a 
voyage exceeding 3000 km across the Baltic Sea and North Sea, while 
those on the right show the results for a voyage over 2000 km across the 
North Sea and English Channel.

As Fig. 12 shows, the XGBoost models demonstrate a good ability to 
predict mfuel, with predictions closely matching actual measurements 
across the example voyages, thereby validating the features used and 
hyperparameters tuned in the model. The predictive accuracy for mfuel is 
expected, as the model is informed by key operational variables, such as 
propulsion power, which is highly correlated with fuel consumption. 
However, predicting ship speed V presents larger challenges. While the 
model successfully captures general trends, it struggles to match the 
peaks and valleys observed in actual measurements. This discrepancy 
may be attributed to the high variability of metocean conditions or the 
exclusion of other operational variables. Nevertheless, the established 
models accurately capture the overall trend without significant predic
tion errors, making it sufficient for use in subsequent power allocation 
optimization.

5. Results and discussions

In this section, the MS-PELT segmentation approach is first compared 
with the TICC algorithm for voyage segmentation to identify the ad
vantages and limitations of each method, as well as to evaluate their 
performance. Then numerical experiments are conducted to evaluate 
the proposed voyage segmentation and power allocation optimization 
framework. The results are compared to measured data to assess the 
potential CO2 emission reduction achieved through optimal power 
allocation. Since the case study chemical tanker mainly operates in short 
sea shipping routes within the Baltic Sea, North Sea, and English 
Channel, the emission factor rco2 is set at 3.151 tons of CO2 per ton of 

fuel, based on light fuel oil (LFO) by IMO (2022) recommendations.

5.1. Comparison between TICC and proposed MS-PELT method for 
voyage segmentation

In this subsection, the TICC and proposed MS-PELT methods are 
applied for voyage segmentation comparison. The goal is to evaluate the 
strengths and weaknesses of each method and determine which 
approach is more suitable for generating legs in the power allocation 
optimization process. For comparison and analysis, both methods are 
applied to two example voyages, as shown in Fig. 13. The sailing time for 
Voyage 1 (Fig. 13 (a)) is approximately 143 h, while that for Voyage 2 
(Fig. 13 (b)) is 108 h.

The segmentation process incorporates metocean conditions 
encountered during Monte Carlo simulated voyages. The metocean 
variables for all simulated voyages are presented in Fig. 14 for both 
example voyages. The orange dashed line represents the mean value of 
each metocean variable across all simulated voyages. As shown in the 
figure, although the speed profiles of each simulated voyage are 
randomly generated and vary, the general trend of the encountered 
metocean conditions is similar, with only variations in peak values and 
slight shifts in time at different waypoints. Finally, the metocean data 
from the simulated voyages is used to derive the ensemble metocean 
score, as defined in Eq. (3), for MS-PELT segmentation, while the mean 
value of the metocean data is used for TICC segmentation.

Fig. 15 presents the segmentation results for Voyage 1, based on 
metocean conditions using MS-PELT (Fig. 15 (a)) and TICC (Fig. 15 (b)). 
Both methods successfully identify and isolate the peak variations of Hs, 
Vwind, and Vcurrent, along with their relative directions. These clusters 
represent areas where metocean conditions exhibit significant temporal 
and spatial variability, which is crucial for effective power allocation 
planning to ensure energy efficiency. For MS-PELT, the segmentation 
results tend to form relatively larger and more stable segments, 
providing a clear and straightforward division of the voyage into 
coherent legs. In contrast, the TICC method yields several smaller seg
ments, particularly at the beginning of the voyage, resulting in more 
frequent power adjustments. Fig. 16 illustrates the segmented trajec
tories produced by each method, providing a visual comparison of how 
the different clustering approaches translate into segmented routes. 
Additionally, the computational efficiency of each method varies 
significantly. The running time for MS-PELT is approximately 30 ms, 

Fig. 12. Comparison of predicted and measured results for two validation voyages: one across the Baltic Sea and North Sea (left), and the other across the North Sea 
and English Channel (right).
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whereas TICC takes around 50 s.
Similarly, the segmentation results for Voyage 2 are presented in 

Fig. 17, using MS-PELT (Fig. 17 (a)) and TICC (Fig. 17 (b)). The MS-PELT 
method produces relatively larger, more stable segments, providing a 
straightforward division of the voyage into coherent legs. However, 
TICC still generates more numerous and smaller segments, which 
require more frequent power adjustments, increasing operational 
complexity and burdening the crew. These frequent changes can also 
lead to increased CO2 emissions due to more frequent shifting between 
different power levels. Fig. 18 visualizes the segmented trajectories 
derived from both methods. For computational efficiency, MS-PELT 
completes the segmentation in about 30 ms, while TICC requires 
approximately 50 s.

In practice, TICC requires specifying the number of clusters in the 
data. If this number is too large or too small, the method may fail to 
converge, resulting in no segmentation, posing a challenge in real-world 
applications where the number of clusters is not known. In contrast, MS- 
PELT does not require specifying the number of clusters, but instead uses 
a penalty factor γ to automatically detect change points. In this study, 
the factor is calculated as γ = (0.25a)(1− Sensitivity)⋅2 log a, where a is the 
total number of waypoints of the voyage. A higher sensitivity (in the 
range of [0,1]) corresponds to a lower penalty, enhancing the algo
rithm’s ability to detect change points. In this study, sensitivity is set to 

1, resulting in a penalty of 2 log a, equivalent to using the Bayesian in
formation criterion.

This formulation enhances the practicality of the MS-PELT algorithm 
by removing the need to predefine clustering parameters, making it 
more accessible in applications using real-time weather forecasts where 
such prior information is unavailable. In terms of efficiency, MS-PELT 
employs an effective pruning technique that eliminates unlikely 
change points early in the process, significantly reducing computational 
load. As a result, segmentation can be completed in approximately 30 
ms, making the method highly suitable for real-time or near-real-time 
applications, especially in dynamic maritime environments. Therefore, 
the proposed MS-PELT method not only improves robustness in the 
presence of uncertainty but also provides segmented legs efficiently, 
which are then used in the subsequent power allocation optimization.

5.2. Propulsion power allocation optimization for voyages across the 
Baltic Sea and North Sea

For voyages across the Baltic Sea and the North Sea, four individual 
voyages, illustrated in Fig. 19, are selected as case studies to validate the 
proposed propulsion power allocation method. Detailed voyage infor
mation is provided in Table 5.

Since the case study vessel did not record emission information 
directly, we employed a consistent calculation approach to ensure a fair 

Fig. 13. Two example voyages for segmentation comparison: (a) Voyage 1, and (b) Voyage 2.

Fig. 14. Metocean conditions encountered during Monte Carlo simulated voyages for (a) Voyage 1 and (b) Voyage 2. The orange dashed line represents the mean 
value of each metocean variable across all simulated voyages along the route. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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comparison between the optimized power allocation and the actual 
settings. Specifically, the emissions for the real voyage are calculated 
using the same method applied during optimization. This involves pre
dicting fuel consumption using the machine learning model, and 
combining the predicted fuel consumption with the emission factor rco2 

to obtain the CO2 emissions. Cases 1 and 2 feature relatively long routes, 
each spanning more than 3000 km and lasting over 140 h. By contrast, 
Cases 3 and 4, which take place solely within the Baltic Sea, cover 
shorter distances of around 1100 km and require approximately 60 and 
55 h.

For Case 1 and Case 2, the voyage segmentation results are presented 
in Fig. 20. The power allocation optimization results are shown in 
Fig. 21 for Case 1 and Fig. 22 for Case 2, respectively. These figures 
illustrate the measured propulsion power and speed during the actual 
voyages, the optimized power settings for each leg, and the corre
sponding speeds. The metocean data encountered during the optimized 
voyage are also presented for a more comprehensive analysis.

As shown in Fig. 20 (a), the voyage in Case 1 is segmented into nine 
legs. The chemical tanker encountered relatively harsh weather condi
tions, with Hs reaching 3 m in legs 7 (purple) and 8 (yellow). Under this 
condition, the power allocation optimization achieved a potential CO2 
emission reduction of 27.6 tons, which represents a reduction of 7.2 % 
compared to the actual voyage measurement. As seen in Fig. 21, the 
optimal power allocation strategy prioritizes increased power at the 
beginning of the voyage when the encountered wave conditions were 

milder, followed by a significant reduction in power settings during leg 8 
to conserve fuel. Although Hs was relatively high, the power setting was 
still increased in leg 7 due to favorable following wave conditions, which 
has a smaller wave resistance relative to bow sea and head sea. The 
actual voyage duration was around 145 h, while the optimized strategy 
introduced a minor delay of 17 min, well within the acceptable range of 
1 %.

Similarly, for the voyage in Case 2, as shown in Fig. 20 (b) and 22, the 
voyage is segmented into eight legs. Among these segments, legs 2 
(blue), 3 (green), 7 (yellow), and 8 (brown) experience peak Hs value 
exceeding 1.5 m. In leg 5 (orange), the chemical tanker encountered 
wind speed Vwind exceeding 10 m/s, and current speed Vcurrent greater 
than 1 m/s. The optimal power allocation strategy involved reducing 
power during legs 3, 5, and 6 (purple), where conditions were least 
favorable (e.g., high waves and strong head wind). Conversely, power 
was increased during leg 2 with a following wave and leg 7, which had 
relatively mild wind conditions. Compared to the actual power settings, 
this optimized strategy resulted in a CO2 emission reduction of 12.3 
tons, which is approximately a 4.5 % reduction, with a minor delay of 
only 5 min.

The detailed optimized CO2 emissions and time delays are presented 
in Table 6. For the shorter Baltic Sea voyages Case 3 and Case 4, the time 
delays after power allocation optimization also remain under 0.3 %, 
fulfilling the requirement that the total sailing time deviate by no more 
than 1 % from the ETA. Additionally, the emissions are reduced by 7.1 % 

Fig. 15. Segmentation results for Voyage 1 based on metocean conditions using (a) MS-PELT and (b) TICC methods.

Fig. 16. Segmented trajectories for Voyage 1 using (a) MS-PELT and (b) TICC methods.
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and 7.3 %, respectively. The segmentation times for all case studies are 
approximately 30 ms. The optimization takes about 90 s for Cases 1 and 
2, and around 35 s for Cases 3 and 4. Furthermore, an evaluation of the 
operative feasibility of the proposed propulsion power allocation was 
conducted. The sailing distances of each segment in Case 1 and Case 2 
range from 191 km to 699 km, with corresponding sailing times between 
9 and 30 h. These ranges confirm that the optimized power settings can 
be practically maintained throughout the voyages, ensuring that the 
proposed strategy is applicable under real operational conditions.

5.3. Propulsion power allocation optimization for voyages passing the 
English Channel

Similarly, four individual voyages passing through the English 
Channel are selected to verify the proposed method, as shown in Fig. 23. 
Detailed voyage information is presented in Table 7. Case 6 is relatively 
long, spanning over 2000 km and requiring more than 100 h to reach its 
ETA. In contrast, Case 8 is the shortest route, covering less than 1000 km 
and taking only about 47 h. Cases 5 and 7 share the same departure and 

Fig. 17. Segmentation results for Voyage 2 based on metocean conditions using (a) MS-PELT and (b) TICC methods.

Fig. 18. Segmented trajectories for Voyage 2 using (a) MS-PELT and (b) TICC methods.

Fig. 19. The case study voyages across the Baltic Sea and North Sea applied for propulsion power allocation optimization.
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destination, and their sailing trajectories largely overlap, the sailing 
time is around 80 h.

For voyages passing through English Channel such as Case 5 and 
Case 6, the ship typically encounters much calmer wave conditions. In 
this sailing condition, wind becomes an important factor affecting power 
allocation. The segmentation results for these two voyages are shown in 
Fig. 24. Fig. 25 presents the power allocation optimization results for 
Case 5, while Fig. 26 shows the results for Case 6.

As seen in Fig. 24 (a) and 25, the voyage in Case 5 is divided into six 
segments. During this voyage, the encountered wave conditions were 
relatively calm, with peak Hs value reaching approximately 0.7 m. In 
this context, wind conditions were the dominant factor affecting the 
ship’s performance. During leg 1 (blue), which experienced wind speeds 
Vwind exceeding 10 m/s (mainly as bow wind or head wind), the power 
allocation optimization strategy reduced the power setting to lower 
emissions. As wind speeds gradually decreased in the subsequent legs, 
the optimized power settings increased accordingly. However, in leg 5 
(purple), where wind speeds increased again, the power setting was 
adjusted downward to maintain energy efficiency. Compared to the 

actual power settings, this optimized strategy saved 33.1 tons of emis
sion, equivalent to a reduction of 14.5 %, while only incurring a delay of 
11 min, corresponding to an increase of just 0.22 % in total sailing time.

For Case 6, the voyage has been segmented into six legs, as shown in 
Fig. 24 (b) and 26. The chemical tanker encountered a maximum Hs of 
less than 1 m, which still qualifies as very calm sea conditions. Similar to 
Case 5, wind speed Vwind and relative wind angle αwind primarily deter
mined the power allocation optimization strategy. In leg 1 (blue), wind 
speeds exceeded 10 m/s and were near head wind, which led the opti
mization to choose a relatively lower power setting. In leg 2 (green), as 
the wind direction changed to following wind, and in leg 3 (red), as wind 
speed decreased, the power setting was gradually increased. However, 
in leg 4 (orange), the relative wave angle shifted to head sea, and in leg 5 
(purple), wind speed increased again. The power allocation optimiza
tion opted to reduce power settings to improve energy efficiency. 
Compared to the actual power settings, this optimized strategy led to an 
emission reduction of 16.8 tons (approximately 9.5 %), with a minor 
delay of only 35 min.

The detailed optimized CO2 emissions and time delays for the voy
ages passing through the English Channel are presented in Table 8. In 
both the extensively discussed Cases 5 and 6, as well as Cases 7 and 8, 
the time delay remains within 1 % of the ETA. Moreover, for Cases 7 and 
8, the emissions are reduced by 4.9 % and 8.9 %, respectively, also 
confirming the effectiveness of the proposed framework. The segmen
tation times for all case studies are approximately 30 ms. The optimi
zation process takes about 60 s for Case 6, around 40 s for Cases 5 and 7, 
and only about 30 s for Case 8. Similarly, for Case 5 and Case 6, which 
involve voyages across the English Channel, the sailing distances of each 
segment range from 196 km to 435 km, with sailing times between 8 and 
19 h. These ranges also support the operational feasibility of the opti
mized propulsion power allocation.

Table 5 
The sailing information of the case study voyages across the Baltic Sea and North 
Sea.

Case 
ID

Sailing area Distance 
[km]

ETA 
[hours]

Actual CO2 emissions 
[tons]

1 Baltic and North 
Sea

3388 145.50 383.16

2 Baltic and North 
Sea

3089 143.83 271.68

3 Baltic 1118 60.50 83.06
4 Baltic 1153 55.33 90.24

Fig. 20. Segmented trajectories for voyages across the Baltic Sea and North Sea, showing (a) Case 1 and (b) Case 2.

Fig. 21. Power allocation results for Case 1, including measured and optimized propulsion power, ship speed, and encountered metocean conditions for each 
waypoint along the optimized voyage. The sailing distance of each segment is also indicated.
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5.4. Discussion of SSS emission reduction by this method and other 
measures

From the global shipping perspectives, the 2023 IMO GHG strategy 
(IMO, 2023) envisages technical, operational and economic measures to 
reduce shipping emissions. According to the fourth IMO GHG Study 
(IMO, 2020), about 64 % CO2 reduction from shipping in 2050 will be 
achieved by alternative fuels, while the third IMO GHG study (IMO, 
2014) presented an average daily CO2 emission reduction of 27 % for a 
12 % speed decrease. For short sea shipping, Degiuli et al. (2021) re
ported that a 13.6 % speed reduction resulted in approximately 31 % 
CO2 emission reduction in the Mediterranean Sea. Degiuli et al. (2024)
investigated the impact of slow steaming on a Panamax container ship 
and found that a 10 % speed reduction can lead to an annual CO2 
emission decrease of approximately 16.9 %. Dantas and Theotokatos 
(2023) estimated that CO2 emissions can be reduced by approximately 4 

% for transition autonomous short-sea sailing ships equipped with more 
advanced autonomous control, and by 8–11 % for Next Generation 
Autonomous Ships that operate without a crew accommodation 
compartment. For other ship operation related measures, a systematic 
review by Bouman et al. (2017) reported on average from 5 to 20 % CO2 
emission reduction from e.g., wind propulsion, speed and voyage opti
mization, etc. In comparison with our proposed method for optimal 
power allocation along individual voyages, the case studies show from 
4.5 % to 14.5 % CO2 emission reduction, while maintaining the original 
ETA and without compromising transport efficiency. It may not be as 
efficient as the alternative fuel and slow steaming measures, but our 
proposed method can be easily combined with those two measures to 
further reduce fuel consumption/emissions. For example, if shipowners 

Fig. 22. Power allocation results for Case 2, including measured and optimized propulsion power, ship speed, and encountered metocean conditions for each 
waypoint along the optimized voyage. The sailing distance of each segment is also indicated.

Table 6 
The optimized CO2 emissions and time delay of the case study voyages across the 
Baltic Sea and North Sea.

Case 
ID

Time delay 
[%]

Optimized CO2 emissions 
[tons]

Emissions reduction 
[%]

1 0.19 % 355.56 7.2 %
2 0.06 % 259.42 4.5 %
3 0.28 % 77.14 7.1 %
4 0.10 % 83.63 7.3 %

Fig. 23. The case study voyages passing through the English Channel applied for power allocation optimization.

Table 7 
The sailing information of the case study voyages passing through the English 
Channel.

Case 
ID

Sailing area Distance 
[km]

ETA 
[hours]

Actual CO2 emissions 
[tons]

5 English 
Channel

1718 80.33 176.90

6 English 
Channel

2043 108.50 223.41

7 English 
Channel

1712 78.00 147.47

8 English 
Channel

980 47.00 67.10

D. Vergara et al.                                                                                                                                                                                                                                Journal of Cleaner Production 513 (2025) 145683 

16 



choose to apply slow steaming, the proposed methods of segmentation 
and propulsion power allocation framework can be readily adapted to 
accommodate longer sailing times and lower average speeds. In this 
way, it can also serve as a supporting tool to enhance the environmental 
benefits of slow steaming, potentially enabling even greater CO2 
reductions.

6. Conclusion

This study proposes a two-stage optimization framework for ship 
power allocation in short sea shipping. In the first stage, voyage seg
mentation is performed using a metocean score-based PELT algorithm. 
This approach divides the voyage into several legs based on metocean 
conditions, minimizing frequent power adjustments and simplifying 

Fig. 24. Segmented trajectories for voyages passing through the English Channel, showing (a) Case 5 and (b) Case 6.

Fig. 25. Power allocation results for Case 5, including measured and optimized propulsion power, ship speed, and encountered metocean conditions for each 
waypoint along the optimized voyage. The sailing distance of each segment is also indicated.

Fig. 26. Power allocation results for Case 6, including measured and optimized propulsion power, ship speed, and encountered metocean conditions for each 
waypoint along the optimized voyage. The sailing distance of each segment is also indicated.
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both the allocation process and computational complexity. In the second 
stage, a parallel coupling DP method is employed to optimize the power 
allocation of each leg efficiently across the entire voyage, using the 
segmented output from the first stage and machine learning-based ship 
performance models. Using three years of full-scale measurements of a 
case study chemical tanker operating in short sea shipping, the key 
findings of this study are summarized as follows: 

• Compared to the state-of-the-art multivariate clustering algorithm 
TICC, the proposed MS-PELT method is more practical and efficient, 
avoiding the creation of numerous small legs that would otherwise 
increase the frequency of power setting changes.

• The proposed power allocation optimization by a novel parallel 
coupling DP approach has demonstrated promising CO2 emission 
reduction, with an average environmental impact reduction of 
around 8 % and the largest arrival delay of only 0.73 %.

• The proposed framework demonstrates high computational effi
ciency, with voyage segmentation typically requiring only 30 ms and 
power allocation optimization just around 1 min, making it a suitable 
choice for real-time or near-real-time applications.

In real-world operations of the case study vessel, propulsion power 
varies frequently along a voyage due to changes in speed and encoun
tered metocean conditions. Such frequent adjustments can significantly 
increase engine wear and reduce thermal efficiency. While some ocean- 
crossing shipping companies have already adopted constant-power 
strategies to mitigate these issues, applying a fully constant power 
setting is often not feasible in short sea shipping, where ETA constraints 
are stricter and weather forecasts more uncertain. To address this, the 
proposed method maintains constant propulsion power within each 
voyage segment rather than over the entire route. This segmented 
constant-power strategy provides a practical compromise: it reduces the 
frequency of power adjustments, helps extend engine life, improves 
operational efficiency, and still satisfies strict schedule requirements, 
making it well-suited for short sea shipping applications. The operative 
feasibility analysis demonstrated that the optimized propulsion power is 
technically practical for short sea shipping voyages, further validating 
the applicability of the proposed method. This work contributes to the 
advancement of integrating data-driven segmentation and dynamic 

programming to enhance the energy efficiency of short sea shipping. It 
provides the maritime transportation industry with innovative tools and 
methodologies to optimize ship power settings during short sea voyages, 
reducing CO2 emissions and environmental impact. Regarding the lim
itations of this study, the proposed method relies on a power-to-speed 
performance model, which may encounter challenges when segments 
experience unseen or rare metocean conditions in the training data, such 
as large waves. Under such conditions, the model’s predictive accuracy 
may be compromised, affecting the reliability of sailing time estimation. 
This limitation is common to most existing ship operation optimization 
studies that utilize data-driven performance models. Furthermore, un
like the use of hindcast metocean data for voyage segmentation in this 
study, the proposed method’s application in real-world navigation relies 
on weather forecasts. Forecasted data inherently carries uncertainties, 
which may increase over extended prediction periods. In practical ap
plications, this may require segmentation and optimization to be reca
librated or updated every 1–2 days to maintain accuracy. The proposed 
framework’s computational efficiency enables rapid re-optimization 
when substantial changes in weather forecasts occur. In addition, 
when defining the sailing time constraint, a large constraint margin was 
avoided, which would have changed the problem to a slow steaming 
scenario.
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Appendix A 

Table A1 
The proposed MS-PELT algorithm.

MS-PELT algorithm: voyage segmentation using ensemble metocean score based PELT algorithm

Input: The number of simulated referenced voyages Q, minimum time length for a leg ε, predefined route longitudes and 
latitudes (x, y), voyage starting time t1, estimated time of arrival ETA

Output: Number of legs n, route breakpoints τ = (τ1, τ2,⋯, τb)

1: Calculate the total distance D of the predefined route, and the average speed Vaverage to match the ETA
2: Initialize waypoints [(x1, y1), (x2, y2) … (xa, ya)] with 1 h sailing distance interval at Vaverage, extract metocean data 

MOq,1 at location (x1, y1) and time t1, calculate metocean score MSq,1 as Eq. (2)
3: for q = 1 to Q do

(continued on next page)

Table 8 
The optimized CO2 emissions and time delay of the case study voyages passing 
through the English Channel.

Case 
ID

Time delay 
[%]

Optimized CO2 emissions 
[tons]

Emissions reduction 
[%]

5 0.73 % 160.07 9.5 %
6 0.17 % 190.32 14.5 %
7 − 0.19 % 140.22 4.9 %
8 0.27 % 62.93 8.9 %
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Table A1 (continued )

MS-PELT algorithm: voyage segmentation using ensemble metocean score based PELT algorithm

4: Monte Carlo simulation generates speed profile Vq =
[
Vq,1 ,Vq,2…Vq,a− 1

]

5: for k = 2 to a do

6: Compute arrival time on k-th waypoint tk =
dk− 1→k

Vq,k− 1 
+ tk− 1, extract metocean data MOq,k at location (xk, yk) and time tk, 

calculate metocean score MSq,k as Eq. (2)
7: end for
8: end for
9: for k = 1 to a do
10: Calculate ensemble metocean score MSk as Eq. (3)
11: end for
12: Perform PELT segmentation with ε on MS1:a

13: Return n and τ

Table A2 
The proposed parallel coupled DP algorithm.

PCDP algorithm: propulsion power allocation optimization using parallel coupling DP algorithm

Input: Discrete set of propulsion power [Γ1,Γ2,…Γe], number of legs n, number of parallel scenarios H, minimum and 
maximum allowable speed Vmin, Vmax

Output: Optimal power allocation setting Popt for each leg, minimum total emission
1: Initialize DP table DP to infinity, traceback table traceback to None, arrival times to infinity
2: for j = 1 to n do
3: if j = 1 do
4: for each power setting Γi in [Γ1,Γ2,…Γe] do
5: Extract metocean condition W1,1 at location (x1,1, y1,1) and time t1,1, evaluate V1,1, mfuel based on power setting Γi and 

W1,1

6: for k = 2 to m1 − 1 do

7: Compute arrival time on k-th waypoint t1,k =
dk− 1→k

V1,k− 1 
+ tj,k− 1, extract metocean condition W1,k at location (x1,k, y1,k) and 

time t1,k, evaluate V1,k, mfuel and based on power setting Γi and W1,k

8: end for
9: if Vmin ≤ V1,k ≤ Vmax continue
10: for k = 1 to m1 − 1 do
11: Compute f1 based on Eq. (14)
12: end for
13: Update DP[1][0][Γi] = f1, traceback[1][0][Γi] = (0,Γi), and store arrival times[1][0][Γi] = t1,m1

14: end for
15: else Compute the nominal departure time t(0)j,1 as Eq. (17), max deviation time ΔTj as Eq. (20), parallel scenarios time 

interval Δtj =
ΔTj

H − 1

16: for each candidate hi in 
[

0,±1,±2,…,±

⌊
H
2

⌋]

do

17: Compute starting time tj,1 = t(hi)
j,1 as Eq. (19)

18: for each power setting Γi in [Γ1,Γ2,…Γe] do
19: for k = 2 to mj − 1 do

20: Compute arrival time on k-th waypoint tj,k =
dk− 1→k

Vj,k− 1 
+ tj,k− 1, extract metocean condition Wj,k at location (xj,k, yj,k) and 

time tj,k, evaluate Vj,k, mfuel and based on power setting Γi and Wj,k

21: end for
22: if Vmin ≤ V1,k ≤ Vmax continue
23: for k = 1 to mj − 1 do
24: compute fj based on Eq. (14)
25: end for
26: Update DP[j][hi][Γi] = fj , traceback[j][hi][Γi] = (hi,Γi), and store arrival times[j][hi][Γi] = tj,mj

27: end for
28: end for
29: end for
30: for j = 1 to n − 1 do
31: for each scenario in arrival times[j] do

32: Connect to one of the scenarios of the next leg with starting times t(hi)
j+1,1, hi ∈

[

0,±1,±2,…,±

⌊
H
2

⌋]

based on closest 

time, store linked connections for later optimization.
33: end for
34: Apply DP to minimize emissions across all scenarios, and extract the optimal power allocation Popt

35: Simulate the voyage using Popt , if 0.99 ≤ (tn,mn /ETA) ≤ 1.01 break
36: else if use the next best power combination and re-simulate, until ETA constraint is satisfied.
37: Return Popt, minimum total emission
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Table A3 
Hyperparameters of the speed and fuel consumption rate prediction model.

Parameter Speed model Fuel model

Step size (learning rate) 0.1396 0.1643
Maximum depth of a tree 5 9
Number of trees 3343 4489
Minimum loss reduction required to make a split (gamma) 2.8806 0.1916
L1 regularization term (alpha) 0.3588 0.2529
L2 regularization term (lambda) 4.088 2.2814
Minimum sum of instance weight required in a child 1.4623 1.1818
Subsample ratio 0.9827 0.9882
Column subsample ratio 0.9632 0.9986

Data availability

The authors do not have permission to share data.
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