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Extensively acquired antimicrobial-
resistant bacteria restructure the
individual microbial community in post-
antibiotic conditions

Check for updates

Jae Woo Baek1, Songwon Lim1, Nayeon Park1, Byeongsop Song1, Nikhil Kirtipal1, Jens Nielsen2,3,
Adil Mardinoglu4,5, Saeed Shoaie4, Jae-il Kim1, Jang Won Son6, Ara Koh7 & Sunjae Lee1

In recent years, the overuse of antibiotics has led to the emergence of antimicrobial-resistant (AMR)
bacteria. To evaluate the spread of AMR bacteria, the reservoir of AMR genes (resistome) has been
identified in environmental samples, hospital environments, and human populations, but the
functional role of AMRbacteria and their persistencewithin individuals has not been fully investigated.
Here, we performed a strain-resolved in-depth analysis of the resistome changes by reconstructing a
large number of metagenome-assembled genomes from the gut microbiome of an antibiotic-treated
individual. Interestingly, we identified two bacterial populations with different resistome profiles:
extensively acquired antimicrobial-resistant bacteria (EARB) and sporadically acquired antimicrobial-
resistant bacteria, and found that EARB showed broader drug resistance and a significant functional
role in shaping individual microbiome composition after antibiotic treatment. Our findings of AMR
bacteria would provide a new avenue for controlling the spread of AMR bacteria in the human
community.

Recently, the misuse and overuse of antibiotics in medicine and food pro-
duction have led to the emergence of antibiotic-resistant bacteria1,2. For
example, the increased use of antibiotics during the COVID-19 pandemic
has accelerated the development of multidrug-resistant bacteria3, posing a
new threat to modern society. Importantly, the human gut microbiome
serves as a reservoir for antimicrobial resistance (AMR) genes4–6, spreading
these genes to the community. Initially, monitoring the spread of AMR
genes was conducted using environmental samples, such as urban sewage7

and samples from hospital environments8, as well as by studying normal
human populations in different countries9,10 and vertical transmission from
mothers to infants11. Such surveillance approaches12 have been successful in
the identification of AMR reservoirs, called resistomes, in the human
community; however, a deep understanding of the taxonomical origins of
AMR gene carriers and the impact of AMR bacteria on the gut commensal
community is lacking. Some initial in-depth metagenomic studies have
found that individual resistomes can persist for at least one year9, but the

dynamic changes inAMRbacteria and their impact on the communityhave
been poorly studied at species or strain resolution. Therefore, functional
analysis of AMR bacteria in the individual gut microbiome will be a key to
understand their functional niche in the human community andmanaging
their unintended consequences in the human gut microbiomes.

Here, we performed a strain-resolved, in-depth analysis of resistome
changes for the identification of the driver microbial species of resistome
changes and their functional niche in a given community. To this end, we
analyzed publicly available shotgunmetagenomic samples of healthy adults
who underwent 4-day treatments with antibiotic cocktails13, focusing on
resistome dynamics at the species/strain level through de novo assembly of
the metagenome-assembled genome (MAG). Interestingly, we identified
bacteria that had acquired extreme resistance (EARB), those that had
acquired sporadic resistance (SARB), and non-carriers, based on theirAMR
gene counts. Based on further functional analysis, we found that EARB
displayed broad drug resistance and a significant functional role in shaping
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individual microbiome compositions with the consequential strain
switching, validated in multiple independent cohorts, including those with
recurrent urinary tract infections (RUTI) and liver cirrhosis, and preterm
infants. Therefore, our findings provide insights into the distribution and
enrichment of AMR genes within bacterial strains and highlight the func-
tional significance of multi-resistant bacteria in the antibiotic-treated gut
community.

Methods
De novo metagenomic assembly
We obtained 57 metagenomic samples from the original paper13 and gen-
erated high-quality (HQ) non-human reads. These data were collected
before and after a 4-day treatment with antibiotic cocktails once a day
(meropenem, gentamicin, and vancomycin). To observe longitudinal
changes following the cessation of antibiotics, additional samples were
obtained at day 8, day 42, and day 180. Note that among the possible 60
samples, three samples were excluded due to the failure in library con-
struction from the original study. Human contaminations were removed
from metagenomic samples again using GRC38 and bowtie2 (default
option; version 2.3.5.1)14. Host removed reads were used for MAG con-
struction using metaWRAP (default option; version 1.3.2) pipeline15. First,
FASTQ files were assembled by MEGAHIT (v1.1.3)16. The assembled files
were binned using three different representative binning tools (MetaBat2,
MaxBin2, CONCOCT). The initial bins were refined to obtain finalMAGs.
CheckM (version 1.0.12)17 was used for quality control of MAGs, and those
with >70% completeness and <5% contamination were considered HQ.

Antimicrobial resistance gene analysis
AMR genes in the assembled genome were searched by Resistance Gene
Identifier software (RGI; version 5.2.1) with Comprehensive Antibiotic
Resistance Database (CARD) database (3.2.2)18 as a reference (--input_type
contig --alignment_tool DIAMOND --split_prodigal_jobs –clean). MAGs
that containmore than 17 AMR genes were defined as Extremely Acquired
Resistant Bacteria (EARB) in this study, andMAGs containing AMR genes
<17 were considered as SARB; MAGs having no AMR genes were con-
sidered as non-carriers.

To analyze AMR dynamics, we counted the number of MAGs and
AMR genes at different sampling points. In addition, we tracked the
average number of AMR genes perMAG (by dividing the total number
of AMR genes by the number of MAG) to identify individual variations
in response to antibiotic treatment. We categorized individuals into
‘Susceptible’ and ‘Tolerant’ groups by considering the timing of the
peak of AMR gene increases and the degree of the increase. To confirm
microbial composition displacement among the tolerant group and the
distances between different time points of given individual, we used
metagenomic-based operational taxonomic unit (mOTU) relative
abundance, from the original paper13, and R package vegan (version
2.6-4) to calculate Bray-Curtis dissimilarity between day 0 (baseline)
and day 180 of all subjects. We obtained multi-dimensional scaling
coordinates and calculated the displacement.

Drug classes and mechanisms of AMR genes in each MAG were
obtained from the RGI analysis results. To analyze the distribution of var-
ious drug classes, the number of occurrences of each drug class was counted
in EARB and SARB. To examine the differences in drug classes between
EARB and SARB, the frequency of each drug class was calculated, and the
number ofMAGs carrying each drug class was counted. To get a prevalence
score, the proportion ofMAGs carrying a givendrug class (carrier ratio)was
multiplied by the frequency of the drug class.

To analyze the sharing of drug classes and AMR genes among EARBs
and SARBs, we counted the frequency of drug classes or AMR genes at a
certain taxonomic level (genus level for EARB and phylum level for SARB).
Specifically, for EARB, we considered a drug class or AMR gene to be
“shared” if it was found in at least three out of the four total EARB genera.
Similarly, for SARB, it was considered shared if it was detected in at least six
out of the eight total SARB phyla.

To explore potential correlations between specific drug classes orAMR
genes and taxonomies, we calculated the frequency of each drug class within
every phylum or species. This was done by dividing the number of times an
AMR gene associated with a drug class appeared within a given taxonomy
by the total occurrences of that taxonomy level. We performed this calcu-
lation separately for EARB and SARB. Following the frequency determi-
nation,we addedone to themean frequency value to adjust for any instances
of zero occurrence, then applied a logarithmic transformation to normalize
the data distribution.We visualized the results using a pheatmap to provide
an intuitive understanding of the frequency and distribution patterns. We
also checked theAMR signature fromMAGs based on non-negativematrix
factorization (NMF) technique using R package NMF. By setting the fac-
torization rank to two, we extracted basis and coefficient vectors from the
given NMF factors.

Taxonomy annotation of MAGs
The taxonomy of MAGs, assembled in this study, was assigned using
GTDB-TK classify_wf (version 2.1.0) with release 207_v2 database19. A
phylogenetic tree for EARBwas constructed from 12 healthy adults using
GTDB-TK de_novo_wf. Since all EARBs were assigned within Enter-
obacteriaceae family, following parameter was used (--bacteria --tax-
a_filter o__Enterobacterales --outgroup_taxon f__Enterobacteriaceae).
The result was used for plotting a phylogenetic tree in iTOL website
(https://itol.embl.de/)20.

Relative abundance profiling of MAGs
The abundanceofMAGs constructed from12healthy adults was quantified
by the quant function of salmon program (version 0.13.1) in metaWRAP
pipeline15 and merged with the taxonomy table. Phylum ‘Firmicutes_C’,
‘Firmicutes_A’ were converted to ‘Firmicutes’ to remove clade annotations
for clarity.

To avoid bias caused by differences in absolute abundance between
samples, the abundance of the same phylum in the same host was added,
and its relative abundance was calculated and added based on the sampling
point. Relative abundance was recalculated to obtain the relative abun-
dances at the phylum level for each sampling point. To avoid bias caused by
differences in absolute abundance between samples, we first summed the
absolute abundance of each phylum within each sample and converted it
into a sample-level relative abundance.Next,we grouped these sample-level
relative abundances by sampling point, summed them again for each
phylum, and recalculated the phylum-level relative abundances at the
sampling-point level. To compare the composition of the top-5 abundant
phyla between sampling points, minor phyla, whose abundance was less
than the top-5, were converted to ‘others’ at each sampling point. The
abundance table of the EARB-containing community was further investi-
gated at the species level and categorized into ‘EARB,’ ‘top-5’ (the top-5
abundant species, excluding EARB), and ‘others’. Lastly, to generate the
relative abundance of Enterobacteriaceae and Veillonellaceae, family-level
taxonomy information of MAGs was categorized into ‘Enterobacteriaceae’,
‘Veillonellaceae’, or ‘others’.

Functional analysis of MAGs
Gene prediction using Prodigal (default mode; version 2.6.3)21 was con-
ducted for further functional and community power analyses. Functions of
predicted genes were annotated with KEGG using hmmsearch function of
HMMERprogram(default option; version 3.3.1)22 using pre-trainedhidden
MarkovModels (prok90_kegg94) fromRaven toolbox (https://github.com/
SysBioChalmers/RAVEN/wiki/Use-Pre-Trained-HMMs). KEGG path-
ways/modules and the list of KEGG orthology (KO) terms were manually
parsed from the KEGG database (release 103; 2022/07)23 and used for
functional analysis. For comparison between non-EARB and EARB, sam-
ples that contain EARB were selected, and the KO pathway and module
table were generated by counting the number of KO genes for the pathway
or module in each MAG. A significant difference pathway or module was
identified using a two-sidedWilcoxon rank-sum test with a confidence level
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of 0.95. Significant pathways were filtered based on the criteria: pathway
gene coverage >30% and fold change >0.5 compared to the non-EARB.
Significant modules were filtered based on the criteria: module gene cov-
erage >0.8 and fold change >0.5 compared to the non-EARB.

Community power analysis
To investigate the functional importance of EARB in a community, a
community power analysis was conducted. Genes of MAGs in the com-
munities with EARB existing were predicted using prodigal (default mode;
version 2.6.3) and KEGG annotated by hmmsearch function of HMMER
(default option version 3.3.1). Therefore, KEGG enzyme count table was
generated for each community. Functional uniqueness was measured by
counting number of unique KEGG enzyme in a MAG when comparing
others in the same community by leave-one-out approach. To calculate the
functional importance of amicrobe, the KEGG enzyme counts of amicrobe
weredividedby the sumof the same enzymecounts of the entire community
(proportion of KEGG enzymes for themicrobe). The sumof the proportion
of all KEGG enzymes of amicrobewas considered as the community power
score of the given microbe. Community power scores of three categorized
microbes (EARB, SARB, non-carrier) were also calculated.

Co-enrichment analysis
Co-enrichment matrix was generated using mOTU relative abundance
rarefied table downloaded from the original paper13. First, we choose three
mOTUspeciescorresponding toEARB(Escherichia coli,Klebsiella oxytoca,
Klebsiella pneumoniae). Four non-EARB species (Bacteroides thetaiotao-
micron, Bacteroides ovatus, Bilophila wadsworthia, Parabacteroides dis-
tasonis) were manually picked based on high prevalence and high
community power score for comparison. Co-enrichment correlation
between each selected microbes’ abundance and other mOTUs’ were cal-
culated by Spearman test. mOTU species that were annotated ambiguously
(annotated as ‘motu_linkage_group’) and showed correlation between
–0.3 < and<0.3with all selected species were excluded. The correlations that
both microbes co-existed in at least 5 communities and showed significant
p value (>0.05) were selected and plotted using the pheatmapR package. To
count positively or negatively related mOTUs, filtering spearman correla-
tion test by >0.3 or <−0.3 for each comparing bacteria. To verify the
relationship between the relative abundance of EARB or non-EARB with
mOTU richness, we sum up the relative abundance of all EARBmOTUs or
non-EARB in each sample. Then we countedmOTUs, which are non-zero
in relative abundance in each sample. We calculated the sum of relative
abundance as log2 and then divided the samples into three categories (Rare:
log2 relative abundance sum <−10,Normal:−10≤ log2 relative abundance
sum <−5, Rich: 5 ≤ log2 relative abundance sum). Correlation between
relative abundance sum of EARB or non-EARB and number of non-zero
mOTUs (mOTU richness) was measured by spearman’s correlation
coefficients.

Tracking endogenous strains among metagenomic samples
To check genomic similarity between basic EARBs, we created an ANI
matrix using fastANI24 with –matrix parameter with default options (ver-
sion 1.33). For strain analysis, gene prediction was conducted for 12 EARB
E. coli using Prodigal21. All predicted genes were concatenated and then
clustered based on similarity using CD-HIT (version 4.8.1)25 with -aS 0.9 -c
0.98 -n 10 -M 0 -d 0 -T 0 -G 0 parameters. From CD-HIT clustering
information, extract the longest 20 homologous genes that are present in all
12 E. coli strains with the same length using cdbfasta (version 1.00). 20
homologous genes in most HQ E. coli genome (ERR1995253 bin.3) were
extracted and built as a reference by bwa (version 0.7.17-r1188) for variant
call andSNPsearch.Variant callwasdoneby following steps.PairedFASTQ
files from EARB E. coli containing samples were mapped against a pre-
viously built E. coli homologous gene reference. Generated bam file was
sorted, indexed, andmpileup (mpileup -ugf) using samtools (version 1.9)26.
Variants were called using bcftools (bcftools call -cv) (version 1.9)27, and
filtered to include only variantswith a quality score of 20 or higher. Bamfiles

were converted tabula form using sam2tsv version (d29b24f2b). The fre-
quency of nucleotides in every variant point was counted using the con-
verted tsv file. Nucleotide bases that existed in variant position <5% were
discarded because of the possibility of sequencing error. SNP ratio of each
variant position was counted using basic R functions. For SNP analysis for
AMR gene, we did the same process except using AMR gene from
ERR1995248 bin.3 (host 5 & day 8) for reference because it is the dominant
E. coli of the host. Using the dominant strain AMR gene for variant calling,
wewere able tofind anucleotide ratio clustered into two in the day 4 sample.
Comparing variant position and SNP information between longitudinal
data, we could track the SNP ratio (SNP nucleotide frequency/total
nucleotide frequency) of the variant position through sampling points. To
confirm the existence of twoE. coli strains in host 5 and the day 4 sample, all
variant positions of the 54 AMR gene reference host 5 at day 4 were
investigated for their sequence depth.

Validation using a different cohort dataset
To confirm the reproducibility of EARB in other antibiotic-exposed human
metagenome data, we downloaded raw data (i.e., FASTQ files) of shotgun
metagenomic samples, or isolate strain genome samples, from three dif-
ferent study dataset, such as RUTI-causing E. coli isolates (n = 556), liver
cirrhosis patient (n = 592), and preterm infant (n = 399). We constructed
MAG from the rawdata from liver cirrhosis patient and preterm infant data
and searchAMR gene using same pipeline, such asMetaWRAP pipeline, as
we described above. For liver cirrhosis patients data, Megahit16 was used
with -r parameter (for single-end input). For E. coli isolates data, we
assembled contigs using Megahit then predicted genes using prodigal for
AMRgene searching.We also investigated the E. coli isolates’ SNPprofile of
variant positions, which were found in SNP analysis between the major
strain and the minor strain of host 5. We calculated the AMR prevalence
value and compared it with the healthy adults’ EARB. To verify the com-
munity power score of EARB in live cirrhosis and preterm infant data, we
selectedcommunities that containEARBandmore than5otherMAG(liver
cirrhosis = 28, preterm infant = 24 communities). Communities for healthy
adults, liver cirrhosis patients, and preterm infants were arranged by sam-
pling point,MELD score (Model for End-Stage LiverDisease), and host day
of life, respectively.

Results
De novo assembly of shotgun metagenomics revealed the
enrichment of multi-AMR genes within specific bacterial strains
To investigate the longitudinal changes in the AMR gene repertoire of the
gut microbiome after antibiotic treatment, known as the resistome, we
obtained and processed publicly available fecal shotgunmetagenomics data
from12healthy adultswith 5 timepoints (total 57 sampleswereused among
possible 60 samples, with three samples excluded due to the library con-
struction failure). These data were collected before and after a 4-day treat-
ment with an antibiotic cocktail (meropenem, gentamicin, and
vancomycin), as well as on days 8, 42, and 180 after the cessation of anti-
biotics (Fig. 1)13. First, we performed de novo genome reconstructions of 57
metagenomic samples using the metaWRAP pipeline15, which integrates
three binning tools (seeMethods). A total of 7858 initial bins from the three
binning tools were filtered into 2585 HQ MAGs, which passed the quality
criteria of completeness (>70%) and contamination (<5%) based on
CheckM estimations17 (Fig. 1b and Supplementary Fig. 1a, b) and refined
these into 1358 MAGs, which were merged from the consensus bins of the
three binning tools (Supplementary Data 1–2).

We identified the AMR gene repertoire of theMAGs using CARD28 as
a reference (See Methods). We traced the changes in the number of MAGs
and AMR genes identified in each sample and summarized them by time
point. The number of MAGs was highest at baseline (day 0), significantly
reduced fromday4 to day 42, and then recoveredonday 180.We also found
a significant increase in the number of AMR genes by day 8, suggesting that
4 days after the cessation of antibiotic treatment, resistant bacteria persisted
and thrived (Fig. 1c). Interestingly, individual examinations of changes in
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the AMR gene ratio revealed diverse resistance responses of the gut
microbiome to antibiotic treatment. For example, some individuals (host 5
and 12; susceptible group) showed drastic changes in their resistome from
baseline, while other individuals (host 2 and 4; tolerant group) showed a
similar level of AMR gene burden. This suggests different susceptibilities of
individuals to antibiotic-induced dysbiosis (Fig. 1d, e and Supplementary
Fig. 1c). In aprevious study, administering antibiotics tohealthy subjectsnot
only altered their gut microbiomes to resemble those of intensive care unit

patients, but also resulted in a protracted recovery in some subjects, as
confirmed by the maximum displacement between baseline and final data
points in principal component analysis29. In line with these findings, our
study revealed that individuals in the susceptible group, who experienced a
rapid enrichment of AMR genes following antibiotic treatment, demon-
strated the longest distance frombaseline (day 0) to the final sampling point
(day 180), indicating a delayed recovery of themicrobiome (Supplementary
Fig. 1d).

Fig. 1 | Metagenome-assembled genomes revealed individual resistome changes
and discovered bacteria that had acquired extensive antimicrobial resistance.
a Overview of the shotgun metagenome analysis conducted in this study. From 12
healthy adults, 56 metagenomics datasets were sampled at five different time points,
and three additional datasets (recurrent urinary tract infection [RUTI]-causing
Escherichia coli genomes, preterm infant metagenomes, and liver cirrhosis meta-
genomes) were used for further validation. b Scatter plot of metagenome-assembled
genome (MAG) quality score of three different binning tools. Using CheckM
algorithm, we selected high-quality MAGs (total number of high-quality (HQ)
MAGs = 2585 [blue], total number of low-quality (LQ) MAGs = 5268 [red]) based
on a completeness (Q) >70% and contamination (T) less than 5% (block dotted
lines). c Boxplot of the number of refined MAGs based on the consensus of three
binning tools (completeness > 70%, contamination < 5%; n = 1358) and the number

of antimicrobial resistance (AMR) genes found in subjects at each sampling point.
AMR genes were discovered by Resistance Gene Identifier (RGI) tool using the
Comprehensive Antibiotic Resistance Database (statistical significancemeasured by
Student’s t test comparing each time point group with the day (D)0 group as
reference group. ****p ≤ 0.0001, **p ≤ 0.01). d Individual dynamics of the number
of AMRs per MAG. Each line indicates AMR changes in a given host. e Line plots
tracking the changes in the number of MAGs and average AMR gene burden per
MAGof susceptible (Host 5 and 12) and tolerant subjects (Host 2 and 4). fAMRgene
distribution within each MAG (n = 1358). MAGs containing more than 17 AMR
genes (black dotted line) were regarded as bacteria that had acquired extreme
resistance (EARB) (red dots, n = 20) (statistical significance measured by Student’s t
test comparing each time point groupwith theD0 group, ****p ≤ 0.0001, *p ≤ 0.05).
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Next, we examined the correlation between MAGs and the increased
resistome by quantifying the prevalence of AMR genes within eachMAG at
different time points (Fig. 1f). In our temporal analysis, we found that a
specific set of 20 MAGs contained a notably high number of AMR gene,
reaching a saturation point in the cumulative distribution of AMR counts,
with eachMAG containing at least 17 AMR genes (Supplementary Fig. 2a).
Therefore, we defined bacteria withmore than 17AMR genes as extensively
acquired antimicrobial resistance bacteria (EARB). The EARB showed
comparable assembly quality compared to other MAGs (Supplementary
Fig. 2b, c), indicating that the higher number of AMR genes in EARB was
not an artifact of poor metagenome assembly. Notably, we found that
individuals with different resistome changes, i.e., susceptible and resistant
groups, showed distinct emergence timings of EARB species following
antibiotic treatment (Supplementary Fig. 1c). Therefore, to better under-
stand the changes in individualmicrobiomes after antibiotics treatment, the
dynamics of the abundance and functions of EARB specieswill be the key to
understanding the effects of antibiotics on gut microbiome community.

Characteristics of EARB strains at the taxonomical, functional,
and community level
We further explored the characteristics of EARB by comparing their tax-
onomy and abundance with those of other microbes within the same
microbial community. We first annotated the taxonomy of all MAGs
identified using Genome Database Taxonomy Toolkit (GTDB-TK)19 and
constructed a phylogenetic tree for the EARB species (Supplementary Fig.
3a, seeMethods). Of note, all EARB belonged to the Proteobacteria phylum
(also known as Pseudomonadota), predominantly within the genera
Escherichia, Klebsiella, Enterobacter, and Cronobacter, which are widely
recognized as pathobionts associated with various chronic diseases and
bloodstream infections30. We also examined the taxonomy of MAGs con-
taining fewer than 17 AMR genes, referred to as SARB. The majority of
SARB belonged to the phyla Bacteroidetes (also known as Bacteroidota)
(62.8%) and Firmicutes (also known as Bacillota) (27.5%), while a small
proportion belonged to Proteobacteria (3.8%). AMR non-carriers mostly
belonged to Firmicutes (82.6%), implying different taxonomic preferences
for the acquisition of antimicrobial resistance genes (Supplementary
Fig. 4a, b).

Next, we estimated the relative abundance profiles of all MAGs at the
phylum and family levels (Supplementary Fig. 3b, c). Interestingly, the
abundance of Enterobacteriaceae, to which all EARB were assigned, and
Veillonellaceae, known pathobionts associated with intestinal
inflammation31,32, significantly increased when antibiotic-induced dysbiosis
peaked (i.e., day4 and8).However, the abundanceof theknowncommensal
phylum, Bacteroidetes, significantly decreased onday 4 andday 8 (Student’s
t test p value = 0.0017 on day 8, compared with baseline). The pattern of
changes in microbial composition was also confirmed using kraken233,
which showed resembled result (Supplementary Fig. 4c). We observed a
shift in themicrobial community composition over the short-term (day 0 to
42) following antibiotic treatment. This shift was characterized by a
decreased relative abundance of EARB and an increased relative abundance
of various minority species, suggesting a pattern of recovery from dysbiosis
in the hosts (Supplementary Fig. 3d and Supplementary Fig. 4d).

Differential resistomes between EARB and SARB strains
Next, we identified differences in the resistomes of EARB and SARB based
on their annotated AMR gene information using CARD28. Based on the
resistome prevalence values (that is, the observed frequency of a givenAMR
drug class normalized to the proportion of AMR gene-carrying bacteria; see
Methods), we compared the differences in resistome composition at the
drug class level between EARB and SARB strains (Fig. 2a). Of note, the
resistome carried by EARB strains was more evenly distributed for many
drug classes, whereas the resistomes carried by SARB were highly enriched
for fluoroquinolone and tetracycline classes, which were not relevant to the
antibiotics used in this study. Interestingly, a previous report showed that
tetracycline-resistant genes are spread over many different geographical

regions, reflecting the same tendency as observed in the SARB resistome34.
These distinct resistomes between EARB and SARBwere also confirmed in
the pheatmap using the relative frequency of drug class matrix (Supple-
mentary Fig. 5a, b) and they were clustered again into EARB and SARB
groups by unsupervised clustering (k-means) (Supplementary Fig. 6a).
Among the three drug classes used in this study (carbapenem, aminogly-
coside, and glycopeptide), carbapenem resistancewas predominantly found
in EARB (20 out of 23 MAGs of the given resistome were EARB) (Sup-
plementary Data 3). Similarly, aminoglycoside resistomes were found
mostly in EARB (20 of 40 MAGs of a given resistome were EARB). How-
ever, the glycopeptide resistome was found in SARB (44 MAGs), but was
absent in EARB. The original study pointed out that gram-negative bacteria
are naturally resistant to glycopeptide antibiotics, such as vancomycin, and
EARB (all gram-negative) might have natural resistance to such glycopep-
tide antibiotics, thereby not necessitating a glycopeptide resistome35.

We further investigated the resistome profiles of EARB and SARB
based on the shared AMR drug classes at the genus level, and also by the
broader taxonomic rank (e.g., the phylum level for the SARB strains due to
their phylogenetic diversity) (Fig. 2b, d and Supplementary Fig. 7a).Of note,
all EARB shared resistance to similar antimicrobial drug classes, whereas
SARB did not, except for fluoroquinolone and tetracycline. Therefore, the
extensive antibiotic resistance capacity ofEARBprovides afitness advantage
when treated with antibiotics, whereas SARB shows different survival out-
comes according to the type of antibiotic used. However, at the gene level,
neither EARBnor SARB strains sharedAMRgeneswith other phylogenetic
groups (genera or phyla), implying that similar drug class resistomes were
conferred by unique or narrowly distributed AMR genes (Fig. 2c, e and
Supplementary Fig. 7b). This result also suggests that horizontal gene
transfer (HGT) of AMR genes between bacteria of different taxa is
uncommon. Rather, a specific taxonomic group harboring an extensive
resistome and AMR gene spread through HGT might only occur in spe-
cific genes.

We also traced the changes in resistomeprofiles at different timepoints
after extracting resistome signatures usingNMF (Supplementary Fig. 8a, see
Methods). By applying an unsupervised NMF decomposition to the resis-
tome profiles, we identified two distinct signatures in the resistome, sig1 and
sig2. As expected, these two signatures resembled the EARB and SARB
resistome prevalence scores, further confirming our findings through
independent methods. Of note, EARB-like resistome signature (sig1) was
significantly increased on days 4 and 8, whereas SARB-like resistome sig-
nature (sig2) was decreased on days 4 and 8 and then recovered at days 42
and 180. Such resistome signatures imply that EARB drives overall resis-
tome changes after the antibiotic treatment, as observed in the data pre-
sented in Fig. 1.

EARBstrainsshowed functionaldominance in thepost-antibiotic
gut microbial community
In our previous findings (Supplementary Figs. 3 and 4), we identified EARB
strains co-enriched with specific bacterial groups, suggesting that EARB
play a significant role in shaping microbial communities under antibiotic
treatment. Therefore, to further investigate the impact of EARB within the
community, we devised a new scoring method that estimates functional
dominance, termed as the community power score (Fig. 3a).

First,we examined the annotated functions (i.e.,KyotoEncyclopedia of
Genes andGenomes [KEGG]orthologs) of all the species detected in a given
metagenomic sample (i.e. functional profile of sample 1 in Fig. 3a). Next, we
gave different weights to the functions of target species in the profile matrix
by normalizing their functions by the total number of species having the
given functions. If a given function is present only in a target species, that
species would have a higher weight for that function. On the contrary, if a
given function is present in all species detected in the given samples, the
target species would have a lower weight for that function. Lastly, by
summarizing all the functional weights of the target species, a community
power score of the given species was calculated. After this calculation, the
communitypower scoreof given species canbe comparedwithother species
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detected in a givenmetagenomic sample (see boxplot for community power
scores for sample 1 inFig. 3a). Therefore, community power score can assess
themicrobe’s functional uniqueness and importancewithin the community
(see Methods).

Remarkably, we found that, in all metagenomic samples, EARB
showed the highest community power compared to the other microbes,
indicating its significant functional importance in the community. How-
ever, SARB and AMR non-carriers showed significantly lower community

Fig. 2 | Differential resistomes between EARB and SARB strains. a Drug classes
resistant to EARB and SARB strains identified by AMR prevalence scores. We
calculated AMR prevalence scores based on the observed frequency of given drug
classes in EARB or SARB strains, while normalizing them according to their carrier
ratios. We show the AMR prevalence scores from EARB (left) and SARB (right)
strains based on the descending orders of EARB prevalence scores (the class of
antibiotics used for treatment in this study is colored red). b, c Circos plots of (b)

shared drug classes (n = 23) and (c) shared AMR genes (n = 803) (upper bounds) of
given genera of EARB (n = 4) (gray, lower bounds). Red links indicate drug classes or
AMR genes shared by more than three genera, whereas blue links indicate those
shared by less than three genera. d, e Circos plots of (d) shared drug classes (n = 26)
and (e) shared AMR genes (n = 832) of given phyla of SARB (n = 8). Red links
indicate drug classes or AMR genes shared by more than three phyla, whereas blue
links indicate those shared by fewer than three phyla.
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Fig. 3 | EARB strains harbored a greater functional repertoire capable of shaping
the community. a The outline of community power analysis. We calculated the
functional repertoire of given microbial strains, herein termed community power
scores, based on the number of genes harboring specific Kyoto Encyclopedia of
Genes andGenomes orthology (KO) terms. In short, we counted the total functional
repertoire of given microbial strains based on their genes harboring specific KO
terms, after normalizing them according to the total number of KO terms in all the
microbial strains in the given metagenomic samples. Therefore, all community
power scores for microbes in a given metagenomic sample could be calculated and
compared with each other. Themicrobes of the highest community power score had
the highest functional repertoire in a given metagenomic sample. b Community
power scores of metagenomic samples that carried EARB strains (n = 16). We
compared the community power scores among EARB, SARB, and non-carriers
(right panel) and found that EARB outscored the others (Student’s t test p
values < 0.0001 [****]). c Co-abundance (i.e., Spearman’s correlation coefficients)
of three EARB strains (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae)

and four non-EARB strains with the highest community power score in one of the
metagenomic samples (Bacteroides thetaiotaomicron, Bacteroides ovatus, Bilophila
wadsworthia, Parabacteroides distasonis). Microbial strains significantly correlated
with at least one of the seven selected strains (absolute correlation coefficients >0.3)
are shown, and unknownmetagenomic-based operational taxonomic unit (mOTU)
species were excluded. Additionally, mOTUs that were not present inmore than five
metagenomic samples were also excluded (rows in the heatmap, n = 84). d The
number of significantly correlated strains (absolute Spearman’s correlation coeffi-
cients >0.3) with EARB and non-EARB strains. e Negatively correlated between
EARB abundance and species richness, based on the sum of log2-transformed
relative abundances (rare <−10, −10 ≤ normal <−5, rich ≥−5) and species rich-
ness. f Less-correlated patterns between sample groups of different non-EARB
abundances, based on the sumof log2-transformed relative abundances (rare <−10,
−10 ≤ normal <−5, rich ≥−5) and species richness (relative abundance > 0). Dif-
ferences between sample groups were tested using Wilcoxon rank-sum tests.
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power scores compared toEARB strains (Student’s t test p values < 1 × 10−4)
(Fig. 3b, right).

To further identify which community members were influenced by
EARB strains, we examined microbes that were co-abundant with EARB
(Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae) and other
non-EARB (i.e., SARB and non-carriers) with the highest community
power scores (Bacteroides thetaiotaomicron, Bacteroides ovatus, Bilophila
wadsworthia, and Parabacteroides distasonis) (|Spearman’s correlation
coefficients |>0.3) based on mOTU-based species abundance profiles (see
Methods). Interestingly, co-abundant microbes with EARB strains were
mostly pathobionts (Supplementary Data 4), including Clostridium spp.,
Fusobacterium spp., and Veillonella spp., which promote intestinal
inflammation31. In contrast, members that were co-abundant with non-
EARB were mostly commensal bacteria, including Bacteroides spp., Rose-
buria spp., and Alistipes spp. When we analyzed the negative bacterial
interactions between EARB and non-EARB, we found that EARB showed a
much higher number of negatively correlated microbes than non-EARB,
implicating EARB outcompeting in given microbial community (Fig. 3d).
We substantiatedourfindings using correlations betweenEARBabundance
and species richness and identified negative trends between these two
parameters (Fig. 3e). However, the abundance of non-EARB with high
community power correlated with increased species richness in themiddle-
range abundance level (Fig. 3f). Therefore, we identified two distinct pat-
terns of functionally impactful bacteria: 1) microbes with the high com-
munity power that might influence a small set of bacteria and 2) microbes
with high community power that are co-abundant with a large number of
bacteria, behaving like commensal species.

Next, to better characterize the functional impact of EARB on other
interacting microbes, we performed functional enrichment analysis of
EARB compared to non-EARB based on the KEGG pathways and
modules36 (Wilcoxon rank-sum test p values < 0.05, log2 fold change >0.5,
pathway coverage>0.3 ormodule coverage>0.8; Fig. 4a, b). Interestingly,we
found that EARB were significantly enriched in amino acid metabolism,
sugar metabolism, and reductive transformations of xenobiotics, including
reductions in aromatic compounds, such as processes supplemented with
enriched cofactor biosynthesis (e.g., glutathione, vitaminB6, and ascorbate).
Notably, xenobiotic degradation is known to support anaerobic respiration
through nitrogen and sulfur reduction, promote biomass generation of the
given microbiota, and provide a fitness advantage37, and is also likely to

provide the transformation capacity for drug compounds, including anti-
biotics. In addition, we foundmultiple biosynthesis pathways for antibiotic-
like compounds in EARB, which may include bacteriocin, a narrow-
spectrum antimicrobial substance38–40. In summary, we found that the
EARB strains were equipped with biosynthetic pathways, xenobiotic-
reducing metabolism, and anaerobic respiration capacity.

Moreover, based on CAZyme and KEGG profiles, principal compo-
nent analysis revealed distinct clustering of EARB, SARB, and non-carrier,
highlighting their functional differences (PERMANOVA p values = 0.001;
Supplementary Fig. 9a–d and Supplementary Data 5, 6). Interestingly,
unlikeEARB species, SARBwere enriched amongpolysaccharide pathways,
including N-glycan biosynthesis (M00055: N-glycan precursor biosynth-
esis; hypergeometric test p value = 5.4 × 10−4) and carbohydrate degrada-
tion enzymes (148 GH and 10 CE families for SARB species vs 7 GH and
none CE families for EARB species)

MultipleEARBstrainswerecarried endogenously andalternated
in individual hosts
Next, we checked EARB strain changes after antibiotic treatment to
determine whether they were carried endogenously from the same hosts
or re-colonized spontaneously fromoutside the host. To this end, we first
selected EARB strains (n = 20) from different hosts and checked their
genomic similarities by the average nucleotide identity (ANI) scores41

(see Methods). The ANI scores showed distinct patterns between E. coli
and other EARB of different genera (Supplementary Fig. 10a). When we
focused on the ANI scores between the EARB E. coli strains (n = 12), we
observed considerable strain diversity, ranging from 96.56 to 99.99%
(Fig. 5a). Of note, EARB E. coli strains from the same host (i.e., host 12)
on day 4 and 8 showed a substantially highANI score of 99.99% (Fig. 5b).
Given that identical strains were defined based on an ANI score of
99.8%42, the two EARB E. coli strains from the host 12 could be regarded
as identical, implying same strains endogenously carried between day 4
and day 8. In contrast, EARB E. coli strains from host 5 on day 4 and
8 showed distinct ANI scores (99.40% and 98.78%) (Fig. 5b and Sup-
plementary Fig. 10b). When compared with other EARB E. coli strains,
host 12 E. coli strains showed identical ANI scores whereas host 5 E. coli
strains showed different ANI score patterns. Therefore, we found sub-
stantial strain heterogeneity of EARB strains of E. coli, even between
those originating from the same hosts.

Fig. 4 | The enriched metabolic pathways of EARB strains in a given community.
a KEGG metabolic pathways or b KEGG modules significantly enriched among
EARB strains compared to other microbes in given metagenomic samples (total

number of EARB = 20 and total number of non-EARB compared = 217, Wilcoxon
rank-sum test p values < 0.05, log2 fold change >0.5, and pathway coverage >0.3 or
module coverage >0.8).
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To further identify strain changes in the longitudinal samples, we
performed SNP calling of homologous genes present in host 5 EARB E. coli
strains (Fig. 5c and Supplementary Data 7, see Methods). Briefly, we
identified 20 homologous genes, possessed by all E. coli strains, then built a
reference using the homologous gene set from the best-qualityE. coli strains
(H6D8).Next,we called the variant positions (SNPs) bymapping the host 5

metagenome reads, and checked the shared variant positions and calculated
allele frequencies of all variant positions. As a result, we found 804 and 240
SNPs of homologous gene reference fromday 4 and 8, respectively (Fig. 5d).
Analysis of the allele frequency of the identified variants revealed two
separate clusters on day 4, with themajor cluster being close to 55% and the
minor cluster being close to 45%.However, on day 8, one allele converged to

Fig. 5 | EARB strains were carried endogenously by some hosts andmajor strains
alternated after antibiotic treatment. a Intra-species average nucleotide identity
(ANI) scores of E. coli strains belonging to EARB (n = 12). b Top 5 closest EARB E.
coli strain ANI scores with two specific strains identified from the same host (H5,
H12). c The workflow for the identification of single-nucleotide polymorphisms
(SNPs) from a given metagenome sample. First, we selected 20 homologous genes
with the longest lengths from all EARB E. coliMAGs as the on-target genes for SNP
analysis. Next, we used the 20 gene set from the best-quality MAG for building
reference and performed variant calling for metagenomics samples which contain

EARB E. coli strains. d Allele frequency distributions of SNPs identified in meta-
genomic samples of host 5 at day 4 (left, n = 805) and day 8 (right, n = 240). We
identified two different patterns of major and minor alleles, and also one allele
existing in both strains. e SNP analysis was conducted using E. coli AMR genes of
host 5 at day 8 as a reference set.We found that twoE. coli strains shared same variant
positions and different SNPprofiles (nucleotide) under different conditions (median
of allele frequencies for strain 1 at day 0, 4, and 8 = 0.250, 0.563, 1.000, respectively,
and those for strain 2 at day 0, 4, and 8 = 0.750, 0.437, 0.0694, respectively).
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almost 100% (median: 98%). This suggests that one of the two strains
present on day 4 became dominant on day 8.

Since, we identified the existence of two distinct strains in host 5, we
tried to track down the changes of strains using EARB E. coliAMR gene set
of host 5 on day 8 (number of AMR genes = 54) as a reference due to the
high dominance of a single strain. Our analysis identified 1841 variants on
day 4 across 49 AMR genes out of 54 AMR reference gene sets. Considering
that a single strainwas dominant onday 8,while two strainswere present on
day 4, we hypothesized that the variants identified on day 4 were due to the
presence of a minor strain. Consequently, the five genes without variants
may either be due to perfect matching in either strain or may only be found
in the major strain. Examination of the read depth of the AMR genes
revealed that one of the five genes presented a depth similar to that of the
other 49 genes carrying variants, suggesting that it was shared between the
two strains and perfectly matched. The remaining four genes displayed
significantly lower depths, indicating that they were exclusive to the major
strain (Supplementary Fig. 10c). Allele frequency analysis of the 1,841
variant positions on day 4 revealed a distribution similar to that of the
homologous genes, with approximately 55% major strains and 45% minor
strains (Fig. 5e and Supplementary Data 8). Comparing the major and
minor nucleotides of these variant positions longitudinally by tracking the
same variant position with the same SNP nucleotide between day 4 and day
8, we found that the major strain on day 4 became dominant on day 8. To
determine whether these AMR genes were also present at baseline, we also
tracked SNP profile on day 0 (Fig. 5e). Although only a single allele was
confirmed atmany variant positions owing to the shallow sequencing depth
(single allele position = 333), the major and minor strains were still identi-
fiable at certain positions (two-allele position = 76). Remarkably, the strain
that was predominant on day 8 was observed as a minor strain on day 0,
suggesting that the emergence of this EARB may be attributed to strain
alterations. As the endogenous nature of these E. coli strains has been
established in a previous study43, our results confirmed that the occurrence
of EARB in an antibiotic-exposed environment is caused by opportunistic
pathogenic bacteria that already inhabit the host.

EARB strains identified in diverse antibiotic-induced dysbiotic
conditions
We further investigated other populationswith frequent antibiotic exposure
to determine if their microbiota contained EARB (Fig. 6). For example, we
selected shotgunmetagenomic cohorts and the genomes of bacterial isolates
showing antibiotic resistance, such as those causing RUTI43, and performed
de novo assembly to identify EARB strains harboring more than 17 AMR
genes (seeMethods). First, we found that all E. coli isolates fromRUTI were
EARB strains (meannumber ofAMRgenes they carry = 61; Supplementary
Data 9). Interestingly, based on SNPs that defined major and minor strains
in a previous analysis (Fig. 5), we found that most E. coli isolates (65%)
resembled themajor strain’s SNP profile (i.e. havingmore than half of same
nucleotides of 1,841 SNPs that definemajor strains; Supplementary Fig. 11),
whose abundance was increased by antibiotics. This implies that, even
within RUTI-EARB E. coli, the SNP patterns of the major strain were more
prevalent in antibiotic-exposed environments. Next, we checked other
MAGs assembled from antibiotic-exposed cohorts (i.e., preterm infant44

[n = 399] and liver cirrhosis cohorts45 [n = 592]) and found EARB strains
among the selected cohorts (303 of 399 infant samples and 60 of 592 liver
cirrhosis samples) (Fig. 6). More interestingly, when we checked their
resistome profiles (Fig. 6a), we found that they showed highly similar
resistome profile to the EARB strains we found in a previous analysis
(Fig. 2a). Based on further functional investigations, such as community
power scores (Fig. 6b), we found that EARB had the greatest functional
impact on a given community likewise. Of note, preterm infants showed a
higher prevalence of EARB strains, whereas patients with liver cirrhosis had
a higher average number of assembledMAGs than preterm infants (Fig. 6c,
Supplementary Data 10, 11), implying that preterm infants are more sus-
ceptible to EARB colonization, as they have a simple microbial community
with less colonization resistance46. Additionally, metagenomic analysis of

samples from patients with liver cirrhosis from two different samples, stool
(n = 264) and saliva (n = 328), showed that the prevalence of EARB strains
was higher in stool samples (nstool = 57 and nsaliva = 7). These results showed
that EARBs prevalently exist within the population who have been treated
with antibiotics multiple times and show the same characteristics as our
findings. Lastly, to investigate EARB strain sharing across different cohorts,
we performed ANI analysis on all EARB E. coli strains generated in this
study. The results revealed a wide range of ANI values, from 93.78% to
99.99%, indicating substantial strain diversity among EARB E. coli strains
(Supplementary Fig. 12a). Nevertheless, we identified identical strains
(ANI similarity ≥99.5%) shared across different cohorts, suggesting that
some strains have the capacity for inter-cohort transmission (Supplemen-
tary Fig. 12b). Interestingly, not all E. coli strains were shared between
cohorts. This observation implies the existence of both globally sharedE. coli
strains and cohort (or person)-specific E. coli strains (Supplementary
Fig. 12c, d). Therefore, we confirmed the existence of EARB in diverse
populations based on the newly discovered MAGs from different data
sources (i.e., isolate genomes, single-end and paired-end sequencing data).

Discussion
Theneed for research on antibiotic-resistant bacteria at both the species and
subspecies levels has increased. In this study, we performed de novo
assembly of MAGs to investigate the dynamics of AMR genes at the species
and strain levels within microbiomes altered by antibiotics. First, using the
MAG-based approach, we observed different responses of individual
microbiomes to antibiotics, which were classified into susceptible and tol-
erant groups. Second, based on AMR gene repertoire analysis, we identified
two distinct groups of antibiotic-resistant bacterial strains in individual
microbiomes: EARB and SARB. Notably, pathway enrichment analysis
showed that EARB harbored specific functions that enhanced their survival
and competitive advantage, such as the degradation of xenobiotic sub-
stances, including aromatic antibiotics, and the promotion of biosynthetic
pathways. Third, we found that EARBharbored awide range ofAMRgenes
for different drug classes compared to SARB, which were mostly enriched
for only tetracycline and fluoroquinolone antibiotic resistance. Fourth, we
found that EARB played a significant role in altering post-antibiotic
microbial community dynamics based on the community power score we
devised. Finally, we identified multiple resistant lineages of EARB strains
and their intra-species competition within the same host during antibiotic
treatment, highlighting the importance of species-specific strategies to
manage antibiotic resistance.

Notably, functional profiles of MAGs indicated enhanced xenobiotic
degradation pathways within the EARB, suggesting their potential role in
the persistence of antibiotic-susceptible bacteria via degradation enzymes,
such as beta-lactamases. In addition, we identified an enrichment of sec-
ondary metabolite and antibiotic-like compound biosynthesis pathways
among the EARB strains. This suggests that EARB strains possess a com-
petitive advantage, facilitating their survival in the intestines of healthy
individuals47. Thesefindings elucidate the complex interplay betweenEARB
and the gut microbiota, potentially driving the persistence of antibiotic
resistance. Therefore, further functional analysis is essential to fully
understand how EARB promotes the co-enrichment of antibiotic-
susceptible bacteria and supports their persistence in the intestines of
healthy individuals.

Importantly, we validated the existence of EARB using data from
different antibiotic-exposed microbiomes. We consistently identified
EARB in RUTI-causing E. coli isolates and in metagenomic data from
patients with liver cirrhosis and preterm infants. Moreover, these EARB
exhibited characteristics consistent with our previous findings. Fur-
thermore, we identified high ANI scores (≥99.5%) for EARB E. coli
strains from independent cohorts, implying that the same EARB strains
spread in different geographical regions like Denmark, the US, and the
UK (Supplementary Fig. 12). This necessitates further in-depth analysis
of emerging EARB strains and their functional roles in dysbiotic con-
ditions ofmany other chronic diseases. In addition, we observed a higher
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Fig. 6 | EARB strains found in different antibiotic-exposed cohorts with the
greatest functional impact on the community. a AMR prevalence comparison
between data from healthy adults and data from three different cohorts (recurrent
urinary tract infection [RUTI]-causing E. coli, preterm infants, and patients with
liver cirrhosis). b Community power analysis applied to the metagenomics samples

of liver cirrhosis (left, n = 592) and preterm infant (right, n = 399) study data.
Community power analysis was conducted on samples harboring five MAGs and at
least one EARB strain (red dot indicates the EARB strain). c Proportion of samples
containing EARB strains in three different datasets (E. coli isolate, preterm infant,
and liver cirrhosis [saliva and stool]).
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prevalence of EARB in the gut microbiota than in the oral microbiota.
This may be due to the differences in the impact and duration of anti-
biotics in the gut and the oral cavity. This suggests that the emerging
patterns of EARBs are affected by specific environments or host-related
characteristics.

In addition, we performed strain-level analysis of the EARB in
individual microbiomes, particularly E. coli, and identified remarkable
genomic diversity within strains isolated from the same host over time,
indicating the existence of multiple strains or lineages. Longitudinal data
analyses allowed us to track the development of these EARBE. coli strains,
uncovering two key patterns: the presence of native strains within the host
gut and the occurrences of a “strain sweep”, where certain strains out-
compete others, potentially due to superior resistance capabilities or other
fitness advantages48. This advantage can also be explained by the observed
weighted SNP patterns in RUTI-causing E. coli, suggesting that these
differences may influence the adaptability of bacteria to antibiotic envir-
onments. These findings indicate that the gut serves as a reservoir for
diverse antibiotic-resistant strains anddemonstrate the dynamic nature of
microbial evolution influenced by selective pressures. Such observations
have significant implications for therapeutic strategies, emphasizing the
need for in-depth research to elucidate the determinants of strain varia-
bility and improve approaches to effectively manage antibiotic resistance.
However, the current findings of strain changes after antibiotic treatment
were based on a relatively small number of observations (two individuals),
and further validations in a large-scale intervention cohortmaybeneeded.
In addition, emerging patterns of EARB and SARB strains can be
dependent on the types of antibiotics. Therefore, it is also tempting to
speculate that another type of EARB or SARB, having different resistome
profiles from the ones we found, can be identified by cohorts of different
antibiotics treated.

In summary, our study provides a comprehensive investigation into
the dynamics of antibiotic-resistant bacteria through MAG analysis. Our
MAG-based approach provides a detailed understanding of the entire
resistomeat the individual species level.Here,we found thatEARBbecamea
dominant force in microbial communities following antibiotic treatment,
and that their genetic diversity and evolutionary pathways present notable
challenges inmanagingantibiotic resistance.Thesefindingsnot onlydeepen
our understanding of antibiotic resistance dynamics but also pave the way
for more targeted strategies to combat the spread of antibiotic-resistant
bacteria.

Data availability
All metagenome and Escherichia coli isolated genome data were obtained
from the European Nucleotide Archive (ENA) and the Sequence Read
Archive (SRA). The metagenome data of antibiotic-treated individuals in
this study were obtained from ENA under accession number ERP022986
(only paired samples were used). Preterm infant metagenome data were
obtained from ENA under BioProject ID PRJNA301903 (both paired and
genome datawerefiltered for library layout and strategy, respectively). Liver
cirrhosis patient metagenome data were obtained from ENA under the
identifier number: PRJEB38481. Escherichia coli isolate genomic data were
obtained from SRA under accession number PRJNA786867, with a release
date of 2022-01-20. AllMAGs constructed in this studywere stored and are
publicly available on figshare: https://figshare.com/projects/EARB_Project/
193070 (Supplementary Data 1).

Code availability
R script forCommunity PowerAnalysis is available in our github repository
link: https://github.com/LifeMiningLab/CommunityPowerAnalysis. R
script for figure generation is also provided in the github repository link :
https://github.com/LifeMiningLab/EARB_project/tree/main.
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