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Abstract
Long-term particle deposition studies are challenging to conduct due to both
their experimental and computational difficulties. In terms of computational
challenges, the main difficulty is the extreme computational cost of accurate
particle deposition simulations, where simulating the carrier fluid represents
a large fraction of the total computational cost. This project investigates the
potential of using the recurrence computational fluid dynamics (rCFD) method
for time-extrapolating the carrier flow fields, eliminating a large fraction of the
computational cost of particle deposition simulations.

Firstly, we investigate the feasibility and computational cost of using rCFD
for performing a particle deposition study on a benchmark system of flow
around a cylinder. In this study we show that deposition rates can be accurately
obtained with rCFD at a fraction of the computational cost of conventional
computational fluid dynamics (CFD). Special effort is focused on the cylinder
back-side deposition rates, a benchmark case that is particularly challenging
due to the turbulent wake interactions.

Secondly, we investigate the time-dependence of particle deposition rates on
the back of the cylinder using direct numerical simulation (DNS) simulations.
The results of this study indicate that particle deposition rates are highly
time-dependent, with observed short-term impact rate fluctuations of up to a
factor 27 for flow at Re = 6600. To the best of our knowledge, this effect has
not been observed before. This study emphasizes the importance of choosing an
appropriate rCFD database, while at the same time highlighting the challenges
in constructing such a database.

The aim of this project is to reduce the computational cost of performing
particle deposition studies. Such a reduction in cost would be useful in academia
and industry alike. Examples of applications include sensor soiling in the car
industry, icing on aircraft and ash build-up in boilers.
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Chapter 1

Introduction

Particle deposition is a phenomenon that often adversely affects industrial and
everyday systems such as soiling of cars, icing of aircraft, and ash build-up in
boilers. Although it is a commonly occurring effect, there are still significant
shortcomings in our ability to accurately model how these systems are affected
when subjected to real-world working conditions. The basic principles of
particle tracking are well known, and there are plenty of particle deposition
models that account for the deposition and rebound behavior of the particles
[1]. However, little is known about how these systems act when complex flows
or large numbers of particles are introduced. This limitation is in large part
due to the experimental difficulties and extreme computational requirements
that are associated with deposition studies. For experiments, there are several
challenges in measuring the behavior of individual soiling particles in a particle-
laden flow. For numerical simulations, one of the main obstacles is the cost of
running high-accuracy models for the extended periods of time required for
particle deposition studies.

In this project we aim to evaluate the usefulness of using recurrence computa-
tional fluid dynamics (rCFD) [2] to generate time-extrapolated approximations
of the carrier-phase flow fields for particle deposition studies. Simulating these
flow fields is a major factor driving the extreme computational costs, so if
this cost can be reduced, then many more types of deposition studies become
computationally feasible. This thesis presents our implementation of the rCFD
solver, numerical validation of the solver using the benchmark case of deposition
on a cylinder, and finally, we explore time-dependent effects that influence
rCFD database creation. In the second, upcoming, part of the project we
aim to further develop the solver and validate it against more complex bluff
bodies that more realistically represent industrial flow systems. We will also
experimentally validate the solver using particle deposition experiments in wind
tunnels.

Two papers are part of this thesis. Paper I focuses on the numerical valida-
tion of the newly implemented rCFD solver and the simulation methodology
that was developed for this project. The paper presents a validation case of
particle deposition on a cylinder. In the paper, we show how the deposition
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4 CHAPTER 1. INTRODUCTION

efficiencies on the cylinder can be reproduced using the rCFD-based solver at
a fraction of the computational cost of the reference simulation methodology
based on conventional computational fluid dynamics (CFD) with flow fields
generated using the delayed detached eddy simulation (DDES) model. The
paper also contributes new results for particle deposition efficiencies on the
front and back sides of a cylinder, an area of literature that suffers from large
uncertainties in the reported values.

In paper II we investigate the time dependence of particle deposition rates
on the back of a cylinder. We find that the deposition rates are highly variable
in time, with observed differences of up to a factor 27 in short-term deposition
rates between low- and high deposition rate events for flow at Reynolds number
Re = 6600. These fluctuations act on very long time scales, with fluctuations
typically occurring on timescales of tens of vortex shedding periods or more.
In the paper, we establish a correlation between the deposition rates and the
cylinder base pressure. When the base pressure decreases, the deposition rate
increases. Previous studies have linked the cylinder base pressure to changes
in wake size and intensity of shear layer turbulent fluctuations, where lower
base pressures correlate with smaller wake sizes and more intense turbulent
fluctuations [3]. In the paper, we then determine that the deposition rates are
influenced by the size and behavior of the wake, and that the base pressure
can be used as an indicator for this behavior.

This thesis is organized into two parts. Part I presents an extended summary
of the project and the research carried out so far. Then, part II contains the
two articles that have been produced within the scope of the project. In
part I of the thesis, the background of the project is introduced in chapter 2.
Then, chapter 3 describes the simulation methodology and the mathematical
models used. Some of the most notable numerical results from papers I and II
are presented in Chapter 4. Finally, chapters 5 and 6 summarize the main
conclusions so far, and introduce the main goals for the continuation of the
project.



Chapter 2

Background

This chapter outlines the main motivations for this project and some of the
underlying theory. First, in section 2.1, we describe one of the major industrial
applications, soiling of sensors in the automotive industry. Then, section 2.2
introduces the main modeling approaches commonly used for describing soiling
particles, the Eulerian and Lagrangian approaches. This project focuses on
Lagrangian modeling, summarized in section 2.3. In addition to the Lagrangian
particle tracking (LPT) modeling, an introduction to particle deposition mech-
anisms is presented in section 2.4, with the special case of deposition on a
cylinder summarized in section 2.5. A comparison of simulation methods is
introduced in section 2.6. Finally, an outline of the rCFD method is presented
in section 2.7.

2.1 Sensor soiling

A key motivation for this project is the need to better understand particle
deposition and soiling for applications in the automotive industry [4, 5]. Modern
cars are becoming increasingly automated, with several new systems for active
safety, driver assistance, and self-driving. In order to support these automated
systems, a large set of new sensors is being installed in newer car models.
Sensors work best when they are clean and not exposed to various soiling
materials that can adversely affect their functionality. Unfortunately, sensors in
natural environments are exposed to a wide range of contaminants, including
rain, snow, dust, and mud. The contaminants will inevitably start to cover
exposed sensors, causing inaccurate readings or potentially preventing the
sensors from working altogether.

One of the major challenges facing automotive manufacturers is how to
design sensor systems that are as resilient as possible against malfunctions
caused by soiling. One of the simplest solutions is to manually clean the sensors
when necessary, for example by requiring the driver to clean the sensors by
hand. This is undesirable due to the additional maintenance that would be
required. Another solution is to introduce built-in cleaning systems near the
sensors that can be activated without having to involve the driver. However,
this approach introduces additional complexity in an already complex car,
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6 CHAPTER 2. BACKGROUND

further increasing production difficulties and cost. Instead, it would be best
if the sensors could be kept from getting soiled in the first place. This would
reduce maintenance costs while at the same time increasing reliability and
safety. However, this approach requires more effort to design and an extensive
understanding of the particle deposition and soiling processes involved.

There are two main branches when trying to understand the soiling mechan-
ics, experimental and computational. The experimental branch is conceptually
straightforward, where a given design is tested directly in the relevant envi-
ronment. This gives the best results for the effects of soiling, but creating
a new vehicle for each design iteration is slow and expensive. Instead, the
computational branch is often used first, where soiling particles are modeled
together with a CFD simulation of the air flow around the vehicle. This
approach is simpler in the sense that no physical object must be created in
order to generate results. However, accurately modeling the fluid flow and the
soiling particles is still a major challenge, especially with limited computational
resources.

2.2 Modeling soiling

Broadly speaking, there are two categories of methods for simulating soiling
particles, Eulerian and Lagrangian methods [6, 7, 8, 4]. The fluid is often
treated in an Eulerian framework, so we commonly refer to these multiphysics
methods as Euler-Euler and Euler-Lagrange. Euler-Euler methods model
the soiling particles as a continuum, whereas Euler-Lagrangian models model
soiling using a collection of discrete soiling particles. The continuum description
in Euler-Euler methods works well when the soiling particles have identical
properties. The discrete particles in the Lagrangian description, on the other
hand, are well-suited for describing dilute particle-laden flows where there
are clear individual soiling particles with varying properties in the system, for
example snowflakes or small suspended rain droplets with a size distribution. In
this work we focus on Euler-Lagrange modeling due to the direct representation
of individual soiling particles and straightforward description of particle inertia,
a fundamental property for particles suspended in a flow.

2.3 Lagrangian particle tracking

The Lagrangian part of the Euler-Lagrange model used in this work, LPT, as-
serts that particles can be treated as point particles, provided that the particles
fulfill a set of prerequisites [8]. The main requirement is that the particles must
be small compared to the size of features in the carrier fluid flow. Although
not required, a common additional assumption asserts that the particles are
spherical. This second assumption simplifies modeling by neglecting the effects
of particle rotation and shape. With these two assumptions, the fluid-particle
forces can be approximated using the corresponding values for an equivalent
sphere of the same size as the real particle. This greatly simplifies force cal-
culations since forces do not need to be integrated over the entire surface of
the particle. Also, the point-particle approximation enables the direct use of
Newton’s second law of motion when propagating the particles in the flow field.
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The law is expressed as
F = ma, (2.1)

where F is the particle force vector, m is the mass of each particle, and a
is the acceleration vector. The force vector is expressed as a sum of several
contributing forces, for example drag, lift, and gravity. Depending on the
specifics of the carrier flow field, some of these forces may be negligible in
magnitude and can be ignored without affecting the results. The particles in
this work are small, non-Brownian, and significantly heavier than the carrier
fluid. The dominating force component is then the drag force [7]. In addition,
the particle Reynolds numbers are small, consistently less than unity, so effects
of the lift force can be neglected [9].

The drag force is defined using

FD =
1

2
ρfurel|urel|CDA, (2.2)

where ρf is the fluid density, urel = uf − up is the relative velocity between
the fluid (uf ) and the particle (up), CD is the drag coefficient of a sphere and
A is the projected area of the particle into the flow. The drag coefficient on a
sphere is defined by [10, 11]

CD =
24

Rep

(
1 +

1

6
Re2/3p

)
, (2.3)

where

Rep =
ρfureldp

µf
(2.4)

is the particle Reynolds number, with dp representing the particle diameter
and µf representing the fluid dynamic viscosity.

A common way of characterizing particle inertia is using the Stokes number,

St =
ρpU∞d2p
9Dµf

, (2.5)

where ρp is the particle density, U∞ is the fluid free-stream velocity, and D is
the cylinder diameter. Particles with large Stokes numbers have high inertia
and are only weakly influenced by the surrounding flow field. These particles
tend to travel relatively straight ahead, irrespective of what the carrier fluid is
doing. Particles with small Stokes numbers have little inertia and are strongly
influenced by the carrier fluid. These particles behave similarly to tracer
particles, following the fluid flow almost perfectly.

In addition to being influenced by the carrier fluid, particles may also couple
back to the flow fields or to other particles. The strength of this coupling
is determined mainly by the particle volume fraction, the fraction of a given
volume that is taken up by the particles [4, 8]. For very dilute systems, there
are not that many particles that may influence neither the carrier flow fields
nor other particles. Only the carrier flow fields affect the particles. Using this
assumption simplifies the modeling of both the fluid and the particles, and



8 CHAPTER 2. BACKGROUND

reduces the computational cost of simulating the system. This is known as
one-way coupling, typically used for systems with volume fractions up to about
10−6 [8]. For slightly more dense systems with particle volume fractions between
10−6 and 10−3, particles start to influence the carrier flow fields, and two-way
coupling must be used. Further increasing the particle volume fraction above
10−3 causes particles to influence each other so much that particle-particle
interactions must be taken into account. This is known as four-way coupling
and can significantly increase the computational cost if many particles are
present in the system. When studying particle deposition on bluff bodies,
one-way coupling is often used [4, 7].

2.4 Particle deposition
Particle deposition is a complex process in which several physical mechanisms
interact [12]. First, the particles are brought close to the wall surface by an
in-sweep in the carrier flow [12, 13]. This brings particles to an accumulation
region close to the surface. Once they have reached this region, they may either
continue towards the wall and impact it due to the inherent inertia in the
particle, or they may slowly diffuse closer to the surface until they finally collide.
Alternatively, they may be ejected by turbulent structures in the accumulation
region.

A commonly reported particle deposition metric is the impact efficiency η. It
represents the fraction of all particles that impact the object surface Ndeposited,
compared to the total number of particles injected in front of the object Ninjected.
Particle impact efficiency is defined as

η =
Ndeposited

Ninjected
. (2.6)

Note that the impact efficiency depends on various particle properties, mainly
particle Stokes number. Comparisons of η for different types of particles should
therefore be made with caution.

Not all particle-surface impacts lead to deposition. Some impacts lead to
rebounds that redirect the particle trajectory back into the flow, often losing
some energy in the process. The impact and rebound behavior is commonly
described using various context-specific deposition models [1, 14]. For simplicity,
in this work we assume that all impacts lead to deposition. This works well
for academic predictions of deposition rates, but would likely produce some
degree of overprediction when used to describe the deposition behavior of real
particles. The terms impact efficiency and deposition efficiency are therefore
synonymous in this work.

There is a characteristic difference between impact efficiency on the upstream
front side and the downstream back side of the cylinder [7]. On the front, impact
efficiencies are highest for high-inertia particles with large Stokes numbers. On
the back, only relatively low-inertia particles with small stokes numbers hit.
Deposition statistics are therefore often classified into front- and back side
impact efficiencies [7, 15].

Impact statistics reported in literature are commonly time-averaged or time-
integrated, meaning that temporal information has been filtered out. However,
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as we investigated in paper II, there are time-dependent effects that cause
particle deposition rates to fluctuate significantly.

2.5 Particle deposition on a cylinder
Particle deposition on a cylinder has become an important benchmark case
when developing new computational methods for particle tracking. The case
benefits from the simple geometry and complex wake dynamics inherent in the
single-phase version of the system, while at the same time providing a realistic
and industrially relevant flow system for particle deposition. There are multiple
studies of particle deposition on this system, showcasing the significance of this
particular benchmark case [16, 15, 1, 7, 17, 18]. Other simple bluff bodies are
also commonly studied, such as square blocks and circular disks [19, 20].

In general, deposition on the front side of the cylinder is well-understood and
relatively simple to predict. The flow fields exhibit only minor time dependence,
and there are no complex flow structures that may influence particles in chaotic
ways. Most published results agree on the deposition rates for a wide range
of particle Stokes numbers [7, 15]. On the other hand, deposition rates on
the back of the cylinder are much more difficult to accurately predict due
to the complex wake structures that interact with the particles. Deposition
rates reported in literature can in some cases vary by more than two orders
of magnitude, depending on study [7, 15]. Such large differences indicate that
there are still complexities that must be better understood for the back-side
deposition to be accurately predicted and reliably modeled. Nonetheless, it
is still a valuable benchmark case for testing particle tracking and deposition
models due to the well-defined geometry and good availability of numerical
and experimental data for the corresponding single-phase problem.

2.6 Fluid simulation methods and computational
cost

Ideally, we would like to use high-fidelity computational methods for all fluid
simulation studies. However, the most accurate methods we currently have
available for the fluid flow, direct numerical simulation (DNS)-based methods
[21, 7], have extremely high computational costs, especially for complex, indus-
trially applicable, flows. In practice, only small-scale problems can be modeled
using high-accuracy DNS [22, 23]. In addition to the high computational costs
of the fluid simulation, long-term predictions of particle deposition require not
only very fine temporal resolution, they also need fields to be generated for
very long time intervals. The already computationally expensive simulations
then become drastically more expensive.

Alternative flow simulation methods have been developed to reduce the
computational cost associated with simulating the fluid flow. One approach,
known as large eddy simulation (LES) [24, 25], models small-scale turbulence
instead of resolving it, reducing computational costs, but unfortunately also
accuracy. Another method, Reynolds-averaged Navier–Stokes (RANS) [26, 27],
solves the time-averaged Navier-Stokes equations, further reducing computa-
tional cost and accuracy. There are also hybrid LES/RANS methods such
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as detached eddy simulation (DES) [28], which combine the LES and RANS
methods. In DES, large scale structures are resolved using LES, and small-scale
turbulence, especially near walls, is modeled using RANS. The study in paper I
uses a slightly modified version of DES called DDES, which counteracts issues
of grid-induced separation found in traditional DES, and also improves the
handling of thick boundary layers.

However, even with these computationally cheaper methods for generat-
ing the flow fields, the costs for performing long-term fluid flow simulations
are still extremely high. One strategy for counteracting this has been the
development of various reduced-order methods. These methods reduce an
originally high-dimensional problem to a lower-dimensional one that preserves
the most important degrees of freedom. The signal can be decomposed into
a set of modes that represent the flow field evolution using methods such as
proper orthogonal decomposition (POD) [29] and dynamic mode decomposition
(DMD) [30]. Unfortunately, methods based on POD suffer from instability
problems for long time frames.

This method generates time-extrapolated approximations of periodic flow
fields at a fraction of the computational cost of conventional CFD methods.
In generating the approximations, a time-space trade-off is applied to the
simulation methodology by replacing some of the computational cost with
increased data storage requirements. Conventional CFD methods have high
computational costs for generating new flow fields, but require no additional
storage other than the storage required for saving the mesh and output files
from the simulation. The rCFD method, on the other hand, has almost
no computational cost when generating new approximations, but it requires
storage space for the database of flow field snapshots. Additionally, it requires
a preparation step to generate the flow field database using conventional CFD,
which has both a computational and a storage cost.

2.7 The rCFD method
To be able to generate flow-field extrapolations for long time frames we turn to
the rCFD method. At its core, the rCFD method represents a time-space trade-
off. Conventional CFD simulations can be very accurate, but this accuracy
comes at a significant cost in computational complexity. Flow fields for large,
industrially applicable, cases can in many cases only be generated for a few
short instants of fluid flow. Long-term simulations, such as those required for
particle deposition, are completely unattainable. The rCFD method aims to
overcome this limitation by identifying periodicities that are found in the time
evolution of the flow system. A series of snapshots is saved from a conventional
CFD simulation, and these snapshots, together with the identified periodicities,
are used to construct a time series of extrapolated flow fields. Generating a
set of extrapolated flow fields is computationally very cheap, but the database
that stores these flow field snapshots requires some storage space. The method
has then traded computational cost against storage space. For further details
on the rCFD method, see section 3.3 and paper I.



Chapter 3

Methodology

In this project we use conventional CFD and LPT methodologies, as well as
a newly developed rCFD-based simulation procedure. The CFD and LPT
methodologies are summarized in sections 3.1 and 3.2. An overview of the
rCFD method is presented in section 3.3. Since the rCFD method poses new
challenges for available computational data management infrastructure, an
outline of important considerations for computational performance is introduced
in section 3.4.

3.1 Fluid flow fields

The particle deposition studies in this project are inherently time-dependent,
so time-resolved flow fields are used for all simulations. The rCFD method is
not sensitive to how the flow fields are generated, so any conventional solution
method such as DNS, LES, or DDES can be used when creating the flow fields
for the rCFD database. In this work, the investigation of rCFD in paper I
uses DDES both for the reference simulations and for creating the flow field
database. The conventional CFD study in paper II uses DNS. The simulations,
both for the carrier fluid and the particles, are performed using the OpenFOAM
software package [31].

3.2 Particle tracking and deposition

This project uses a mostly standard LPT methodology. However, the main
difference is that particles are tracked not only in regular CFD fields, but
also in the approximated rCFD flow fields described in section 2.7. Using
precomputed flow fields from the rCFD database is in principle trivial, but in
practice requires implementation of a small utility for loading flow fields from
disk. In the OpenFOAM framework developed in this project, this problem
is solved using a solver that loads the flow fields from disk and then runs
the LPT using an existing particle tracking function object. In OpenFOAM,
function objects extend the running solver by adding functionalities such as
field computations, averaging, or particle tracking features.

An important addition to the standard LPT methodology is the introduction
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of a particle radius check for detecting particle-cylinder impacts where the
particles just barely graces the cylinder surface. Commonly in LPT, impacts are
registered when the center of mass of the spherical particles touches the surface
of a wall, in this case the cylinder surface. However, many particle impacts
on the cylinder occur at very shallow angles of incidence. The center of mass
may then never come close enough to the wall for a collision to be registered,
even though the outer shell of the spherical particle is, in fact, touching the
wall. This collision mode is especially important for small particles with low
inertia, as reflected by their low Stokes numbers. Failing to account for the
particle radius in the collision detection mechanism would cause this mode of
collision to be completely overlooked, leading to catastrophic underprediction
of deposition rates for these low-inertia particles.

Particle statistics are gathered both as snapshots of particle positions at
regular time intervals, and as discrete impact events when a particle deposits
on the cylinder. This data is used to reconstruct particle trajectories and
time-resolved deposition rates.

3.3 The rCFD solution methodology
The rCFD solver methodology developed in this project is composed of four
simulation steps and two major software components. The four simulation
steps are database generation, creation of the recurrence matrix, creation of
the recurrence path, and finally solution of the particle tracks in the time-
extrapolated flow fields. The software components are the main Python script
for generating the recurrence matrix and paths, and a flow solver that reads
the flow fields in the database, as indicated by the computed recurrence path.

The first step in the developed rCFD methodology, database generation,
involves running a conventional CFD simulation and regularly saving flow field
snapshots. These snapshots make up the rCFD database. Then, in the second
step, creation of the recurrence matrix, the main Python script is used to
pairwise compare all flow fields in the database. The set of pairwise comparison
results correspond to the elements in the recurrence matrix. This matrix is then
used by the Python script to generate the recurrence path, which describes a
path through the database for the time-extrapolated flow fields. Finally, the
flow fields are loaded by a small custom-built solver according to the recurrence
path, and particles are then tracked in these fields.

The main software component that has been developed in this project is a
Python script that generates the recurrence matrix and computes the recurrence
path. It implements the core functionality of the rCFD time-extrapolation
method. This script is mostly agnostic to the simulation software used to
generate the flow fields, although some minor adjustments may be required
to load and save data in the desired format. The second component is a
new OpenFOAM solver that reads the flow fields from the flow field database
in the order specified by the computed recurrence path, and provides the
solver infrastructure required for using existing OpenFOAM particle tracking
function objects. This custom solver is by necessity specific to the particular
software package used for simulating the flow fields and particles. However,
the functionality of this solver can be implemented in any major simulation
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software, so the methodology is not restricted to only OpenFOAM. Only
minor additional effort is necessary to add compatibility with other simulation
software.

3.4 Considerations for computational perfor-
mance in the rCFD method

Since the rCFD method relies on precomputed flow fields, the performance
of the data management infrastructure is crucial for overall computational
performance. This infrastructure encompasses not only the storage hardware
itself, but also database layout and access algorithms, file system organization,
file cache, and additional hardware components such as random access memory
(RAM).

Of greatest importance is the amount of available RAM compared to the size
of the flow field database. If the entire database fits in RAM, then computational
performance is generally good. However, if the database does not fit, then other
algorithmic and hardware aspects become important. Algorithmic optimizations
for computational performance must typically be tailored for each phase in the
rCFD process. In terms of hardware, computational performance is better if
the fields are stored on fast solid-state drive (SSD) or even non-volatile memory
express (NVMe) devices compared to slower hard disk drive (HDD) or network
storage. Systems such as redundant array of independent disks (RAID) can
further increase data read performance over single-disk equivalents.

The first step in the rCFD workflow, database generation, is typically
insensitive to the performance of the data management infrastructure. Here,
computational performance is mainly dictated by the processors that run the
CFD simulations.

The second step, generation of the recurrence matrix, consists of a large
number of pairwise comparisons of flow fields. If the entire database does not
fit in RAM, then the computational performance will decrease. One mitigation
that limits this performance degradation is to make the comparisons in an
order that minimizes the number of times that fields must be reread from slow
storage. Other mitigation methods include limiting the spatial dimensions
of the flow field database, mapping the loaded fields onto coarser meshes, or
casting the fields to data types with reduced numerical precision.

In the third step, generating the recurrence path, an efficient data structure
is necessary to minimize storage use and maximize data read performance.
The exact details for how to achieve this are specific to each set of CFD
and LPT software packages. OpenFOAM, as used in this project, stores flow
fields and particle properties as files in time directories, with one directory
for each stored time step. The rCFD database is then composed of a set of
time-indexed directories that contain the flow field snapshots. A long-running
particle deposition simulation will often run far longer than the length of the
rCFD database. This means that the same flow fields will be used more than
once. In the default OpenFOAM file structure this would mean that we need to
duplicate flow fields that correspond to the same time instant in the database,
drastically increasing database storage size requirements. However, by using
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symbolic links in the underlying file system, a type of database deduplication is
achieved, while at the same time keeping the default OpenFOAM file structure.
The rCFD case structure does not contain the actual database, but just a
collection of symbolic links to the database. The links can be renamed and still
point to the same physical file. With the symbolic links we can then generate an
arbitrarily long time evolution of flow fields, but using only a negligible amount
of extra storage. This solution also optimizes operating system file cache
operations, meaning that computational performance is potentially improved
as a positive side effect.

In the final step of the rCFD simulation method, the flow field sequence
generated in step three is read one time step at a time, and particles are tracked
in the loaded flow fields. If the database is larger than available RAM, then
performance of the hardware storage system becomes crucial. The solver will
need to continuously read the next flow field from disk, which is comparatively
slow. The main mitigation that is specific to this step is to implement a
prefetching mechanism to the OpenFOAM rCFD solver, or other simulation
software as applicable. Prefetching is the process of loading data into faster
memory before it is actually needed. Since the flow field progression is known
beforehand, the computer can load data ahead of time. This can assure that
when the simulation reaches a certain point in time, the required fields are
already present in fast RAM, minimizing unnecessary waiting time.

In summary, the time-space tradeoff applied by the rCFD method repre-
sents a potentially outstanding reduction in computational cost for performing
long-term particle deposition studies. However, the method requires advanced
data management methodologies for achieving good computational performance
when using large databases. Many of these methods have already been imple-
mented, or can be implemented by further developing the currently available
rCFD solver.



Chapter 4

Selected results

The main results of this project so far are presented in papers I and II. Paper I
introduces the newly implemented rCFD methodology and solver, as well as an
extensive validation case of the rCFD method when used for particle deposition
studies. Some highlighted results from this work are summarized in section 4.1.
Paper II presents an investigation of the time-dependence of particle deposition
rates on the back of a cylinder, summarized in section 4.2.

4.1 Cylinder back-side deposition using rCFD

The main results from paper I are the particle deposition efficiencies, produced
using both DDES and rCFD flow fields, as well as a comparison of the compu-
tational cost of the two methods. For the deposition efficiencies, we computed
both the front- and back side deposition efficiencies separately. The front side
deposition efficiencies are practically identical for all simulation methods (see
figure 7 in paper I). The remainder of this section will focus on the back-side
deposition efficiencies and the computational cost.

Figure 4.1 shows deposition efficiencies on the back of the cylinder obtained
using a reference DDES simulation, as well as literature values from several
studies. There are very few published studies on the deposition efficiencies
on the back of a cylinder, so a few results for a square block and a circular
disk are presented as well. Literature values are presented as markers and the
reference simulations using the DDES flow fields are presented as dashed lines.
The figure clearly illustrates a considerable spread in the reported deposition
efficiencies on the back of the cylinder. For example, at St ≈ 10−1 the reported
deposition efficiency results span approximately three orders of magnitude.

Figure 4.2 represents a simplified version of figure 4.1, keeping only one
set of DNS results from literature [7] and the deposition efficiencies computed
using DDES flow fields. The figure also illustrates the deposition efficiencies
obtained using the rCFD flow fields, presented as solid lines. The figure clearly
illustrates how closely the deposition efficiencies obtained using rCFD match
the deposition rates obtained using the reference DDES flow fields. It is also
clear that the deposition efficiencies obtained in this paper closely match the
published deposition rates using the DNS flow fields for Re = 1685.

15



16 CHAPTER 4. SELECTED RESULTS

The results for deposition efficiency at Re = 6600 are different for the study
in paper I and the literature values. This difference is explained by the extra
dimension used in the three-dimensional simulations in paper I, compared to
the two-dimensional simulations in literature. An additional rCFD particle
deposition simulation was run in two dimensions, and then the computed
deposition efficiencies overlapped closely (not shown).

A comparison of wall-clock run time for the different types of simulations
is presented in figure 4.3. The left bar summarizes the required wall-clock
time for a conventional CFD and LPT simulation of the flow field (blue)
and particles (orange) on the computer cluster node used in the study. The
computational cost of the rCFD method is divided into two main categories,
“rCFD preparation” and “rCFD”. The “rCFD preparation” bar represents
the time needed to generate the rCFD database and compute the recurrence
matrix. These steps are just preparation steps for actually running the particle
tracking in the main “rCFD” step, represented by the middle bar. This bar
represents the time it takes to run a particle tracking simulation using the time-
extrapolated flow fields that were generated using rCFD. The computational
cost is almost entirely due to the cost of simulating the particles. There is
also a negligible cost for reading flow-field data from storage. The cost of
simulating the particles is approximately equal in both the reference and rCFD
simulations.

The division between “rCFD preparation” and “rCFD” also highlights
one of the major advantages of using the rCFD flow fields for deposition
studies. The preparation steps must only be run once for a particular flow
system. Additional particle studies can be run using the same preparation step,
virtually eliminating all computational costs except the particles themselves.

4.2 Time-dependent particle deposition
Paper II uses DNS simulations to investigate the time dependence of particle
deposition rates. We showed that the deposition rates were highly variable in
time, as illustrated by the orange lines in figure 4.4(a) for the Re = 6600 case
and figure 4.4(b) for the Re = 10 000 case. We observed short-term variations
as large as a factor 27 difference between low- and high deposition rate events
for the Re = 6600 case. The fluctuations are very slow, occurring on timescales
in the order of tens of cylinder vortex shedding periods or more.

In the paper we also show that the impact rate correlates with the cylinder
base pressure, measured at the cylinder surface close to the rear stagnation
point (blue lines in figures 4.4(a) and 4.4(b)). A decrease in base pressure
leads to an increase in particle deposition rates, and vice versa. A decrease
in base pressure has in previous studies been linked to a decrease of the wake
size, as well as an increase in shear layer turbulent fluctuations [3]. The base
pressure can therefore be used as an indicator variable for overall wake behavior.
Consequently, we associate the time-dependent deposition rate fluctuations
with the low-frequency modulations of wake size and behavior.
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Figure 4.1: Back side particle deposition impact efficiencies as a function of
the particle Stokes number. Literature values [7, 17, 15, 19, 20] are represented
using markers and the CFD results from this study are represented by dashed
lines. The graph includes literature values for a square block [19] and circular
disk [20]. Figure from paper I.
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Figure 4.4: Base pressure (blue) and particle deposition rates (orange) for (a)
Re = 6600 and (b) Re = 10 000. A drop in base pressure is almost immediately
followed by an increase in particle deposition rate. Figures from paper II.



20 CHAPTER 4. SELECTED RESULTS



Chapter 5

Conclusions

In this project we are developing a particle tracking methodology for long-term
soiling of bluff bodies with flow fields generated using the rCFD method. In
the first part of this project we focused firstly on implementing the method
and validating the solvers for the special case of particle-laden flow around a
cylinder. Secondly, we investigated the time-dependent behavior of the particle
deposition, which might affect the rCFD database generation process.

In the cylinder validation case presented in paper I, we demonstrated that
the rCFD method can accurately reproduce particle deposition rates, both on
the front of the cylinder, as well as on the back. Getting accurate deposition
rates on the back is especially challenging considering the complex particle-wake
interaction the particles experience before impacting the surface. It was not
clear a priori that rCFD would be able to accurately predict particle deposition
statistics. In the paper, we not only demonstrated that the rCFD method
is able to approximate the complex flow fields in the cylinder wake, we also
showed that the method can do this at a fraction of the computational cost
of conventional CFD simulations. The results were achieved using a relatively
small flow field database size of 3 vortex shedding periods, indicating that
good long-term approximations can be achieved using relatively small initial
datasets.

In paper II we sought to evaluate potential fluctuations in particle deposition
rates for the cylinder case as a function of time. In the study, using conventional
DNS, we showed that particle deposition rates are not constant, but rather
fluctuate significantly with time. These fluctuations are an effect that, to the
best of our knowledge, has not been observed before. In the paper we also
show that the fluctuations are quite significant, with an observed difference of
up to a factor 27 deposition rates between low- and high deposition rate events
for the back of the cylinder. Such large fluctuations risk introducing bias into
the rCFD database if not managed properly, potentially leading to significant
over- or underprediction of real deposition rates. The fluctuations also pose
significant challenges for other data-assisted methods that rely on flow fields as
training data, such as artificial intelligence (AI), machine learning (ML), and
similar. It will be crucial for all future data-assisted methods to be aware of
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this low-frequency effect to avoid using training data corresponding to only
either high- or low extremes of particle deposition rates.



Chapter 6

Future work

The investigations in papers I and II highlight the potential of using rCFD for
particle deposition studies, but also call attention to potential database bias
issues that may arise if the flow field database is not carefully constructed. As
a result, several additional questions must be addressed before the method, and
the current implementation of the rCFD solver, can be reliably applied in more
complex situations. For example, the simulation infrastructure has so far only
been tested numerically for the benchmark case of particle-laden flow around a
cylinder. One of the future objectives of this project is to experimentally validate
the rCFD solver methodology for the cylinder case. There is particular interest
in validating the solver for flows with higher Reynolds numbers, especially given
the current scarcity of particle deposition results for high-Reynolds-number
flows.

Additionally, we will also study more complex geometries to investigate
and generalize the applicability of the rCFD method to other bluff bodies, for
example a wedge or the Ahmed body. These geometries exhibit vastly different
flow field structures, and serve as good benchmark cases for geometries that
are similar to bluff bodies used in other academic and industrial applications.

Finally, in the project we aim to numerically investigate a fully industrially-
applicable case of external flow around a car. Car manufacturers routinely
simulate the aerodynamics of this system for short time intervals to generate
predictions of aerodynamic performance. However, predicting long-term soiling
patterns with conventional CFD techniques is not computationally feasible
with currently available methods. We will explore the possibility of using
existing aerodynamic simulations as the basis for the rCFD database, which
can then be used to generate flow field approximations for particle deposition
studies. Simulations of soiling can then be carried out with only a little extra
computational effort. In addition to numerical investigations of the system,
experimental validation of soiling in a wind tunnel will also be an important
component.

Particle deposition in complex flow systems is generally very challenging,
if not practically impossible, to simulate numerically using conventional CFD
methods and realistic computational resources. However, given the potential for
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drastic reduction of computational complexity when using the rCFD method,
a positive result in this project could establish a new, higher baseline for what
is computationally feasible.
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