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Reinforcement learning (RL) algorithms have transformed many domains of machine learning. To tackle
real-world problems, RL often relies on neural networks to learn policies directly from pixels or other high-
dimensional sensory input. By contrast, many theories of RL have focused on discrete state spaces or
worst-case analysis, and fundamental questions remain about the dynamics of policy learning in high-
dimensional settings. Here, we propose a solvable high-dimensional RL model that can capture a variety of
learning protocols, and we derive its typical policy learning dynamics as a set of closed-form ordinary
differential equations. We obtain optimal schedules for the learning rates and task difficulty—analogous to
annealing schemes and curricula during training in RL—and show that the model exhibits rich behavior,
including delayed learning under sparse rewards, a variety of learning regimes depending on reward
baselines, and a speed-accuracy trade-off driven by reward stringency. Experiments on variants of the
Procgen game “Bossfight” and Arcade Learning Environment game ‘“Pong” also show such a speed-
accuracy trade-off in practice. Together, these results take a step toward closing the gap between theory and

practice in high-dimensional RL.

DOI: 10.1103/PhysRevX.15.021051

I. INTRODUCTION

Thanks to algorithmic and engineering advancements,
reinforcement learning (RL) methods have achieved super-
human performance in a variety of domains, for example,
in playing complex games like Go [1,2]. Reinforcement
learning involves an agent in an environment that takes
actions based on the given state of an environment that it is
exploring; for example, an agent playing chess must decide
which action to take based on the state of the board.
The map from states to actions is called a “policy.” The
overarching goal of the agent is to learn a policy that will
allow them to maximize some kind of total reward, for
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example, a reward given for taking an opponent’s piece in a
game of chess.

In cases where the state and action spaces are discrete
and small enough, policies can be represented by simple
look-up tables. However, the curse of dimensionality limits
this approach to low-dimensional problems. In today’s
applications, environments are complex, and policies are
learned directly from high-dimensional inputs representing
the state of the environment, using neural networks [3].

While comprehensive theoretical results exist for tabular
RL, our theoretical grasp of RL for high-dimensional
problems requiring neural networks to represent the policy
remains limited, despite its practical success. The lack of a
clear notion of similarity between discrete states further
means that tabular methods do not address the core
question of generalization: How are values and policies
extended to unseen states and across seen states [4]?
Consequently, much of this theoretical work is far from
the current practice of RL, which increasingly relies
on deep neural networks to approximate policies and other
RL components like value functions. Moreover, while RL
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FIG. 1.

RL-perceptron model for policy learning in high dimensions. (a) Classic teacher-student model for supervised learning, where

a neural network, called the student, is trained on inputs x whose label y* is given by another neural network, called the teacher. (b) RL
setting, where the student moves through states s, making a series of T choices given in response to inputs x,. The RL perceptron is an
extension of the teacher-student model, as we assume there is a “right” choice y, on each time step given by a teacher network. The
student receives a reward after T decisions according to a criterion @ that depends on the choices made and the corresponding correct
choices. (c) Example learning dynamics in the RL-perceptron model for a problem with 7' = 12 choices where the reward is given only
if all the decisions are correct. The plot shows the expected reward of a student trained in the RL-perceptron setting in simulations (solid
line) and for our theoretical results (dashed line) obtained from solving the dynamical equations (12) and (13). Finite-size simulations
and theory show good agreement. We reduce the stochastic evolution of the high-dimensional student to the study of deterministic
evolution of two scalar quantities, R and Q (more details are given in Sec. III A); their evolutions are shown in the inset. The parameters

are as follows: D =900, n; = 1,7, =0, and T = 12.

theory has often addressed “worst-case” performance and
convergence behavior, their fypical behavior has received
comparatively little attention (see further related work in
Sec. I B).

Meanwhile, there is a long tradition of neural network
theory that employs tools from statistical mechanics to
analyze learning and generalization in high-dimensional
settings with a focus on typical behaviors, as is usually
the case in statistical mechanics. This theory was first
developed in the context of supervised learning; see
Refs. [5-9] for classical and recent reviews. More recently,
this approach yielded new insights beyond vanilla super-
vised learning, for example, in curriculum learning [10],
continual learning [11-13], few-shot learning [14], and
transfer learning [15—17]. However, policy learning has not
been analyzed using statistical mechanics yet—a gap we
address here by studying the generalization dynamics of a
simple neural network trained on a RL task.

Our goal is to develop a theory for the typical dynamics
of policy learning. For example, we would like to explain
how problem properties and algorithmic choices impact
how quickly a model will learn or how effectively it will
generalize. In order to achieve this goal, we work on an
analysis of a perceptron-adapted online policy-learning
update, which can be considered as an analog to the
REINFORCE algorithm [18] (see Sec. II A for more
details). REINFORCE is the simplest online ‘“policy-
gradient” algorithm. Policy-gradient methods, despite
their simplicity, underpin much of modern reinforcement
learning with deep neural networks [19-21]; consequently,
an understanding of online policy learning dynamics is

beneficial for transferable insights into more complex
policy-gradient methods and as a starting point from which
to analyze more complex methods. We further contrast our
method with existing results in Sec. I B.

Our approach consists in considering a simple model
of a RL problem which we approach through the teacher-
student framework, allowing for exact solutions, i.e., the
derivation of equations describing the typical learning
dynamics exactly; we then analyze properties of the
solution. In the classic teacher-student model of supervised
learning [5,22], a neural network called the student is
trained on inputs x whose labels y* are specified by another
neural network called the teacher [see Fig. 1(a)]. The goal
of the student is to learn the function represented by the
teacher from samples (x,y*). This framework enables an
exact analysis, characterizing the generalization error of
learning algorithms over the entire learning trajectory. In
many RL settings, agents face sequential decision-making
tasks that require a series of intermediate choices to
successfully complete an episode. We map this process
into the RL perceptron, where the teacher can be viewed as
specifying a “perfect policy network™ that prescribes a
reward signal used to train the student network representing
the policy of the agent. This setup lends itself to an analysis
that exactly describes the average-case dynamics over the
entire learning trajectory.

A. Main results

In this work, we develop a teacher-student framework
for a high-dimensional sequential policy learning task, the
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RL perceptron, and derive asymptotically exact ordinary
differential equations (ODEs) that describe the typical
learning dynamics of policy-gradient RL agents in an
online setting by building on classic work by Saad and
Solla [23] (see Sec. IIT A).

Using these ODEs, we can characterize learning behav-
ior in various scenarios: We investigate sparse delayed
reward schemes and the impact of negative rewards
(Sec. I B), derive optimal learning rate schedules and
episode length curricula, and recover common annealing
strategies (Sec. III C). We identify ranges of learning rates
for which learning is “easy” and “hybrid-hard” (Sec. III D).
We also identify a speed-accuracy trade-off driven by
reward stringency (Sec. IIIE).

In Sec. IV, we demonstrate a similar speed-accuracy
trade-off in simulations of high-dimensional policy learn-
ing from pixels using the Procgen environment “Bossfight”
[24] and the Arcade Learning Environment (ALE) game
“Pong” [25]. A link to the code and instructions for running
all simulations and experiments is given in Appendix F.

B. Further related work

Sample complexity in RL.—An important line of work in
the theory of RL focuses on the sample complexity and
other learnability measures for specific classes of models
such as tabular RL [26,27], state aggregation [28], various
forms of Markov decision processes (MDPs) [29-34],
reactive partially observable Markov decision processes
(POMDPs) [35], and FLAMBE [36]. Here, we are instead
concerned with the learning dynamics: How do reward
rates, episode length, etc. influence the speed of learning
and the final performance of the model.

Statistical learning theory for RL.—This theory aims at
finding complexity measures analogous to the Rademacher
complexity or Vapnik-Chervonenkis dimension from stat-
istical learning theory for supervised learning [37,38].
Proposals include the Bellman rank [39], as well as the
Eluder dimension [40] and its generalizations [41]. This
approach focuses on worst-case analysis, which typically
differs significantly from practice (at least in supervised
learning [42]). Furthermore, complexity measures for RL
are generally more suitable for value-based methods;
policy-gradient methods have received less attention
despite their prevalence in practice [43,44]. We focus
instead on average-case dynamics of policy-gradient
methods.

Dynamics of learning.—A series of recent papers con-
sidered the dynamics of temporal-difference learning and
policy gradients in the limit of wide, two-layer neural
networks [45-48]. These works focus on one of two “wide”
limits. The first is the neural tangent kernel [49,50] or
“lazy” regime [51], where the network behaves like an
effective kernel machine and does not learn data-dependent
features, which is key for efficient generalization in high
dimensions. Lyle et al. [52] consider a framework to study

value learning using the temporal-difference algorithm;
their findings provide insights into quantities to track
during learning to describe the dynamics of representations,
but they still rely on input from the RL problem under
consideration. In our setting, the success of the student
crucially relies on learning the weight vector of the
teacher, which is difficult for lazy methods [53-56]. The
other wide regime is the mean-field limit of interacting
particles [57-59], where learning dynamics are captured by
a nonlinear partial differential equation. While this elegant
description allows them to establish global convergence
properties, the resulting equations are hard to solve in
practice, and a further analysis is therefore difficult. The
ODE description we derive here will instead allow us to
describe a series of effects in the following sections.
Similarly to our work, Bordelon et al. [60] give a typical-
case analysis of the dynamics of temporal-difference
learning, which learns the value function rather than
the policy as we do here. We will come back to this point
later. Finally, Rubin ef al. [61] analyze the dynamics of
the tempotron [62], a neuron model that learns spike
timing—based decisions. Similarly to our work, they
consider sparse rewards; however, beyond this similarity,
the paper does not connect to RL, and their update rules
are substantially different.

II. RL PERCEPTRON: SETUP AND
LEARNING ALGORITHM

The RL perceptron considers a task, illustrated in
Fig. 1(b), where an agent takes a sequence of choices over
an episode (episodes are length T; i.e., a choice is made at
every time step 1 € {1, ..., T}). At each time step, the agent
occupies some state s, in the environment and receives
some high-dimensional observation x, € R” conditioned
on s, with t=1,...,T. So far, we have considered the
POMDP formalism (detailed in Sec. II B); we could equally
consider the MDP formalism (also detailed in Sec. 11 B),
where D could be considered the feature dimension. The
student network determines the actions made at each . We
study the simplest possible student network, a perceptron
with weight vector w € R that takes in observations x, and
outputs y(x,) = sgn(w'x,/+/D). We interpret the outputs
y, as binary actions, for example, whether to go left or right
in an environment. As the agent makes choices in response
to the output of the student network with observations as
inputs, the student is analogous to a policy network, where
the deterministic policy 7y (a,||x,) =% (1 + a,y,) specifies
the probability of taking action a,€{—1, 1} given obser-
vation X, (i.e., the action taken a, is always equal to
the action y, specified by the student). In RL, a policy
defines the learning agent’s way of behaving at a given
time. The teacher network w* € RP can be considered as a
“perfect policy network™ that specifies the “correct” deci-

sion [y = sgn(w*Tx,/v/D)] to be made at every step (the
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policy that the student aims to emulate through the learning
process). A significant simplification for analytical trac-
tability is that the actions do not influence state transitions
(i.e., the observations x, are independent identically dis-
tributed). The crucial point is that the student does not have
access to the correct choices but only receives feedback at
time step ¢ in the form of some (non-Markovian) reward
R,(y1:1.¥}.,. @) that is conditioned on all the actions taken
(»1:,) and correct actions (yj.,) up to time step ¢, and the
condition for a reward, ®. For instance, ® could be the
condition that the agent receives a reward on the T'th step
only if all choices in an episode are correctly made;
otherwise, a penalty is received—a learning signal that is
considerably less informative than in supervised learning.
In Sec. III D, we see that receiving penalties is not always
beneficial. In the model, T plays the role of difficulty;
a more complex task may be defined by the number
of correct decisions needed in order to receive a reward.
An alternative notion of difficulty would be to consider
a planted version of the convex perceptron used in
jamming [63]. However, this formulation would not allow
some manipulations—e.g., dense rewards described in
Sec. III B—that are standard practice in RL.

To train the network (learn a policy), we consider a
weight update where the student evolves after the uth
episode as

T
wiit) = wio (1) g 0) G#). 1
Tﬁ;yt t Uy ( )

where G, = > _, y"~'R, is the total discounted reward
from time #, y € (0, 1] is the discount factor, 7 is the learning
rate, and the superscript ¢ denotes variables from the uth
time step in the algorithm. (N.B. algorithm time and
episode time are different and are, respectively, denoted
by p and ¢). The motivation for this update comes as a
modification of a Hebbian update, which occurs after an
episode that can contain multiple observations and actions,
and is weighted by G, (which also can depend on previous
observations and actions). We comment on the connection
of this update to policy-gradient methods in the next
section. For the analysis and simulations in Sec. III, we
consider y = 1 and largely restrict ourselves to receiving
sparse rewards, i.e., where a reward or penalty is only
received at the end of an episode upon successful or
unsuccessful completion of the episode; in this setting,
the total discounted reward may be written as

G, =nrl(®(yi.r.¥7.7)) = (1 =1(@(y1.7.¥7.7))) V1,
(2)

where ry is the reward, r, is the penalty, I is an indicator
function, and ® is the Boolean criterion that determines
whether the episode was completed successfully—for
instance, [(®) = []7 6(y,y;) (where @ is the step function)

if the student has to get every decision right in order to
receive a reward. The reward or penalty can be amalga-
mated into #: We define #; = nr| and 1, = nr,, essentially
“positive” and “negative” learning rates, and we use these
rates instead of r; and r, in the remaining text.

Note that in the case of T =1, n;, =0, 1, >0, and
I(®) = 6(—yy*) (i.e., the learning rule updates the weight
only if the student is incorrect on a given sample), we
recover the famous perceptron learning rule of supervised
learning [64].

A. Connection to REINFORCE policy gradient

The update in Eq. (1) can be related to the REINFORCE
policy-gradient algorithm [18]. REINFORCE is a
Monte Carlo policy-gradient method. Policy-gradient
methods aim to optimize parametrized policies with respect
to the return J (total expected reward over an episode).
In the case of REINFORCE, the return is estimated from
episode samples—i.e., single episodes are sampled by
acting under a current policy, and these sampled episodes
are used to update said policy. In an arbitrary environment
where an agent occupies states s, and may take actions a,
by acting under some policy z parametrized by 6, the policy
gradient is given by

Vol = <§_: vﬁlogﬂ()(atst)Gt>’ (3)

t=0

and the REINFORCE update of € at the pth time step in the
algorithm for the uth sampled episode is hence given by

-1
Ot = g 4 Z V, log 7y (agﬂ) |s§ﬂ)> W, 4)
t=0

In the RL-perceptron setup, the true policy is deterministic
and given by 7z, (a,|x,) = 1 (1 + a,sgn(w'x,/v/D)). In this
case, Eq. (4) becomes

~

-1
WD) — w4 \/LE , ygﬂ>xgﬂ)G§ﬂ>5<w<u>Txgﬂ>) (5)
where §(+) is the Dirac delta. We have inserted observations
X, in place of states s,, and we can replace a, by y, due to
the deterministic policy. This update is not tractable, but we
can see the structural similarity to Eq. (1), which can be
fully recovered by replacing the gradient of sgn(wTx) with
the linearized gradient (V,w'x) and rescaling by 7.
We would like to comment on policy gradients, in general,
so we verify that this linearization does not change the
qualitative behavior of the REINFORCE update in
Appendix B—where we plot the learning dynamics for a
variety of reward settings when training under the exact
REINFORCE policy-gradient update and acting under a
logistic policy. Figures 9(a), 9(c), and 9(d) can be compared

i
=}
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FIG.2. ODEs accurately describing diverse learning protocols. We show the evolution of the normalized student-teacher overlap p
for the numerical solution of the ODEs (dashed lines) and simulation (colored lines) in three reward protocols. All students receive a
reward of #; for getting all decisions in an episode correct, and additional results are as follows: In panel (a), a penalty 7, (i.e.,
negative reward) is received if the agent does not survive until the end of an episode. Panel (b) shows that an additional reward of 0.2
is received at time step 7 if the agent survives beyond 7', time steps. In panel (c), an additional reward r,, is received at time step ¢
for every correct decision y, made in an episode. In panel (d), the episode length 7 is varied. The parameters are as follows:

D =900, T =11, and 5, = 1.

to Figs. 2(a)-2(c), respectively, and Fig. 9(b) can be
compared to Fig. 5 for verification of consistent qualitative
behavior.

This connection of the RL-perceptron update to policy
gradients is analogous to the connection of the classic
perceptron update to gradient descent; the perceptron
update rule in classic supervised learning is equal to the
linearized version of the single sample gradient descent
update for binary classification with a perceptron using
L, loss.

B. Connection to Markov decision processes

Formally, most RL problems can be described as a
MDP or a POMDP; see Appendix A. Therefore, a lot
of theoretical work on reinforcement learning has been
formulated in this framework [65]. To make it easier to
connect the RL perceptron with this literature, in
Appendix A, we show that the RL perceptron can be
formulated as either an MDP or POMDP with non-
Markovian rewards. In a nutshell, the observations x; in
the implementation described can be thought of as high-
dimensional states s, (MDP) or as the noisy high-
dimensional observations of underlying low-dimensional
latent states s, (POMDP). Each interpretation naturally
leads to different extensions. The MDP framework is able
to incorporate kernelized high-dimensional feature maps of
the underlying state, and the POMDP framework is more
amenable to tractable calculations of expectations for
trajectories involving state and action-dependent state
transitions. We do not explore the connection further, as
we are primarily interested in the dynamics of learning.

III. THEORETICAL RESULTS

The RL perceptron enables an analytical investigation
of average dynamics through the identification and

characterization of a few relevant order parameters,
as explained in Sec. III A. This approach significantly
simplifies the problem by transitioning from a high-
dimensional to a low-dimensional framework. Moreover,
it offers adaptability for characterizing and comparing
various learning protocols, as detailed in Sec. [II B. On a
practical level, the derived equations allow for the deter-
mination of optimal learning rate annealing strategies to
maximize expected rewards, and the use of a curriculum
protocol enhances training efficiency (Sec. IIIC). At a
fundamental level, studying the low-dimensional equations
provides valuable insights into the nature of the problem.
First, in Sec. III D, we observe that the presence of negative
rewards can result in suboptimal fixed points and
a counterintuitive slowing down of dynamics near the
emergence of such suboptimal fixed points. Second, in
Sec. IITE, we demonstrate that several protocols aimed at
expediting the initial learning phase actually lead to poorer
long-term performance.

A. Set of ODEs exactly captures learning dynamics
of RL perceptron

The goal of the student during training is to emulate
the teacher as closely as possible or, in other words, have
a small number of disagreements with the teacher,
y(x) # y*(x). The generalization error is given by the
average number of disagreements,

(y=y)%)
(ol ) o

(1= (sgn(v)sgn(4))),

EgE

N = N =

N[ =
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where the average (-) is taken over the inputs x, and we
have introduced the scalar preactivations for the student and
the teacher, 1 =w- x/\/ﬁ and v =w* ~x/\/5, respec-
tively. We can therefore transform the high-dimensional
average over the inputs x into a low-dimensional average
over the preactivations (4,v). By specifying a distribution
over observations, x, ~A(0,1p), the average in Eq. (6)
can be carried out by noting that the tuple (4, v) follows a
jointly Gaussian distribution with means (1) = (v) = 0 and
covariances

*

0=(®)="2% R=() =",

R
S
D

and S=(?) v

(8)

These covariances, or order parameters as they are known
in statistical physics, have a simple interpretation. The
overlap S is simply the length of the weight vector of the
teacher; for simplicity of equations, we choose S = 1.
Likewise, the overlap Q gives the length of the student
weight vector; however, this quantity will vary during
training. For example, when starting from small initial
weights, Q will be small, and it will grow throughout
training. Lastly, the alignment R quantifies the correlation
between the student and the teacher weight vector. At the
beginning of training, R~ 0, as both the teacher and
the initial condition of the student are drawn at random.
As the student starts learning, the overlap R increases.
Evaluating the Gaussian average in Eq. (6) shows that the
generalization error is then a function of the normalized

overlap p = R/+/0Q, and is given by

= %arccos <\/i§> . 9)

The crucial point is that the description of the high-
dimensional learning problem has been reduced from D
parameters to two time-evolving quantities, Q and R, which
are self-averaging in the D — oo limit. We now discuss
their dynamics.

The dynamics of order parameters.—At any given
point during training, the value of the order parameters
determines the test error via Eq. (9). How do the order
parameters evolve during training with the stochastic
update rule in Eq. (1)? We follow the approach of Saad
and Solla [23], Kinzel and Rujan [66], and Biehl and
Schwarze [67] to derive a set of dynamical equations that
describe the dynamics of the student in the thermodynamic
limit where the input dimension goes to infinity. The
general ODEs derived in Appendix C are given below:

dR 7 L
da = T <; Sgn(/lt)l/sz>’

€

(10)

dQ 2y /< P /< o
da ?<; Sgn(/lr)/lth> "’F <;G;>, (11)

where a serves as a continuous time variable in the
limit D — oo (not to be confused with ¢, which counts
episode steps). In this way, the stochastic evolution of the
student in high dimensions has been mapped to the
deterministic evolution of two order parameters in a
continuous time description.

We give explicit dynamics for a variety of learning
protocols (different protocols are encapsulated by the
functional form of the discounted reward, G,). Because
of the length of these expressions, we report the explicit
ODEs of the dynamics in Appendix C. In Secs. III C and
III D, we devote our analysis to the reward condition where
the agent must survive until the end of an episode to receive
areward and receives a penalty otherwise [this is described
by the G, given in Eq. (2) and with I(®) = []7 0(y,y;)1;
as such, we explicitly state the ODEs for the order
parameters below:

dj _m +m i T-1 _ i
da = Vom <1 +\/Q>P an“ﬂQ’ (12)

d 2 R
d_g = (m +’72)\/§<1 +@>PT_]

20 (i —nd) "3
oy )2 TR pr T
P\ T tr

where P =1—cos™'(R/\/Q)/x is the probability of a
single correct decision. While our derivations of the
equations follow heuristics from statistical physics, we
anticipate that their asymptotic correctness in the limit
D — oo can be established rigorously using the techniques
of Goldt et al. [68], Veiga et al. [69], and Arnaboldi ef al.
[70]. We illustrate the accuracy of these equations already
in finite dimensions (D = 900) in Fig. 1(c), where we show
the expected reward, as well as the overlaps R and Q, of a
student as measured during a simulation and from inte-
gration of the dynamical equations (solid and dotted lines,
respectively).

The derivation of the dynamical equations that govern
the learning dynamics of the RL perceptron is our first main
result. Equipped with this tool, we now analyze several
phenomena exhibited by the RL perceptron through a
detailed study of these equations.

(13)

B. Learning protocols

The RL perceptron allows for the characterization of
different RL protocols by adapting the reward condition ®.
We consider the following three settings:

Vanilla.—The dynamics in the case without a penalty,
and where the survival of the entire episode is required for a
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reward [G, = []7 0(y,y})], is shown in Fig. 2(d). Rewards
are sparsest in this protocol; as a result, we observe a
characteristic initial plateau in the expected reward
followed by a rapid jump. The length of this plateau
increases with T, consistent with the notion that sparser
rewards slow learning [71]. Plateaus during learning,
which arise from saddle points in the loss landscape,
have also been studied for (deep) neural networks in the
supervised setting [23,72], but they do not arise in the
supervised perceptron. Hence, the RL setting can quali-
tatively change the learning trajectory.

Penalty.—The initial plateau can be reduced by provid-
ing a penalty or negative reward (1, > 0) when the student
fails in the task. This change provides weight updates much
earlier in training and thus accelerates the escape from
the plateau. The dynamics under this protocol are shown
in Fig. 2(a). It is clear that the penalty provides an initial
speedup in learning, as expected if the agent were
unaligned and more likely to commit an error. However,
a high penalty can create additional suboptimal fixed points
in the dynamics, leading to a low asymptotic performance
as seen in Fig. 2(a) (more details are given in Sec. [II D).
In the simulations, finite-size effects occasionally permit
escape from the suboptimal fixed point and jumps to the
optimal one, leading to a high variance in the results. The
general form of the discounted reward G, in this case is
given by Eq. (2).

Subtask.—The model is also able to capture the dynamics
of more complicated protocols: Figure 2(b) shows learning
under the protocol where a smaller subreward r/, is received
if the agent survives beyond a shorter duration 7y < 7 in
addition to the final reward received for survival until time
step T i.e., some reward is still received even if the agent
does not survive for the entire episode. In this case,
G, = ryl(r < To) T2, 00wy;) + TTi_, 00v3})-

Dense.—The model can capture scenarios in which
rewards are densely received throughout an episode, which

(a) 1 (b) 1

is reflected by the learning protocol where the agent
receives a small reward r, for every correct decision made
in an episode and a reward of 1 at time 7 if the entire
episode is successfully completed; i.e., like the previous
method, some reward is still received even if the agent does
not survive for the entire episode, and these dynamics are
captured in Fig. 2(c). In this case, the discounted reward

is G, = Z;T':1 rbg()’t’y;) + H;T':, 6()’#)’;)-

C. Optimal hyperparameter schedules

Hyperparameter schedules are crucial for successful
training of RL agents. In our setup, the two most important
hyperparameters are the learning rates and the episode
length. In the RL perceptron, we can derive optimal
schedules for both hyperparameters. For simplicity, here
we report the results in the spherical case, where the length
of the student vector is fixed at \/5 (we discuss the
unconstrained case in Appendix D); then, Q(a) = 1 at all
times, and we only need to track the teacher-student overlap
p = R/+/Q, which quantifies the generalization perfor-
mance of the agent. Keeping the choice I(®) =
[1Z, 6(y;y;), we find that the optimal schedules over
episodes for 7" and # can then be found by maximizing the
change in overlap at each update, i.e., setting d/0T (dp/da)
and d/dn(dp/da) to zero, respectively. After some calcu-
lations, we find the optimal schedules below:

P in L1204 -0
T2 (1-p1)V20 np /zPIn(P)

0T(-p?
and ’/Iopt ZT, (14)

where |-| indicates the floor function. Figure 3(a) shows
the evolution of p under the optimal episode length

(c) 10
n=0.1
108 | —p=1
&~ 102 —n =10
10t
100

- = = Optimal — = = Optimal
0 P 0 E
0 0.5 1 1.5 2 0 0.5 1 1.5 2
. 5 . 5
Time, ¢t 10 Time, ¢t -10
1 10 0 10 100 102  10* 106
T | B n | - . Time, t

FIG. 3.

Optimal schedules for episode length T and learning rate 7. (a) Evolution of the normalized overlap under optimal episode

length scheduling (dashed line) and various constant episode lengths (green lines). (b) Evolution of the normalized overlap under
optimal learning rate scheduling (dashed line) and various constant learning rates (blue lines). (c) Evolution of optimal 7 (green lines)

and 7 (blue lines) over learning. The parameters are as follows:

D=900,0=1,1=0 (a)n =1,and (b) T = 8.
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schedule (dashed line) compared to other constant episode
lengths (green lines). Similarly, Fig. 3(b) shows the
evolution of p under the optimal learning rate schedule
(dashed line) compared to other constant learning rates
(blue lines). The functional forms of 7', and 77, Over time
are shown in Fig. 3(c).

Our analysis shows that a polynomial increase in the
episode length gives the optimal performance in the RL
perceptron [see Fig. 3(c) (top)]; increasing 7 in the RL
perceptron is akin to increasing the task difficulty, and
the polynomial scheduling of 7', specifies a curriculum.
Curricula of increasing task difficulty are commonly used
in RL to give convergence speedups and learn problems
that otherwise would be too difficult to learn ab initio [73].
Analogously, the fluctuations can be reduced by annealing
the learning rate and averaging over a larger number of
samples. Akin to work in the RL literature studying
adaptive step sizes [74,75], we find that annealing the
learning rate during training is beneficial for greater speed
and generalization performance. For the RL perceptron,
a polynomial decay in the learning rate gives optimal
performance, as shown in Fig. 3(c) (bottom), consistent
with work in the parallel area of high-dimensional non-
convex optimization problems [76] and stochastic approxi-
mation algorithms in RL [77].

D. Phase space

With a nonzero penalty (7,), the generalization perfor-
mance of the agent can enter different regimes of learning.
This case is most clearly exemplified in the spherical case,
where the number of fixed points of the ODE governing the
dynamics of the overlap exist in distinct phases determined
by the combination of reward and penalty. For the simplest
case (I(®) = []7 (y,y})), these phases are shown in Fig. 4.
Figure 4(a) shows the fixed points achievable over a range
of penalties for a fixed 7; = 1 (obtained from a numerical

solution of the ODE in p). There are two distinct regions:
(1) easy, where there is a unique fixed point and the
algorithm naturally converges to this optimal pg, from a
random initialization; (2) a hybrid-hard region (given the
analogy with results from inference problems [78]), where
there are two stable (one good and one bad) fixed points
and one unstable fixed point, and either stable point is
achievable depending on the initialization of the student
(orange). The hybrid-hard region separates two easy
regions with very distinct performance levels. In this
region, the algorithm with high probability converges to
Prix With the worst performance level. These two regions
are visualized in (7, #,) space in Fig. 4(b) for an episode
length of 7= 13. The topology of these regions is also
governed by the episode length, with a sufficiently small T
reducing the area of the hybrid-hard phase to zero,
meaning there is always one stable fixed point that may
not necessarily give a “good” generalization. Figure 4(c)
shows the phase plot for 7 = 8, where the orange (hybrid-
hard) area has shrunk, which corresponds to the s-shaped
curve in Fig. 4(a) becoming flatter (closer to monotonic).
Details of the construction of Fig. 4 are given in
Appendix E. These regimes of learnability are not a
peculiarity specific to the spherical case; indeed, we
observe different regimes in the learning dynamics
in the setting with unrestricted Q, which we report in
Appendix D. We also show that using a logistic policy
with the exact REINFORCE update indeed results in the
RL perceptron not being able to learn above some
threshold of learning rates [see Figure 9(a)].

These phases show that, at a fixed #;, increasing 7, will
eventually lead to a first-order phase transition, and the
speed benefits gained from a nonzero 7, will be nullified
due to the transition into the hybrid-hard phase. In fact,
when taking 7, close to the transition point, instead of
speeding up learning, there is a critical slowing down,
which we report in Sec. Il . A common problem with

(a) 1 (b) 1 (C) ) —
0.8 o8 N ———————————
0.6 06| 06l

& . , ] ‘

Q S] a
0.4 ol -

02 / 02| .
0 ¥ o O
0 0.2 04 0.6 0.8 1 0 0.2 04 06 0.8 1 o 02 02 06 o8 1
72 " i
Hybrid-hard 1 | A —

FIG. 4. Phase plots of learnability. We show the case where all decisions in an episode of length 7" must be correct. (a) Fixed points of p
for T = 13 and #; = 1. The dashed portion of the line denotes where the fixed points are unstable. (b) Phase plot showing regions of
hardness for T = 13. (c) Phase plot showing regions of hardness for 7 = 8. Green regions represent the easy phase, where, with
probability 1, the algorithm naturally converges to the optimal pg;, from random initialization. The orange region indicates the hybrid-
hard phase, where, with high probability, the algorithm converges to the suboptimal pg;, from random initialization. The parameters are

D =900 and Q = 1.
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FIG. 5. Speed-accuracy trade-off. We show the evolution of the
normalized overlap between the student and teacher for the
simulation (solid lines) and the ODE solution (dashed lines) for
the case where n or more decisions in an episode of 7' = 13 are
required to be correct for an update with 7, = 0. More stringent
reward conditions slow learning but can improve performance.
The parameters are as follows: D =900, n; = 1.

REINFORCE is that high-variance gradient estimates lead
to bad performances [79,80]. The reward (#;) and punish-
ment (1,) magnitude alters the variance of the updates, and
we show that the interplay between the reward, penalty, and
reward condition, as well as their effect on performance,
can be probed within our model. This framework opens the
possibility for studying phase transitions between learning
regimes [81].

E. Speed-accuracy trade-off

Figure 5 shows the evolution of normalized overlap
p = R/+/Q between the student and teacher obtained from
simulations and from solving the ODEs in the case where n
or more decisions must be correctly made in an episode of

length T = 13 in order to receive a reward (with 7, = 0).
We observe a speed-accuracy trade-off, where decreasing n
increases the initial speed of learning but leads to worse
asymptotic performance; this trade-off alleviates the initial
plateau in learning seen previously in Fig. 2(d) at the cost
of good generalization. In essence, a lax reward function
is probabilistically more achievable early in learning;
however, it rewards some fraction of incorrect decisions,
leading to lower asymptotic accuracy. By contrast, a
stringent reward function slows learning but eventually
produces a highly aligned student. For a given MDP, it is
known that arbitrary shaping applied to the reward function
will change the optimal policy (reduce asymptotic perfor-
mance) [82]. Empirically, reward shaping has been shown
to speed up learning and help overcome difficult explora-
tion problems [83]. Reconciling these results with the
phenomena observed in our setting is an interesting avenue
for future work.

F. Critical slowing down

With the addition of a penalty term, we observe an initial
speedup in learning, as shown in Fig. 6. Toward the end of
learning, however, we observe a critical slowing down, and
we see how, in many instances, a nonzero 7, can instead
cause an overall slowing down of learning. This observa-
tion is most easily seen in the spherical case for the rule
where all decisions in an episode of length 7" must be
correct to receive a reward: Figure 6(a) shows the time
taken for the student to converge to the fixed point starting
from an initial p = 0 for 7 = 13 and #; = 1. We observe
that increasing 7, (up to 74, at which point the algorithm
enters the hybrid-hard phase detailed in Sec. IIID)
increases the time taken to reach the fixed point, which
is similarly seen for 7 = 20 in Fig. 6(b). This slowing is not
present over the entire range of 7,; it is true that, for small
values of 7,, there is actually a small speedup in reaching

10&5
(@) (b) ©
» 108
107
+ - 1075
2 210°
= = 107 1073 1072
109
-~
107 106
0 0.1 0.2 03 0.4 0 0.025 0.05
2 72 .10-2
104 1073 1072 10°*!
|7727"70rit|

FIG. 6. Critical slowing down for 77, # 0. (a) Time for convergence to the fixed point for 7 = 13. (b) Time for convergence to the fixed
point for 7 = 20. (c) Time for convergence plotted against distance of 7, away from the critical penalty for 7 = 13 (bottom) and 7" = 20
(top). All plots are for the spherical case where the agent must get every decision correct in order to receive a reward of 77; = 1, and the
agent receives a penalty of 7, otherwise. The parameters are as follows: D = 900, Q = 1.
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the fixed point, showing that the criticality severely reduces
the range of 7, that improves convergence speed. We
plot the distance of 77, away from the critical penalty value
(172 — neit|) against time for convergence in Fig. 6(c), for
T =20 (top) and T = 13 (bottom). We observe a poly-
nomial scaling of the convergence time with distance away
from criticality.

IV. EXPERIMENTS

To verify that our theoretical framework captures quali-
tative features of more general settings, we train agents
from pixels on the Procgen [24] game Bossfight. To remain
close to our theoretical setting, we consider a modified
version of the game where the agent cannot defeat the
enemy and only wins if it survives for a given duration 7.
On each time step, the agent has the binary choice of
moving left or right and aims to dodge incoming projec-
tiles. We give the agent 4 lives, where the agent loses a life
if struck by a projectile and continues an episode if it has
lives remaining. This reward structure reflects the sparse
reward setup from our theory and is analogous to requiring
n out of T decisions to be correct within an episode. We
further add asteroids at the left and right boundaries of the
playing field that destroy the agent on contact, such that
the agent cannot hide in the corners [see the screenshots of
the game in Fig. 7(c)]. Observations, shown in the top panel
of Fig. 7(c), are centered on the agent and downsampled to
size 35 x 64 with three color channels, yielding a 6720
dimensional input. The pixels corresponding to the agent
are set to zero since these otherwise act as near-constant
bias inputs not present in our model [bottom panel of
Fig. 7(c)]. The agent is endowed with a shallow policy
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FIG. 7.

network with a logistic output unit that indicates the
probability of left or right action. The weights of the policy
network are trained using the exact REINFORCE policy-
gradient update (with additional entropy regularization to
steer away from an early deterministic policy).

To study the speed-accuracy trade-off, we train agents
with different numbers of lives. As seen in Fig. 7(a), we
observe a clear speed-accuracy trade-off mediated by agent
health, consistent with our theoretical findings (cf. Fig. 5).
Figure 7(b) shows the final policy weights for agents
trained with # =1 and A =4. When compared to the
game screenshots in Fig. 7(c), we see an interpretable
structure, roughly split into thirds vertically: The weights in
the top third detect the position of the boss and, in the
center, the agent beneath it, which causes projectiles to
arrive vertically rather than obliquely, making them easier
to dodge. The weights in the middle third dodge projectiles.
Finally, the weights in the bottom third avoid asteroids near
the agent. Notably, the agent trained in the more stringent
reward condition (7 = 1) places greater weight on dodging
projectiles [seen from the bolder colors in Fig. 7(b)],
showing the qualitative impact of rewards on learned
policy. Hence, similar qualitative phenomena as in our
theoretical model can arise in more general settings.

For a test of the generality of our conclusions, we train
agents from pixels on the ALE [25] game Pong (using the
exact REINFORCE update with a deep nonlinear network).
The notion of lives (or requiring n or more correct decisions
in an episode for a reward) is essentially a way to control
the difficulty of a task, whereby higher n (fewer lives)
is a more stringent condition, i.e., a more difficult task.
We examine a corresponding setup in Pong, where task
difficulty is varied in order to study the dynamics of

Empirical speed-accuracy trade-off in Bossfight. (a) Generalization performance over training a perceptron policy network

with the REINFORCE algorithm, measured on evaluation episodes with 2 = 1 lives. Agents trained in stringent conditions (2 = 1) learn
slowly but eventually outperform agents trained in lax conditions (2 = 4), an instance of the speed-accuracy trade-off. Shaded regions
indicate SEM over ten repetitions. (b) Policy network weights (@) for an agent with (top) & = 4 lives and (bottom) & = 1 life. For
simplicity, one color channel (red) is shown. Training with fewer lives increases the weight placed on dodging projectiles (see text).
(c) Top panel: example screenshot of bossfight. Bottom panel: example observation that the policy network sees. The parameters are as

follows: T = 100, n; = 2e¢ — 3, and n, = 0.

021051-10



RL PERCEPTRON: GENERALIZATION DYNAMICS OF POLICY ...

PHYS. REV. X 15, 021051 (2025)

generalization performance of agents. The Pong task
difficulty is varied by changing the episode length T to
which the agent must survive in order to receive a reward.
Intuitively, longer T poses a more difficult task as an agent
is required to survive for longer. On each time step, the
agent has a binary choice of moving left or right and aims
to return the ball. If the ball manages to get past the agent,
the episode ends without a reward; if the agent survives
until the end of the episode, it receives a reward. The
decisions of the agent are sampled from the logistic output
of a deep policy network, consisting of two convolutional
layers, two fully connected layers, and ReLLU nonlinearities
with a sigmoidal output. Pong is deterministic, so in order
to avoid memorization, we introduce stochasticity by
employing two approaches: (1) frameskips [84], where
actions are taken a random number of times; (2) random
initialization, where a randomly selected, pretrained agent
is run for a random number of time steps in order to
progress the game into a “random” initialization state. The
weights of the policy network are trained using the exact
REINFORCE policy-gradient update (with additional
entropy regularization) by running 20 agents in parallel.
Figure 8 shows a clear trend in the speed of learning with
more stringent reward conditions taking longer to learn. It
is clear from Fig. 8 that asymptotic accuracy has not yet
been reached within this time frame; unfortunately, because
of computational and time constraints, it is not possible to
train for longer. However, we can see the separation in the
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FIG. 8. Empirical speed-accuracy trade-off in Pong. The mean

survival time over the course of training for agents required to
survive up to completion of an episode of length 7, in order to
receive a reward. Inset: same data replotted for the total number of
training steps taken in the game. The parameters are #; = 2e — 3
and n, = 0.

generalization accuracy as agents trained to survive on
episodes of 7 =70 begin to survive for longer at an
increasing rate compared to agents trained on episodes
of T =50, which in turn begin to survive for longer at
an increasing rate compared to agents trained on episodes of
T = 30. Agents trained on episodes of T = 90, however, are
not seen to reach generalization performance which sur-
passes that of 7 = 70 agents, which is likely due to not
training for long enough; it can be seen that agents trained on
T = 90 have not reached a regime where they are consis-
tently receiving a reward yet (and, therefore, updates are still
infrequent). It would require more training steps for 7 = 90
agents to more frequently receive a reward and update
weights, at which point we would expect an overtake in
generalization performance compared to the other agents.
The inset in Fig. 8 shows the same data as the main plot but
replotted against the number of total steps (steps of the agent
in the game) instead of the number of episodes. The trend
remains, with an exaggerated speed difference but a tighter
difference in generalization performance between the differ-
ent agents. In practice, choosing whether to measure speed
differences in the number of episodes versus the number of
steps will be application dependent. For instance, suppose
the bottleneck in time cost is in taking a single step; then,
step number is the appropriate measure. However, if the
bottleneck in time cost is the episode itself, e.g., due to
having to return a robot to the initial position, then episode
number will be the appropriate measure. For a more detailed
experimental setup, see Appendix F.

V. CONCLUDING PERSPECTIVES

The RL perceptron provides a framework to investigate
high-dimensional policy-gradient learning in RL for a
range of plausible sparse reward structures. We derived
closed ODE:s that capture the average-case learning dynam-
ics in high-dimensional settings. The reduction of the high-
dimensional learning dynamics to a low-dimensional set
of differential equations permits a precise, quantitative
analysis of learning behaviors: computing optimal hyper-
parameter schedules or tracing out phase diagrams of
learnability. Our framework offers a starting point to
explore additional settings that are closer to many real-
world RL scenarios, such as those with conditional next
states. Furthermore, the RL perceptron offers a means to
study common training practices, including curricula, and
more advanced algorithms, like actor-critic methods. We
hope to extract more analytical insights from the ODEs,
particularly on how initialization and learning rates influ-
ence an agent’s learning regime. Our findings emphasize
the intricate interplay of task, reward, architecture, and
algorithm in modern RL systems.

We designed the RL perceptron to be the simplest
possible model of reinforcement learning that lends itself
to an analytical treatment, so we limited the model to binary
action spaces, environmental states sampled from standard
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Gaussian distributions, and simple shallow networks to
learn the policy. We did not consider state transitions that
are conditioned on previous action(s). While this simple
model already showed a rich behavior, it is indeed possible
to extend our model to problems with more states, more
realistic inputs, and more decisions using universality
results from statistical physics [85-90]. These exten-
sions would make it possible to define the notion of
“value” on states or actions, meaning there is the
potential to incorporate value-based RL algorithms or
algorithms that combine policy and value-based meth-
ods, which is a plan for future works. It would also be
possible to extend to higher-dimensional action spaces
instead of binary ones by considering work that finds
learning curves for the multiclass perceptron [91], which
would, again, widen the possibilities of RL agents we
can consider and also the number of suitable environ-
ments we can test against.

We note the similarity of our sparse reward model to
the policy learning framework used to fine-tune large
language models (LLMs) for reasoning. A fruitful
method [92] has been to train models on sample “chains
of thought,” where a reward is received only for a correct
final result. The application of the RL perceptron to gain
insight into learning of reasoning abilities in LLMs could
prove useful.

Policy learning is a key aspect of modern RL, but real-
world applications require learning of both policies and
value functions, which evaluate policies by assigning an
expected reward to each (state, action) pair. Recently,
Bordelon et al. [60] gave an analysis of the typical-case
dynamics of the temporal difference algorithm to learn
value functions using tools from statistical physics. The
ultimate goal of a theory of reinforcement learning com-
bining policy learning and the learning of value functions
remains elusive due to the nontrivial interactions between
the two processes; thus, we are presented with an exciting
challenge for further research.
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APPENDIX A: POMDP FORM

The RL perceptron with its update rule, Eq. (1), can be
grounded in the (partially observable) MDP formalism
where, at every time step 7, the agent occupies some state s,
in the environment and receives an observation X, con-
ditioned on s,. An action y, is then taken by sampling from
the policy z(y,|x,) (parametrized by the student w), and the
agent receives a reward accordingly. In the MDP frame-
work, the observations x, ~ N(0, 1,) themselves are con-
sidered states. In the POMDP framework, the observations
are noisy representations of some low-dimensional latent
states: The state s, of the environment can be one of
two states, s, ,s_, and x, ~ P(-|s;) is a high-dimensional
sample representative of the underlying state, with
P(-|sy) = No(-|w*). Here, N (-|w*) is the N(0,1p)
distribution but with zero-probability mass everywhere
except in the half-space whose normal is parallel to w*;
N_(-|w*) is correspondingly nonzero in the half-space
with a normal that is antiparallel to w* [N (0, 1,) has been
partitioned into two]. The next state s,,; is sampled with
probability  P(s,.|s,) = P(s;41) = 1/2 independently
from the decision made by the student in previous steps.
At the end of an episode, after all decisions have been
made, we update the agent as in Eq. (1). The POMDP and
MDP frameworks are both equivalent, and they lead to the
same dynamics, as shown in Appendix B.

APPENDIX B: EXACT REINFORCE
SIMULATIONS

Simulations using the exact REINFORCE update were
performed to show the validity of the RL-perceptron update
in capturing the qualitative behavior of REINFORCE in
our setting. We follow the standard RL-perceptron setup
detailed in Sec. I, but in order to be able to take gradients,
actions are sampled instead from a logistic policy
ww(a,|x,) = [1 +exp (= Aa,(w'x,/+/D))]™" for large A.
In the large A limit, the deterministic policy 7 (a,|x;) =
1(1+ a,sgn(w'x,/v/D)) is well approximated. Instead of
the RL-perceptron update, Eq. (1), we compute the true
policy gradient and perform the REINFORCE update.
Figure 9 shows the evolution of the normalized overlap
between the teacher and student for four various learning
scenarios. Figure 9(a) shows the case where a negative
reward is received if not all decisions in an episode are
correctly made. It is consistent with Fig. 2(a), where an
increase in the size of the negative reward gives an initial
speedup in learning before learning fails altogether (which
is also consistent with the results of Sec. IIID and
Appendix D, where, above some threshold 7,, learning
fails). Figure 9(b) shows the reward scheme where n or
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FIG. 9. Qualitatively consistent exact REINFORCE update. We show the evolution of the normalized student-teacher overlap p using
REINFORCE for simulations with actions sampled from a logistic policy with growth parameter A in four reward protocols with
episode length 7 and reward 7. (a) All decisions required to be correct in an episode for a reward, with a negative reward 7, otherwise.
(b) n or more decisions required to be correct for a reward. (c) Additional reward of 0.2 received at time step T if the agent survives
beyond T, time steps. (d) Additional reward r, received at time step t for every correct decision y, made in an episode. The
corresponding figures to compare for the RL-perceptron updates are as follows: Panels (a), (c), and (d) correspond to Figs. 2(a), 2(b), and

2(c), respectively; panel (b) corresponds to Fig. 5. The parameters are as follows: A =

more decisions in an episode are required to be correct for a
reward; here, there is a speed-accuracy trade-off consistent
with Fig. 5. Figures 9(c) and 9(d) show the subtask and
dense reward protocols (Sec. II), respectively. The shapes
and ordering of the curves show good agreement with
Figs. 2(b) and 2(c).

APPENDIX C: DERIVATIONS

Thermodynamic limit.—In going from the stochastic
evolution of the state vector w to the deterministic dynam-
ics of the order parameters, we must take the thermody-
namic limit. For the ODE involving R, we must take the
inner product of Eq. (1) with w*:

10000, T = 10, 7, = 1, and D = 900.

We go from Eq. (C3) to Eq. (C4) by taking the limits
D — 00,l - 0 and [/D = da — 0. The rhs of Eq. (C3) is
the sum of a large number of random variables, and by the
central limit theorem, it is self-averaging in the thermo-
dynamic limit (under the assumption of weak correlations
between episodes). Consequently, the lhs is self-averaging,
and we go from Eq. (C4) to Eq. (C5) by considering the
aligning fields defined in Sec. IIl A. A similar procedure
can be followed for order parameter Q, but we instead take
the square of Eq. (1) and go to the limit described, obtaining

DO = por + =L < ZthXG>

P u
, +5 (T_ E YyirXixyG Gt’) .
1) — ) M (1) o () (1) he=1
w =wW 4+ E X, G, Cl .
T /—D — Vi t t ( ) D(QIH_[ _ QM) 2],[1 -1 T p+i
e (e
DR+ = § yWwixWG® o (c2)

From this point, for ease of notation, any variable(s) with

a subscript u refers to said variable(s) in the uth episode. (C6)
We subtract DR* from Eq. (C2) and sum over / episodes; dg 27 T VLG
the lhs is a telescopic sum, and Eq. (C2) becomes da T ; sgn(4) 4G,
; T
D(R/H-l _Rﬂ) n 1 -1 T pti ”2 5 1
= - * +5 G )+0|=). Cc7

We have now obtained a general set of ODEs describing

dR 7 wiTx, the learning dynamics. Note that G, is general and
da T <Zy VD > C4) winn depend on the environment-specific condition for a
=1 reward. For the case of a sparse reward received at the
n /L end of an episode, we find (G, = r\l(®(yi.7,¥}.7)) —
= ;<lesgn(ﬂt>v,G,> (C5) (1 =1(®(yy.7.¥i.7))))- Then, Egs. (C5) and (C7)

=

become
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dR  ny +m,

== 7 <tzl:u,sgn(ﬂ,)]l((b)>—’72<l/5gn(/1)>’ (C8)

dQ _2(m +m) +nz
da ZA sgn(4

T2D <ZYt)’t’Xt x,I(® >

1'=1

TZD < Z yzyt’xtxz’>

1,'=1

> ~ 2y, (Asgn(A))

(©9)

Computing averages.—Next, we compute the expect-
ations. Recalling the definitions
wiTx wix
VD VD’
which are sums of N independent terms (and by the central
limit theorem, they obey a Gaussian distribution), we note

V= and A=

(C10)

(v) =(4) =0, (C11)
=1 =0, (C12)
wa) = Wgw —R. (C13)

All expectations in the ODEs can be expressed in terms
of the constituent expectations given below (which are
trivially computed by considering the Gaussianity of the
above variables):

e} = (275, asen(a)) = 22,
(sgn(v)) = \/f isen(v) = \/ 2R, (C14)
<,,JZI ylyt'xt >
1 T : T -1 :
D < (; XX, +2 ; 2 VeV Xq t’) >
=T+ O(1/D). (C15)

The terms involving @® will, in general, consist of
expectations containing step functions 6(x) (1 for x > 0,
0 otherwise), specifically 6(vA) (1 if the student decision
agrees with the teacher, 0 otherwise) and 6(—vA) (1 if the
student decision disagrees with the teacher, O otherwise).
When we encounter these terms, they can be greatly
simplified by considering the following equivalences:

sgn(1)0(vd) =

(sgn(4) +sgn(v)),  (Cl6)

N[ =

and = % (sgn(A) —sgn(v)).

sgn(4)0(—uvA) (C17)

We show, as an example, the case where @ is the
condition to get all decisions correct in an episode,
I(®) =[], 0(v:4;), where O(x) is the step function
(1 for x > 0, O otherwise). The first term in Eq. (C8)
can be given as

< Zv,sgn ]1(<1>>

< Zu,sgn H9 VsAy )> (C18)
T
v, 0(vsy) (C19)
= (v,sgn(4 <g >
%<vt(sgn( ;) + Sgn(”r))>PT_l (€20)
:\/% <1 +%>PT‘1, (C21)

where P is the probability of making a single correct
decision, and it can be calculated by considering that an
incorrect decision is made if x lies in the hypersectors
defined by the intersection of A/, (-|w*) and N . (-|w); the
angle ¢ subtended by these hypersectors is equal to the
angle between w* and w,

()= (%)

Similarly, the first term in Eq. (C9) can be given as

= (4,(sgn(4,) + sgn(y,))>PT_1
_ PO L R o
B B

The cross terms in Eq. (C9) can also be computed:

<Z VXX He Vi) >

1=

1 T -1 T
_5<(Z X;Xr +2Z ytyt’XlTXt/> He(”sﬂs)>
=1

=2 =1 s=1

(C22)

(C23)

=TP" + O(1/D), (C24)

where the second term can be neglected in the high-
dimensional limit. Substituting these computed averages
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into Egs. (C8) and (C9), the ODEs for the order parameters
can be written:

dR  ny+m R -1 [ 2
i 14+—— - il 2
(i(l \/2_71 < \/_!2> P ’/IZR sz ' (C 5)

40 _ S22 (L R\ pre
da _(771+772) p <1+\/§>P
o 22 (i =m) pr M

Equivalence of POMDP formulation.—The ODEs gov-
erning the dynamics of the order parameters in the previous
section can be equivalently calculated under the formu-
lation involving the underlying states {s,s_} defined in
Sec. II. The underlying system can take a multitude of
trajectories () in state space; there are 27 trajectories in
total (as the system can be in two possible states at each
time step), and expectations must now include the averag-
ing over all possible trajectories. All expectations will now
be of the following form, where the dot (-) denotes some
arbitrary term to be averaged over:

= P()(|r

By considering the symmetry of the Gaussian and “half-
Gaussian” (V') distributions, all expectations in Eq. (C14)
are seen to be identical regardless of whether expectations
are taken with respect to the full Gaussian or the half-
Gaussian distributions, i.e.,

(C26)

(C27)

(v =, = O (C28)
This finding implies that all expectations are independent
of the trajectory of the underlying system; hence, averaging
over all trajectories leaves all expectations unchanged. This
approach also allows the extension to arbitrary transition
probabilities between the underlying states {s.,s_}.

Other reward structures.—The expectations can be
calculated in other conditions of @ by considering com-
binatorial arguments. We state the ODEs for two reward
conditions.

n or more—We consider the case where @ is the
requirement of getting n or more decisions in an episode
of length T correct. We give the ODEs below for the case
of n, =0:

s ()07

—(T -i) (1 - %) P} PY(1=pP)T==1 (C29)

2R o

—(T- i)(l —\%> P} P11 - p)T=i-t
AE()ro-rr

Breadcrumb trails.—We also consider the case where a
reward of size 7; is received if all decisions in an episode
are correct, in addition to a smaller reward of size f for each
individual decision correctly made in an episode:

(C30)

ﬂli,

+ 0+ (T + 1)mﬂ>P7

(C31)

N1

+ﬂ%T+U(%+%U—1w>

APPENDIX D: UNCONSTRAINED
SIMULATIONS

Optimal scheduling.—The optimal schedules for the
learning rate and episode length (Sec. III C) also hold in
the unconstrained case [where Q(a) is not restricted to the
surface of a sphere] because the parameters were derived
from the general requirement of extremizing the update
of p from any point in the (p, Q) plane. The evolution of
T o and 1, over time (while following their respective
scheduling) is shown in Fig. 10. In the unconstrained
case, the magnitude of the student grows quadratically; an
increase Q acts as a decrease in the effective learning rate.
Hence, contrary to the spherical case, a decaying learning
rate is not optimal, and optimal 7' grows much more
slowly, as shown in Fig. 10(b). The plots for T, do not
show a clear trend, and they require further investigation.
The evolution of 7,/ /0 is plotted in Fig. 9(a); this
value is the effective learning rate, and we observe a
polynomial decay in the value as with the spherical case
presented in Sec. III C.

Phases.—The phases observed in Fig. 4 are not an
artifact of the spherical case. When Q(a) is not constrained,
we also observe regimes where a “bad” fixed point of p
may be attained. Figure 11 shows flow diagrams in the
(p, Q) plane for various parameter instantiations in the case
where a reward of #; = 1 is received if all decisions in an
episode of length 7" = 8 are correctly made and a penalty of
n, otherwise. Figure 11(a) is the flow diagram for #, = 0O;
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FIG. 10. Optimal schedules for unconstrained students. Panels
(a) and (b) show the evolution of optimal # and T, respectively,
over learning, while following the specified optimal schedule,
over a range of rewards and episode lengths. The parameters are
D =900,7,=0,(@ T=28,and (b) n = 1.

in this regime, the agent can always perfectly align with the
teacher from any initialization (the student flows to p = 1 at
Q = o0). This case is analogous to the student being in the
easy phase in the lower green region of the plot in Fig. 4(b),
as with probability 1, the algorithm naturally converges
to the optimal p = 1. Figure 11(b) shows the flow for
n, = 0.05. In this regime, we observe the flow to some
suboptimal p at Q = oo, which is analogous to the student
being in the easy phase in the top of the plot in Fig. 4(b), as
with probability 1, the algorithm converges to a value of p
from any initialization. However, this value of p is sub-
optimal. Figure 11(c) shows the flow for # = 0.045. We see
that, depending on the initial p, the agent will flow to one of
two fixed points in p at Q = oo; this case is analogous to
the agent being in the hybrid-hard phase in Fig. 4(b),
where, with high probability, the agent converges to the
worse p. The “good easy phase,” characterizing the
behavior seen in Fig. 11(a), is indicated by the green
region in Fig. 11(d).

APPENDIX E: PHASE PORTRAIT
CONSTRUCTION

In the spherical case [constant Q(a) = Q] with
I(®) = [[7 0(y,y;), the ODE governing the evolution of
normalized overlap p is

dp _m+m l—lcos‘l(p) = 1—p?
da /27Q b4

_m=m ZL<1_1008-1</)>>}_"_%£
T 2,0 T 2T Q"

The fixed points of this equation for Q = 1 were found
by numerically solving for (dp/da) = 0. We observe that
there are always one or three fixed points. From observing
the sign of dp/da on either side of the fixed points, we see
that, if there is one fixed point, it is stable; if there are three
fixed points, the outermost points are stable, but the
innermost fixed point, sandwiched between the first and
third points, is unstable. We then construct the phase plots
in Fig. 4 by sweeping over (1;,1,) values and counting the
number of fixed points—the yellow hybrid-hard region
then corresponds to a region with three fixed points
in Eq. (EI).

(E1)

APPENDIX F: ADDITIONAL EXPERIMENTAL
DETAILS

Instructions for running simulations and experiments
can be found in [93]. In both the Bossfight and Pong
experiments, the loss was augmented to have an entropy
regularization term weighted by g = 0.01 to prevent early
convergence to a deterministic policy. Note that f is
multiplied by a factor of 0.995 after each episode to
gradually decrease the regularization-term contribution.

Bossfight.—The policy network was optimized with
Adam, with a learning rate of 2 x 1073. We discounted

0
0 0.2 0.4 0.6 0.8
P P

Epoch T
0

0 0.2 0.4 06 0.8 1

FIG. 11.

1

— (@ 4
1.5
g1
0.5
0 0
0 0.2 0.4 0.6 0.8 1 0 05 1 1.5 2
P m

9000

Unconstrained flow and phase plots for increasing size of negative reward. We show the flow in the (p, Q) plane (flow goes in

the direction of increasing Q) for the case where all decisions in an episode are required to be correct for a reward of ; = 1; otherwise,
there are penalties of (a) 7, = 0, (b) 0.05, and (c) 0.045. (d) Phase plot showing the region where learning failed (red) and succeeded
(green) over the (17, #,) plane, for the same learning rule. The parameters are initialized from p =0 and Q = 1.
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rewards with a discount factor of y = 0.999. The calculated
returns (G,) over an episode were normalized by centering
around the episode mean and dividing by the episode
standard deviation (a standard practice for stability). Ten
parallel environments (all using the same policy network
for actions) were used to collect trajectories for a mean
update. Generalization performance was calculated at
preset intervals by taking the mean of 1000 environments
running in parallel (all acting on the same policy at the
same time point in training). Learning curves for ten
separately trained agents were obtained in order to calculate
the mean and standard deviation, as plotted in Fig. 7(a).

Pong.—For enhanced stochasticity to prevent memori-
zation of the game, random initialization was implemented.
Here, before each episode, one of ten pretrained agents
were randomly chosen; then, the environment was run for a
random number of time steps (randomly sampled between
10 and 55 inclusive) while acting under the policies of the
pretrained agents in order to provide random initializations.
We also implemented frameskip, where every action taken
would be taken a random number of times (sampled
between 1 and 5 inclusive). The policy network was
optimized with Adam, with a learning rate of 2 x 1073,
We discounted rewards with a discount factor of y = 1 (i.e.,
no discount). The returns (G,) over an episode were
normalized by centering around the episode mean and
dividing by the episode standard deviation. Sixteen parallel
environments (all using the same policy network for
actions) were used to collect trajectories for a mean update.
Generalization performance was calculated at preset inter-
vals by taking the mean performance of eight environments
running in parallel (all acting on the same policy at the
same time point in training), then repeating this 20 times
and taking the mean. Learning curves for 20 separately
trained agents were obtained in order to calculate the mean
and standard deviation, which was plotted in Fig. 8.
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