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Optical networks form

the high-speed highways that carry digital information across

the globe. As our world becomes more connected—through

video streaming, remote work, cloud computing,

and emerging smart services—these networks must handle

ever-growing amounts of data. New architectural choices and

network control methods are needed to accommodate such

dynamic traffic efficiently, reliably, and at an acceptable cost.

This thesis explores three key approaches.

First, it investigates programmable filterless optical

networks, an architecture that removes costly optical filters

from intermediate nodes. By dynamically tuning the spectrum

and enabling flexible lightpath selection, operators can reduce

infrastructure costs and energy consumption while meeting

diverse service needs. Second, the thesis proposes intelligent spectrum defragmentation

techniques—an automated way to reorganize spectrum allocations so that fewer small slots go

unused. Third, it considers the optical signal quality and spectrum fragmentation when deciding how

to route connections and assign resources, preventing service blocking.

Taken together, these approaches serve as building blocks for next-generation optical networks.

They enable flexible resource provisioning, and automated operations—improving energy and cost

efficiency. The solutions proposed in this thesis form a step toward automated, high-performance

optical networks able to meet the rising demands of our increasingly digital society.
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Abstract

The exponential growth in bandwidth demand, driven by emerging network services
with diverse requirements, necessitates a cost-efficient design and effective resource
management in optical networks. This requires approaches that enhance network
architecture flexibility, spectrum usage efficiency, and automation while maintain-
ing low operational costs. The thesis addresses these challenges through three key
contributions: developing a cost-efficient network planning approach, introducing
machine learning-based approaches for dynamic resource reallocation, and extend-
ing resource management strategies to multi-band elastic optical networks (EONs)
to improve spectrum usage efficiency.

To optimize resource utilization while maintaining network flexibility, the thesis
studies programmable filterless optical networks (PFONs), an architecture that re-
places conventional reconfigurable optical add-drop multiplexers with programmable
optical white box switches. The routing, modulation format, and spectrum assign-
ment problem in PFONs is formulated as an integer linear program aimed at min-
imizing spectrum and passive optical component usage. Simulation results show a
54% reduction in spectrum dissipation compared to passive filterless optical net-
works, while also achieving greater cost efficiency over conventional wavelength-
switched optical networks.

A significant obstacle to efficient resource usage in dynamic single- and multi-
band EONs is spectrum fragmentation (SF), where arrivals and departures of ser-
vice requests leave stranded, unusable gaps in the available spectrum. To alleviate
SF, we introduce DeepDefrag, a novel deep reinforcement learning-based framework
designed to address spectrum defragmentation (SD) challenges. DeepDefrag dynam-
ically determines appropriate timing for SD, selects connections to be reconfigured,
and identifies suitable parts of the spectrum for reallocation. Through intelligent
decision-making, DeepDefrag outperforms traditional heuristic algorithms, such as
the older first-fit algorithm, by achieving a lower service blocking ratio (SBR) and
minimizing the control overhead associated with SD.

To further extend resource management to multi-band EONs, where different
achievable quality of transmission (QoT) levels across different bands exacerbate
fragmentation, the thesis proposes a fragmentation- and QoT-aware routing, band,
modulation format and spectrum assignment algorithm. The approach integrates
proactive SD and traffic re-grooming to improve spectral efficiency. Simulations
on three network topologies demonstrate a significant reduction in both SBR and
spectrum fragmentation compared to QoT-only benchmarks, albeit with a slight
increase in the average path length.
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CHAPTER 1

Introduction

The rapid growth of traffic and the increasing demand for bandwidth-intensive
applications with dynamic behavior and stringent performance requirements
have placed significant demands on modern optical transport networks. These
networks must achieve high cost- and energy-efficiency, low latency, high ca-
pacity, reliability, flexibility, and scalability [1]. Meeting these requirements
involves addressing complex challenges in optical network design and opera-
tion. First, the network architectures should be agile and flexible in order to
efficiently adapt to varying traffic demands while maintaining low operational
costs. Second, as network services become more dynamic and versatile, intel-
ligent and automated resource management is essential to optimize resource
allocation and enhance network efficiency. Finally, the spreading of trans-
mission to bands beyond conventional introduces new challenges in spectrum
fragmentation and dynamic resource provisioning, requiring efficient strategies
to manage resources across different wavebands. The thesis addresses these
challenges by proposing novel solutions in three key areas. First, it presents
a cost-efficient network planning framework and proposes a RMSA approach
to enhance spectrum utilization. Second, it develops machine learning-based
approaches for dynamic resource reallocation, specifically leveraging reinforce-
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Chapter 1 Introduction

ment learning to automate spectrum defragmentation. Finally, it extends re-
source management strategies to multi-band networks, focusing on efficient
service provisioning and fragmentation-aware resource allocation across dif-
ferent wavebands to maximize network capacity and performance. In the
following, we briefly summarize the challenges addressed in this thesis.

The first line of research addressed in this thesis focuses on the design of
flexible network architectures and cost-efficient resource assignment. Conven-
tional wavelength-switched optical networks (WSONs) rely on reconfigurable
optical add-drop multiplexers (ROADMs) to switch optical signals based on
their wavelength. ROADMs use hard-wired components (e.g., wavelength-
selective switches, passive couplers, or erbium-doped fiber amplifierss (EDFAs))
to support transparent optical switching and enable local add and drop of sig-
nals at the node. This hard-wired nature limits their architectural flexibility.
In contrast, disaggregated optical white boxes, also referred to as architecture
on demand (AoD) switches, introduce an unprecedented level of architectural
flexibility and resource provisioning [2]. Unlike ROADMs, AoD switches do
not have predefined interconnections between optical modules, but employ an
optical backplane (OB), such as a piezoelectric space switch, to dynamically
interconnect modules [3]. This adaptable architecture allows traffic-driven
configuration, ensuring that each connection utilizes only the required mod-
ules. Consequently, AoD switches can swiftly adapt to traffic changes, scale
network capacity efficiently, and seamlessly integrate upgrades. These char-
acteristics help to improve cost effectiveness, energy efficiency, scalability, and
network reliability, establishing AoD as an effective solution compared to con-
ventional static ROADM architectures [2].

FONs are an alternative network architecture that relies entirely on pas-
sive optical components to broadcast signals, thus achieving high cost- and
energy-efficiency [4]. Due to the absence of active switching and filtering, this
architecture follows the drop-and-waste transmission, where optical signals
propagate beyond their intended destination, and generate spectrum waste.
Hence, FONs are typically characterized by low resource usage efficiency and
lack of architectural flexibility [4].

To address these limitations and combine the strengths of AoD flexibil-
ity with FON simplicity, the programmable filterless optical network (PFON)
architecture is introduced [5]. PFON maintains the gridless nature and simpli-
fied line-system design of FONs while incorporating the dynamic adaptability
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of AoD nodes. This integration allows for real-time reconfiguration of node
architectures based on traffic demands, minimizing spectral waste caused by
the drop-and-waste principle and improving the overall spectrum usage ef-
ficiency. An ILP model for the RMSA problem in PFONs is developed in
[5], focused on minimizing spectrum usage while maintaining network perfor-
mance. PFON planning in space-division multiplexed networks is studied in
[6], and experimentally validated in [7]. However, cost-efficiency of PFONs
remains an underexplored area. Efficient operation of PFONs requires opti-
mized deployment of optical components such as passive splitters and couplers,
EDFAs, and OB switches within AoD nodes, along with effective spectrum
allocation strategies.

The second line of research explored in this thesis focuses on SF manage-
ment in elastic optical networks (EONs). While PFON improves network
architecture flexibility, SF remains a critical issue that persists regardless of
node design. SF occurs when spectral resources become fragmented, creating
small, non-contiguous gaps along the network links due to the dynamic estab-
lishment and teardown of optical connections [8]. These fragmented gaps are
often insufficient to accommodate incoming service requests, leading to an in-
creased service blocking ratio (SBR) and suboptimal spectrum utilization. To
address this issue, spectrum defragmentation (SD) techniques are employed to
reorganize spectral resources, consolidating smaller gaps into larger contigu-
ous blocks [1]. This consolidation allows the network to accommodate a higher
number of service requests and enhances spectrum usage efficiency. SD is a
complex problem that requires answering three fundamental questions: When
should SD be performed? Which connections should be reallocated? And to
which spectrum should these connections be moved? In static traffic scenarios,
minimizing fragmentation by reconfiguring a subset of connections has been
proven to be an NP-complete problem [9]. The problem is exacerbated in
dynamic traffic environments, where the continuous arrival and departure of
connections lead to an ever-changing network state. Consequently, optimiza-
tion techniques like ILPs often struggle to keep up with the computational
demands of real-time SD in dynamic scenarios [10].

While SD has been shown to reduce the SBR, it also introduces a reconfigu-
ration overhead, which is a concern for network operators [11]. This overhead
typically involves terminating, reallocating, and reestablishing active connec-
tions, leading to increased computational complexity and operational costs.
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The overhead depends on the frequency of SD operations and the number
of connections reallocations in each cycle. Hence, the potential SBR im-
provement and the corresponding overhead should be considered jointly in
the design of SD approaches. Existing SD strategies (e.g., [10]–[12]) often rely
on static thresholds and deterministic policies, which are insufficient for ad-
dressing the complexities of dynamic network conditions. These conventional
methods typically focus on only a subset of SD tasks, which limits their adapt-
ability and effectiveness in dynamic and unpredictable traffic environments.

The third line of research in this thesis focuses on resource assignment
and spectrum fragmentation management in multi-band elastic optical net-
works (MB-EONs), which are crucial for addressing the growing demands
of modern communication systems. Proliferation of high-speed applications,
such as video streaming, cloud services, and the internet of things, is pushing
traditional C-band EONs to their limits [13]. MB-EONs address these limita-
tions by using multiple wavelength bands, including L, S, E, O, and U bands
[14]. This expanded spectrum increases data capacity and enables networks
to handle diverse traffic patterns while preparing for future growth [15]. How-
ever, the shift from conventional routing, modulation and spectrum assign-
ment (RMSA) in EONs to routing, band, modulation format and spectrum
assignment (RBMSA) in MB-EONs introduces additional complexity due to
the necessity of considering different wavelength bands, where the quality of
transmission (QoT) of optical lightpaths varies due to nonlinear impairments.
A major impairment is the inter-channel stimulated Raman scattering (ISRS),
which causes power depletion from shorter to longer wavelengths in wavelength
division multiplexing (WDM) systems, particularly when utilizing resources
outside the traditional C-band [16]. The ISRS effects, combined with the dy-
namic nature of service requests, varying capacity demands, and wavelength
continuity constraints, exacerbate the problems pertinent to RBMSA and SF.

Several algorithms have been developed to jointly address the challenges re-
lated to spectrum fragmentation and QoT maintenance in MB-EONs. Some
of these algorithms tackle the RBMSA problem [17], [18], while others fo-
cus on proactive SD [19]. To the best of our knowledge, no existing work
has accounted for all impairments, including the ISRS effects in amplified
spontaneous emission (ASE) and non-linear interference (NLI) noise, while
simultaneously integrating SF-aware resource allocation with proactive SD.

This thesis proposes innovative methods to address the challenges men-
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tioned above regarding efficient and intelligent resource allocation in EONs.
The specific research questions and the contributions of this thesis are sum-
marized as follows.

1.1 Research Questions
Addressing architectural flexibility and dynamic spectrum management, along
with physical layer impairment-aware and SF-aware resource allocation in
EON, is critical for enhancing optical network scalability and spectrum usage
efficiency. The thesis investigates three key aspects: development of an op-
timization framework for RMSA and PFON node design, implementation of
intelligent SF management through deep reinforcement learning called Deep-
Defrag, and design of fragmentation- and QoT-aware RBMSA strategies for
MB-EONs. The following research questions are addressed:

• Q1: What are the trade-offs between spectrum usage efficiency and cost
in PFONs? Can spectrum utilization and component costs be benefi-
cially affected by joint optimization of total spectrum and optical com-
ponent? How do these trade-offs compare to those in FONs and WSON-
based networks, as a part of a broader perspective on the efficiency and
cost implications across different optical networking architectures?

• Q2: How can machine learning-based approaches automate proactive
SD? Can these algorithms simultaneously handle the timing, connection
selection, and resource reallocation pertinent to an SD process? What
are the trade-offs between SBR reduction and reconfiguration overhead
in proactive SD?

• Q3: How can SF- and QoT-aware RBMSA algorithms improve spectrum
usage efficiency and reduce service blocking in MB-EONs? What are the
effects of integrating proactive SD with QoT-aware resource allocation
on SF?

In the following subsection, we summarize the contributions of the thesis in
relation to the research questions outlined above.
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1.2 Thesis Contributions

The main contributions are categorized into three parts: cost-efficient plan-
ning of PFON, intelligent SD using DeepDefrag in EONs, and SF- and QoT-
aware resource allocation in MB-EONs. The contributions are presented below
along with a summary of related publications.

Programmable Filterless Optical Networks: Architecture,
Design, and Resource Allocation

This study addresses research question Q1 by developing cost-efficient ap-
proaches for the design and planning of PFONs, focused on minimizing spec-
trum and passive component usage, the number of required EDFAs, and the
size of switching matrices that serve as the optical backplane in each node.
The RMSA problem for PFONs is formulated as an ILP model, with the ob-
jective of minimizing the total degree of deployed passive components and the
highest used spectrum slot index. To address the scalability issues of the ILP
in large networks, a two-step ILP formulation is proposed, providing near-
optimal solutions at the significantly reduced execution time. Additionally, a
heuristic algorithm is developed for the placement of EDFAs within nodes to
compensate for intra-node losses, ensuring cost-efficient amplifier deployment.

Simulation results on two core and one regional network topology evaluate
the performance of the proposed PFON solutions. The results presented in
Paper A show that the proposed PFON architecture provides significant
improvements compared to both passive FONs and WSONs. Specifically,
compared to FONs, PFONs decrease the highest-used spectrum slot index by
up to 64%, reduce spectrum waste by up to 44%, and lower the average extent
of unwanted signal broadcasting in the network by up to 50%. Additionally,
PFONs require only 16% of the total number of optical switches compared to
WSONs and reduce the number of optical amplifiers at network nodes by up
to 81%, albeit at the cost of increased spectrum usage.

The conclusion of the paper is that the programmable filterless architecture
shows strong potential to provide agile and flexible solutions at a fraction of
the cost of WSONs and significantly lower spectrum usage than FONs.
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Proactive Spectrum Defragmentation in Elastic Optical
Networks using Deep Reinforcement Learning
This study addresses research question Q2 by proposing DeepDefrag, a novel
framework based on deep reinforcement learning (DRL) that automates SD
in dynamic optical networks. DeepDefrag addresses several aspects of the
SD problem in an integrated manner: determining the timing for defragmen-
tation, selecting connections for reallocation, deciding on their order, and
identifying target spectrum slots for reconfigured connections. The frame-
work considers spectrum occupancy information and uses three fragmentation
metrics—number of cuts (NoC), Shannon entropy (SE), and root of sum of
squares (RSS)—as inputs to the decision-making process.

The results in Paper B show that DeepDefrag efficiently reduces the ser-
vice blocking while requiring fewer defragmentation cycles and connection
reallocations compared to state-of-the-art heuristic approaches. The results
in Paper C further highlight the effectiveness of DeepDefrag, showing that its
SBR performance approaches that of exhaustive methods while incurring sig-
nificantly lower overhead. Moreover, DeepDefrag demonstrates strong adapt-
ability to dynamic network conditions, maintaining high performance under
varying traffic loads. Paper D presents the first experimental demonstration
of DeepDefrag’s capabilities in a real-world scenario, using the Open Network-
ing Foundation T-API standard over a digital twin of an optical network.
The experimental results confirm the potential of DeepDefrag to automate
SD decisions by intelligently adapting to network conditions in real-time. The
conclusion of these papers is that DeepDefrag provides an automated and
flexible solution for SD, demonstrating its ability to enhance spectrum uti-
lization while reducing service blocking and operational overhead in dynamic
and realistic network environments.

Fragmentation- and QoT-Aware Resource Allocation in
Dynamic Multi-Band Elastic Optical Networks
This study addresses research question Q3 by proposing innovative solutions
for spectrum fragmentation- and QoT-aware (SFQA) RBMSA in dynamic
MB-EONs. For the first time, a heuristic algorithm is developed that incor-
porates QoT parameters, such as the generalized signal to noise ratio (GSNR),
alongside SF metrics, including the NoC and the RSS, into the decision-
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making framework for resource allocation problem. The proposed algorithm
dynamically determines the paths and channels for service requests with the
objective of maximizing spectrum usage efficiency. The algorithm is further
extended by integrating proactive SD and traffic (re)grooming techniques to
enhance network performance in terms of service blocking, referred to as
SFQA-defrag. The results in Paper E show that the proposed SFQA RBMSA
algorithm significantly reduces the SBR compared to benchmark algorithms,
with improvements of up to 33.2%, albeit at a slight increase in the average
path length of 4.4%. This demonstrates the algorithm’s ability to effectively
balance QoT and SF considerations. The results in Paper F highlight the
effectiveness of combining the SFQA RBMSA algorithm with proactive SD,
enabling the algorithm to address complex network scenarios by consider-
ing spectrum occupancy state and fragmentation information. The perfor-
mance evaluation shows that SFQA-defrag outperforms traditional heuristic
approaches, particularly those that consider only QoT indicators or SF met-
rics, in terms of SBR reduction. The results highlight the ability of the algo-
rithm to manage QoT and SF challenges in dynamic MB-EONs, ultimately
improving spectrum usage efficiency.

1.3 Thesis Outline
The thesis is organized as follows:

• Chapter 2 provides background information on resource management
and node architecture in optical networks, routing and spectrum assign-
ment (RSA) problem, and SF management in EONs.

• Chapter 3 focuses on PFONs, detailing their architecture, the proposed
optimization algorithms, and performance evaluation, with a summary
of cost and spectrum usage findings.

• Chapter 4 presents proactive SD, introducing the DeepDefrag frame-
work, performance evaluation, and integration with the T-API standard.

• Chapter 5 addresses fragmentation- and QoT-aware RBMSA in MB-EONs,
describing the system model, algorithms for resource allocation and SD,
and performance analysis.
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• Chapter 6 summarizes the key authors’ contributions to the included
papers.

• Chapter 7 concludes the thesis with final remarks and directions for
future research.
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CHAPTER 2

Background Information and Concepts

In this chapter, we present key concepts and background knowledge essential
for understanding the research areas addressed in the thesis. The chapter
begins by discussing various node architectures used in optical networks, in-
cluding WSON, FON and PFON node architectures. Then, the resource al-
location problem in elastic optical networks is introduced, covering both RSA
and RBMSA scenarios. Finally, this chapter lays the foundation for under-
standing spectrum fragmentation management, defragmentation techniques,
and the associated performance metrics, which are critical to the optimization
goals of this research.

2.1 Optical Node Architecture
Node architecture plays a critical role in the design and operation of optical
networks. Typically, optical nodes are responsible for key functions such as
wavelength switching, which enables signals to be routed between input and
output ports based on their wavelength; local add/drop functionality, which
allows the insertion or extraction of specific wavelength channels at the node;
and, in many cases, optical signal amplification, which compensates for losses
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introduced during transmission or within the node itself. Transponders serve
as the interface between the electrical and optical layers, converting client
signals to optical signals for transmission. Among various transponder types,
bit-rate variable transponders (BVTs) are particularly important in EONs.
BVTs can dynamically adjust key transmission parameters such as modula-
tion format, enabling flexible and efficient use of the optical spectrum. This
adaptability allows each lightpath to be tailored according to service requests
and path conditions. For instance, shorter paths with higher signal quality
may use high-order modulation, while longer paths may require more robust
modulation [20].

This section overviews various node architectures, including WSON, FON
and PFON nodes, highlighting their respective functionalities and trade-offs.

WSON Node Architecture
Figure 2.1 illustrates the architecture of a simple 2-degree WSON node [21].
In this architecture, the ROADM employs two wavelength selective switches
(WSSs) in a route-and-select configuration. This setup enables precise signal
filtering, ensuring that only the intended signals are dropped while the others
are forwarded to the intended outgoing links. WSON nodes also host pre-
amplifiers and boosters at their ingress and egress ports, respectively.
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Figure 2.1: Architecture of a 2-degree WSON node

ROADMs are considered as the key enabling technology of modern opti-
cal networks, as they support flexible wavelength routing, enable dynamic
reconfiguration, and allow for transparent signal switching without requiring
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optical-electrical-optical conversion. However, these advantages come at the
cost of increased complexity and higher capital and operational expenditure,
due to the reliance on active switching components.

Filterless Node Architecture
Filterless nodes, with architecture shown Fig. 2.2, represent a low-cost alter-
native to WSON nodes [21]. In these nodes, passive splitters and combiners
replace the active WSSs, as well as the (de)multiplexers in the add-drop part,
enabling gridless operation across the entire frequency band. The key operat-
ing principle in FONs is the "drop-and-waste" approach, where optical signals
are broadcast to all output ports of a splitter, resulting in their propagation
beyond their intended destination nodes. As there is no filtering functional-
ity, coherent receivers at destination nodes are responsible for identifying and
detecting the correct signals.

2025-01-271
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Figure 2.2: Architecture of a 2-degree passive filterless node

The passive design reduces both capital and operational expenditure through
lower costs, reduced energy consumption, simplified maintenance, and higher
availability [22]. However, filterless nodes also introduce several limitations.
Spectrum waste arises from the broadcasting nature of the drop-and-waste
principle, as unused copies of the signal propagate along unintended paths,
unnecessarily occupying spectrum [6]. Additionally, the absence of filtering
raises privacy concerns, since signals can be intercepted at unintended nodes,
and imposes rigid structural constraints on the network, limiting flexibility in
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design and operation [23].

PFON Node Architecture
The optical white boxes feature a modular setup that enables dynamic ar-
rangements of inputs, modules, and outputs through configurable cross-connections
using an optical backplane (OB) [24]. This flexibility significantly enhances
network adaptability by enabling programmable synthetic node architectures
tailored to specific traffic requirements. Unlike conventional static designs,
optical white box architectures avoid hardwired configurations, making them
both scalable and resilient, as highlighted in recent studies [2]. PFONs lever-
age this flexible and modular architecture to combine the low-cost operation
of filterless designs with the reconfigurability of white box nodes [5].

2025-04-221
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Figure 2.3: Architecture of a degree-2 PFON node

The PFON node architecture, shown in Fig. 2.3, highlights the config-
urable nature of the design. Flexibility is achieved through the OB, which
enables direct interconnection between input and output fibers or routing
through intermediate modules as required. Based on traffic requests, ingress
and egress ports can either be connected directly via the OB or pass through
optical components such as splitters, couplers, and WSSs. Unlike conven-
tional FON nodes, PFON nodes do not require every ingress and egress ports
to be equipped with splitters and couplers. Instead, these passive components
are used selectively, depending on traffic requests and required functionalities.
This design allows for the use of fewer and lower-degree passive components,
which can help reduce insertion loss and lower the OB port utilization. How-
ever, the inclusion of passive devices introduces spectrum inefficiencies, leading
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to higher spectrum usage compared to WSON networks.

2.2 The RSA Problem in Optical Networks
Transparent optical networks, which operate without optical-electrical-optical
conversions, establish end-to-end optical connections called lightpaths. These
lightpaths carry upper-layer traffic, such as IP packets or Ethernet frames.
The capacity of service requests, typically measured in Gbps, must be mapped
onto optical transmission systems by selecting an appropriate modulation for-
mat, which determines the number of required spectrum slots. Setting up a
lightpath involves computing a route from the source to the destination node
and allocating spectrum resources. This process forms the foundation of the
RSA problem in EONs [25].

The RSA problem is a fundamental part of elastic optical network design.
Inputs include the network topology, a set of service requests, and their corre-
sponding spectrum requirements in terms of the number of needed spectrum
slots. The outputs of the problem are the routes and spectrum slots assigned
to the requests. The RSA problem is subject to the following constraints:

1. Spectrum continuity constraint: The same spectrum slots must be
allocated on all links traversed by a connection.

2. Spectrum contiguity constraint: The spectrum slots assigned to a
single lightpath must be contiguous, i.e. adjacent.

3. Non-overlapping spectrum constraint: Lightpaths that share a
common fiber must be assigned distinct and non-overlapping spectrum
slots.

Static vs. Dynamic RSA
The RSA problem can be classified into two categories based on traffic sce-
narios: static and dynamic RSA [26]. In static, or offline, RSA, the service
requests are known in advance, typically during the network planning phase.
The most common objective in this scenario is to minimize the number of
used spectrum slots or the total length of established paths. Dynamic RSA,
on the other hand, deals with scenarios where connection requests arrive ran-
domly over time, usually with unknown holding times. Since the full set of
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requests is not known beforehand, the objective shifts to minimizing the re-
quest blocking probability, that is the proportion of requests rejected due to
resource unavailability. The static RSA problem is known to be NP-complete
[27], making it computationally infeasible to find optimal solutions in polyno-
mial time. In the dynamic scenario, the lack of complete demand knowledge
further complicates finding optimal solutions.

Joint and Sequential RSA Problem
Solving the RSA problem involves addressing two sub-problems: routing and
spectrum assignment. These can be tackled using either a one-step or a two-
step approach. In the one-step (R & SA) approach, routing and spectrum
assignment are addressed simultaneously for a set of service requests by for-
mulating the problem as an optimization model, such as an ILP [28]. While
ILP-based methods can yield optimal solutions, they are computationally in-
tensive and do not scale for large networks. Heuristic methods, such as greedy
randomized adaptive search procedure [29] and simulated annealing [30], are
often employed to find near-optimal solutions within reasonable time bounds.
The two-step (R + SA) approach decomposes the RSA problem into two inde-
pendent sub-problems. First, the routing sub-problem determines a suitable
path for service requests. Subsequently, the spectrum assignment sub-problem
allocates the necessary spectrum slots along the selected route.

Routing in RSA often involves pre-computing multiple candidate paths be-
tween each source-destination pair. The fixed shortest path routing is the
simplest method, where a single path is selected based on a specified cost
function (e.g., link distance, hop count) between the source and destination
nodes. The other widely used approach is fixed alternate routing [31], where
k-shortest paths are computed using algorithms such as Yen’s algorithm [32]
or variants of Bellman-Ford [33]. These precomputed paths offer alternative
options when the shortest path is unavailable, reducing the blocking ratio
by increasing the chance of successful provisioning. Since these paths are
computed in advance, no additional computational effort is required for path
calculation during network provisioning.

The spectrum assignment sub-problem is commonly addressed using heuris-
tics such as First Fit, Last Fit, or Random Fit to allocate spectrum slots [34].
In optical networks, spectrum is divided into discrete frequency slots, each
indexed in ascending order from the lowest to the highest available frequency.
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Among the available heuristics, First Fit is the most widely used due to its
simplicity and efficiency in various scenarios [35]. This method assigns the
first available set of contiguous spectrum slots according to their index, start-
ing from the lowest. By prioritizing lower-indexed slots, First Fit generally
leads to compact spectrum usage and helps minimize the highest-used spec-
trum index. However, it does not actively manage SF, potentially leaving
small, unusable gaps scattered throughout the spectrum over time. On the
other hand, the Last Fit algorithm selects the last available set of contiguous
slots, aiming to preserve lower-indexed slots for future requests. Random Fit
chooses any available set of contiguous slots randomly, avoiding deterministic
patterns but potentially resulting in uneven resource utilization. Advanced
techniques may consider load balancing or congestion-aware strategies to fur-
ther optimize performance in terms of spectrum utilization.

A major advantage of EONs is the ability of optical transponders to ad-
just the transmission parameters, such as the modulation format, to match
the bit rate and the reach requirements of individual service requests. This
per-request adaptability improves spectrum usage efficiency but also intro-
duces additional complexity in resource planning. Hence, the allocation of
modulation formats must be carefully addressed to optimize performance and
resource utilization. When the resource allocation problem includes the deci-
sion on the modulation format for each request, the RSA problem transforms
to the RMSA problem [36]. One of the most important factors in modulation
format assignment is transmission reach. Modulation formats with higher
spectral efficiency allow more data to be transmitted within a given spectrum
but are limited to shorter distances due to increased sensitivity to signal degra-
dation. The RMSA problem is subject to an additional constraint ensuring
that the selected modulation format is feasible for the assigned path length.

The Routing, Band, Modulation format and Spectrum
Assignment (RBMSA) Problem
To meet increasing traffic demands that exceed the capacity of traditional
C-band EONs, multi-band elastic optical networks (MB-EONs) extend spec-
trum utilization to additional bands such as L, S, and O [37]. By utilizing
this broader spectral range, MB-EONs significantly increase network capac-
ity. However, the use of multiple bands introduces new challenges related
to band-dependent physical impairments, non-uniform hardware capabilities,
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and inter-band switching constraints [38].
To provision resources effectively in MB-EONs, the RBMSA problem must

be addressed. This problem generalizes the RSA formulation by jointly deter-
mining a physical route, an optical band, a modulation format, and a contigu-
ous and continuous set of spectrum slots for each service request. An essential
aspect of the RBMSA problem is ensuring quality of transmission (QoT),
which guarantees that the signal can be correctly received after traversing
the selected path. QoT is influenced by factors such as transmission distance
and band used, since different bands exhibit varying levels of attenuation
and dispersion. To assess QoT, performance metrics like the optical signal-to-
noise (OSNR) or generalized signal to noise ratio (GSNR) are commonly used.
These metrics help determine whether a given lightpath meets the required
signal quality threshold for reliable transmission [39].

2.3 Spectrum Fragmentation in Optical Networks

SF is a significant challenge in EONs, stemming from the dynamic provisioning
and release of service requests. This process often results in non-contiguous
free spectrum gaps within optical links, which are not big enough to accom-
modate new service requests. As a result, spectrum usage efficiency decreases,
and blocking probability increases [40]. The root of the problem lies in the
requirement for contiguous slots to satisfy spectrum continuity and contiguity
constraints [8].

Figure 2.4 shows an example of service blocking due to SF. The network
includes five nodes connected by five bi-directional links (Fig. 2.4a), each
with 12 available spectrum slots. Figure 2.4b shows the network’s occupancy
state, where several connections, denoted by D1−D6, are already established.
We assume that one spectrum slot is used as a guard band between adjacent
connections on a link. The effect of SF can be illustrated as follows: for the
given state of the network, if an incoming service request arrives with node
1 as the source and node 5 as the destination, requiring four spectrum slots,
it cannot be accommodated. This occurs despite sufficient capacity being
available along the route 1→2→3→5, as the required slots on links e1, e2 and
e3 are scattered and not contiguous.
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Figure 2.4: A simple network example (a), and the spectrum occupancy state (b)

Spectrum Fragmentation Metrics

The extent of spectrum fragmentation can be gauged by different metrics.
A better metric value typically indicates more efficient resource usage with
fewer gaps between occupied slots. These metrics help network operators
monitor and optimize optical spectrum usage to achieve high performance
and efficiency.

Various metrics have been introduced in the literature to evaluate SF. Uti-
lization entropy measures the randomness of spectrum usage, with higher
values indicating greater fragmentation [41]. The external SF metric com-
pares the largest contiguous free spectrum block to the total size of all free
fragments, offering a direct measure of fragmentation [42]. Spectrum com-
pactness calculates the difference between the highest and lowest occupied
slot indices, reflecting how tightly spectrum resources are packed [43], while
the number of cuts [44] refers to the count of links along a selected connection
path that have adjacent free spectrum slots available.

Equations (2.1) and (2.2) define the Shannon entropy (SE) [45] and the root
of sum of squares (RSS) [42] metrics, respectively, which are used in this thesis.
These metrics offer insights into fragmentation levels, where higher SE values
indicate an exacerbated SF, and higher RSS values suggest an improved SF.
The notation is defined as follows: e is the link index, S is the total number
of slots per link, bfree

i (e) is the size of the ith free spectrum block on the link
e, and N is the number of free spectrum blocks. Figure 2.5 illustrates the
calculation of the SE and RSS values based on the spectrum assignment state
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for link e3 of the example network provided in Fig. 2.4.

fSE(e) = −
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i=1
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i (e)
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Figure 2.5: Calculation of the SE and RSS values for link e3.

Fragmentation Management in EONs
Effective spectrum management techniques are essential to address SF, ensur-
ing higher spectrum utilization and reducing the blocking probability. There
are two main approaches to addressing SF. The first approach incorporates
information about fragmentation into the resource allocation process. When
determining routes and spectrum slots, these methods consider the fragmen-
tation level of the candidate solutions (i.e., path and spectrum slot options)
using various SF metrics, and select the best path and spectrum slots ac-
cordingly. These methods are referred to as fragmentation-aware resource
allocation [44].

The second approach is SD, which reorganizes fragmented slots to create
larger contiguous blocks for incoming service requests. SD approaches can
generally be categorized into reactive and proactive methods [40]. Reactive
SD is triggered when incoming service requests are blocked due to insuffi-
cient contiguous spectrum. In contrast, proactive SD attempts to prevent
blocking by either monitoring network performance metrics and applying pre-
defined thresholds to trigger SD, or by executing SD periodically, regardless
of the network state. SD can be further classified based on whether it involves
connection rerouting or solely reallocates spectrum resources [1]. Techniques
that include rerouting tend to achieve greater fragmentation reduction at the
cost of higher computational overhead. Another critical classification distin-
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guishes between hitless and non-hitless SD approaches [46]. Hitless SD ensures
that ongoing traffic remains uninterrupted during the defragmentation pro-
cess. Techniques like push-pull retuning temporarily expand the occupied
spectrum to encompass both the original and the target slots before shrinking
it to the target spectrum range [47]. Similarly, make-before-break approaches
establish a new connection on the target route and spectrum before releasing
the original one, thus minimizing disruption [1]. These techniques effectively
prevent disruptions at the optical layer, but they may still cause temporary
interruptions at higher protocol layers, depending on the rerouting approach.
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CHAPTER 3

Programmable Filterless Optical Networks: Architecture,
Design, and Resource Allocation

Tailored design and optimization of optical networks are critical to meeting the
growing traffic demands in a cost-efficient way. PFONs represent a promising
technological solution that balances the architectural simplicity and low cost
of passive architectures with the higher spectrum usage efficiency typically
achieved in WSONs.

This chapter proposes ILP-based methods for cost-efficient planning of
PFONs, focusing on minimizing the usage of spectrum and optical compo-
nents. To address scalability, we introduce a two-step ILP formulation to
achieve near-optimal solutions with reduced computation time. We then eval-
uate the performance of the proposed PFON planning framework across vari-
ous network topologies and traffic loads, and compare results with benchmark
architectures, such as FON and WSON. Key performance metrics include
maximum frequency slot unit (FSU) usage, spectrum waste, and the number
and degree of deployed passive optical couplers, highlighting the resource us-
age efficiency of the proposed approaches. This chapter is written based on
Paper A.
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3.1 Literature Review

Passive FONs have been extensively studied since their inception in [48],
with theoretical and experimental research validating their feasibility for core,
metro, and submarine networks. Early work on FONs focused on static RSA
and fiber tree connectivity [49], [50], while later studies introduced elastic
FONs [51] and heuristic approaches for survivable RSA with dedicated path
protection. Dynamic provisioning [52] and control plane designs, such as path
computation element [53], further expand FON applications. Pilot deploy-
ments of FONs were conducted in Croatia in 2012 and Germany in 2014 [54].
Recent efforts have explored FONs for metropolitan networks, leveraging bidi-
rectional transmission [55] and extended spectrum use through the C+L band
[56]. Techno-economic studies [57], [58] highlight their cost advantages over
WSONs.

The PFON concept, introduced to mitigate FON limitations, combines opti-
cal white boxes with filterless architectures [5]. PFONs enhance flexibility and
reduce spectrum waste caused by drop-and-waste transmission. Early studies
focused on traffic-adaptive reconfiguration of programmable optical switches
in PFONs to minimize the spectrum consumption [59]. To utilize additional
spatial dimensions to eliminate unwanted signal splitting, [6] proposed to com-
bine PFONs with space division multiplexing (SDM) technology. A heuristic
algorithm for inter-core crosstalk-aware routing, modulation format, spectrum
and core allocation (RMSCA) in PFONs is proposed [60].

Optical white boxes are pivotal to PFONs, enabling unprecedented flexibil-
ity in nodal architecture design and provisioning [2]. Studies have shown their
benefits for switching, scalability, and energy efficiency [61], as well as their
role in reducing network downtime through self-healing [62]. Cost-efficient
planning of AoD-based networks has been explored for static [63], multi-hour
[64], and dynamic traffic [65]. In all of these studies, optical white boxes are
employed to construct AoD structures, where the optical backplane intercon-
nect active components. However, this work focuses on PFON architectures
using passive components and amplifiers for node loss compensation without
filtering. We employ an ILP framework to jointly optimize spectrum and
component usage, reducing the number of EDFAs and the size of OB switch
matrices.
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3.2 RMSA and Node Design for PFON
Figure 3.1 illustrates the effect of route selection on the number of deployed
passive components, comparing two valid PFON configurations that serve a
set of connections labeled d1˘d8, with a focus on the configuration of node
3. When multiple connections share the same incoming link to a node but
are directed to different outputs, they require splitting at the ingress port.
For example, in Fig. 3.1a, connections d1, d2 and d3 arrive at node 3 from
the same link but are routed to different outgoing links, requiring splitting.
Conversely, if connections come from different incoming links and are directed
to the same outgoing link, coupling is required. For instance, in Fig. 3.1a,
d3 and d6 enter node 3 from different links (1–3 and 2–3, respectively) but
are routed to the same outgoing link. To achieve this, their signals must be
coupled before leaving the node.
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Figure 3.1: The impact of connection routing in PFON networks on the architec-
ture of node 3 and the necessary amplifiers (a) without and (b) with
trying to minimize signal splitting/coupling at node 3. Reprinted from
Paper A, ©2024 IEEE.

Connection routing has a direct impact on the need for splitters/couplers
and their degrees. Efficient route selection can reduce the number and the
degree of splitters and couplers required at node 3, as shown in Fig. 3.1b.
Additionally, the number of amplifiers required within node 3 is reduced in
the routing solution shown in 3.1b compared to that in 3.1a. Detailed calcu-
lations for determining the need for amplifier usage are provided in Paper A.
This example also illustrates the impact of routing on spectrum waste. In Fig.
3.1a, more unfiltered signals continue to propagate beyond their destinations
and unnecessarily occupy the corresponding spectrum slots. In contrast, the
routing in Fig. 3.1b leads to fewer unfiltered signals and thus lower spec-
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trum waste. Finally, the routing choices also affect the OB switch size, which
depends on the total number of ports of the deployed components.

3.3 Optimization Models for PFONs
The proposed PFON resource allocation approach aims at minimizing com-
ponent and spectrum usage. Given a physical network topology, represented
as a graph G(V, E), where V is a set of nodes and E a set of links, and a set
of traffic demands D, the problem involves finding a physical route, select-
ing an appropriate modulation format, and assigning the required spectrum
slots to each demand. Additionally, node architectures must be configured to
support the routing solutions, including the number and the degree of passive
couplers. The problem is constrained by the spectrum continuity and contigu-
ity requirements, ensuring that each demand uses contiguous and consistent
spectrum slots on all links along its path, without overlap between useful or
unfiltered signals caused by the drop-and-waste transmission. The objective
of spectrum assignment is to minimize the highest utilized FSU index in the
network, and the total degree of passive splitters and couplers deployed.

To tackle the resource planning challenges in PFONs, we formulated two
ILP-based optimization approaches. The first model is a single-step ILP that
simultaneously addresses the RMSA sub-problems, while minimizing the pas-
sive component degrees. While this approach provides optimal solutions for
smaller networks, it becomes computationally prohibitive for larger network
instances.

To enhance scalability, we propose a two-step ILP. The first step solves
routing with the objective of minimizing a cost function that combines two
factors: an estimate of the highest used FSU index and the total degree of
passive components. In this step, spectrum continuity and contiguity con-
straints are not required. Instead, the estimated highest used FSU index is
derived, considering both the spectrum occupied by active transmissions and
the spectrum consumed by unfiltered signals traversing each link. The second
step assigns spectrum based on the routing decisions fixed in the previous
step. The objective is to minimize the highest used FSU index in the network
while ensuring that the assigned spectrum satisfies continuity, contiguity, and
non-overlapping constraints. This step allocates contiguous slots to each de-
mand and ensures that overlapping between useful and unfiltered signals is
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avoided.
Upon solving the RMSA problem using the ILP formulations, the place-

ment of EDFAs is determined by calculating the total loss experienced by
each connection at each node and deploying amplifiers where needed to com-
pensate for these losses. This study focuses specifically on the design of the
node architecture, emphasizing the placement of amplifiers within nodes for
managing node losses. It is assumed that the optical line system is already
in place and optimized for span loss management, with launch channel power
kept below the threshold for nonlinear effects. Details of the ILP formulations
and their complexity analysis, along with the amplifier placement algorithm,
are provided in Paper A.

3.4 Performance Evaluation
We evaluate the single-step and two-step ILP formulations for cost-efficient
PFON design based on the spectrum and component usage. Spectrum usage is
analyzed in terms of the highest used FSU index and the portion of spectrum
wasted due to the drop-and-waste transmission. Component usage is assessed
by the number and degree of passive couplers, the number of EDFAs, and the
maximum size of the OB switch matrix.

The evaluations are performed through simulations on the German and
Italian backbone networks, as well as a realistic regional network referred to
as Reference Network 1 [66]. Each link consists of a single fiber per direction,
supporting 320 FSUs, with additional fibers deployed if capacity is exceeded.
Links are pre-equipped with line amplifiers to manage span losses, spaced
evenly as described in [67]. The analysis considers multi-period scenarios
with increasing traffic across 5 periods for the German and Italian networks
and 3 periods for Reference Network 1. Traffic is distributed non-uniformly
among node pairs, with all volume combined into a single demand for each
source-destination pair.

We assume full reconfigurability between traffic periods, meaning that the
ILP model is solved independently for each period. Smaller problem instances,
such as the German topology under lighter traffic loads, are evaluated first to
compare the single-step (PF-RSA) and two-step (PF-R+SA) ILPs. We use
the Gurobi 7.5 solver on a server with 4 CPUs, 2.1 GHz Intel Xeon processors,
and 128 GB RAM.
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Table 3.1: Summary of Optimization Models
Abbreviation Model
FON Filterless optical networks solution
WSON-RSA Single-step ILP solution for WSON
WSON-R+SA Two-step ILP solution for WSON
PF-RSA Single-step ILP solution for PFON
PF-R+SA Two-step ILP solution for PFON
PF-SM-RSA Spectrum minimizing single-step ILP solution for

PFON
PF-SM-R+SA Spectrum minimizing two-step ILP solution for

PFON

Larger problem instances are analyzed to compare the PFON solutions to
FON and WSON benchmarks. WSON solutions (WSON-RSA and WSON-
R+SA) are derived by modifying the ILP to exclude PFON-specific variables
and constraints. FON solutions are obtained heuristically for scalability, as
detailed in [68]. Additionally, we compare multi-criteria PFON solutions to
spectrum-minimization-only solutions, which disregards component usage. A
summary of all models and their abbreviations is provided in Table 3.1.

Single-step and Two-step ILP Comparison
To evaluate the quality of sub-optimal solutions obtained by the two-step ILP
formulation, we compare them with the optimal solutions obtained by the
single-step ILP. Due to the high computational complexity of the single-step
approach, optimal results are feasible only for smaller problem instances with
lower traffic loads. For this analysis, we use the German network topology
with a reduced traffic matrix, accommodating 21 connection requests and a
total traffic volume of 43.5 Tbit/s under the highest load.

Figure 3.2a shows the highest FSU index used by both approaches for PFON
and WSON architectures. On average, the optimal PF-RSA solution achieves
only 1.6% lower maximum FSU usage than the sub-optimal two-step PF-
R+SA approach. For the spectrum minimization variant, the gap is 1.7%
for the PFON (PF-SM-RSA vs. PF-SM-R+SA), and 2.8% for the WSON
architecture (WSON-RSA vs. WSON-R+SA). These results demonstrate the
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ability of the two-step ILP model to deliver high-quality solutions that closely
approximate the optimal ones.

Figure 3.2b highlights the total degree of passive devices required by the
single-step and two-step ILPs. Both approaches show nearly identical perfor-
mance, with less than 1% difference on average for all traffic periods. Notably,
single-objective models that only minimize spectrum usage (e.g., PF-SM-RSA)
do not consider the passive component degrees and therefore result in higher
total degrees compared to multi-objective models. While the spectrum-only
minimizing ILPs achieves 7% lower maximum FSU usage on average, they
lead to a 16% increase in the degree of passive components compared to
multi-objective formulations. Details about the execution time of these ILP
formulations are available in paper A.
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Figure 3.2: Single-step (RSA) and two-step (R+SA) ILP comparison for 21 traffic
demands in the German network. Reprinted from Paper A, ©2024
IEEE.

Comparison of PFONs, FONs and WSONs
Figure 3.3 illustrates the maximum FSU index for different designs under
varying traffic loads, where PFON architectures demonstrate significant spec-
trum savings compared to FONs. For the German network, PF-R+SA and
PF-SM-R+SA use 43% and 45% less spectrum, respectively. In the Italian
network, both approaches achieve a 38% reduction, while for the Reference 1
network, they provide reductions of 59% and 64%, respectively. On the other
hand, compared to the WSON solutions, the PF-R+SA and PF-SM-R+SA
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schemes exhibit spectrum usage overheads of 43% and 42% for the German
network, 66% and 65% for the Italian network, and 66% and 61% for Refer-
ence 1, respectively. These results reflect the impact of network connectivity
on the algorithm performance. In the low-connected Reference 1 topology,
FONs suffer from high spectrum usage due to the limited routing flexibility,
giving PFONs a significant advantage. In contrast, in highly connected net-
works like the German topology, PFONs benefit from flexible configurations
and route selection, reducing the spectrum overhead compared to WSONs.
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Figure 3.3: The maximum used frequency slot unit (FSU) for the three networks.
Reprinted from Paper A, ©2024 IEEE.
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Figure 3.4: The average sum of the degrees of passive couplers deployed in the three
networks over all traffic periods. Reprinted from Paper A, ©2024
IEEE.

Figure 3.4 shows the component usage in terms of the total degree of used
passive couplers. In the German network, PF-R+SA reduces the sum of the
coupler degrees by 16% compared to PF-SM-R+SA, while maintaining only
a 5% difference in the maximum used FSU index across all traffic periods.
For the Italian and Reference 1 networks, PF-R+SA reduces the total cou-
pler degrees by 14% and 17% compared to PF-SM-R+SA, respectively, with
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spectrum usage overheads of only 7% and 10%. These findings demonstrate
that joint optimization of spectrum and component usage effectively reduces
spectrum waste without significantly impacting the maximum FSU usage.

The detailed numerical comparison of these approaches, including metrics
such as spectrum waste, the average unintended recipient metric, the total
number of amplifiers used at the nodes, and the sizes of OB switches, is pro-
vided in Paper A. Additionally, Paper A includes an analysis of a scenario
without reconfiguration between traffic periods, modeling cases where network
operators prefer to avoid complete reprogramming of optical nodes.

3.5 Summary
The chapter presents a design framework for programmable filterless opti-
cal network (PFON) that integrates routing, modulation, and spectrum as-
signment with node design optimization, formulated as an integer linear pro-
gram (ILP) to minimize spectrum and component usage. To overcome the
high complexity of the ILP, the problem is decomposed into two consecutive
steps, enabling near-optimal solutions in significantly reduced computation
time. Compared to passive filterless optical network (FON), the proposed
PFON architecture reduces the highest frequency slot unit index by up to
64%, decreases spectrum waste by up to 44%, and lowers unwanted signal
broadcasting by up to 50%. Compared to conventional wavelength-switched
optical network (WSON), PFON utilizes only 16% of the optical switches,
increases spectrum usage moderately, and reduces the number of amplifiers
at network nodes by up to 81% compared to both FON and WSON. This
highlights the potential of the PFON architecture to obtain flexible solutions
while significantly reducing WSON costs and FON spectrum consumption.

33





CHAPTER 4

Proactive Spectrum Defragmentation in Elastic Optical
Networks Using Deep Reinforcement Learning

The growing traffic demands and dynamic service patterns lead to inefficient
spectrum utilization and higher service blocking rates, posing strain on the
optical network operation. To address this, network operators are looking for
intelligent strategies that can improve spectrum usage efficiency by reducing
SF and making better use of the available spectrum. This chapter introduces
DeepDefrag, a deep reinforcement learning (DRL)-based framework for proac-
tive spectrum defragmentation (SD) in dynamic EONs. After a brief literature
review, we begin by describing the architecture of DeepDefrag. We then ex-
plain the core aspects of the strategy, including DRL-based decision-making.
Performance evaluation highlights the effectiveness of DeepDefrag in reducing
the SBR and minimizing operational overhead. Finally, we demonstrate the
effectiveness of DeepDefrag using a Transport API (T-API)-enabled digital
twin, which mirrors real network behavior and enables real-time simulation of
connectivity services. This chapter is written based on Paper B, Paper C,
and Paper D.
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4.1 Literature Review

Various approaches, including mathematical optimization models, heuristic
algorithms, and machine learning (ML) techniques, have been extensively ex-
plored to address SF challenges in EONs. Among these, ILP formulations have
been employed for SD due to their ability to deliver mathematically optimal
solutions. For instance, an ILP model for proactive parallel SD is introduced
in [10], offering optimal results but at the cost of significant computational
complexity. In contrast, heuristic algorithms are prominent because of their
ability to provide near-optimal solutions with substantially lower computa-
tional overhead. Approaches like Older-First, Bigger-First, Longer-Lasting-
First, and Longer-Path-First guide spectrum reallocation based on service
attributes such as age, size, holding time, and path length [11]. These algo-
rithms often incorporate the First-Fit spectrum assignment policy for efficient
reallocation. In [69], various SD heuristic algorithms, including Lowest-Slot-
Index-First and Holding-Time-Aware, are evaluated based on metrics such
as blocking probability, entropy, and bandwidth fragmentation ratio. The
study in [70] introduces two approaches: a reactive disruptive scheme and a
proactive non-disruptive scheme, both leveraging the holding time of existing
connections to reduce the SBR.

More recently, ML techniques have emerged as a robust tool for addressing
SD. Unsupervised machine learning techniques have been applied to spectrum
defragmentation, such as in the clusterization-driven spectrum rearrangement
algorithm [71], which groups lightpaths based on their features to rearrange
the spectrum without rerouting. In [72], a two-dimensional rectangular pack-
ing model is employed to optimize spectrum allocation and minimize SF,
with traffic demands predicted using Elman neural networks (NNs). In [19], a
proactive SD scheme tailored for C + L band systems is proposed, leveraging
machine learning to prioritize reducing the SF index while maintaining the
QoT. A recent study employs DRL for on-demand, reactive SD [73]. In this
framework, when a service request cannot be accommodated, a DRL agent
selects one of the pre-defined schemes that increase the size of the fragmented
spectrum to accommodate blocked services.

Despite these efforts, proactive SD that relies on DRL techniques remains
underexplored. Current DRL models often fail to address all critical aspects of
SD simultaneously, including decisions on when to perform SD, which connec-
tions to reallocate, and how to assign spectrum to reconfigured connections.
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4.2 The DeepDefrag Model

There is a need for intelligent strategies capable of dynamically selecting ap-
propriate reconfiguration actions throughout the network’s lifetime while ef-
fectively adapting to evolving network conditions. This study also considers
the important trade-off between the benefits of spectrum defragmentation and
the operational overhead it introduces, which is a critical factor for network
operators.

4.2 The DeepDefrag Model
Figure 4.1 provides an overview of the DeepDefrag scheme, which manages
SD cycles under dynamic traffic conditions. When a connection departs, the
scheme evaluates the need for initiating an SD cycle. If an SD cycle is trig-
gered, DeepDefrag identifies a connection for reconfiguration, determines a
suitable spectrum allocation, and repeats this process until the SD cycle con-
cludes.
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Figure 4.1: The decisions taken and implemented by the DeepDefrag scheme dur-
ing network operation. Reprinted with permission from Paper Paper
C, ©Optica Publishing Group.

The inset on the left of Fig. 4.1 presents an example SD cycle involving
three reallocations. The SD process is modeled using two variables: θ, which
serves as a control flag indicating whether there is an active, ongoing SD cycle
(θ = 1) or not (θ = 0), and α, which represents the action chosen by the
agent. The value of α can correspond to the index of a connection selected
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for reconfiguration or ∅, signaling a stop action. When an SD cycle starts,
θ is initially 0, and a connection is reallocated (α ̸= ∅). DeepDefrag may
then decide to continue with reallocations (θ = 1, α ̸= ∅) or to terminate
the cycle (θ = 1, α = ∅). The provided example illustrates two additional
reallocations followed by termination. Only one connection is reconfigured at
a time, as concurrent reconfiguration of multiple connections is not supported.
The period between consecutive SD cycles is referred to as the SD period.
DeepDefrag may also opt not to initiate an SD cycle after a connection departs,
as shown in the right inset of Fig. 4.1, where no action is taken (θ = 0, α = ∅).

DeepDefrag evaluates all connections as potential candidates for realloca-
tion and examines various spectrum reassignment possibilities. To identify
relocation options, the algorithm first hypothetically excludes the currently
considered connection from the spectrum grid, i.e., assumes that it does not
occupy any slots. It then identifies all available spectrum blocks that can ac-
commodate the connection, where each option implies relocation to the start
of a free block.
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cupancy state (b). Different options for spectrum reallocation (c).
Reprinted with permission from Paper C, ©Optica Publishing Group.

Figure 4.2 illustrates the SD options for a simple network example with
five nodes and five links, each supporting a total of 12 spectrum slots. The
considered network snapshot includes six established connections, labeled D1
to D6. The routes of these connections are shown in Fig. 4.2a, and the
spectrum assignment state for each link is presented in Fig. 4.2b. Fig. 4.2c
depicts the reallocation options for connections D1 and D4. Other options
exist for additional connections, but are not shown in the figure for simplicity.
For connection D1, originally occupying slot 11, there are two candidate blocks
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that can be considered for its reallocation: slots 1–3 and 9–12, denoted as
options o1

1 and o2
1. There is only one reallocation option for connection D4,

denoted by o1
4, corresponding to the only free block (slots 8–12) along the

links included its path. By combining the event model from Fig. 4.1 with the
options introduced in Fig. 4.2, a DRL agent can be designed to effectively
solve the SD problem.

4.3 DRL Modeling and Implementation
The DeepDefrag framework utilizes DRL to perform proactive SD. DRL is
an ML approach designed to address control problems, where an agent learns
to take actions by interacting with its environment to maximize a cumulative
reward. These problems are often formulated as Markov decision processs
(MDPs). This section details the MDP model for DeepDefrag, focusing on
the observation space, action space, and reward function.

Observation Space
The DeepDefrag observation space offers the agent a detailed representation
of the current network state and available reallocation options. This design
allows the agent to learn about the network dynamics and make informed
decisions. The observation space of DeepDefrag is composed of multiple com-
ponents. The state representation for the reallocation option j of connection
Di is denoted by Sij , which is defined as follows:

Sij =< si, di, ai, ni, li, fi, ti, ci, FRSS , FSE , fij , tij , cij , F ij
RSS , F ij

SE > ,

where si, di, bi, and ai denote the source, destination, requested bit rate, and
arrival time of connection, respectively. li represents the number of links along
the path allocated to the connection, fi is the starting spectrum slot currently
assigned to the connection, ti is the total number of available slots along the
path, and ci indicates the number of cuts along the connection’s path.

The metrics for the current network state, RSS and SE, are denoted by
FRSS and FSE , respectively. For reallocation option j of connection Di, the
parameters include the new candidate starting slot fij , the number of spec-
trum cuts cij , and the size of the used free spectrum block tij . Additionally,
assuming that Di is reallocated to option j, the updated RSS and SE metrics
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are denoted by F ij
RSS and F ij

SE .
As an example, the state for option o1

4 in Fig. 4.2c is defined as follows:

S41 = ⟨s4 = 1, d4 = 5, a4, n4 = 2, l4 = 2, f4 = 9, t4 = 2, c4 = 2,

FRSS = 1.7, FSE = 0.48, f41 = 8, t41 = 5, c41 = 1,

F 41
RSS = 1.82, F 41

SE = 0.4⟩
(4.1)

Action Space
The action space defines all actions which the agent can execute within a given
environment. As described in the previous sections, the agent selects one of
the available options at each decision step in the DeepDefrag environment.
The set of possible actions is represented as J. Each action is defined by the
tuple ⟨Di, fij⟩, which specifies the connection and the new starting spectrum
slot for the selected option. Additionally, the set J includes the ∅ action,
representing either the termination of an ongoing SD cycle or the decision not
to initiate a new one.

Reward Function
In DRL, the reward function is a key component that evaluates the impact
of the agent’s actions by assigning a numerical score based on the current
state of the environment and the actions performed. In the initial design of
the reward function, as described in Paper B, the primary objective is to
minimize the SBR. The function encourages the agent to reduce the SBR by
adopting it as the main term (1 − SBR) in the reward. The design of the
reward function evolves further in Paper C to address small variations in
SBR more effectively and enhance the agent’s learning efficiency, as defined
in (4.2).

ri =


− log10 SBR

3 θ ∈ {0, 1} ∧ α=∅
− log10 SBR

3 − Ps− Pe θ = 0 ∧ α ̸= ∅
1 + log10(F ij

RSS
−FRSS)

3 − Pe θ = 1 ∧ α ̸= ∅
, (4.2)

Here, the logarithm of the SBR is introduced to amplify the sensitivity to
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minor changes in blocking probability. This design strongly penalizes even a
slight increase in the SBR. To limit the overhead of SD, penalties are applied
for initiating SD cycles (Ps) and reallocating connections (Pe). Specifically,
when an SD cycle is initiated by reallocating a connection, both penalties are
applied. Additionally, during an ongoing SD cycle, each connection reallo-
cation is penalized to discourage excessive operations. These penalty values
can be adjusted based on the costs incurred by network operators. During
ongoing SD cycles, the reward function evaluates the improvement in the net-
work fragmentation state using the RSS metric. A higher RSS value reflects
reduced spectrum fragmentation. The reward function calculates the differ-
ence in the RSS metric before and after reconfiguration to assess the benefit
of the reallocation. A logarithmic function is applied to this difference, ensur-
ing that even small improvements in the RSS metric significantly impact the
reward value. To balance the reward components and facilitate efficient agent
learning, the logarithmic terms are normalized using a factor of 3, ensuring
that the reward values remain within a range of 0 to 1. This normalization
helps prevent excessively large or small reward values and allows penalties to
be set proportionally to other reward components.

DRL Training and Implementation
We utilize the deep Q-Networks (DQN) algorithm [74] to develop the policy for
the proposed SD approach. The DQN algorithm aims to optimize long-term
rewards by estimating state-action values, referred to as Q-values, through
a deep neural network (NN). These Q-values indicate the expected reward
associated with each state-action pair. To compute the Q-values, an NN is
employed, which takes the network state St as input, and outputs predicted
state-action values for all possible actions. Further details of the training
phase are provided in Paper C.

The training is conducted offline, ensuring that it does not interfere with
network operations. In the prediction phase of the DQN, the trained model
is used to predict the best action for a given state. This phase involves only
a straightforward NN inference, making the time required for inference neg-
ligible compared to other network events. Ideally, new experiences gathered
during operation are included in memory and used to further refine and im-
prove the agent over time.

We used Optical RL-Gym [75] to develop the DRL agent, a toolkit built
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on the principles of the OpenAI Gym [76]. Optical RL-Gym offers a compre-
hensive set of optical network environments for efficiently setting up, training,
and testing various DRL agent configurations. For the DeepDefrag toolkit, we
further extend the built-in use cases provided by Optical RL-Gym by intro-
ducing basic concepts of SD, such as reallocating connections and calculating
SF metrics.

4.4 Performance Evaluation
We conducted simulations under dynamic traffic conditions to evaluate the
performance of the DeepDefrag scheme. The evaluation employed perfor-
mance metrics such as the SBR, number of connection reallocations, and
number of SD cycles. Two network topologies are used: NSFNET with 14
nodes and 22 links, and the German topology with 50 nodes and 88 links.
The details of the simulation settings can be found in Paper C. In Paper
B, we considered an early-stage deployment of DeepDefag, where the reward
function and observation space did not include SF metrics. The results pre-
sented in this section are based on Paper C, which evaluated a refined version
of DeepDefrag for different scenarios.

The performance of DeepDefrag is compared with three heuristic approaches:
older-first first-fit (OF-FF), exhaustive spectrum defragmentation (X-SD),
and no spectrum defragmentation (No-SD). OF-FF prioritizes reconfigur-
ing the longest-running connections, while X-SD represents a heuristic lower
bound for SBR by reallocating all connections upon each departure. Both
methods use a first-fit (FF) spectrum allocation policy to determine the tar-
get spectrum slots. No-SD serves as a baseline with no defragmentation.
OF-FF is evaluated in two configurations to facilitate a fair comparison: one
where its defragmentation overhead matched that of DeepDefrag and another
where it achieved a similar SBR as DeepDefrag. Notably, X-SD achieved the
lowest SBR among all approaches by reallocating an unlimited number of
connections, but this came at the expense of significantly higher operational
overhead. The DeepDefrag agent is evaluated with two penalty sets for defrag-
mentation: (0.8, 0.1) and (0.3, 0.05). These penalties reflect the higher cost
of initiating SD cycles compared to reallocating connections. Network oper-
ators can fine-tune the penalty values to align with their specific operational
priorities.
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Figure 4.3: Performance of the considered spectrum defragmentation schemes for
the NSFNET network topology. Reprinted with permission from Pa-
per C, ©Optica Publishing Group.

Figure 4.3 showcases the performance of the described SD schemes for the
NSFNET topology, highlighting the benefits of DeepDefrag. As illustrated in
Fig. 4.3a, the X-SD approach achieves the strongest SBR reduction, outper-
forming the No-SD scheme by 49%. This demonstrates the potential gains
of proactive SD algorithms. Figures 4.3b and 4.3c provide insights into the
number of SD cycles and connection reallocations per 100 arrivals for each
strategy. Compared to No-SD, DeepDefrag significantly reduces the SBR
upon the convergence of the DRL agent, lowering it by 32% for the (0.8, 0.1)
penalty configuration, and by 38.6% for the (0.3, 0.05) one. To simplify the
analysis, the configuration (0.8, 0.1) is the only one used in the remainder.

OF-FF is evaluated in two configurations. In the first configuration, OF-FF(5,
15), the SD period is set to 5 connection departures, and up to 15 reallocations
are allowed per SD cycle. This configuration achieves SBR values comparable
to DeepDefrag, allowing for a comparison of their defragmentation overheads.
The second configuration, denoted by OF-FF(8, 10), sets the value of the SD
period to 8 departures and allows for up to 10 reallocations per cycle. It
matches the defragmentation overhead of DeepDefrag, enabling a compari-
son of their SBR performance. On average, OF-FF(8, 10) and OF-FF(5, 15)
obtain 20.2% and 29.4% lower SBR values than No-SD, respectively. How-
ever, DeepDefrag outperforms OF-FF(8, 10) by reducing the SBR by 15.8%
while maintaining the same overhead. X-SD achieves 23.3% lower SBR than
DeepDefrag but incurs significantly higher defragmentation overhead.

Figure 4.3b reveals that DeepDefrag triggers 14.1 SD cycles per 100 arrivals
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on average, a 29.5% reduction compared to OF-FF(5, 15). Similarly, Fig-
ure 4.3c shows that DeepDefrag reallocates 132 connections per 100 arrivals,
which is 56% fewer than OF-FF(5, 15). These results indicate that DeepDe-
frag achieves a promising balance between reducing SBR and minimizing the
defragmentation overhead.
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Figure 4.4: Performance of the considered spectrum defragmentation schemes for
the German network topology. Reprinted with permission from Paper
C, ©Optica Publishing Group.

Figure 4.4 illustrates the performance of the evaluated schemes for the Ger-
man topology, where DeepDefrag also outperforms the benchmark heuristics.
In this topology, X-SD obtains 69.5% lower SBR than No-SD, whereas Deep-
Defrag, using the (0.8, 0.1) penalty configuration, achieves a 50% reduction
in SBR compared to No-SD. Compared to OF-FF(8, 10), which has a simi-
lar defragmentation overhead, DeepDefrag reduces the SBR by 34.8%. Fur-
thermore, DeepDefrag achieves a comparable SBR performance to OF-FF(5,
20) while reducing the number of SD cycles and connection reallocations by
34.1% and 75%, respectively, as shown in Figs. 4.4b and 4.4c. The training
progression depicted in the figures highlights DeepDefrag’s capability to re-
duce SD overhead after 5,500 episodes for the NSFNET topology and 6,000
episodes for the German topology. The analysis of the two topologies indi-
cates that DeepDefrag adapts effectively to different network scenarios, with
a more prominent impact on the German topology due to its higher traffic
variability and complexity.
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4.5 Integration with T-API for Practical Network
Implementation

To observe how the DRL-based SD module improves spectrum utilization in
realistic scenarios, we demonstrated the integration of the DeepDefrag module
with a digital twin of an optical network that supports T-API [77]. This
represents the first instance of combining DRL-based defragmentation with a
T-API-enabled optical network, showcasing the module’s capability to manage
spectrum dynamically and intelligently in a carrier-grade environment.

Workflow of the Demo

Figure 4.5 outlines the workflow of the proposed demonstration, showcas-
ing the interaction between the SD module and the T-API-enabled optical
network digital twin. The first phase focuses on data collection and analy-
sis, where the SD module periodically communicates with the digital twin to
gather up-to-date information on connectivity services and the network topol-
ogy. Through T-API messages, the module retrieves essential details such as
unique identifiers of active connectivity services. This data is used by the
DRL agent to assess the network state and determine whether to initiate an
SD cycle.

Once the DRL agent decides to initiate an SD cycle, the second phase
begins, focusing on spectrum defragmentation. The agent selects specific con-
nectivity services for reallocation and identifies suitable target spectrum slots
while ensuring the paths of the connections remain unchanged. This pro-
cess adopts a break-before-make strategy, where the selected service is first
removed using T-API messages and then re-established with updated spec-
trum allocations. The agent iteratively executes this procedure until it de-
termines that the SD cycle is complete. By integrating these two phases, the
system dynamically improves spectrum utilization in real time, aligning SD
decisions with the current network conditions. This structured workflow en-
sures operational stability while achieving intelligent and adaptive spectrum
management.
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Figure 4.5: Communication between the SD module and the digital twin.
Reprinted from Paper D.

Demonstration Implementation

Figure 4.6 illustrates the deployment setup used in this demonstration. The
setup involves several interconnected components working together to achieve
real-time SD. The SD module is implemented in Python and employs the
Optical RL-Gym framework to simulate network operations. The digital twin
mirrors the optical network by replicating each element as a virtual instance,
ensuring the simulation environment closely resembles a real-world network.
The digital twin operates under a production-grade software-defined network-
ing (SDN) controller, with T-API managing the northbound communication
and NETCONF handling the southbound communication. The DRL agent,
which drives the SD decisions, is pre-trained offline to improve spectrum usage.
During operation, the SD module interacts with the digital twin to exchange
information and execute SD decisions in real-time. This interaction follows
the T-API specification version 2.1, ensuring compatibility with multi-vendor
environments. The demonstration also includes a dashboard for visualizing
the network state, allowing users to observe fragmented spectrum grids, track
SD cycles, and monitor various performance metrics.
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Figure 4.6: Demonstrator architecture. Reprinted from Paper D.

4.6 Summary
This chapter introduces DeepDefrag, a deep reinforcement learning (DRL)-
based framework for proactive spectrum defragmentation (SD) in elastic opti-
cal networks. DeepDefrag jointly addresses the key aspects of the SD process,
including when to perform defragmentation, which connections to reallocate
and in what order, and how to assign new spectrum resources. By leverag-
ing spectrum occupancy information using spectrum fragmentation metrics,
DeepDefrag effectively learns to adapt its decisions to dynamic network con-
ditions. Simulation results show that DeepDefrag significantly reduces the
SBR while requiring fewer SD cycles and connection reallocations compared
to existing heuristic algorithms. Finally, this chapter presents the first ex-
perimental demonstration of DRL-based SD integrated with a T-API-enabled
optical network digital twin. This real-time experiment showcases DeepDe-
frag’s ability to interact with standard network interfaces and make intelligent
SD decisions in a carrier-grade optical network.
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CHAPTER 5

Spectrum Fragmentation- and QoT-Aware Resource
Allocation in Dynamic Multi-Band Elastic Optical

Networks

This chapter presents a spectrum fragmentation (SF)- and quality of trans-
mission (QoT)-aware routing, band, modulation format and spectrum assign-
ment (RBMSA) algorithm with proactive spectrum defragmentation (SD) for
multi-band elastic optical networks (MB-EONs), referred to as SFQA-defrag.
The proposed method jointly considers QoT level of the lightpaths and SF
metrics to ensure efficient resource allocation. Additionally, we introduce a
proactive SD strategy to mitigate SF before it leads to service blocking. Per-
formance evaluations across multiple network topologies demonstrate signifi-
cant improvements in service blocking ratio (SBR) and spectrum utilization
compared to conventional heuristics. This chapter is written based on Paper
E and Paper F.
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5.1 Literature Review
Recent research on MB-EONs has addressed challenges related to resource
allocation, SF, and inter-channel stimulated Raman scattering (ISRS) effects.
Various studies have proposed ISRS-aware RBMSA strategies to optimize
spectrum usage efficiency while mitigating ISRS interference. One approach
introduces an ISRS impact-reduced RBMSA algorithm for C+L-band EONs,
optimizing spectrum allocation while minimizing ISRS effects [78]. Another
study employs a deep neural network-assisted QoT estimator to predict the
optical signal-to-noise ratio (SNR), enhancing spectrum allocation efficiency
[79]. Additionally, a statistical interference noise prediction model is devel-
oped for C+L-band EONs, enabling single- and multi-period network plan-
ning [80]. While fragmentation management has been extensively studied in
C-band EONs [81], [82], existing models often rely on fixed reach and capac-
ity assumptions due to limited low-complexity QoT estimation techniques.
Few works address fragmentation in multi-band networks, with some focusing
on fragmentation-aware resource allocation and others on defragmentation.
Q-learning-based routing has been applied to C+L-band EONs, considering
fiber impairments such as ISRS while using first-fit, last-fit, and exact-fit al-
location strategies [17]. Other studies explore SNR-aware resource allocation
and survivability-focused RBMSA to balance SNR and spectrum usage effi-
ciency, while reducing SF and service disruptions caused by link failures [18],
[83]. Existing approaches for spectrum defragmentation in multi-band net-
works include adaptive bandwidth defragmentation algorithms [84] and ma-
chine learning-based QoT-aware SD schemes, which minimize SF while main-
taining QoT during spectrum retuning [19]. Despite these advances, prior
works incorporate QoT-awareness either with SF-aware resource allocation or
with proactive SD. They do not fully integrate the two aspects while ad-
dressing ISRS in amplified spontaneous emission and nonlinear interference
noise.

5.2 System Model and Physical Layer Assumption
In this study, we consider a dynamic MB-EON consisting of a set of nodes and
links, where service requests continuously arrive and depart over time. Data
transmission takes place across predefined channels in the C, L, and S bands.

50



5.2 System Model and Physical Layer Assumption

Each channel comprises six frequency slots and is associated to a dedicated
BVT, allowing for independent modulation. For each service request, a source-
destination path is selected, along with one or more channels that together
meet the required bit rate. Because each channel is handled by a separate
BVT, the assigned channels do not need to be contiguous along the path.
However, the assigned channels must remain consistent across all links of the
selected path due to the spectrum continuity constraint.

Each node is equipped with C+L+S-band ROADMs and BVTs that sup-
port dynamic add/drop operations across bands. In-line amplification is
achieved using EDFAs for the C and L bands and thulium doped fiber am-
plifiers (TDFAs) for the S band, with digital gain equalizers ensuring optimal
power levels per span. The ability of BVTs to operate at variable transmission
rates enables traffic (re-)grooming directly at the optical layer. This allows
multiple lower-bit-rate service requests between the same source and destina-
tion to be aggregated onto existing lightpaths with available capacity, thereby
reducing the need for establishing new lightpaths.

For physical layer modeling, we estimate the QoT using the GSNR, which
accounts for both linear and nonlinear impairments, including ISRS. The
GSNR is computed using an enhanced generalized Gaussian noise model for
any lightpath from an arbitrary source to an arbitrary destination in the net-
work [85], [86]. Subsequently, for each of the K shortest paths, the highest sup-
ported modulation format for every channel along the path is pre-calculated
by comparing the estimated GSNR of each channel to the modulation format
thresholds defined in the literature [87]. The modulation format levels range
from m = {1, 2, 3, 4, 5, 6}, corresponding to bit rates from 100 Gbps to 600
Gbps. For instance, a value of 6 for a given channel means that the channel
can support up to 600 Gbps. Further details on end-to-end GSNR calculations
for lightpaths can be found in Paper E.

Finally, to monitor and manage fragmentation, we use two metrics, RSS and
NoC, that evaluate SF across network links [88]. Since spectrum contiguity
is not required in our model, we adjust these metrics to assess fragmentation
across adjacent links only. A higher NoC value and a lower RSS value both
indicate greater SF in the network. Hence, we aim at reducing the NoC and
increasing the RSS values.
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5.3 The Spectrum Fragmentation- and
QoT-Aware (SFQA) RBMSA Algorithm with
Spectrum Defragmentation (SD)

In this section, we present the proposed SFQA-defrag algorithm for dynamic
MB-EONs. The section is structured into two parts: the first outlines the
RBMSA algorithm, while the second introduces the proactive SD algorithm.

Joint Spectrum Fragmentation- and QoT-Aware (SFQA)
RBMSA
The core idea of the SFQA RBMSA algorithm is to reduce the SBR by jointly
considering QoT and SF during path and channel selection. For each service
request, the algorithm prioritizes paths and channels that support the highest
possible modulation format while also minimizing SF.

The algorithm executes in three main phases. First, it attempts to serve the
incoming service request through traffic grooming. For each path, it exam-
ines the already established channels and evaluates their modulation format
levels to determine whether the cumulative remaining capacity can satisfy the
requested bit rate. If such channels are found, the service is accommodated
without establishing new physical channels. If grooming is not possible, the
algorithm proceeds to the second phase, where it calculates the fragmentation
score (FS) for all candidate paths and their available channels with the goal of
establishing a new channel. Finally, in the third phase, it selects the best path
and channels based on both the modulation format level and the computed
FS values.

Figure 5.1 provides an illustrative example of the SFQA algorithm in a
simple network scenario where two alternative paths are considered for each
incoming service request. Figure 5.1a shows a network with four nodes (v1–v4)
and five links (e1–e5). Each link supports six channels (c1–c6). The network
currently carries five active services (d1–d5), with their channel assignments
shown in the right side of the figure. Note that some channels are fully occu-
pied, while others have spare capacity available for incoming service requests.

Figure 5.1b illustrates the logic of the SFQA algorithm. The modulation
format level for each path–channel pair is denoted by M(p, c). The blacked-out
parts in each channel indicate portions that are unusable due to limitations
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Figure 5.1: A simple network example supporting five services (a), provisioning a
new service via traffic grooming by SFQA algorithm (b), and estab-
lishing a new lightpath (c).

on the modulation format. For example, if the modulation level is 4, only
four of the six portions are usable, and the remaining two are shown in black.
When service request d6 arrives, requiring 300 Gbps, the algorithm first checks
for traffic grooming. For the two candidate paths, denoted by p1 and p2, it
inspects the occupied channels to determine if their cumulative remaining
capacity can accommodate d6. Starting from the first candidate p1 = (e2),
the algorithm identifies channel c3 as the channel with sufficient remaining
capacity, which allows the service request to be established without activating
a new channel.

Figure 5.1c presents the arrival of service request d7, requiring 400 Gbps
from v1 to v3. There are two paths available: p1 = (e1, e2) and p2 = (e5, e4).
However, neither has an established channel with enough capacity to accom-
modate d7. Hence, a new physical channel is needed, and the second phase
of the algorithm initiates. Channel c1 on p1 and channels c2 and c5 on p2 are
available. The algorithm then calculates the FS for each channel by simulat-
ing a scenario where the channel is assigned to d7. This involves computing
the difference between the current fragmentation value (Fcurrent) and the es-
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timated value (Fnew) if that channel were used. The right side of Fig. 5.1c
presents these calculations based on the NoC metric as the SF target. For
example, for channel c1 on path p1, the fragmentation score is computed as
FS(1, 1) = Fcurrent(1, 1)− Fnew(1, 1) = 4. This score reflects the reduction in
SF if c1 is assigned to d7.

In the final phase, the algorithm determines the most suitable path and
channels for the service request. Candidates are first ranked by the highest
modulation format available across their channels. If they share the same
highest modulation format level, they are further ranked by the FS of their
channels. In this example, c1 on p1 and c2 on p2 offer the same highest
modulation format level, so c1 on p1 is selected due to its superior FS.

QoT-aware Spectrum Defragmentation Algorithm
The proposed defragmentation algorithm starts SD cycles either at regular
intervals or when a performance indicator threshold is reached. The main
objective of this algorithm is to reorganize service channels, which is a term
we use to refer to channels currently assigned to active services. The algorithm
focuses on the channels whose reallocation yields the most significant reduction
of SF. It considers the reallocation of individual service channels rather than
entire services, since a service may occupy multiple non-contiguous channels
that can be reallocated independently.

The algorithm comprises three phases. First, it performs traffic re-grooming
by merging partially filled channels to free up a service channel. In the second
phase, the algorithm identifies the best service channel for reallocation. Fi-
nally, the algorithm seeks the best target channel to which the selected service
channel is reassigned.

Figure 5.2 illustrates an example of an SD cycle for the same network topol-
ogy shown in Figure 5.1, after accommodating service requests d6 and d7. In
the first phase, the algorithm iterates through all active services and their as-
sociated channels, attempting to identify another occupied channel along the
same path that can be merged through re-grooming. As shown in Figure 5.2a,
Services d5 and d1 share the same path, and channel c3 has sufficient capacity
to accommodate d5. Consequently, the service channel of d5 is consolidated
to channel c3. As a result, c6, the original service channel of d5 is released.

In the second phase, the algorithm identifies the best service channel can-
didates for reallocation (Fig. 5.2b). In this example, service channels c4 and
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Figure 5.2: An example of defragmentation done via traffic re-grooming (a), and
by reallocating a service channel (b). Reprinted from Paper F.

c5, which support d4, are evaluated. The defragmentation score (DS) is com-
puted for each channel by hypothetically removing them and assessing the
change in the SF metric before (Fcurrent) and after (Fremoved) their removal.
The DS is calculated for both options based on the NoC metric. In this case,
DS(1, 4) and DS(1, 5) correspond to the potential reduction in the NoC met-
ric if channels c4 and c5 are hypothetically removed. Based on the computed
scores, c5 is identified as the most beneficial candidate for reallocation in terms
of fragmentation reduction.

The third phase involves determining the most suitable target channel for
reallocation by evaluating all available channels along the path of d4. Channels
c2 and c3 are free and considered as potential targets. For each candidate
target channel, the algorithm calculates the reallocation score (RS), which
measures the change in SF obtained by moving the service channel c5 to that
channel. As shown on the right-hand side of Fig. 5.2b, the RS is computed
for both options (channels c2 and c3) based on the NoC metric, ultimately
selecting c3 as the target channel. The details of the algorithms along with
the pseudocodes is provided in Paper F.

5.4 Performance Evaluation
This study investigates resource allocation in multi-band EONs spanning the
C, L, and S bands, totaling a bandwidth of 20 THz, with 6 THz each for the
C and L bands, and 8 THz for the S band. The spectrum is partitioned into
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268 channels, each 75 GHz wide (6 × 12.5 GHz spectrum slots), including
400 GHz guard bands separating adjacent bands. The analysis is based on
simulations on three network topologies: the Japanese backbone (JPNB) with
12 nodes and 17 links, the United States backbone (USB) with 14 nodes and
22 links, and the Spanish backbone (SPNB) with 30 nodes and 56 links [89].
The network employs six modulation formats: PM-BPSK to PM-64QAM
operating at 64 Gbaud, supporting bit rates from 100 Gbps to 600 Gbps, with
modulation granularity set at 100 Gbps. The parameter K, representing the
number of pre-computed shortest paths, is fixed at 3. Service requests are
uniformly generated between nodes with bit rates ranging from 50 Gbps to
600 Gbps, with a 50 Gbps granularity. The load is adjusted to achieve a SBR
between 0.01% and 1% when employing the proposed SFQA-defrag algorithm.

This thesis evaluates two variants of the SFQA algorithm, distinguished by
the choice of the SF metric. The variant using the NoC metric is denoted
as SFQA-NoC, while the one based on the RSS metric is named SFQA-RSS.
When the RBMSA algorithm is integrated with proactive SD, the correspond-
ing versions are denoted as SFQA-defrag-NoC and SFQA-defrag-RSS. The SD
period is fixed at 10 service request arrivals, and the maximum number of al-
lowed reallocations per SD cycle is set to N = 10.

To assess the performance of the proposed algorithm, we compare it with
three benchmark algorithms: QA, which considers only the QoT of the chan-
nels during resource assignment and always selects the highest modulation
format available [89], FA-NoC and FA-RSS, which are fragmentation-aware
only, and rely on the two respective fragmentation metrics, and SAP, a base-
line approach that first selects the shortest path and then identifies the channel
that supports the highest modulation format along that path. For all methods,
when identical modulation formats or SF metrics are encountered, channels
at the lowest frequency are prioritized.

Figures 5.3a, 5.3b, and 5.3c present the SBR results under varying traf-
fic loads for the JPNB, USB, and SPNB topologies, respectively. The re-
sults demonstrate that the QA strategy consistently outperforms SAP by
23.7%, 19%, and 10% for the JPNB, USB, and SPNB topologies, respectively,
indicating performance improvements obtained through the prioritization of
physical-layer impairments in path selection. The results further indicate that
FA-NoC and FA-RSS, which incorporate only SF metrics into the decision-
making process, also outperform SAP for all topologies.

56



5.4 Performance Evaluation

320 340 360 380 400 420
Offered load [Tb/s]

10 3

10 2

Se
rv

ice
 B

lo
ck

in
g 

Ra
tio

 (S
BR

)

SAP
QA
FA-RSS
FA-NoC
SFQA-RSS
SFQA-NoC
SFQA-defrag-RSS
SFQA-defrag-NoC

(a) JPNB topology

400 425 450 475 500 525 550
Offered load [Tb/s]

10 4

10 3

10 2

Se
rv

ice
 B

lo
ck

in
g 

Ra
tio

 (S
BR

)

SAP
QA
FA-RSS
FA-NoC
SFQA-RSS
SFQA-NoC
SFQA-defrag-RSS
SFQA-defrag-NoC

(b) USB topology

750 800 850 900 950
Offered load [Tb/s]

10 3

10 2

Se
rv

ice
 B

lo
ck

in
g 

Ra
tio

 (S
BR

)

SAP
QA
FA-RSS
FA-NoC
SFQA-RSS
SFQA-NoC
SFQA-defrag-RSS
SFQA-defrag-NoC
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Figure 5.3: The service blocking ratio (SBR) for the three considered topologies.
Reprinted from Paper F.

The SFQA algorithm, which jointly considers QoT and SF, achieves su-
perior performance compared to all benchmark algorithms. The SFQA-NoC
version of the algorithm slightly outperforms SFQA-RSS, and significantly
surpasses QA and FA-NoC by 23% and 24% on average across all traffic loads
for the JPNB topology. A similar trend is observed for the USB topology,
where SFQA-NoC outperforms QA and FA-NoC by 28% and 19% on aver-
age, with performance levels close to SFQA-RSS. However, a different trend
emerges for the SPNB topology, where SFQA-NoC outperforms SFQA-RSS
by 22%. Additionally, in the SPNB topology, SFQA-NoC outperforms the
QA and FA-NoC algorithms by 39% and 22%, respectively. The overall supe-
rior performance of the SFQA algorithms over QA highlights the benefits of
incorporating spectrum occupancy state information into the path and chan-
nel selection processes. Also, joint consideration of both QoT and SF metrics
leads to more informed routing and allocation decisions, resulting in improved
resource utilization compared to strategies focused on one single aspect.

Figure 5.3 further illustrates the SBR performance of SFQA-defrag-RSS and
SFQA-defrag-NoC, which combine RBMSA with proactive defragmentation.
These enhanced versions outperform their non-defragmentation counterparts.
Specifically, for the JPNB topology, SFQA-defrag-NoC and SFQA-defrag-RSS
achieve 41.2% and 20% improvements over SFQA-NoC and SFQA-RSS, re-
spectively. The USB topology shows comparable improvements of 43% and
41%, while in the SPNB topology, the respective improvements are 44% and
18%.

The impact of different SF metrics on the performance of the proposed al-
gorithms, in terms of SBR, can be assessed by comparing SFQA-defrag-RSS
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and SFQA-defrag-NoC, as illustrated in Figure 5.3. For all three topolo-
gies, SFQA-defrag-NoC consistently outperforms SFQA-defrag-RSS, indicat-
ing that the NoC metric is better suited than RSS for capturing SF in MB-EONs
where services are allocated over discrete channels. The detailed numerical
comparison of these approaches, including performance metrics such as aver-
age path length, GSNR, and defragmentation overhead, is provided in Paper
F.

5.5 Summary
This chapter proposes a heuristic algorithm for the routing, band, modula-
tion format and spectrum assignment problem in multi-band elastic optical
network, incorporating both quality of transmission-awareness and spectrum
fragmentation (SF) metrics. The algorithm integrates proactive spectrum
defragmentation (SD) with traffic grooming for new service requests and re-
grooming during SD cycles to improve spectrum usage efficiency.

Simulation results on three realistic topologies show that the proposed ap-
proach achieves a significant reduction in service blocking ratio up to 44% on
average compared to benchmark methods. This improvement comes at the
cost of a modest increase in average path length, which is observed to rise by
up to 13%. This observation highlights the importance of jointly incorporat-
ing physical-layer impairments and spectrum fragmentation into the resource
allocation process, rather than relying solely on one of them.
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CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Ehsan Etezadi, Carlos Natalino, Christine Tremblay, Lena Wosinska,
Marija Furdek
Programmable Filterless Optical Networks: Architecture, Design and
Resource Allocation
Published in IEEE/ACM Transactions on Networking,
vol. 32, no. 2, pp. 1096-1109. 2024
© IEEE. Reprinted, with permission, from [10.1109/TNET.2023.3319746]
.

This paper presents a cost-efficient planning approach for PFON, aiming
to minimize spectrum usage, the degree of deployed couplers, the number of
required EDFAs, and the size of OB switching matrices. The RMSA problem
in PFONs is formulated as an ILP with the objective of minimizing both spec-
trum resource usage and the total degree of passive components. To address
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scalability issues associated with ILP, a two-step formulation is introduced,
enabling near-optimal solutions for larger problem instances within a short
execution time. Additionally, a heuristic algorithm is proposed for EDFA
placement, calculating the total loss experienced by each connection at each
node and deploying amplifiers accordingly for intra-node loss compensation.
The study focuses on amplifier placement within nodes for managing internal
losses, assuming that the optical line system is pre-deployed and optimized for
span loss compensation. Furthermore, the study explores cost trade-offs asso-
ciated with incorporating AoD-enabled programmability in filterless networks,
evaluating spectrum resource usage alongside OB switch and amplifier costs.
A detailed simulation analysis on two core and one regional network topology
under varying traffic loads demonstrates the strong potential of PFONs to
strike a balance between spectrum usage efficiency and equipment cost.

Ehsan Etezadi (EE) developed the ILP formulation, performed the simula-
tion, analyzed the results, and wrote the paper. Marija Furdek (MF) proposed
the research idea, formulated the problem, and contributed to the writing of
the system model and analysis. Carlos Natalino (CN) contributed to the
implementation and analysis. Lena Wosinska (LW) and Christine Tremblay
(CT) contributed to the analysis. All authors reviewed and revised the paper.

6.2 Paper B
Ehsan Etezadi, Carlos Natalino, Renzo Diaz, Anders Lindgren, Stefan
Melin, Lena Wosinska, Paolo Monti, Marija Furdek
DeepDefrag: A deep reinforcement learning framework for spectrum de-
fragmentation
2022 IEEE Global Communications Conference, GLOBECOM 2022 -
Proceedings, p. 3694-3699,
Rio de Janeiro, Brazil, Dec. 2022
© IEEE. Reprinted, with permission, from [DOI:
10.1109/GLOBECOM48099.2022.10000736] .

Motivated by the need for automating complex networking tasks, this paper
introduces DeepDefrag, a novel DRL-based framework that efficiently man-
ages all aspects of the SD process. DeepDefrag determines the good tim-
ing and composition of SD actions, including the number of reconfigurations,
their execution order, and the target spectrum allocation for affected con-
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6.3 Paper C

nections. The proposed framework dynamically adapts to the network state,
ensuring appropriate decision-making while aligning with operator priorities,
such as minimizing the number of connection reallocations. Its performance
is evaluated through extensive simulations, demonstrating that DeepDefrag
outperforms the state-of-the-art heuristic OF-FF across multiple performance
metrics.

EE formulated the problem, developed the DeepDefrag framework, per-
formed the simulation, analyzed the results, and wrote the paper. MF, CN,
Paolo Monti (PM), and LW proposed the research idea and contributed to the
problem formulation and analysis. Renzo Diaz (RD), Anders Lindgren (AL),
and Stefan Melin (SM) provided inputs from Telia company and contributed
to the analysis. All authors reviewed and revised the paper.

6.3 Paper C
Ehsan Etezadi, Carlos Natalino, Renzo Diaz, Anders Lindgren, Stefan
Melin, Lena Wosinska, Paolo Monti, Marija Furdek
Deep reinforcement learning for proactive spectrum defragmentation in
elastic optical networks [Invited]
Published in IEEE/Optica Journal of Optical Communications and Net-
working (JOCN),
vol. 15, no. 10, pp. 86-96.
© 2023 Optica Publishing Group. Reprinted, with permission, from
[10.1364/JOCN.489577] .

The DeepDefrag framework in Paper B only considered a limited subset of
connections for reconfiguration and did not incorporate spectrum occupancy
state in its decision-making process. This paper extends DeepDefrag by in-
cluding all network connections as potential reconfiguration candidates, in-
tegrating comprehensive spectrum occupancy information with multiple frag-
mentation metrics, and refining the reward function for a more comprehensive
evaluation of SD actions. Additionally, this paper examines the impact of
different penalty models representing SD overhead and assesses how varying
traffic loads influence performance. The improved DeepDefrag framework is
compared against heuristic algorithms from the literature, with simulation re-
sults showing that it achieves SBR values near an approximated heuristic lower
bound obtained through exhaustive defragmentation. We also demonstrate
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that, unlike preconfigured approaches such as OF-FF, DeepDefrag dynami-
cally adapts to traffic fluctuations, learning optimal policies based on current
network conditions, enabling it to make more efficient decisions, continuously
optimize spectrum utilization, and improve overall network performances.

EE formulated the problem, proposed ideas, performed the simulation, an-
alyzed the results, and wrote the paper. MF, CN, PM, and LW contributed to
the idea generation, problem formulation and analysis. RD, AL, and SM pro-
vided inputs from Telia company and contributed to the analysis. All authors
reviewed and revised the paper.

6.4 Paper D

Ehsan Etezadi, Carlos Natalino, Vignesh Karunakaran, Renzo Diaz,
Anders Lindgren, Stefan Melin, Achim Autenrieth, Lena Wosinska, Paolo
Monti, Marija Furdek
Demonstration of DRL-based intelligent spectrum management over a
T-API-enabled optical network digital twin
49th European Conference on Optical Communications (ECOC),
Glasgow, Scotland, Oct. 2023
© IEEE. Reprinted, with permission, from [DOI: 10.1049/icp.2024.1801]
.

In this demonstration, we develop a novel defragmentation module that
leverages standard T-API messages to implement SD decisions made by the
DeepDefrag DRL agent. We demonstrate the module’s capabilities through an
interactive dashboard, allowing users to configure network operation settings,
monitor the fragmented network state, observe DRL-driven SD decisions, and
analyze their execution within a carrier-grade digital twin.

EE formulated the problem, developed the dashboard, and wrote the pa-
per. CN contributed to implementation and idea generation. MF, PM, and
LW contributed to the problem formulation and analysis. RD, AL, and SM
provided inputs from Telia company and contributed to the analysis. Vignesh
Karunakaran and Achim Autenrieth provided T-API interface. All authors
reviewed and revised the paper.
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6.5 Paper E
Ehsan Etezadi, Farhad Arpanaei, Carlos Natalino, Lena Wosinska,
Erik Agrell, Paolo Monti, David Larrabeiti, Marija Furdek
Joint Fragmentation- and QoT-Aware RBMSA in Dynamic Multi-Band
Elastic Optical Networks
24th International Conference on Transparent Optical Networks (IC-
TON),
Bari, Italy, Jul. 2024
© IEEE. Reprinted, with permission, from [DOI:
10.1109/ICTON62926.2024.10648045] .

In this paper, we propose, for the first time, a heuristic algorithm for SFQA
RBMSA in C+L+S-band dynamic MB-EONs. The algorithm jointly consid-
ers two different SF metrics along with the GSNR levels of available channels
across multiple candidate paths. A comprehensive performance evaluation is
conducted, comparing the proposed approach against existing heuristic algo-
rithms from the literature. The results demonstrate that the SFQA algorithm
outperforms approaches that consider only the QoT of the channels, achieving
superior results in terms of SBR.

EE formulated the problem, proposed ideas, performed the simulation, an-
alyzed the results, and wrote the paper. MF, CN, PM, Erik Agrell (EA) and
LW contributed to the analysis. Farhad Arpanaei (FA) and David Larrabeiti
provided the physical layer model. All authors reviewed and revised the paper.

6.6 Paper F
Ehsan Etezadi, Farhad Arpanaei, Carlos Natalino, Erik Agrell, Paolo
Monti, José Alberto Hernández, Marija Furdek
Fragmentation- and QoT-Aware RBMSA with Spectrum Defragmenta-
tion in Dynamic Multi-Band Elastic Optical Networks
Submitted to the Journal of Lightwave Technology in May 2025
.

In this paper, we enhance the SFQA RBMSA algorithm from Paper E
by integrating it with proactive SD, creating a more efficient approach for
C+L+S-band MB-EONs. In addition to QoT- and fragmentation-aware RBMSA,
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we incorporate traffic grooming to optimize incoming requests, and traffic re-
grooming during SD cycles to further improve spectrum utilization. To eval-
uate the effectiveness of the proposed approach, we conduct extensive perfor-
mance analyses across three network topologies under different traffic loads,
and compare the results against existing heuristic algorithms. The findings
demonstrate that SFQA with proactive SD significantly reduces SBR, outper-
forming algorithms that consider only QoT or SF metrics.

EE formulated the problem, proposed ideas, performed the simulation, an-
alyzed the results, and wrote the paper. MF, CN, PM, and EA contributed
to the analysis. FA and Jose Alberto Hernandez provided the physical layer
model. All authors reviewed and revised the paper.
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CHAPTER 7

Concluding Remarks and Future Work

The approaches proposed in this thesis address some of the timely and rel-
evant problems related to the flexibility of optical network architecture and
resource usage efficiency in forward-looking scenarios. Despite the demon-
strated benefits of the proposed techniques, these challenges remain relevant
and open additional directions for future extensions, summarized as follows.

This study introduces a detailed design framework for programmable filter-
less optical network (PFON) architecture, leveraging coherent elastic trans-
mission and optical white box switches. The routing, modulation format, and
spectrum assignment problem is addressed jointly with the node architec-
ture design and formulated as an integer linear program aimed at minimizing
both spectrum usage and the degree of passive coupler deployment. The
PFON architecture demonstrates advantages over traditional passive filter-
less optical networks, showing improvements in spectrum usage efficiency and
a reduction in unnecessary signal broadcasting. Compared to conventional
wavelength-switched optical networks, the PFON design significantly reduces
the number of switches and amplifiers. These findings confirm the potential of
programmable filterless architectures to provide scalable, cost-effective, and
flexible solutions for future optical network deployments.
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In this thesis, we have investigated PFONs under static traffic conditions.
However, with the emergence of new services characterized by highly dynamic
traffic patterns and the advancements in network function virtualization, it
becomes essential to explore the operation of PFONs in dynamic environ-
ments. The new services can be realized as service chains, where traffic flows
are processed through a sequence of virtualized network functions running
on different servers. In such scenarios, a PFON must support adaptive and
flexible service provisioning to handle dynamic and heterogeneous traffic de-
mands. Future research should focus on the integration of intelligent service
chaining frameworks with programmable optical nodes to fully exploit the po-
tential of PFONs for efficient, scalable, and resilient service provisioning in
next-generation optical networks.

Regarding the dynamic network scenarios, this thesis proposes DeepDefrag,
a deep reinforcement learning-based framework for proactive spectrum defrag-
mentation (SD). DeepDefrag determines efficient SD strategies by incorpo-
rating spectrum fragmentation (SF) metrics into its decision-making process.
Simulation results demonstrate that DeepDefrag significantly improves ser-
vice blocking ratio (SBR) performance while reducing the overhead associ-
ated with defragmentation operations. Additionally, the framework adapts
effectively to varying network load conditions, continuously refining its deci-
sions to maintain good network performance. However, the current approach
focuses solely on reassigning spectrum along the same path without consider-
ing connection rerouting. Integrating rerouting strategies alongside spectrum
reallocation could offer substantial improvements in managing SF. Future re-
search should investigate the combined impact of rerouting and reallocation
in dynamic network environments, carefully assessing the trade-offs between
operational complexity, reconfiguration overhead, and potential SD gains.

Finally, this study extends to evaluate SF management in multi-band elas-
tic optical networks (MB-EONs), which are crucial for addressing the growing
demands of modern communication systems. It proposes a heuristic algo-
rithm for routing, band, modulation format, and spectrum assignment in
MB-EONs, incorporating quality of transmission-awareness and fragmenta-
tion metrics. By further integrating proactive SD, the proposed approach
demonstrates significant improvements in SBR and spectrum utilization for
multiple network topologies. The results highlight that joint consideration of
spectrum occupancy and physical-layer impairments during resource alloca-
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tion leads to better performance than relying on either one of them. However,
this study does not explore the cost and energy consumption considerations
across different spectral bands. In particular, the cost and energy efficiency of
transponders, amplifiers, and switching equipment should be further analyzed
to provide a more comprehensive evaluation of MB-EONs designs. Future
work could extend the proposed framework to consider these aspects.
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1 Introduction

Abstract

Filterless optical networks (FONs) are a cost-effective opti-
cal networking technology that replaces reconfigurable opti-
cal add-drop multiplexers, used in conventional, wavelength-
switched optical networks (WSONs), by passive optical split-
ters and couplers. FONs follow the drop-and-waste transmis-
sion scheme, i.e., broadcast signals without filtering, which
generates spectrum waste. Programmable filterless optical
networks (PFONs) reduce this waste by equipping network
nodes with programmable optical white box switches that
support arbitrary interconnections of passive elements. Cost-
efficient PFON solutions require optimal routing, modulation
format and spectrum assignment (RMSA) to connection re-
quests, as well as optimal design of the node architecture.
This paper presents an optimization framework for PFONs.
We formulate the RMSA problem in PFONs as a single-step
integer linear program (ILP) that jointly minimizes the to-
tal spectrum and optical component usage. As RMSA is an
NP-complete problem, we propose a two-step ILP formulation
that addresses the RMSA sub-problems separately and seeks
sub-optimal solutions to larger problem instances in accept-
able time. Simulation results indicate a beneficial trade-off
between component usage and spectrum consumption in pro-
posed PFON solutions. They use up to 64% less spectrum
than FONs, up to 84% fewer active switching elements than
WSONs, and up to 81% fewer optical amplifiers at network
nodes than FONs or WSONs.

1 Introduction
To support the immense traffic growth and enable scalable on-demand pro-
visioning of service requests, optical networks must deliver great adaptability
in a cost- and resource-efficient manner. Agile and flexible optical networking
can be achieved in different ways through different technological solutions.
The most relevant functionalities enabling adaptable optical networks refer to
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programmability and reconfigurability of optical switches and edge terminals,
which can then be combined into diverse solutions with different trade-offs
between performance and cost.

In conventional WSONs, nodes deploy ROADMs with hard-wired constituent
components that support transparent switching of optical signals based on
their wavelength, as well as local add and drop at the node. An unprece-
dented level of flexibility in nodal architecture design and network provision-
ing is provided by disaggregated optical white boxes, also referred to as AoD
or function programmable switches [1]. Unlike hard-wired ROADMs, white
boxes do not interconnect optical modules (e.g., wavelength-selective switches,
passive couplers or EDFAs) in a fixed manner. Instead, the modules are in-
terconnected via an OB (e.g., piezoelectric space switch [2]). This allows to
efficiently satisfy the traffic requirements (every connection uses only the re-
quired modules) and enables swift reconfiguration in order to accommodate
traffic changes, scale capacity, or upgrade the network. Consequently, AoD
brings benefits in terms of cost- and energy-efficiency, scalability, and network
reliability compared to their ROADM-based counterpart [1].

Filterless optical networks (FONs) have been proposed as a low-cost solution
for agile optical networking [3], and accepted as a viable technological solution
for deployments in core and metro networks with feasibility demonstrated
through several pilot trials. Nodes in FONs use only passive components
(i.e., optical couplers and splitters) to broadcast signals, without any active
switching or filtering. These passive interconnects result in a set of passive
fiber trees that carry signals across the network, while tunable elastic coherent
transmitters and receivers at the edge nodes support agile operation [4].

Transmission in FONs follows the drop-and-waste principle, where signals
are broadcasted to all links in the fiber tree downstream of the source node
and continue to propagate along the links beyond the destination node due to
the absence of filtering. The inherently gridless arhitecture and the absence
of active switching components bring major advantages of FONs in terms of
cost-effectiveness, reliability and energy-efficiency [3]. However, these bene-
fits come at the expense of higher spectrum usage due to the drop-and-waste
transmission, as well as a rigid physical structure with no architectural flexi-
bility.

To mitigate the drawbacks and combine the benefits of filterless networking
with the advantages of optical white boxes, a PFON architecture based on
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Figure 1: An illustrative example of (a) passive filterless, (b) conventional
wavelength-switched, and (c) programmable filterless optical network ar-
chitecture supporting five connection requests, along with the configura-
tion of representative nodes shown below.

optical white boxes was proposed in [5]. The underlying idea of PFONs is
to keep the gridless nature and line system simplifications enabled by filter-
less networking while introducing node architecture flexibility supported by
AoD nodes. Such flexibility enables better adaptation of the nodal configura-
tion to the traffic demands, yielding lower dissipation of spectrum due to the
drop-and-waste transmission. The PFON architecture is illustrated in Fig. 1
through comparison to FON and WSON, using a simple network example
with 6 nodes and 5 communication demands denoted by d1 to d5.

Fig. 1a depicts a fully passive filterless solution where two passive fiber trees
(shown with the full black and the dashed red lines, respectively) connect the
nodes. The details of the internal structure are shown for node 3 below the
network example and are analogous for all other nodes. Each node comprises
passive splitters and couplers. The nodes also host amplifiers at each ingress
and egress port, referred to as pre-amplifiers and boosters, respectively. The
absence of filtering implies that a copy of each signal present at the input port
of a passive splitter also appears on all of its output ports. The color-filled
squares denote the FSUs occupied by the useful signals, while the empty ones
represent the unfiltered, wasted slots. As the example illustrates, FONs suffer
from a significant waste of spectrum and privacy issues due to the broadcasting
and drop-and-waste transmission.
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Fig. 1b depicts a ROADM-based WSON architecture, and a characteristic
nodal setup with spectrum-selective switchess (SSSs) in route&select config-
uration (shown for node 3 in the lower part of the figure). Naturally, this
architecture does not suffer from any spectrum waste as all nodes filter the
signals, but it is associated with a much higher cost of the nodes. As in
FONs, WSON nodes also host a pre-amplifier and a booster at each ingress
and egress port, respectively. Note that both FON and WSON nodes may
host additional amplifiers at their add and drop sections. However, in our
study, we focus only on the pass-through functionalities and do not consider
the dimensioning of the add and drop segments.

The PFON architecture supporting the given set of demands is shown in
Fig. 1c. Compared to Fig. 1a, PFON wastes less spectrum for unfiltered
channels, implying a greater possibility of spectrum reuse than in FONs. The
reduction in spectrum use is particularly noticeable on link 3–5, where the
PFON uses 4 times fewer FSUs than the FON architecture. The detailed
setup of nodes 3 and 4, shown in the bottom part of the figure, illustrates
how the nodal architecture can be configured in a flexible manner, as per
traffic requirements. AoD nodes support node bypass, often referred to as
fiber switching, where an input and an output fiber are directly connected via
the OB. In node 3, this allows for d1 and d2 to be sent from the incoming
port from node 2 directly to the outgoing port towards node 6, while d3 is
added towards node 5. In node 4, fiber switching is not possible and d4 and d5
must be split before being directed to their corresponding output ports. Due
to the absence of filtering, parts of each signal remain present on both split
copies, represented by dashed lines. However, compared to the FON solution,
fewer splitters/couplers are used and their degree is lower. Combined with
fiber switching, this translates to a lower insertion loss and a lower number of
used OB ports.

The existence of unfiltered signals and a lack of pre-defined nodal archi-
tecture in PFONs require tailored network design approaches. For a given
physical topology of the optical network comprising nodes that host optical
white box switches, interconnected with optical fiber links, and a given set
of connection demands, the problem of designing a PFON considered in this
paper comprises two intertwined sub-problems:

• Solving the RMSA problem for the offered traffic, taking into account
the presence of unfiltered signals due to the drop-and-waste transmission.
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The RMSA problem is proven to be NP-complete already in WSONs [6],
and is exacerbated by the presence of unfiltered signals.

• Determining the architecture of the nodes, i.e., the number and the
type of components (passive couplers and EDFAs) to be deployed at
the nodes, as well as the OB interconnections to support the required
processing of the traffic.

In [5], we carried out a preliminary study of the PFON architecture and
formulated an ILP for the RMSA problem in PFONs with the objective to
minimize spectrum usage. Planning of PFONs based on SDM was investigated
in [7], while their feasibility was verified experimentally in [8]. However, cost-
efficiency of the new architecture has not been studied so far. Low-cost,
energy-efficient solutions require efficient use of active optical equipment at
network nodes, i.e., EDFAs and OB switches in the AoD nodes, as well as
high spectrum usage efficiency. Both of these parameters are strongly affected
by the signal splitting. Splitting, combined with the absence of filtering, is
the mechanism that generates spectrum waste. Splitting losses, which are a
function of the splitter and coupler degrees, significantly contribute to the
losses experienced by the signals inside PFON nodes, creating the need for
EDFA deployment at nodes. Moreover, the required OB switch size (and
the resulting cost) is directly proportional to the number and the degree of
components it interconnects.

Therefore, in this work we extend upon our preliminary study from [5] and
develop cost-efficient PFON planning approaches aimed at minimizing spec-
trum usage, the degree of deployed couplers, the number of required EDFAs,
and the required size of the OB switching matrices. We formulate the RMSA
problem for PFONs as an ILP with the objective to minimize the total degree
of the deployed passive components and spectrum resource usage. The RMSA
problem is NP-complete [6], so it is often decomposed into its constituent sub-
problems of routing, modulation format and spectrum assignment, as in, e.g.,
[9]. To avoid ILP scalability issues, we propose a two-step ILP formulation
that allows finding near-optimal solutions for larger problem instances un-
der short execution time. Furthermore, we propose a heuristic algorithm for
the placement of EDFAs that computes the total loss experienced by each
connection at each node and deploys the EDFAs required for intra-node loss
compensation. We focus on the placement of amplifiers inside the nodes for
node loss management purpose, assuming that the optical line system is al-
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ready deployed and optimized for span loss management.
Our primary objective is to study the cost trade-offs related to the intro-

duction of AoD-enabled programmability to filterless networks in terms of
spectrum resource usage, as well as the OB switch and amplifier costs. A
detailed simulation analysis carried out on two core and one regional network
topology with varying total traffic indicates a strong potential of PFONs to
achieve a favorable trade-off between spectral resource usage and equipment
cost. The PFON architecture uses up to 64% less spectrum and up to 81%
fewer EDFAs than the FON and WSON solutions with hard-wired node struc-
ture. On the other hand, PFON uses up to 66% more spectrum than WSON
architecture, but reduces the need for optical switching equipment by up to
84% as it only uses 1 optical switch matrix per node instead of an SSS at each
input and each output port of all ROADM nodes (considering route&select
configuration).

The remainder of the paper is organized as follows. Section 2 reviews the re-
lated work on passive filterless networks and AoD as PFON enabling technolo-
gies. Section 3 presents the details of our proposed PFON design approaches
whose performance is analyzed in Section 4, while Section 5 concludes the
paper.

2 Related Work

2.1 Filterless Optical Networking

Since their original proposal in [10], passive filterless optical networks have
been extensively studied through theoretical and experimental analysis. A
detailed account of the FON concept, architecture, and design can be found
in [11], along with an early validation of the FON physical-layer performance
in [12]. Since then, extensive design and performance verification studies
have established FONs as a viable option for cost-efficient core, metro and
submarine networks.

The majority of the initial literature on FONs focused on their applications
in core networks, addressing aspects related to design, resource assignment
and operation. The problems of defining the node connectivity in the form of
passive fiber trees and the static version of the RSA problem for fixed optical
grid were addressed in [11], [13] for unprotected design, while [14] investigated
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1+1 dedicated optical layer protection. Elastic FONs were introduced in [15],
along with a heuristic approach for survivable RMSA with dedicated path
protection. An in-depth study of the RMSA problem in FONs was carried
out in [3] by developing an ILP formulation and a heuristic approach based
on genetic algorithm (GA). Dynamic connection provisioning in FONs was
addressed in [16] for terrestrial networks, while [17] investigated the resource
savings benefits of dynamic connection reconfiguration under periodic traf-
fic in filterless submarine networks. A control plane design based on path
computation element (PCE) was proposed in [18]. Trial deployments in pilot
networks based on FONs were carried out in Croatia (2012) and Germany
(2014) [19]. Vendor-interoperable FONs interfaces were proposed and exper-
imentally evaluated in [20], indicating great potential of this technology for
open line systems.

Telecom operators’ search for cost-efficient solutions that satisfy the pro-
liferating traffic in metropolitan areas has been fueling the recent interest in
filterless metro networks. [21] introduced a FON architecture for metro ap-
plications and developed a physical-layer model to assess their capacity and
scalability. A FON node architecture that exploits bidirectional transmission
over a single fiber was proposed in [22]. [23] proposed to double the capacity of
filterless metro optical networks by exploiting the full C+L band, and imple-
mented and validated extensions of the OpenConfig YANG model to support
the C+L band FON transmission. Techno-economic aspects of filterless metro
network solutions were studied in [24] and [25]. [24] defined a FON cost model
and analyzed the savings with respect to WSONs, while [25] investigated SDN
as a dynamic and agile control plane for FONs.

In [26], the authors investigated the problem of virtual service chaining in
filterless optical metro networks for dynamic traffic using a heuristic algorithm.
[27] defined the problem of survivable virtual network mapping (SVNM) in
FONs, highlighting the differences from SVNM in WSONs and jointly solving
the problems of fiber tree setup and SVNM with an ILP formulation. The
work was extended in [28] by studying virtual network embedding with virtual
link protection in FONs, while trying to minimize the network cost in terms
of equipment and overall spectrum consumption.

Driven by the operators’ interest to reduce equipment costs, the problem of
amplifier placement in FONs has received substantial interest from different
research groups lately. A GA-based approach for placing boosters, inline am-
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plifiers, and pre-amplifiers in FONs with the objective of minimizing amplifiers
cost by considering QoT parameters was proposed in [29]. In [30], the authors
developed algorithms for the allocation of amplifiers and transponders and
RSA in the open-source Net2Plan framework. The above efforts show that
filterless networking is a widely considered solution with relevant applications
in practical scenarios. A recent encompassing tutorial on FONs can be found
in [31].

Upon the proposal of the PFON concept in [5], a limited number of stud-
ies evaluated them towards FONs and WSONs in terms of resource usage
and cost. The authors in [32] proposed a traffic-adaptive exhaustive-search
algorithm for re-configuration of programmable optical switches in PFONs,
with the sole objective of minimizing the overall spectrum consumption. In
order to avoid spectrum waste generated by the drop-and-waste transmis-
sion, [7] proposed to combine PFONs with SDM technology where additional
spatial dimensions are utilized to eliminate undesirable signal splitting. A
heuristic algorithm for the routing, modulation format, spectrum, and core
allocation (RMSCA) problem in programmable filterless SDM networks was
proposed in [33], considering also the effect of inter-core crosstalk. Compared
to the aforementioned approaches, we provide an ILP optimization frame-
work for joint minimization of component usage and spectrum consumption
in PFONs. We present a single-step joint optimization approach that ob-
tains optimal solutions for smaller problem instances. Apart from considering
spectrum usage, as in the existing models in the literature, our optimization
approach considers the component cost as well, and aims at reducing the num-
ber of required EDFAs and the required size of the switch matrices in AoD
nodes by minimizing the degree of the deployed passive couplers.

2.2 Optical White Boxes
Optical white boxes were proposed as a technological solution allowing for
unprecedented flexibility in nodal architecture design and network provision-
ing [1]. The work in [1] analyzed the switching, routing and architectural
flexibility of this technology, and experimentally demonstrated its feasibility
and benefits. Procedures for synthesizing the nodal architecture to support
a given traffic mapping between input and output ports of the node can be
found in [34], [35]. The related analysis of scalability, power consumption and
cost indicates a decrease in the number of used optical backplane ports and
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the resulting cost and power consumption due to aggregation of channels into
fiber-switched port pairs that only use the optical backplane and bypass all
other optical components in the node.

Cost-efficient network planning approaches for white box-based elastic net-
works under static and dynamic traffic were proposed in [36]. Their common
objective is to dimension network nodes and perform RMSA for connection
requests so as to minimize the number of used components. The impact of
optical white box deployment to the availability of connections in the net-
work was evaluated in [37], showing a strong reduction in network downtime
due to the support of self-healing of node component failures. Cost-effective
planning of AoD-based networks under static, multi-hour and dynamic traf-
fic has been addressed in [38], [39], and [36], respectively. [40] investigated
physical-layer implications of AoD and proposed OSNR-aware procedures for
nodal architecture composition. Advantages of AoD have been demonstrated
in terms of scalability [36], energy efficiency [35], network reliability [37] and
resilience [41].

Note that in all of these studies, optical white boxes were used to create
complex AoD ROADM structures, where the optical backplane interconnects
other active components such as SSSs, amplifiers, or sub-wavelength switches.
However, in this paper we assume that the optical backplane uses only passive
components to split or couple signals between different ports when necessary,
as well as optical amplifiers for node loss compensation, without using any
filtering components.

3 PFON Design: RMSA and Node Setup

3.1 Problem Definition

The RMSA problem in programmable filterless networks based on white boxes
with the objective of minimizing spectrum usage, the need for amplifier de-
ployment inside nodes, and the required OB switch matrix size can be formally
defined as follows. Given a physical topology represented by a graph G(V, E)
comprising a set of nodes V and a set of links E , and a set of traffic demands
D, we must find a physical route through the network, select a modulation
format and assign the appropriate number of spectrum slots to each demand.
Moreover, we must determine the architecture of each node capable of sup-
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Figure 2: The impact of connection routing in programmable filterless networks on
the architecture of node 3 and the necessary amplifiers without (a) and
with trying to minimize signal splitting/coupling at node 3 (b).

porting the devised routing solution by configuring an appropriate number
and degree of passive couplers, and compensate for the incurred losses with
EDFAs. When solving the RMSA problem, the spectrum continuity and con-
tiguity constraints must hold, implying that a demand must use the same,
adjacent, spectrum slots along all links included in its path, and there can be
no spectrum overlapping among channels that carry useful signals and other
useful or unfiltered signals generated due to drop-and-waste transmission. In
our proposed approach, the objective of minimizing spectrum usage is mod-
eled by minimizing the highest used FSU index in the network. The objective
of reducing the component usage is modeled by minimizing the total degree
of passive splitters/couplers deployed in the network.

3.2 Illustrative Example
The impact of route selection on the degree of deployed passive components
and the subsequent need for amplification is illustrated in Fig. 2 for two valid
PFON solutions that serve a set of connections denoted with d1–d8, with a
focus on the configuration of the central node 3.

The choice of routes used for each demand determine the necessary splitters
and couplers. If connections di and dj share the same incoming link to node v

but are directed to different outputs, they need to be split at the ingress port.
This is the case for, e.g., d1, d2 and d3 in Fig. 2a, where a copy of each signal
appears as unfiltered at the outgoing links of node 3 traversed by the other
two connections. Analogously, if the two connections use the same outgoing
link towards node u but arrive at node v via different incoming links, they
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1:3 1:2

1 4
l1 l4

Node 3

d1

Figure 3: A detailed view of components traversed by connection d1 inside PFON
node 3. The amplifiers inside the node, shown in gray color, are deployed
as needed, depending on the total losses generated due to splitting, OB
switch traversals, and fiber attenuation on the last span of the ingress
link and the first span of the egress link.

need to be coupled at the egress port. This is the case for, e.g., d3 and d6
incoming to node 3 via links 1–3 and 2–3, respectively. In the proposed RMSA
approach, our goal is to perform connection routing such that the resulting
need for splitting/coupling (in terms of the total degree of the deployed passive
couplers) is minimized.

Connection routing and the resulting deployment of passive couplers affect
the required size of the OB switch and the need for amplification inside nodes.
The required OB switch size is a function of the sum of the ports of all compo-
nents that need to be deployed at the node. The deployment of amplifiers at
PFON nodes depends on the total loss experienced by connections that tra-
verse the node between the last line amplifier on the ingress link and the first
line amplifier on the egress link. This encompasses the loss due to splitting,
coupling and OB traversals inside the node, as well as attenuation on the last
span of the ingress link and the first span of the egress link. Conventional node
architecture assumes the deployment of pre-amplifiers and boosters at each
ingress and egress port, respectively. In our design approach, we leverage on
node architecture programmability to bypass the unnecessary amplifiers in-
side nodes, i.e., amplifiers whose absence yields signal power losses that can
be compensated by other existing amplifiers inside the node or at the links.

A more detailed view of the components traversed by connection d1 is shown
in Fig. 3. The figure shows the line amplifiers on links 1–3 and 3–4, with
highlighted distances l1 and l4. Inside each node, a connection passes through
the OB switch as many times as needed to traverse the necessary components.

A13



Paper A

Connections which undergo splitting and coupling at the node (e.g., d1 in
Fig. 2a) cross the OB three times, connecting (i) the input port of the node to
the splitter, (ii) the splitter to the coupler, and (iii) the coupler to the output
port of the node. These interconnections are denoted with red dashed lines
in Fig. 3. Connections which bypass the node modules (e.g., d8 in Fig. 2b)
traverse the OB only once, to connect the input and the desired output port. If
the loss experienced by a connection between the closest two line amplifiers at
the ingress and egress link does not exceed an acceptable, predefined threshold
that enables correct transmission, one or both amplifiers inside the node,
depicted in gray color in Fig. 3, can be omitted.

To this end, for each connection, we calculate the total loss between the
two closest amplification sites along the links incoming from and outgoing to
the adjacent nodes. We assume the insertion loss of a passive 1:N coupler
to be L1:N =10logN , insertion loss per OB cross-connection of LOB= 1 dB,
amplifier input power threshold of -18 dBm, power at the amplifier output of
0 dBm per channel, and fiber attenuation coefficient of Lα=0.2 dB/km. For
the example network from Fig. 2, distances li from node 3 to the first line
amplifier along a link to/from the neighboring node i equal l1=l2=l5=45 km,
l4=20 km, and l7= 30 km.

For the solution in Fig. 2a, the total loss experienced by connection d1
between the closest line amplifiers on the input fiber link from node 1 and on
the output fiber link to node 4 equals Ld1= Lα ·(l1+l4)+L1:3+L1:2+3·LOB =
23.7 dB. This value is below the input power threshold of the first line amplifier
on link 3–4, so the connection must be amplified at node 3, as depicted in
Fig. 3. The figure shows two amplifiers (i.e., at the input and the output
port), which are needed to accommodate for the losses of other connections
that use the same input and/or output ports of node 3 but traverse different
paths through the network and/or different components inside the node (as
shown in Fig. 2a).

Analogous to the above considerations, losses experienced by other connec-
tions between the two line amplifiers closest to node 3 equal Ld2= 22.4 dB,
Ld3= 23.7 dB, Ld4= 20.7 dB, Ld5= 20.4 dB, Ld6= 21.7 dB, Ld7= 9.7 dB,
Ld8= 15 dB. Hence, d1–d6 must be amplified at node 3, resulting in a total of
3 used EDFAs, as shown in Fig. 2a. The solution in Fig. 2b applies a slightly
different routing scheme, which results in a lower number and total degree of
splitters at node 3. In this case, losses for d2, d3, d6 and d8 equal L′

d2
= 21
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dB, L′
d3

= 24 dB, L′
d6

= 16 dB, L′
d8

= 11 dB, and a single deployed EDFA is
sufficient to support d2 and d3. As the example also illustrates, lower degree
of used passive splitters/couplers also reduces the propagation of unfiltered
signals to unwanted output ports, thus reducing the overall spectrum waste.

3.3 Single-step ILP Formulation of the RMSA Problem in
PFONs

The single-step ILP formulation for PFON design relies on the model from [5].
For consistency, we use similar notation in our formulation, but we simplify
and modify it to enable calculation of the splitter and coupler degrees.
Input parameters

• G(V, E): a directed graph with a set of nodes V, and a set of links E ;

• D: set of traffic demands, where each element d is associated to traffic
volume qd from source node sd ∈ V to destination node td ∈ V;

• P: set of physical routes, where each element Pd defines a set of K avail-
able candidate physical routes pd ∈ Pd for demand d ∈ D, and each
route is associated with a number of needed FSUs Fpd according to the
modulation format selection method in [3];

• τ(pd,pd̂): indicator for disjoint routes, equal to 0 when pd ∈ Pd and pd̂ ∈ Pd̂

are link disjoint, and 1 otherwise;

• Γ(pd,pd̂): set of links ∈ pd̂ unintentionally traversed by the established
optical channel for d over path pd due to the broadcasting via optical
splitters;

• α, β: objective function weighting coefficients;

• T: a large constant.

Variables

• xpd ∈ {0, 1}: equal to 1 if path pd ∈ Pd is used by d ∈ D, and 0 otherwise;

• fd ∈ Z+: the starting spectrum slot index for d;
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• Sv
(ûv,vu) ∈ {0, 1}: equal to 1 if any optical channel entering node v ∈ V
via ingress link (û, v) ∈ E is directed to the egress link (v, u), and 0
otherwise;

• av
(v,u) ∈ {0, 1}: equal to 1 if there are demands added at node v and

egressing towards node u, and 0 otherwise;

• dv
(û,v) ∈ {0, 1}: equal to 1 if there are demands ingressing from node û and

dropped at node v, and 0 otherwise;

• Lv
ûv ∈ {0, 1}: equal to 1 if a splitter is needed at the input port from node
û of node v, and 0 otherwise.

• Lv
vu ∈ {0, 1}: equal to 1 if a coupler is needed at the output port towards
node u of node v, and 0 otherwise.

• Ψ(d,d̂)
(pd,pd̂)

∈ {0, 1}: equal to 1 if paths pd and pd̂ are assigned to demands d

and d̂, respectively, and 0 otherwise;

• δ(d,d̂) ∈ {0, 1}: equal to 0 if the starting slot number of d is greater than d̂

(i.e., fd > fd̂), and 1 otherwise;

• Ci
v
(û,v) ∈ Z: the degree of the splitter traversed by optical channels entering
node v via ingress link (û, v);

• Co
v
(v,u) ∈ Z: the degree of the coupler traversed by optical channels exiting
node v via egress link (v, u);

• Ms: the maximum allocated frequency slot unit (FSU) among all network
links.

Objective function

Minimize: α ·Ms + β ·
∑
v∈V

(
∑

(û,v)∈E

Ci
v
(û,v)+

∑
(v,u)∈E

Co
v
(v,u)) (A.1)

Subject to

∑
pd∈Pd

xpd = 1 ∀d ∈ D (A.2)
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∑
d∈D

∑
pd∈Pd:(û,v),(v,u)∈pd

xpd ≤ T · Sv
(ûv,vu)

∀v ∈ V,∀(û, v), (v, u) ∈ E
(A.3)

∑
d∈D:sd=v

∑
pd∈Pd:(v,u)∈pd

xpd ≤ T · av
(v,u),∀(v, u) ∈ E (A.4)

∑
d∈D:td=v

∑
pd∈Pd:(û,v)∈pd

xpd ≤ T · dv
(û,v),∀(û, v) ∈ E (A.5)

T · Lv
ûv ≥

∑
(v,u)∈E

Sv
(ûv,vu) + dv

(û,v) − 1, (A.6)

2 · Lv
ûv ≤

∑
(v,u)∈E

Sv
(ûv,vu) + dv

(û,v), (A.7)

∀v ∈ V,∀(û, v) ∈ E .

Ci
v
(û,v) ≥

∑
(v,u)∈E

Sv
(ûv,vu) + dv

(û,v) − T · (1− Lv
ûv) (A.8)

∀v ∈ V,∀(û, v) ∈ E .

xpd + xpd̂ −Ψ(d,d̂)
(pd,pd̂)

≤ 1

∀(d, d̂) ∈ D,∀pd ∈ Pd,∀pd̂ ∈ Pd̂

(A.9)

xpd + xpd̂ − 2 ·Ψ(d,d̂)
(pd,pd̂)

≥ 0

∀(d, d̂) ∈ D,∀pd ∈ Pd,∀pd̂ ∈ Pd̂

(A.10)
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fd̂ − fd ≤ T · δ(d,d̂) − 1,∀d, d̂ ∈ D (A.11)

fd̂ − fd ≥ T · δ(d,d̂) − T,∀d, d̂ ∈ D (A.12)

fd +
∑

pd∈Pd

Fpd · xpd − 1 ≤ Ms ∀d ∈ D (A.13)

fd − fd̂ + T·(δ(d,d̂) + Ψ(d,d̂)
(pd,pd̂)

) ≤ 2·T− Fpd

∀(d, d̂) ∈ D,∀pd ∈ Pd,∀pd̂ ∈ Pd̂, τ(pd,pd̂) = 1
(A.14)

fd − fd̃ + T·(δ(d,d̃) + Ψ(d,d̂)
(pd,pd̂)

+ xpd̃)≤3·T− Fpd

∀(d, d̂, d̃)∈D,∀pd∈Pd,∀pd̂∈Pd̂,∀pd̃∈Pd̃ :Γ(pd,pd̂) ∩ pd̸̃={∅}
(A.15)

fd̃ − fd + T·(δ(d̃,d) + Ψ(d,d̂)
(pd,pd̂)

+ xpd̃)≤3·T− Fpd̃

∀(d, d̂, d̃)∈D,∀pd∈Pd,∀pd̂∈Pd̂,∀pd̃∈Pd̃ :Γ(pd,pd̂) ∩ pd̸̃={∅},
(A.16)

The objective (A.1) is to minimize the index of the maximum FSU used in
the network Ms and the total degree of passive couplers deployed at network
nodes. The weighting coefficients α and β allow for prioritization between the
two contributions of the objective function according to the network operator
preferences. Constraint (A.2) guarantees that a single route is assigned to each
demand d. The degrees of passive splitters and combiners needed to route
the optical channels in node v are determined by (A.3)–(A.8). (A.3)–(A.5)
model the internal routing at node v for pass through, added and dropped
connections, respectively. Exact splitter degrees are then calculated in (A.6)–
(A.8) by modelling an if-then-else relationship between

∑
(v,u)∈E

Sv
(ûv,vu) +dv

(û,v)
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and Ci
v
(û,v), using Lv

ûv as an auxiliary variable. If
∑

(v,u)∈E
Sv

(ûv,vu) + dv
(û,v) = 1,

which means that all connections entering node v from û either pass through
towards the same node u or get dropped at v, then Ci

v
(û,v) needs to be 0

as no splitter is needed. If
∑

(v,u)∈E
Sv

(ûv,vu) + dv
(û,v) > 1, which means that

connections entering node v from û are directed towards different nodes u

and/or get dropped at v, then Ci
v
(û,v) needs to be equal to that sum. An

analogous procedure is carried out for each egress port of every node v in
order to model the need for deploying couplers at each port and use it as an
auxiliary variable to determine the exact degrees of the couplers Co

v
(v,u).

Constraints (A.9)–(A.10) and (A.11)–(A.12) determine the values of Ψ(d,d̂)
(pd,pd̂)

and δ(d,d̂), respectively, needed for spectrum assignment. Spectrum contigu-
ity is enforced by (A.13). Spectrum continuity and non-overlapping of the
spectrum assigned to different traffic demands that share common link(s) are
enforced by (A.14). (A.15) and (A.16) ensure that the spectrum slots occupied
by unfiltered optical channels are not assigned to any other demand d̃.

Note that the above formulation can be conveniently transformed into the
variant which only aims at minimizing spectrum usage without considering
the splitter degrees. This transformation is carried out by eliminating the Ci
and Co from the objective function, and by omitting constraints (A.3)–(A.8).

3.4 Two-Step ILP Formulation of the RMSA Problem in
PFONs

To reduce complexity and obtain sub-optimal results for realistic problem
instances, we formulate a two-step ILP model for RMSA in PFONs. In the first
step, the model tries to find a lower bound on the highest used spectrum slot
index in the network through routing, without considering spectrum allocation
to individual requests. After solving this step, the values of the xpd variables
are set, and used as input for spectrum allocation in the second step.

Step 1: Spectrum-aware routing
In the first step, the model aims at solving the routing sub-problem while

avoiding the complexity associated with precise allocation of spectrum to indi-
vidual requests. In addition to using the same variables related to connection
routing as in the 1-step ILP model above, this phase introduces two additional
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variables:

• Me
s : an estimate of the maximum used FSU index among all network links;

• m(uv,pd) ∈ {0, 1}: an auxiliary variable whose value equals 1 if the unfil-
tered signal generated from pd traverses link (u, v), and 0 otherwise.

Objective function

Minimize: α ·Me
s + β ·

∑
v∈V

(
∑

(û,v)∈E

Ci
v
(û,v)+

∑
(v,u)∈E

Co
v
(v,u)) (A.17)

Subject to

Constraints (A.2)–(A.10)

K ·m(uv,pd) ≥
∑
d̂∈D̂

∑
p∈pd̂, Γ

(pd,pd̂)
∩pd̃ ̸={∅}

Ψ(pd,pd̂),

∀d ∈ D,∀p ∈ pd,∀(u, v) ∈ E

(A.18)

m(uv,pd) ≤
∑
d̂∈D̂

∑
p∈pd̂, Γ

(pd,pd̂)
∩pd̃ ̸={∅}

Ψ(pd,pd̂),

∀d ∈ D,∀p ∈ pd,∀(u, v) ∈ E

(A.19)

∑
d∈D

∑
p∈pd,(u,v)∈pd

xpd · Fpd +
∑
d∈D

∑
p∈pd

m(uv,pd) · Fpd ≤ Me
s ,

∀(u, v) ∈ E
(A.20)

The objective of the routing step, given in (A.17), is to minimize the sum
of the estimated value of the maximum used FSU index Me

s and the total
degree of passive couplers deployed at network nodes. The value of m(uv,pd) is
determined from connection routing by (A.18) and (A.19), and used in (A.20)
to approximate the maximum used FSU index on any link. The spectrum
continuity and contiguity constraints are not considered in this phase, so an
estimate on the maximum used FSU index is computed as the sum of the
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number of slots used to carry the traffic over any link and the slots used by
unfiltered signals traversing that link. This represents a lower bound on the
maximum FSU since the spectrum continuity and contiguity constraints lead
to spectrum fragmentation.

Step 2: Spectrum assignment
After determining the routing and, consequently, the values of the xpd vari-

ables, the spectrum is allocated to the individual requests in the second step.

Objective function

Minimize: Ms (A.21)
Subject to

Constraints (A.11)–(A.12)

fd + Fpd − 1 ≤ Ms,∀d ∈ D : xpd = 1 (A.22)

fd − fd̂ + T·δ(d,d̂) ≤ T− Fpd ,

∀(d, d̂) ∈ D,∀pd ∈ Pd,∀pd̂ ∈ Pd̂ : xpd = 1 ∧ xpd̂ = 1
(A.23)

fd − fd̃ + T·δ(d,d̃) ≤ T− Fpd ,

∀(d, d̂, d̃) ∈ D,∀pd ∈ Pd,∀pd̂ ∈ Pd̂,∀pd̃ ∈ Pd̃ :

Γ(pd,pd̂) ∩ pd̃ ̸= {∅} ∧ xpd = 1 ∧ xpd̂ = 1 ∧ xpd̃ = 1

(A.24)

The objective of the spectrum assignment step, given by (A.21), is to minimize
the maximum used FSU index in the network. A contiguous set of spectrum
slots is allocated to each demand using (A.22). Constraint (A.23) avoids spec-
trum overlap among link-sharing demands and guarantee spectrum continuity.
This constraint is analogous to (A.14) in the 1-step model. Constraint (A.24)
avoids spectrum overlap of useful and unfiltered signals, replacing (A.15) and
(A.16) from the 1-step model.
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3.5 Complexity Analysis

The complexity of single-step ILP formulation in terms of the number of
variables and constraints can be expressed as (A.25) and (A.26), respectively.

Nvar = 4|V|2 + |D|2 · (1 + K2) + |D| · (1 + K) + |V| · |E|2 (A.25)

Ncnstr = 2|D| · (1 + |D|) + K2 · |D|2 · (3 + 2K · |D|)
+|V| · |E| · (E + 3)

(A.26)

To simplify the expressions, we can assume a fully-connected demand ma-
trix where the number of demands and links grow linearly by |V|2. By con-
sidering the dominant factors, the number of variables and constraints can be
approximated Nvar ≈ |V|5 + K2 · |V|4 and Ncnstr ≈ K3 · |V|6, respectively.

The number of variables and constraints for the first step of the two-step
ILP formulation are expressed in (A.27) and (A.28), respectively.

Nvar = K2 · |D|2 + |V| · |E|2 + 6|V|2 + K · |D| · (1 + |E|) (A.27)

Ncnstr = 2K2 · |D|2 + |V| · |E|2 + 2K · |D| · |E|+ |D|+ 3|E| (A.28)

By following the same simplification assumptions as above, their complexity
can be approximated by Nvar ≈ |V|5 +K2 · |V|4 and Ncnstr ≈ |V|5 +2K2 · |V|4,
respectively. The main factor in reducing complexity is the lower number of
constraints compared to the single-step ILP formulation.

Finally, the number of variables and constraints for the second step of ILP
formulation can be expressed as (A.29) and (A.30), respectively.

Nvar = 2|D|2 (A.29)
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Figure 4: Loss contributions considered during amplifier placement.

Ncnstr = |D|3 + 3|D|2 + |D| (A.30)

After simplifying, they can be approximated as Nvar ≈ 2|V|4, and Ncnstr ≈
|V|6. The strict conditions applied in (A.24) decrease the actual number of
constraints which results in complexity reduction compared to the single-step
ILP. In section 4.1, a comparison of the ILP execution times offers further
insights into their run-time complexity.

3.6 Amplifier Placement
For the cost-minimizing RMSA solutions obtained by the ILP formulations,
the placement of EDFAs is performed by computing the total loss experienced
by each connection at each node, and deploying the EDFAs when necessary
to compensate for these losses. Note that this work is concerned only by node
architecture design, where our focus is on the placement of amplifiers inside
nodes for node loss management purpose. We assume that the optical line
system is already deployed and optimized for span loss management and that
the launch channel power does not exceed the threshold for nonlinearities.

The pseudocode of the amplifier placement subroutine is shown in Algo-
rithm 1. Fig. 4 shows the loss contributions considered during amplifier
placement (we use the example of connection d1 from Fig. 3). The amplifier
placement algorithm takes as input the network topology G(V, E), the routing
solution R, the line amplifier output power Pout and input power threshold
Pin, the insertion losses of the OB switch LOB and the deployed 1:N couplers
L1:N , as well as the fiber attenuation Lα.
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Algorithm 1: Amplifier placement procedure.
Data: G(V, E), R, Pout, Pin, LOB , L1:N , Lα.
Result: Placement of amplifiers at each node.

1 Pbudget = Pout − Pin;
2 for v = 1 to |V| do
3 for pd = 1 to |R| s.t. v ∈ pd do
4 û← predecessor of v in pd;
5 u← successor of v in pd;
6 L← loss of d between the last amplifier on link (û,v) and the

used output port of v;
7 L← loss of d between the used input port of v and the first

amplifier on link (v,u);
8 LT OT ← total loss of d between last amplifier on (û,v) and first

amplifier on (v,u);
9 if LT OT > Pbudget then

10 if L > Pbudget and L > Pbudget then
11 Place amplifier at used input and output ports of v;
12 if L > Pbudget and L ≤ Pbudget then
13 Place amplifier at used input port of v;
14 if L ≤ Pbudget and L > Pbudget then
15 Place amplifier at used output port of v;
16 if L ≤ Pbudget and L ≤ Pbudget then
17 Place amplifier at used input/output port with a higher

degree coupler; or at input if both couplers are of same
degree;

For each network node v, the algorithm processes the physical routes pd

of all demands d that traverse node v (lines 2-3). First, the predecessor and
successor nodes in path pd are identified, denoted as û and u, respectively
(lines 4-5). Then, the loss contributions for each traversed components are
calculated, as illustrated in Fig. 4 for connection d1 and node v = 3.

L denotes the loss between the last amplification site on the ingress link
(û, v) and the output of node v. It is calculated as the sum of fiber attenuation
on link (û, v), denoted as Lprev, and the internal node loss Lnode. Analogously,
L refers to the losses between the input of node v and the first line amplifier
on link (v, u). It is calculated as the sum of Lnode and fiber attenuation on
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the first span of link (v, u), denoted as Lnext. LT OT measures the total loss
between the two closest line amplifiers at the ingress and egress links of node
v. If LT OT exceeds the power budget Pbudget between these two line amplifiers
(line 9), the signal requires extra amplification at the node. In case both L and
L exceed Pbudget, an amplifier must be placed at the input and at the output
port of node v associated to links (û, v) and (v, u) (lines 10-11). Otherwise,
one amplifier is sufficient and its placement is determined as follows. If only
the value of L exceeds Pbudget, an amplifier is placed at the input port of
node v connecting it to node û (lines 12-13). Conversely, if only L exceeds
the threshold, an amplifier is placed at the output port of v connecting it to
u (lines 14-15). In case both L and L are below the Pbudget threshold, the
necessary amplifier can be added at either of the two ports. In this case, the
port that hosts a passive coupler of a higher degree is chosen, whereas the
input port is selected if the two degrees are the same (lines 16-17).

4 Numerical Results
We evaluate the performance of the proposed single-step and two-step ILPs for
the cost-efficient PFON design in terms of spectrum and component usage.
Spectrum consumption considerations refer to the highest used FSU index
in the network and the portion of spectrum wasted due to drop-and-waste
transmission. Component usage considerations include the number and the
degree of used passive couplers, the number of used EDFAs and the maximum
size of the deployed OB switch matrix.

The results used in the analysis are obtained via simulations on the German
and the Italian backbone networks, and a realistic regional network denoted
as Reference network 1 [3]. The topologies are shown in Fig. 5 and their char-
acteristics are summarised in Table 1. Each link is assumed to comprise one
fiber per direction supporting 320 FSUs and additional fibers can be deployed
in case capacity is exceeded [3]. Links are equipped with pre-deployed line
amplifiers that compensate for the span losses. Adopting a similar approach
as in [42], we assume even spacing of line amplifiers, whose value is varied
in the analysis. We consider a multi-period scenario with 5 traffic periods of
increasing traffic for the German and Italian networks, and 3 traffic periods
for Reference network 1 [3]. At every period, the traffic volume is distributed
among each node pair and direction in a non-uniform way as in [3]. We assume
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Table 1: Characteristics of Network Topologies
Topology Nodes Links Average nodal degree
German network 7 11 1.57
Italian network 10 15 1.5
Reference network 1 14 19 1.35

that each source-destination pair combines all the traffic volume in one direc-
tion into a single demand d ∈ D. Unless otherwise stated, we assume that
reconfiguration is performed during the transition between traffic periods, i.e.,
the model is solved independently for each period. The weighting coefficients
α and β are set to 1, which allows for balancing the two contributions of the
same order of magnitude.

In Sec. 4.1, we first compare the results obtained by the single-step and
two-step ILP formulations for smaller problem instances, i.e., the smallest,
German topology and lighter network traffic load. All solutions are obtained
using the Gurobi 7.5 solver[43] using 4 CPUs per problem instance, running
on a server with 2.1 GHz Intel Xeon CPU and 128 GB of RAM. The results
obtained by the single- and the two-step model for the PFON architecture are
denoted as PF-RSA and PF-R+SA, respectively.

We then analyze the performance of the two-step ILP on larger problem in-
stances in Sec. 4.2, comparing the proposed PFON solutions to FON and
WSON benchmarks. The WSON solutions, denoted as WSON-RSA and
WSON-R+SA for the equivalent single- and two-step approaches, were ob-
tained by modifying the ILP from Sec. 3.3 to omit the PFON-related vari-
ables and constraints. For example, the modified single-step ILP formulation
for WSON minimizes the maximum used spectrum slot (A.21) and uses con-
straints (A.2) and (A.13)–(A.14). The baseline FON solutions are obtained by
the heuristic from [3] for scalability reasons. We also compare the proposed
multi-criteria PFON solutions to those aimed only at spectrum minimiza-
tion (i.e., setting α=1 and β=0 to disregard component usage), denoted as
PF-SM-RSA and PF-SM-R+SA for the single-step and two-step approach,
respectively.

Finally, we consider a scenario without reconfiguration between traffic peri-
ods to model the case where complete reprogramming of optical nodes is not
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Figure 5: The German (a), the Italian (b) and the Reference network 1 topology
(c) used in the simulations. The number next to each link indicates its
length in km.
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Table 2: Summary of Optimization Models
Abbreviation Model
FON Filterless optical networks solu-

tion
WSON-RSA Single-step ILP solution for

WSON
WSON-R+SA Two-step ILP solution for

WSON
PF-RSA Single-step ILP solution for

PFON
PF-R+SA Two-step ILP solution for PFON
PF-SM-RSA Spectrum minimizing single-step

ILP solution for PFON
PF-SM-R+SA Spectrum minimizing two-step

ILP solution for PFON
PF-R+SA-TD Two-step ILP solution for PFON

with traffic domination

desirable by a network operator. Hence, an approach based on total traffic
domination, inspired by [44] and denoted as PF-R+SA-TD, is introduced and
tested on the German network topology. This approach optimizes connection
routing (i.e., runs the first step of the two-step ILP) only once, for the traf-
fic period with the largest total traffic demand. The resulting routing and
node configuration are applied to serve the demands in earlier traffic periods,
while allowing only for the optimization of the spectrum (obtained by solving
the second step of the two-step ILP) in each period. All models and their
abbreviations are summarized in Table 2.

4.1 Single-step and Two-step ILP Comparison
To assess the quality of the sub-optimal solutions obtained by the two-step ILP
formulation, we compare them to the optimal solutions of the single-step ILP.
Due to the prohibitively high complexity of the single-step ILP approach,
optimal results could only be obtained for smaller-sized problem instances,
i.e., those with a lower traffic load. To this end, we only use the German
network topology serving half of the requests from the traffic matrices, i.e., 21
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connection request serving 43.5 Tbit/s of total traffic for the highest load.
Fig. 6a shows the maximum FSU index used by the single- and two-step

ILPs for PFON and WSON architectures. The optimal PF-RSA solution
obtains, on average, only 1.6% lower maximum FSU than the sub-optimal
two-step approach PF-R+SA. This advantage equals 1.7% for the variant
where only spectrum usage is minimized (see PF-SM-RSA vs. PF-SM-R+SA)
and 2.8% for the case of WSON (see WSON-RSA vs. WSON-R+SA), which
indicates strong potential of the two-step approach to obtain solutions of very
high quality. Depending on the traffic load, the PF-RSA solutions use between
10% and 18% more spectrum than WSON-RSA, and the trend is analogous
for the two-step approach.
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Figure 6: Single-step (RSA) and two-step (R+SA) ILP comparison for 21 traffic
demands in the German network.

Fig. 6b shows the sum of the degrees of passive devices used for the single-
and two-step ILPs solutions. Here, too, the two approaches have very close
performance, with a < 1% gap on average over all traffic periods. However,
differences are observable between the single- and multi-objective versions of
the models. Since the single-objective variant does not consider the degree of
the passive components, it tends to yield a higher total degree than the variant
which considers it jointly with the spectrum. Overall, the spectrum-only
minimizing ILP approaches tend to obtain on average 7% lower maximum FSU
usage than those that consider the more complex objective, at the expense of
16% higher average degree of the used components.

Table 3 compares the execution times of the single-step and two-step ILP
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Table 3: Solving Times of the ILP Formulations

Solution Run time
21 demands 42 demands

WSON-RSA 16 minutes 13.87 days
WSON-R+SA 0.14 second 13.79 seconds
PF-RSA 4.2 days 28 days (non-optimal)
PF-R+SA 0.46 second 0.62 hours
PF-SM-RSA 3.6 hours 28 days (non-optimal)
PF-SM-R+SA 0.218 second 12.74 hours

formulation as an indicator of their run-time complexity. Apart from the in-
stances with 21 request examined above, we test the approaches on a set of
problem instances with full connectivity (i.e., 42 connection requests) to im-
pose a greater strain on the ILPs. Results confirm the much lower complexity
of the two-step model, which permits its applicability to problem instances of
realistic sizes. In some cases, the execution of the single-step ILPs was termi-
nated after 28 days without finding the optimal solution. In cases when both
formulations were solved to the optimum, the two-step one was solved in 4
to 5 orders of magnitude shorter time than the single-step one. For example,
the running time of PF-R+SA with 21 demand was 7.9 · 105 times shorter
than that of PF-RSA. The above analysis shows that the two-step ILP for-
mulation can find near-optimal solutions within a much shorter time than the
single-step ILP.

4.2 Comparison of PFONs, FONs and WSONs
To evaluate the resource usage of PFONs, we compare the proposed two-
step ILP with FON and WSON architectures under fully-connected traffic
matrices for different network topologies. Figs. 7a, 7b, and 7c show the high-
est used FSU index for the different design strategies and a varying traffic
load for the German, Italian network, and Reference network 1, respectively.
The PFON architecture drastically reduces the spectrum usage compared to
FONs. On average over all traffic scenarios for the German topology, PF-
R+SA and PF-SM-R+SA use 43% and 45% less spectrum than the FON
solution, respectively. The same trend is observed for the larger topologies.
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For the Italian network, the PF-R+SA and PF-SM-R+SA schemes both use
38% less spectrum than FON on average. The analogous reduction over FON
obtained by the two approaches for the Reference 1 network is 59% and 64%,
respectively. The average overhead in spectrum usage compared to WSON
solutions is 43% and 42% (German network), 66% and 65% (Italian network),
and 66% and 61% for the PF-R+SA and PF-SM-R+SA schemes, respectively.
The observed performance trends can be motivated as follows. In networks
with lower connectivity, such as the Reference 1 topology, FON solutions have
the highest spectrum usage for similar traffic loads compared to the more
connected topologies, which can be explained with low flexibility in fiber tree
design and connection routing. There, the PFON solutions obtain the most
significant advantage over FON. Conversely, in topologies with higher connec-
tivity, such as the German network, PFON again leverages greater flexibility
in node configuration and route selection and achieves the lowest spectrum
usage overhead over WSON architecture. This confirms the premise that the
programmable filterless network represents a good compromise solution be-
tween passive filterless and filtered, wavelength-switched optical networks in
terms of spectrum consumption.
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Figure 7: The maximum used frequency slot unit (FSU) for the three networks.

A deeper insight into the amount of spectrum wasted due to the drop-and-
waste transmission is provided by Fig. 8. We express it as the ratio between
the number of FSUs occupied by unfiltered channels and the total utilized
number of FSUs. The PFON solutions waste significantly less spectrum than
FON, where PF-R+SA and PF-SM-R+SA yield 44% and 36% lower spectrum
dissipation on average over all network topologies, respectively. These results
also reveal that the joint consideration of splitting and spectrum minimization
leads to more efficient spectrum usage through the reduction of spectrum
waste.
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Figure 8: The average percentage of wasted spectrum for the three networks over
all traffic periods.

The extent of unwanted distribution of signals to unintended destinations
in PFONs and in FONs is compared in Fig. 9. We define a metric which we
refer to as the unintended recipient metric, calculated as the ratio between
the number of nodes that receive unwanted signals via unfiltered spectrum
and the total number of demands. In a passive tree of N nodes, each demand
will be unintentionally received by (N − 2) nodes (i.e., all nodes in the tree
except the source and the intended destination), so this metric for the FON
solutions based on fiber trees can be calculated as a constant. As can be seen
in the figure, PFON reduces the average extent of unwanted broadcasting in
the network by 21%, 39% and 50% compared to FON for the three considered
networks, respectively. Further reduction of this metric could be achieved by
incorporating it into the ILPs as an objective or a constraint, which is beyond
the scope of this paper. Moreover, combining the programmable filterless ar-
chitecture with SDM can in some cases completely eliminate unwanted signal
broadcast, as shown in [7].

In the following, we analyse the component usage performance of the pro-
posed approach. Fig. 10, shows the sum of the degrees of passive couplers
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Figure 9: The average unintended recipient metric for the three networks.

deployed in the three networks on average over the traffic periods. In all
cases, the multi-objective PF-R+SA outperforms PF-SM-R+SA. PF-R+SA
decreases the value of this parameter by 16% compared to PF-SM-R+SA for
the German topology, whereas the average value of the highest FSU index used
by the two approaches over all traffic periods (shown in Fig. 7) are within 5%
difference. The reduction in the sum of coupler degrees obtained by PF-R+SA
is 14% for the Italian and 17% for the Reference network 1, at a spectrum us-
age overhead of 7% and 10%, respectively, compared to PF-SM-R+SA. These
values indicate that jointly optimizing spectrum usage and splitter degree re-
duces spectrum waste without adversely affecting the maximum FSU usage.

Fig. 11 shows the total number of EDFAs deployed at network nodes by
the considered approaches in the highest loaded traffic scenario for the three
networks. To investigate the impact of line amplifier spacing and input power
thresholds, we consider the scenarios with amplifier spacing values of 60, 75,
and 100 km, and amplifier input power thresholds of -12, -15 and -18 dBm,
as reported in the literature (e.g., [45]). The nodes in FONs and WSONs
are hard-wired, with pre-amplifiers and boosters placed at each ingress and
egress port, as shown in Fig. 1. Therefore, the number of deployed EDFAs in

A33



Paper A

5.4 16.2 32.8 55.0 82.8
Network traffic volume [Tb/s]

30

40

50

60

70
Su

m
 o

f d
eg

re
es

 o
f p

as
siv

e 
de

vi
ce

s
PF-R+SA
PF-SM-R+SA

(a) German network

5.3 16.3 32.7 54.1 81.8
Network traffic volume [Tb/s]

40

60

80

100

120

140

160

Su
m

 o
f d

eg
re

es
 o

f p
as

siv
e 

de
vi

ce
s

PF-R+SA
PF-SM-R+SA

(b) Italian network

7.8 19.7 56.7
Network traffic volume [Tb/s]

40

60

80

100

120

140

160

180

Su
m

 o
f d

eg
re

es
 o

f p
as

siv
e 

de
vi

ce
s

PF-R+SA
PF-SM-R+SA

(c) Reference network 1

Figure 10: The average sum of the degrees of passive couplers deployed in the three
networks over all traffic periods.
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Figure 11: The total number of amplifiers used at the nodes for the three networks,
for varied line amplifier spacing and input power threshold.

those architectures is fixed, and shown with a red dashed line in the figures.
The PFON solutions require significantly fewer amplifiers than FON/WSON.
The proposed PF-R+SA design approach performs the best in all considered
settings. The advantages for the German topology are the greatest under
amplifier spacing of 60 km and input power threshold of -18 dBm, where the
PF-R+SA requires 80% fewer EDFAs at network nodes than FON/WSON.
In Reference network 1, PF-R+SA obtains the greatest advantage for the 100
km amplifier spacing, where it decreases the number of amplifiers by 81%
compared to both FON and WSON under the input power threshold of -18
dBm. This can be explained by the fact that there are 8 links with a length
of 204 km and line amplifiers are installed close to the nodes of those links.
The savings in nodal amplifier deployment are enabled by a reduction in the
degree of passive splitters that lowers the insertion losses, combined with the
relatively short distances between the last line amplifier on the incoming link
and the first line amplifier on the outgoing link. As lower splitting degrees also
create less unfiltered signals, the proposed PFON design brings considerable
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4 Numerical Results

savings in terms of EDFA usage while maintaining low spectrum consumption.
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Figure 12: Comparison of period-independent and traffic domination approaches
for the German topology.

On average over all amplifier threshold and placement scenarios, PF-R+SA
reduces the number of amplifiers used at network nodes by 60%, 52%, and 62%
compared to FON/WSON for the German, Italian, and Reference networks,
respectively. It also uses 19%, 11% and 21% fewer amplifiers than PF-SM-
R+SA on average, respectively.

The number and the size of switching components required to support the
PFON and WSON solutions for different network topologies is reported in Ta-
ble 4. The modest OB switch matrix dimensions indicate a strong advantage
of the PFON architecture in terms of the cost of active switching components
compared to the conventional WSON architecture. Namely, each ROADM
node of degree d would require d SSSs in broadcast&select configuration, and
2d in route&select configuration. A PFON node, on the other hand, only
requires one OB switch matrix to support the required functionalities. This
results in an 84%, 83% and 82% reduction of the number of used optical
switches for the three network topologies compared to a route&select WSON,
respectively.

Finally, Figs. 12a, 12b, and 12c show the highest used FSU index, the sum
of the degrees of passive couplers, and the spectrum waste for the period-
independent planning scheme and the traffic domination approach in the Ger-
man network, respectively. The sum of coupler degrees of PF-R+SA-TD for
all traffic volumes is the same since connection routing and node configuration
of the highest-loaded traffic period (traffic demand 5) are used in the other
periods as well. The results reveal minor variations in the coupler degree
sum (Fig. 12b) and spectrum waste (Fig. 12c) in the first traffic period, but
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Table 4: Usage of Optical Switches for the Different Topologies
Network
topol-
ogy

Maximum
OB
switch
size for
PFON

Number
of OB
switches
for PFON

Number
of SSSs
for
WSON

German 20 × 20
(node 3)

7 44

Italian 34 × 34
(node 7)

10 60

Reference
1

32 × 32
(node 12)

14 76

no substantial difference between PF-R+SA and PF-R+SA-TD in terms of
the highest used FSU. This indicates the potential of the proposed approach
to maintain good performance while being attuned to an operator’s needs,
priorities and practical limitations.

5 Conclusion
The paper proposed a detailed design framework for programmable filterless
optical network (PFON) architecture based on coherent elastic transmission
and optical white box switches. The routing, modulation format and spec-
trum assignment problem in these networks was combined with the node ar-
chitecture design problem and formulated as an integer linear program with
the objective of minimizing spectrum usage and passive coupler degrees. To
cope with the prohibitive complexity of the joint formulation, the problem
was decomposed into two consecutive steps, allowing to obtain near-optimal
solutions in drastically shorter time. Compared to passive filterless optical net-
works (FONs), the proposed PFON architecture decreases the highest used
spectrum slot index by up to 64%, reduces the spectrum waste by up to 44%,
and lowers the average extent of unwanted signal broadcasting in the net-
work by up to 50%. Compared to conventional wavelength-switched optical
networks (WSONs), PFON uses down to only 16% of the total number of
optical switches at a trade-off with increased spectrum usage and reduces the

A36



References

number of optical amplifiers at network nodes by up to 81% compared to
FON/WSON. This indicates the potential of the proposed programmable fil-
terless architecture to obtain agile, flexible solutions at a fraction of WSON
cost and FON spectrum usage.
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1 Introduction

Abstract

Exponential growth of bandwidth demand, spurred by emerg-
ing network services with diverse characteristics and stringent
performance requirements, drives the need for dynamic oper-
ation of optical networks, efficient use of spectral resources,
and automation. One of the main challenges of dynamic,
resource-efficient EONs is spectrum fragmentation. Frag-
mented, stranded spectrum slots lead to poor resource utiliza-
tion and increase the blocking probability of incoming service
requests. Conventional approaches for SD apply various crite-
ria to decide when, and which portion of the spectrum to de-
fragment. However, these polices often address only a subset of
tasks related to defragmentation, are not adaptable, and have
limited automation potential. To address these issues, we pro-
pose DeepDefrag, a novel framework based on reinforcement
learning that addresses the main aspects of the SD process:
determining when to perform defragmentation, which connec-
tions to reconfigure, and which part of the spectrum to reallo-
cate them to. DeepDefrag outperforms the well-known OF-FF
defragmentation heuristic, achieving lower blocking probabil-
ity under smaller defragmentation overhead.

1 Introduction
The ongoing drastic growth in bandwidth-intensive applications with dynamic
behaviour and high-performance requirements, including high-resolution video
on demand, cloud computing, Internet of Things applications, and content
delivery networks, strains the optical backbone networks. To satisfy these re-
quirements in a cost-efficient manner, the network must support dynamic, au-
tomated, and resource-efficient operations. elastic optical networks (EONs)[1]
are considered a future-proof solution to satisfy these needs due to their ability
to allocate spectrum at a fine granularity that matches the spectrum require-
ments of various service requests served by lightpaths. However, spectrum
fragmentation is a major challenge for the resource efficiency of dynamic EONs
[2] where service requests can arrive and depart at any point in time.
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spectrum fragmentation (SF) is generated by the dynamic departures of op-
tical connections that leave relatively small, isolated, unused spectrum chunks
scattered across the available fiber bandwidth [3]. Accommodating newly ar-
riving service requests requires the availability of contiguous and continuous
spectrum slots, which is not possible under fragmented spectrum conditions
with a detrimental effect to service blocking ratio (SBR).

Various spectrum defragmentation (SD) strategies have been proposed to
help solve this issue. SD plays a crucial role in consolidating the spectrum
usage, improving the utilization of the spectrum grid and reducing the SBR
[4]. SD aims at reorganizing the spectrum allocation of different connections
such that more (incoming) services can be accommodated, maximizing the
spectrum use. The main tasks of SD in dynamic network scenarios entail:

1. deciding on the best time to perform SD, amidst arbitrary arrival and
departures of service requests;

2. deciding on the number and the order of distinct network connections
to be reconfigured, and

3. finding the alternative spectral resources and reallocating the reconfig-
ured connections.

Spectrum reallocation aimed at minimizing spectrum fragmentation by recon-
figuring a minimum number of connections has been proven to be NP-complete
already in the static scenario, where the set of connections does not change
over time [5]. Traffic dynamicity further exacerbates the problem complexity
since the set of connections present in the network constantly changes.

SD schemes can in general be classified as proactive or reactive [2]. Proac-
tive schemes are executed regardless of whether the network is experiencing
spectrum blocking, and are run either periodically or based on some thresh-
old. Reactive schemes, on the other hand, are triggered by the blocking of
service requests. SD can be performed by reallocating the spectrum only, or
by combining it with connection rerouting. SD approaches that do not in-
terrupt the running services are known as hitless [6]. Examples of hitless SD
techniques include push-pull retuning [7], where the spectrum occupied by a
connection to be re-allocated is first expanded to include the target spectrum
as well, and then shrunk; and make-before-break [4], where a new connection
is established over the target spectrum before the original one is torn down.
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2 Related Work

The main objective of SD is to decrease the SBR. However, frequent reallo-
cation of a large number of connections is undesirable because of the extra re-
configuration overhead. Hence, SBR, the number of connection reallocations,
and the number of SD cycles should be considered jointly in order to balance
the benefits and drawbacks of SD. Moreover, SD methods should adapt to the
changing network conditions to ensure the most appropriate set of actions at a
given time. Existing SD approaches rely on, e.g., integer linear program (ILP)
models [8] or heuristic algorithms [9] that, guided by deterministic thresholds
and policies, address a subset of the listed tasks. However, none of the prior
solutions is able to address all of the aforementioned SD tasks simultaneously,
and they require precise parametrization to achieve acceptable performance.

Driven by the need to automate complex networking problems, reinforcement
learning (RL) has recently been demonstrated as a promising technique for,
e.g., optical network slicing [10] and resource assignment [11], [12]. The key
advantage of RL is that it leverages knowledge obtained by observing the
environment to independently guide its decisions and maximize a long-term
reward without being explicitly programmed to do so. deep reinforcement
learning (DRL) combines RL with deep neural networks, allowing to parame-
terize action policies and analyze complex systems for high-dimensional input
data, such as traffic matrices.

In this paper, we propose DeepDefrag, a novel DRL-based framework that
jointly addresses all of the aforementioned tasks associated with the SD pro-
cess. DeepDefrag decides on the timing and composition of the SD actions,
i.e., the number, order, and target spectrum for reconfigured connections. The
proposed framework adapts to the network state to select the appropriate
course of actions, and can also consider the priorities of the network oper-
ator such as minimizing the number of connection reallocations. We assess
the performance of the framework through extensive simulations, demonstrat-
ing that DeepDefrag outperforms a state-of-the-art heuristic, i.e., older-first
first-fit (OF-FF), algorithm in several aspects.

2 Related Work
A variety of approaches have been investigated in the literature to mitigate the
impact of SF, including an ILP formulation to address proactive parallel SD
in EONs [8], and heuristic algorithms for hitless bandwidth defragmentation
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[13]. ILP models and heuristic algorithms for three defragmentation tech-
niques, denoted as Push-Pull, Hop-Tuning, and Replanning were proposed
in [9]. Heuristic approaches from [14] use different service attributes to se-
lect the best connection to reallocate. The older-first (OF), bigger-first (BF),
longer-lasting-first (LLF), and longer-path-first (LPF) algorithms use service
age, size, remaining holding time, and path length to guide their proactive
defragmentation decisions, respectively. A first-fit (FF) spectrum assignment
policy is then applied to reallocate the spectrum slots. In [15], the authors
analyzed the performance of different SD algorithms such as lowest-slot-index-
first, holding-time-aware, and proactive-reactive defragmentation in terms of
blocking probability, entropy, and SF ratio. A trade-off between SD gain and
the degree of lightpath disruptions was further investigated in [16], and a
mathematical model is developed to optimize the fragmentation ratios over
all links while taking into account both spectrum continuity and contiguity
constraints.

Machine learning techniques have recently found a useful application in
SD as well. An unsupervised machine learning technique for rearranging the
fragmented spectrum based on lightpath clustering was presented in [17]. In
[18], Elman neural networks were used to forecast traffic demands, and the
spectrum was allocated using a two-dimensional rectangular packing model
that reduces unnecessary fragmentation.

In [11], the authors proposed a DRL-based routing, modulation and spec-
trum assignment (RMSA) algorithm that decides on both routing and spec-
trum assignment concurrently, resulting in reduced blocking probability. The
work in [19] modeled the connection admission control and routing and spec-
trum assignment (RSA) problems as a Markov decision process (MDP), and
defined the concept of deterministic policy for RSA problem in the policy it-
eration algorithm. The study in [20] highlighted DRL as a competitive alter-
native to established and well-known solutions when it comes to optimization
problems in optical networks, e.g., routing and wavelength assignment (RWA).
A recent study in [21] applied DRL to solve the on-demand, reactive hitless
SD problem. Upon an unsuccessful RMSA attempt, a DRL agent selects one
of the pre-defined stretch schemes that extends the size of the fragmented
spectrum to accommodate for blocked services. In spite of the strong poten-
tial of DRL in solving complex optical networking problems, benefits of this
technique in addressing the SD problem remain to be assessed. To this end,
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3 Problem Formulation

we propose a novel, DRL-based framework for proactive SD and investigate
the related challenges and network performance improvements.

3 Problem Formulation

We consider a scenario where an EON serves dynamic traffic. The net-
work topology is represented by a graph G(V, E), comprising a set of nodes
V and a set of links E. The network receives service requests defined by
Di(si, di, bi, ai, hi), where si and di are the source and the destination nodes,
bi is the requested bit rate, while ai and hi are the arrival and the holding
times. The network serves the service requests by assigning a physical route,
a modulation format and spectral resources, i.e., by solving the RMSA prob-
lem. The required number of spectrum slots, denoted as ni, is determined
by the spectrum efficiency of the modulation format, which is related to the
length of the selected path [21]. If a path with ni + 1 continuous and contigu-
ous spectrum slots is found (the extra slot accounts for the guardband), the
connection is established and the request is served. Otherwise, the request is
blocked.

To mitigate the impact of spectrum fragmentation on the SBR, we perform
periodic defragmentation. Solving the SD problem means reallocating the
spectrum used by the existing connections with the ultimate goal of consol-
idating the free spectrum available for future use. We consider a proactive
defragmentation scenario where only spectrum reallocation is possible, i.e.,
no rerouting is performed. When reallocating the spectrum of a connection,
spectrum jump is allowed, i.e., the target and the original spectrum can be
separated by slots occupied by other connections. We consider a hitless, make-
before-break scenario.

The first challenge in the considered SD problem is to determine the best
time to perform a defragmentation operation. At any point in time, the net-
work snapshot consists of spectrum slots either occupied by existing connec-
tions, or free, possibly stranded due to fragmentation. The second challenge
is to determine the set of connections to be reconfigured and the order of
doing so, as well as to identify and allocate alternative spectrum slots to the
connections. During SD, the standard spectrum continuity and contiguity
constraints must hold.
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4 The DeepDefrag Scheme

4.1 System Model
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Figure 1: The DeepDefrag scheme decisions taken and implemented during network
operation.

Figure 1 illustrates the DeepDefrag scheme under dynamic traffic, high-
lighting the SD cycles triggered amidst service arrivals and departures. Upon
each connection departure, DeepDefrag decides whether to initiate a defrag-
mentation cycle or not. If a new SD cycle is initiated, DeepDefrag iteratively
chooses a connection to reconfigure and the target spectrum to reallocate it
to until the cycle ends. An example with SD cycle comprising two connection
reallocations is shown in the left-hand inset in the bottom of the figure. The
figure also shows two variables used by DeepDefrag. θ is a network control
flag with value 0 when the network is not undergoing an SD cycle, and 1
when an SD cycle is in progress. The selected action α equals the index of the
connection selected for re-allocation, while α = ∅ represents the stop action.

For the example shown in the figure, θ = 0 and α ̸= ∅ when the SD
cycle starts and the first connection is reallocated. DeepDefrag can then
choose to continue the current defragmentation cycle by reallocating another
connection, or to stop by returning α = ∅. In the example, DeepDefrag
chooses to reallocate another connection, after which the SD cycle stops. The
time between two successive SD cycles is referred to as SD period. The scheme
can also choose not to initiate an SD cycle upon a connection departure. This
is depicted in Fig. 1 upon the departure of the second connection, and the
detailed actions and values of the decision variables are shown in the inset
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on the right hand side. Here, the algorithm decides not to take any action
(α = ∅), while a defragmentation cycle is not in progress (θ = 0).
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Figure 2: A simple network example (a) with two connections eligible for defrag-
mentation (b) and the different options for their spectrum reallocation
(c).

At each SD cycle, the DeepDefrag scheme considers a set of options, as
illustrated in Fig. 2, with the snapshot of a small network example. The
considered network state comprises six services established in the network,
denoted as D1 to D6. Their routing is depicted in Fig. 2 a), while the
spectrum assignment across the 12 available spectrum slots on each link is
shown in Fig. 2 b). Connections considered eligible for reallocation are those
using fragmented spectrum slots, which means that there is at least one free
spectrum slot between them and their neighboring connections both at the
lower and at the higher end of their used spectrum (considering that one
guardband slot is a part of the spectrum allocated to each connection). In the
example, only services D1 and D4 are eligible for reallocation.

DeepDefrag then considers several options for reallocating the spectrum of
the eligible connections, as illustrated in Fig. 2 c). Each option represents
reallocating one connection to the beginning or to the end of the existing free
blocks along the path of that connection. For service D1, two free blocks
along links 1–2 and 2–4 can be considered for its allocation: slots 1–4 and
9–12. Therefore, service D1 has four alternative spectrum options, which are
at the beginning (denoted as o1

1 and o3
1) and at the end (o2

1 and o4
1) of the two

candidate blocks. Alternatives for service D4 are at the beginning and at the
end of the only free block on links 1–3 and 3–4, i.e., slots 7–12, denoted as o1

4
and o2

4 in the figure. We use the event model from Fig. 1 and the intuition
introduced in Fig. 2 to design a DRL agent that solves the SD problem.
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4.2 Markov Decision Process Model

The DeepDefrag scheme proposed in this paper uses DRL to solve the SD prob-
lem introduced in the previous section. DRL is an area of machine learning
concerned with intelligent agents that leverage deep learning to take actions
in an observation environment with the goal of maximizing a cumulative re-
ward. In the following, we present the MDP model of DeepDefrag, including
the definitions of observation and action space, and reward function.

Observation Space

in DeepDefrag, the observation space exposes the current state of the net-
work and the reallocation options to the agent. The agent observes the
state of the environment and makes decisions based on the observations.
Hence, the observation should reflect the critical aspects of the problem.
The observation space of DeepDefrag has several components. Stateij =
(si, di, ai, ni, ri, li, fi, ti, fij , tij , zij) represents the set of attributes for reallo-
cation option j of service Di. Apart from the service attributes defined in Sec.
3, the environment is characterized by the remaining time of the service ri,
the number of links li along the path allocated to the service, the currently
assigned starting spectrum slot fi, and the total number of available slots
along path ti. fij and tij represent the new candidate starting slot and the
size of the free spectrum block used by option j for reallocating connection
Di, respectively. zij ∈ {0, 1} indicates whether option j is at the beginning
(= 0) or at the end (= 1) of the free block.

Action Space

the actions that can be selected by the agent are defined by the action space.
In DeepDefrag, at each decision step, the agent selects one of the existing
options. After processing the eligible connections (see Fig. 2 for details), each
possible action in the action space is defined as a vector of elements (Di, fij) for
different eligible connections and reallocation options, plus ∅ that represents
the stop action. When an SD cycle is not in progress, stop action means that
there is no need to reallocate more connections.
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Reward function

the reward function, defined by (1), measures the immediate gain achieved by
each action taken by DeepDefrag.

Reward =


1− SBR θ = 0, 1 ∧ α = ∅
1− SBR− Ps− Pe θ = 0 ∧ α ̸= ∅
1− SBR− Pe θ = 1 ∧ α ̸= ∅

, (B.1)

We encourage the agent to minimize SBR by adopting it as the main term
of the function. The value of SBR refers to the ratio between the blocked
and the total number of processed service requests. When no connection
reallocation takes place (α = ∅), the reward is equal to 1 – SBR to capture
the objective of minimizing the blocking (the top term in (1)). To limit the
number of SD cycles and reallocated connections, each new SD cycle and each
connection reallocation is associated with a penalty, denoted with Ps and Pe,
respectively. When the agent initiates the cycle by reallocating a connection,
both penalties are applied (the middle term in (1)). When an SD cycle is in
progress, each connection reallocation is penalized (the bottom term in (1)).
Note that these penalty values can be set based on the cost incurred by the
network operator at each reallocation instance.

5 Simulation Settings
To evaluate the performance of DeepDefrag, we carry out simulations of a
dynamic traffic scenario and assess the value of SBR, as well as the reconfigu-
ration actions’ frequency and volume. We use the NSFNET topology with 14
nodes and 22 links, each supporting 320 spectrum slots. Service requests are
generated based on a Poisson process. We set the traffic load to 170 Erlang
to achieve approximately 10% SBR for the scenario without defragmentation.
80% of service requests is long-lived with an average holding time of 25 time
units and exponential distribution, while the remaining 20% of requests have
an average holding time of 12.5 time units. The considered bit rate is 100
Gbit/s for 50%, 200 Gbit/s for 30%, and 400 Gbit/s for the remaining 20%
of the requests. BPSK, QPSK, 8-QAM, and 16-QAM modulation formats are
utilized with a maximum reach length of 10000 km, 2000 km, 1250 km, and

B11



Paper B

625 km, and with slot capacity of 12.5 Gbit/s, 25 Gbit/s, 37.5 Gbit/s, and 50
Gbit/s, respectively [12]. The transmission reach of the signal determines the
candidate modulation formats, and the one with the highest spectral efficiency
is selected. Shortest available route (among 5 pre-computed shortest paths)
and first-fit spectrum assignment are used to obtain the RMSA solutions for
all considered scenarios.

The performance of DeepDefrag is evaluated through comparison with three
heuristic algorithms denoted as OF-FF, RND, and No-SD. In the OF-FF
strategy, the set of eligible connections is defined according to their age, such
that the longest-running connections are reconfigured first. First-fit spectrum
allocation is then used to find new spectrum slots for the reconfigured connec-
tions. This strategy is used for benchmarking purposes since studies show that
it performs very well in terms of SBR [14]. OF-FF has two parameters: the
SD period, i.e., the number of request arrivals between two defragmentation
periods, and the number of connections to be reallocated at each cycle. The
values of both parameters are fixed throughout the network lifetime. We an-
alyze the performance of OF-FF under different configurations and report on
two most representative settings that enable a fair comparison with DeepDe-
frag. Configuration where both the SD period and the number of reallocations
are set to 10, denoted as OF-FF(10,10), obtains the same SBR as DeepDe-
frag, allowing us to compare their defragmentation overheads. Configuration
with the SD period length of 20 and the number of reallocations equal to 4,
denoted as OF-FF(20,4), has the same defragmentation overhead as DeepDe-
frag, allowing us to examine their SBR. The random heuristic RND randomly
selects one of the options from the action space (including stop). Finally, the
No-SD approach reveals the network performance when defragmentation is
not undertaken.

We implement the DeepDefrag scheme and environment extending the Op-
tical RL-Gym [22], a framework for creating RL environments that model
optical network problems such as resource management and reconfiguration.
Stable-Baselines3 [23], an open-source implementation of DRL algorithms in
Python, is applied to train the RL agent. We use the Deep Q-Networks algo-
rithm (DQN)[24] with a learning rate of 5∗10−6 and a discount factor of 0.95.
The adopted neural network has 5 layers with 256 neurons each. The penalty
factors Ps and Pe are set to 0.3 and 0.05, respectively, to model a higher cost
of an SD cycle initiation than a connection reallocation. The episode length
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Figure 3: service blocking ratio (SBR) obtained by the different spectrum defrag-
mentation (SD) schemes

is set to 200 decision steps, and the training is performed over 9000 episodes.
Results presented in the next section are obtained by assessing the perfor-
mance of the agent as it is trained. For statistical purposes, in the following
comparison comments, we average the results over the last 500 episodes.

6 Numerical Results
Figure 3 shows the SBR values for the different schemes, indicating advan-
tages of DeepDefrag. Considering the rolling 500-episode average, DeepDe-
frag lowers the blocking rate by 10% compared to the No-SD scenario with no
defragmentation. The OF-FF(10,10) and OF-FF(20,4) schemes yield on av-
erage 10.8 % and 3% lower SBR than No-SD, which is aligned with the result
reported by [14]. Compared to OF-FF(20,4), which has the same defragmen-
tation overhead, DeepDefrag reduces the SBR by 6.2%. This confirms the
efficiency of defragmentation actions performed by DeepDefrag in reducing
the SBR.

Figure 4 depicts the number of connection reallocations per 100 arrivals for
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Figure 4: Number of connections reallocated by the different SD schemes per 100
arrivals

the different strategies. On average, upon convergence, DeepDefrag reallocates
only 20.2 connections per 100 request arrivals, closely matching OF-FF(20,4).
Moreover, DeepDefrag reallocates 80% connection fewer than OF-FF(10,10),
which is the OF-FF configuration with the same SBR as DeepDefrag.

Figure 5 shows the number of SD cycles. Also in this case, DeepDefrag
outperforms all the benchmark SD heuristics, triggering only 4.9 SD cycles
per 100 request arrivals on average. This is a 51% reduction compared to
OF-FF(10,10). After analyzing the learning aspects in Figs. 4 and 5, we can
see that DeepDefrag learns how to reduce the SD overhead in terms of con-
nection reallocations and defragmentation cycles in 5500 training episodes, as
indicated by the decline in the reconfiguration frequency and volume. As the
above analysis shows, DeepDefrag outperforms the considered SD heuristics
in all examined metrics.
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Figure 5: Number of SD cycles for different SD schemes per 100 arrivals

7 Conclusions
This paper proposes DeepDefrag, a novel framework based on the deep rein-
forcement learning (DRL) that addresses several aspects of the spectrum de-
fragmentation (SD) problem in an integrated manner. It determines whether
and when to perform SD, which connections to reallocate and in which order,
and finds new spectrum to be used by the connection. Simulation results in-
dicate the ability of DeepDefrag to efficiently reduce the blocking rate while
using fewer SD cycles and reallocating a lower number of connections than
the state-of-the-art heuristic approaches, demonstrating its applicability to
dynamic network conditions and strong potential for automating SD.
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1 Introduction

Abstract

The immense growth of Internet traffic calls for advanced tech-
niques to enable the dynamic operation of optical networks, ef-
ficient use of spectral resources, and automation. In this paper,
we investigate the proactive SD problem in elastic optical net-
works and propose a novel deep reinforcement learning-based
framework DeepDefrag to increase spectral usage efficiency.
Unlike the conventional, often threshold-based heuristic algo-
rithms that address a subset of the defragmentation-related
tasks and have limited automation capabilities, DeepDefrag
jointly addresses the three main aspects of the SD process:
determining when to perform defragmentation, which connec-
tions to reconfigure, and which part of the spectrum to real-
locate them to. By considering services attributes, spectrum
occupancy state expressed by several different fragmentation
metrics, as well as reconfiguration cost, DeepDefrag is able to
consistently select appropriate reconfiguration actions over the
network lifetime and adapt to changing conditions. Extensive
simulation results reveal superior performance of the proposed
scheme over a scenario with exhaustive defragmentation and a
well-known benchmark heuristic from the literature, achieving
lower blocking probability at a smaller defragmentation over-
head.

1 Introduction
The tremendous growth of bandwidth-intensive applications that have dy-
namic behavior and high performance requirements (e.g., high-definition video
on demand, cloud computing, Internet of Things, content delivery networks)
puts a significant strain on the optical backbone networks. Dynamic, auto-
mated, and resource-efficient network operation is essential to fulfilling these
requirements. Elastic optical networks (EONs) [1] enable both fine-grained
spectrum slicing and high-capacity super-channels that match the spectrum
requirements of service requests. However, EONs are prone to spectrum frag-
mentation (SF), where the requested service bandwidth exceeds the number
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of continuous and contiguous free spectrum slots. In dynamic traffic scenarios,
the establishment and tear-down of optical connections often exacerbates SF
by scattering relatively small unoccupied spectral gaps across the available
fiber bandwidth [2], [3]. When these spectral gaps are insufficient to support
incoming service requests, SF has a direct, detrimental impact on the blocking
probability of service demands [4].

To alleviate the impact of fragmentation, spectrum allocation should be
consolidated to leave as few unusable spectral gaps as possible. This process
is called spectrum defragmentation (SD), and is known to improve spectrum
grid utilization and reduce service blocking ratio (SBR) [5]. The goal of SD is
to make the spectral gaps larger and better aligned across the network links.
This enables for accommodating more services, thus maximizing the use of
the spectrum.

1. When to reconfigure? Deciding on the best time to perform SD among
arbitrary service arrivals and departures.

2. What to reconfigure? Determining the number and the order of connec-
tions to be reallocated.

3. Where to reallocate the connections to? Finding new spectral resources
for the reconfigured connections.

The problem of minimizing spectrum fragmentation by reconfiguring a mini-
mum number of connections has been shown to be NP-complete in static traffic
scenarios [6]. Traffic dynamicity further increases the problem complexity due
to the constantly changing set of connections in the network. Hence, tractable
optimization approaches are needed to solve the highly complex problem of
dynamic SD.

SD approaches can be classified into two main schemes: reactive and proac-
tive [2]. Reactive approaches are triggered by service blocking. Proactive
approaches are executed without waiting for the blocking to occur. They typ-
ically monitor network performance metrics to find the best time for SD or
perform it periodically. These schemes are further classified into two types,
namely with or without rerouting of connections [5]. The latter approaches
only reallocate the spectrum of the connections, while the former may modify
their routes as well. SD approaches that interrupt running services are re-
ferred to as non-hitless, while those that do not cause any traffic disruption
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are known as hitless [7]. Push-pull retuning is a hitless approach where the
spectrum occupied by a connection is first expanded until it includes both the
original and the targeted spectrum slots and then shrunk to include only the
targeted slots [8]. Another hitless SD approach is make-before-break, where
an additional connection is established over the target route and spectrum
before tearing down the original one, allowing for a spectrum jump [5]. It
should be noted that make-before-break is considered non-disruptive specifi-
cally for the optical layer, while interruptions may occur at the higher layers
depending on the employed protocol and/or rerouting strategy.

While SD has been shown to decrease the SBR, it also imposes a reconfigu-
ration overhead that is not desirable by network operators. Depending on the
SD approach, the overhead may entail terminating, reallocating, and reestab-
lishing selected connections. Consequently, performing SD too frequently or
on an excessive number of connections may drastically increase the complexity
of network control and management. In fact, the frequency of SD cycles and
the number of connection reallocations within each cycle are used to measure
the SD overhead [9]. This indicates that the potential SBR improvement and
the corresponding overhead should be considered jointly and flexibly in the
design and evaluation of SD approaches. Existing SD strategies (e.g., [10],
[11]) handle only a subset of the aforementioned SD tasks and they do so by
utilizing deterministic thresholds and policies, which makes them inapplicable
to dynamic settings with changing network conditions.

Different from the deterministic, threshold-based policies, in reinforcement
learning (RL), the algorithm makes decisions by learning from the environ-
ment, aiming at maximizing the long-term reward without being explicitly
programmed. RL has recently been demonstrated as a promising technique for
solving large-scale online control tasks, e.g., routing and resource assignment
in EON [12], [13] and 5G network slicing [14]. The DRL method combines RL
with deep neural networks (DNNs), allowing complex systems to be analyzed
for high-dimensional input data, including traffic matrices and images. One
of the valuable capabilities of some DRL agents is to learn online and adapt
to changing network conditions. Through the online learning process, the
DRL agent continuously interacts with the environment, receives feedback,
and updates its policy accordingly.

To utilize the merit of DRL in automating SD, we proposed DeepDefrag,
a novel DRL-based framework that jointly addresses all of the tasks involved
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in the SD process: determining when to perform defragmentation, which con-
nections to reconfigure, and which part of the spectrum to reallocate them to
[15]. DeepDefrag considers the network state to select the most appropriate
course of action and can take into account the priorities of a network operator,
such as minimizing the number of SD cycles and connection reallocations. Our
preliminary study in [15], considered only a subset of connections as eligible
for reconfiguration and did not examine the spectrum occupancy state in the
decision-making process. This paper extends and improves DeepDefrag by

1. considering all connections in the network as candidates for reconfigu-
ration,

2. considering full information about the spectrum occupancy, including
different fragmentation metrics, and

3. revising the reward function to allow for a more comprehensive evalua-
tion of the impact of actions.

An evaluation of the impact of different penalties modeling the SD overhead,
and of changes in the traffic load is also included. The performance of the
proposed DeepDefrag framework is evaluated through comparison with sev-
eral heuristic algorithms from the literature. The simulation results reveal that
DeepDefrag outperforms the well-known existing older-first first-fit (OF-FF)
algorithm in different aspects. Moreover, it yields SBR values close to an
approximated (heuristic) lower bound obtained through exhaustive spectrum
defragmentation. We demonstrate that, unlike preconfigured algorithms like
OF-FF, DeepDefrag can effectively handle changes in the traffic load by con-
sidering the new situation and learning the policy for the updated circum-
stances. This adaptability allows DeepDefrag to continuously optimize its
actions and make informed decisions that align with the current network con-
ditions, resulting in improved performance and spectrum resource utilization.

2 Related work and background

2.1 Spectrum fragmentation metrics
In general, spectrum fragmentation metrics in EONs measure the efficiency
of spectral utilization. A better fragmentation metric value indicates that the
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occupied frequency slots are used more efficiently, with fewer unusable gaps
between occupied slots. These metrics help network operators monitor and
optimize the utilization of optical spectrum resources, ensuring high perfor-
mance and efficient use of available resources. The SF issue in EONs has
been widely analyzed in the literature and several fragmentation metrics have
been introduced. Wang et al. [16] present the concept of utilization entropy
to measure the level of optical spectrum fragmentation. Authors in [17] de-
fine an external fragmentation metric as a ratio of the largest free contiguous
fragment of the spectrum and the sum of the size of all free spectral frag-
ments. The spectrum compactness metric from [18] indicates the occupation
of spectrum on a link or in the network by calculating the difference between
the maximum and the minimum indices of occupied slots. Takita et al. [19]
define the high slot mask metric as an indicator of the maximum number of
occupied spectrum slots in the network.

In this paper, we incorporate the spectrum occupancy state into the DRL
agent to enhance its understanding of the network state. However, considering
a large number of SF metrics is impractical due to the increased complexity of
computing the metrics at every step, and the potential increase in the training
time of the DRL agent. As highlighted in [20], different metrics capture various
aspects of SF, and the selection of metrics depends on the specific require-
ments and context. Therefore, we carefully chose three metrics to measure
the fragmentation state of the network: the number of cuts [21], the Shannon
entropy (SE) [17], and the root of sum of squares (RSS) [20]. In support of
our choices, previous studies such as [12] have demonstrated the suitability
of incorporating RSS into the reward function of DRL agents for routing and
spectrum assignment in EONs. Furthermore, the effectiveness of the number
of cuts and SE in enhancing network utilization has been highlighted in [21]
and [22], respectively.

In Fig. 1, we exemplify the parameters and calculation of these metrics
with a snapshot of a simple network example with five nodes and four links,
each with 12 spectrum slots. The considered network state comprises six
connections established in the network, denoted by D1 to D6. The connection
routes are depicted in Fig. 1(a), while the spectrum assignment state for each
link is shown in Fig. 1(b). We assume one spectrum slot is used as guardband
between adjacent connections on a link. The notation includes the following
parameters: e is the index of a link, E is the total number of links, s is the
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Figure 1: A simple network example serving six connections (a). The spectrum
occupancy state (b). Shannon entropy and root of sum of squares metrics
(c).

index identifying a spectrum slot on a link, S is the total number of slots of
a link, bf

i is the size of free spectrum block i, and N is the number of free
spectrum blocks.

The number of cuts denotes the number of links with free adjacent spectrum
slots on the path selected for a connection. The SE values for a link and the
entire network are formulated by (C.1) and (C.2), respectively. Equation
(C.3) defines the RSS metric for a link e, while it can be calculated for a
slot s analogously. The two metrics are referred to as spectral and spatial
fragmentation, respectively [12]. Finally, the RSS metric for the network is
calculated as the average of spectral and spatial RSS metrics over all the links
and slots in (C.4). A higher SE value implies higher fragmentation, while a
higher RSS value implies lower fragmentation.

fSE(e) = −
N∑

i=1

bf
i

S
ln bf

i

S
(C.1)

FSE =
∑E

e fSE(e)
E

(C.2)

fRSS(e) =

√∑N
i (bf

i )2∑N
i bf

i

(C.3)

FRSS =
∑S

s fRSS(s)
S

+
∑E

e fRSS(e)
E

(C.4)

Figure 1(c) shows how the values of the SE and RSS metrics for link (3−5)
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and slot number (5) (highlighted with frames) are calculated. In the example,
connection D1 occupies slot 11, so slot 10 is checked to calculate the number
of cuts. Slot 10 is free on all three links included in the path of D1, so the
number of cuts is equal to 3 for this connection. The number of cuts for D3
is equal to 1 since slot 6 is occupied on link (3− 5) and free on link (2− 3).

2.2 Spectrum defragmentation techniques
In recent years, extensive research has examined spectrum fragmentation
and its mitigation, relying on integer linear program (ILP) formulations,
(meta)heuristics and machine learning techniques. The work in [10] mod-
els the proactive parallel connection reconfiguration in EONs mathematically
as an ILP formulation and studies the complexity of the problem. ILP mod-
els for three defragmentation techniques denoted as Push-Pull, Hop-Tuning,
and Replanning are proposed in [11]. The authors in [23] delve deeper into
the trade-off between SD gain in terms of fragmentation ratio and the extent
of connection disruptions in terms of reconfiguration delays. They create a
mathematical model to optimize high-slot marks as the fragmentation metric
across all links.

Heuristic and metaheuristic algorithms are also widely used to tackle the
fragmentation problem and decrease the SBR. The authors in [24] inves-
tigate heuristic algorithms for hitless bandwidth defragmentation, including
spectrum sweeping and hop tuning. In [9], SD is performed periodically, and
connections are selected for reallocation based on service attributes. Older-
first (OF) selects the longest-lasting connections, longer-lasting-first (LLF)
selects those with the longest remaining holding time, bigger-first (BF) se-
lects the connections with the biggest size, and longer-path-first (LPF) selects
those with the longest path for reconfiguration. A first-fit (FF) spectrum as-
signment policy is employed to reallocate spectrum slots. Simulation results
indicate that the algorithms exhibit similar performance, with the OF algo-
rithm demonstrating the best performance within a marginal difference of one
percent.

In [25], different SD heuristic algorithms, including lowest-slot-index-first,
holding-time-aware, and proactive-reactive defragmentation, are compared
based on their blocking probability, entropy, and bandwidth fragmentation
ratio. The authors in [26] propose a reactive disruptive scheme and a proac-
tive non-disruptive scheme. Both schemes utilize the holding time informa-
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tion of existing connections to minimize the SBR. The authors in [27] use
a meta-heuristic nature-inspired optimization technique called jellyfish search
optimization to solve spectrum defragmentation and show performance im-
provement compared to the state-of-the-art heuristic algorithms.

SD has recently benefited from adopting machine learning techniques. An
application from [28] uses unsupervised machine learning to rearrange the frag-
mented spectrum based on connection clustering. In [29], Elman neural net-
works (NNs) are employed to predict traffic demands, and a two-dimensional
rectangular packing model is used to allocate spectrum in a way that mini-
mizes fragmentation. A machine learning-assisted signal-quality-aware proac-
tive defragmentation scheme for the C + L band system is proposed in [30].
The scheme prioritizes minimizing the fragmentation index and quality of
transmission (QoT) maintenance for the defragmentation algorithms.

2.3 Reinforcement learning in optical networks
Multiple studies have explored the efficacy of RL for solving resource alloca-
tion problems in EONs, such as the DRL-based routing, modulation and spec-
trum assignment (RMSA) algorithm in [31], which performs joint routing and
spectrum assignment by masking infeasible options to improve the blocking
probability performance. In [31], the connection admission control and routing
and spectrum assignment (RSA) problems are modeled as a Markov decision
process (MDP), and the concept of deterministic policy for the RSA problem
in the policy iteration algorithm is introduced. The work in [32] demonstrates
that DRL is an effective alternative to established and well-known solutions
for optical network optimization problems, including routing and wavelength
assignment (RWA). A DRL approach for resource provisioning in a dynamic
multi-band EON is studied in [33] and compared to a heuristic algorithm. The
authors in [34] investigate the problem of global optimization of network per-
formance in a survivable EON use case and propose a DRL-based algorithm
with the objective of improving the overall network performance in terms
of cost value and survivability, where two RL agents are utilized to provide
working and protection paths. In [35], DRL is used to tackle the on-demand,
reactive hitless SD problem. Upon a failure of an incoming service request,
the DRL agent selects one of the pre-defined schemes that increase the size of
the fragmented spectrum to accommodate blocked services. To the best of our
knowledge, the merit of DRL in solving proactive SD has not been evaluated
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yet in spite of its strong potential to solve complex problems. Therefore, in
the next sections, we propose a DRL-based framework for proactive SD and
evaluate its performance against heuristic algorithms.

3 Problem formulation

We consider a network topology represented by a graph G(V, E), where V
and E represent the set of nodes and fiber links, respectively. We model a
service request from node s to d (s, d ∈ V) as Di(si, di, bi, ai), with bi and
ai denoting the requested bit rate, arrival time, respectively. To provision
service requests, the network must solve the RMSA problem of finding an
end-to-end physical route, determining the modulation format, and allocating
the required spectral resources. We adopt the model from [13] to decide on
the modulation format limited by the length of the selected path. The number
of required spectrum slots, denoted by ni, is determined by ⌈bi/(12.5 ×m)⌉,
where 12.5 Gbit/s is the data rate that a spectrum slot of BPSK signal can
support, and m is spectral efficiency of the selected modulation format. A
connection is established if a path with ni + 1 continuous and contiguous
spectrum slots is found, where the extra slot accounts for the guardband. If
these spectrum resources are not found, the service request is blocked.

We consider a dynamic EON scenario in which service requests arrive and
depart throughout the network operation. At any given time, the spectrum
grid state information about the existing connections is known. In the consid-
ered proactive SD scenario, only spectrum reallocation is performed, without
connection rerouting. The goal is to reallocate the spectrum of a subset of
connections to consolidate the free available spectrum for future use. We con-
sider a hitless, make-before-break scenario. The first challenge of proactive SD
is to find the best time to perform a defragmentation operation. The second
challenge is to determine the set of connections and the order in which they
should be reconfigured. Finally, the new spectrum slots must be identified for
the services.
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Figure 2: The DeepDefrag scheme decisions taken and implemented during network
operation.

4 The DeepDefrag scheme

4.1 System model

Figure 2 illustrates the DeepDefrag scheme under dynamic traffic, where SD
cycles are triggered in response to connection departures. When a connection
departs, DeepDefrag assesses whether to initiate a defragmentation cycle or
not. If the decision is to start a new SD cycle, DeepDefrag selects a connection
to reconfigure and identifies the target spectrum. This process is repeated until
DeepDefrag decides to conclude the cycle. The left-hand inset at the top of
the figure provides an example of an SD cycle that includes three connection
reallocations. The DeepDefrag scheme uses two variables to model the SD
process. θ ∈ {0, 1} is a network control flag with a value of 1 when an SD
cycle is in progress, and 0 otherwise. The selected action is denoted as α,
with value equal to the index of the connection selected for reconfiguration,
or α=∅ to represent the stop action.

As shown in Fig. 2, θ=0 and α ̸= ∅ when DeepDefrag starts an SD cycle
and reallocates the first connection. At this point, DeepDefrag has the option
to either continue the ongoing SD cycle by reallocating another connection or
to terminate it by returning α = ∅. In this particular example, DeepDefrag
decides to reallocate two other connections (θ=1, α ̸= ∅), and then stops the
SD cycle (θ=1, α=∅). Note that only sequential reconfiguration of individual
connections is considered (i.e., two or more connections are not reconfigured
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Figure 3: Different options for spectrum reallocation of the connections, and the
state representation

jointly). The time between two sequential SD cycles is referred to as the
SD period. DeepDefrag can also decide not to trigger an SD cycle upon a
connection departure. Fig. 2 illustrates this scenario after the departure of
the third connection, where the actions and variables involved in the decision-
making process are presented in the inset on the right hand side. Here, the
SD cycle is not currently in progress (θ=0), and the scheme chooses to take
no action (α=∅).

DeepDefrag considers all connections as candidates for reallocation and ex-
amines several options to reassign the spectrum. All available spectrum blocks
that can accommodate the connection are enumerated, and each option rep-
resents reallocating a connection to the beginning of every available free block
along its path. Let us consider the same example as in Fig. 1 and analyze the
reallocation options for connections D1 and D4, shown in Fig. 3. For con-
nection D1, which is currently using slot 11, two free blocks along links 1–2,
2–3, and 3–5 can be considered as alternatives: slots 1–3 and 9–12. There-
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fore, connection D1 has two alternative spectrum options, which are at the
beginning of the two candidate blocks, denoted as o1

1 and o2
1. The alternative

for connection D4 is at the beginning of the only free block on links 1–4 and
4–5, i.e., slots 8–12, denoted as o1

4 in the figure. It should be noted that one
option is available for connection D2 and one for connection D3, which are
not shown in the figure. By combining the event model from Fig. 2 and the
intuition developed in Fig. 3, a DRL agent can be designed to solve the SD
problem.modeling

4.2 Markov decision process modeling
The DeepDefrag scheme uses DRL to solve the proactive SD problem discussed
in the previous section. DRL is a machine learning technique focused on
solving control problems, where a DRL agent interacts with the environment
and has the objective of maximizing a notion of cumulative reward. Such
control problems are commonly modeled as MDPs. The following section
outlines the MDP model of DeepDefrag, which covers the definitions of the
observation space, action spaces, and reward function.

Observation space

The observation space should provide the DRL agent with enough information
to characterize the current state of the environment (i.e., the optical network
in our case). The observation space of DeepDefrag consists of several compo-
nents. The state representation for reallocation option j of connection Di is
denoted as Sij , and defined as follows:

Sij =< si, di, ai, ni, li, fi, ti, ci, FRSS , FSE , fij , tij , cij , F ij
RSS , F ij

SE > ,

where li is the number of links along the path allocated to the connection,
fi is the currently assigned starting spectrum slot, ti is the total number of
available slots along path, and ci is the number of cuts (as defined in Sec.
2.2.1) along the current path. The RSS and SE metrics for the current state
of the network are represented by FRSS and FSE , respectively. fij , cij , and
tij represent the new candidate starting slot, the number of cuts, and the
size of the free spectrum block used by option j for reallocating connection
Di, respectively. Finally, F ij

RSS , F ij
SE are the RSS and SE metrics of the

network if Di is chosen to be reallocated to option j. The example of the
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state representation for option o1
4 is represented in Fig 3.

Action space

The action space represents the set of all actions the agent can perform in a
specific environment. As shown in Fig 2, for our environment, the agent can
select one of the available options in each decision step. In the DeepDefrag
environment, we denote the set of possible actions as J. Each action is char-
acterized by the tuple <Di, fij>, which represent the connection and the new
starting slot of the selected option, respectively. The set J also contains the ∅
action, which denotes termination of an SD cycle in progress, or the absence
of initiating a new one.

Reward function

The reward function is a function that provides a numerical score based on
the state of the environment and the action taken by the agent. The critical
challenge of using RL is to find the appropriate reward function that reflects
the behavior of the environment and steers the agent towards the most suitable
policy. The reward value ri for DeepDefrag is defined by (C.5).

ri =


− log10 SBR

3 θ ∈ {0, 1} ∧ α=∅
− log10 SBR

3 − Ps− Pe θ = 0 ∧ α ̸= ∅
1 + log10(F ij

RSS
−FRSS)

3 − Pe θ = 1 ∧ α ̸= ∅
, (C.5)

The SBR is the main term of the reward function due to its direct rep-
resentation of the objective of performing SD. The value of SBR is defined
as the ratio between the blocked and the total number of processed service
requests. The design of the reward function aims to strongly penalize even a
slight increase of the SBR. Therefore, the logarithm of the SBR is used in the
reward function to amplify the small changes of SBR when the agent chooses
not to start an SD cycle (α=∅, i.e., the first term of (C.5)). To limit the SD
overhead, each new SD cycle and each connection reallocation are associated
with a penalty, denoted by Ps and Pe, respectively. Both penalties are con-
sidered in the reward function whenever the agent initiates a new SD cycle
by reallocating a connection, i.e., the second term in (C.5). The third term
in (C.5) refers to the reward for connection reallocation within an SD cycle
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in progress. As mentioned in Sec. 2.2.1, a higher value of the RSS metric
implies lower fragmentation. Hence, the agent uses the difference between
the RSS metric before and after reconfiguration to evaluate the benefit of the
connection reallocation. The logarithmic function is employed to guarantee
that a small increment of the RSS metric yields a significant increase of the
reward value. The penalty for connection reallocation is also considered. The
logarithm addends in the reward function are normalized using a factor of 3
to conform to the range between zero and one. This normalization process fa-
cilitates setting the values of the penalties relative to the other components of
the reward. It also helps the DRL agent to learn more efficiently by balancing
the magnitudes of the reward values and preventing them from becoming too
large or too small.

The penalty values in the reward function (i.e., Ps and Pe) are determined
by the network operator based on the costs associated with each proactive SD
cycle and reallocation, respectively. In this work, the values of the penalties
are selected based on the target resulting SD overhead.

4.3 Learning Process using Deep Q-Networks
We utilize the deep Q-Networks (DQN) algorithm [36] to determine the policy
for the proposed SD approach. The objective of the DQN algorithm is to learn
a policy that maximizes the long-term reward by estimating the state-action
values, also known as Q-values, using a DNN. These Q-values represent the
expected long-term reward for each state-action pair. To approximate the
Q-values, we employ an NN, which takes the network state St as input. The
output of the NN provides the predicted state-action values for all possible
actions given the input state. For training, we utilized two NNs with the same
architecture. One network, called the Q-Value-Network, uses the parameter
θ to estimate the state-action values Q(St, At, θ) for a given state-action pair
(St, At), where St represents the network state at time t, and At represents
the action taken by the agent at time t. The other network, called the Q-
Target-Network, employs the parameter θ− to determine the target Q-value.
Algorithm 2 illustrates the DeepDefrag training and operation, which com-
bines DQN training with proactive SD. In this algorithm, M represents the
number of episodes, T denotes the length of each episode, γ represents the dis-
count factor, ϵ represents the exploration rate, and C signifies the frequency
of updating the target network. A detailed description of all the hyperparam-
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eters can be found in the original DQN paper [36].
Algorithm 2: DeepDefrag Algorithm: Combination of DQN algorithm
and proactive spectrum defragmentation
Input: Replay memory size N , episodes M , time steps T , target update

frequency C, discount factor γ

Output: Trained Deep Q-Network for spectrum defragmentation
1 Initialize replay memory D with size N ;
2 Create action-value function Q with random weights θ;
3 Create target action-value function Q̂ with weights θ− = θ;
4 for episode = 1 to M do
5 Reset environment to initial state s0;
6 for time step t = 1 to T do
7 Choose action at using ϵ-greedy policy based on Q;
8 if at is < Di, fij > then
9 Reallocate Di to slot fij , observe reward rt and next state st+1;

10 else
11 Serve the next incoming service request, observe reward rt and

next state st+1;
12 Store transition (st, at, rt, st+1) in D;
13 Randomly sample a minibatch of transitions (si, ai, ri, si+1) from D;
14 Compute target values yi:;
15 foreach sample in minibatch do
16 if t = T − 1 then
17 yi ← ri;
18 else
19 yi ← ri + γ max

a′
Q̂(si+1, a′, θ−);

20 Perform gradient descent on loss:
21 L(θ) = 1

B

∑
i
(yi −Q(si, ai, θ))2;

22 if step mod C = 0 then
23 Update target network weights: θ− = θ;

The algorithm begins with the initialization step (lines 1-3). Then, for each
episode of the training process, the environment is reset, and the loop for
time steps begins (lines 4-6). During the training process, the agent adopts
the ϵ-greedy policy to balance exploration and exploitation. This means that
the agent selects the action with the maximum Q-value with a probability of
1-ϵ, and chooses a random action with a probability of ϵ (line 7). If the agent
decides to perform a reallocation, it moves the connection Di to the starting
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slot related to the selected action fij (lines 8-9). Otherwise, it continues
the network operation while observing the reward and the next state (lines
10-11). The agent stores the transition samples in the replay memory for
training purposes (line 12). The training step takes place at the end of each
episode. Samples are randomly selected from the replay memory to train
the NN (line 13). The target values for each transition in the mini-batch
are calculated (line 14). If the next state is terminal, the target value is set
to the immediate reward ri. Otherwise, it is calculated as the sum of the
immediate reward ri and the discounted maximum expected reward. The NN
parameter θ is updated using Mini-batch Gradient Descent (line 15), while
the Q-Target-Network parameter θ− is updated with the current Q-Value-
Network parameter θ every C iterations.

The training phase of the agent (lines 13–16 of Alg. 2) can be executed
offline, meaning that it will not interfere with the network operation. In the
predicting phase of the DQN (line 7 of Alg. 2), the trained model is utilized
to predict the action for a given state. This phase is composed only of a
simple DNN inference. Consequently, the time required for performing an
inference becomes negligible compared to other events taking place in the
network. Ideally, new experiences collected during operation are included in
the memory and used to further improve the agent.

5 Simulation settings
We conduct simulations on a dynamic traffic scenario to evaluate the perfor-
mance of DeepDefrag. We use the value of SBR, frequency, and volume of
reconfiguration actions as performance metrics. Two network topologies are
used to evaluate the DeepDefrag model: the NSFNET topology [13] with 14
nodes and 22 links, and the German topology [37] with 50 nodes and 88 links.
In both topologies, we assume that each link supports 320 spectrum slots. To
generate service requests, we use a Poisson process and tune the traffic load
to 80 and 340 Erlang for the NSFNET and German topology, respectively.
These values ensure a SBR of approximately 2% for the scenario without SD.
80% of service requests are long-lived with an average holding time of 25 time
units, while the remaining 20% have an average holding time of 12.5 time
units. The holding time of the connections follows an exponential distribu-
tion. The considered bit rate is 100 Gbit/s for 50%, 200 Gbit/s for 30%, and
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400 Gbit/s for the remaining 20% of the service requests.
The choice of having an 80-20 split between long short-lived traffic aims at

recreating a realistic traffic scenario experienced by a network operator in the
Nordic countries where, within the optical layer, there exist connections that
support the packet network and carry the majority of the traffic load. These
connections are typically bound by long-term contracts and demonstrate con-
sistent and stable behavior at the optical layer within the network.

We adopt BPSK, QPSK, 8-QAM, and 16-QAM modulation formats, with
a spectral efficiency m of 1, 2, 3, and 4 b/Hz/s, respectively, as described
in [13]. Modulation formats with higher spectrum efficiency are preferred, as
long as the distance of the path is supported by the chosen modulation format.
Specifically, the reach for the different modulation formats are as follows: 625
km for 16-QAM, 1250 km for 8-QAM, and 2000 km for QPSK. BPSK can
be used for any path length in the adopted topologies [38]. For each request
for all considered scenarios, the RMSA solution is obtained by choosing the
shortest available path among five pre-computed shortest paths, and assigning
the first available slots (first fit).

The performance of DeepDefrag is assessed through comparison with three
heuristic algorithms denoted as older-first first-fit (OF-FF), exhaustive spec-
trum defragmentation (X-SD), and no spectrum defragmentation (No-SD). In
the OF-FF strategy, the connections are selected according to their age, where
the longest-running connections are reconfigured first, and the new spectrum
is decided using the first-fit spectrum allocation scheme. This strategy is used
for benchmarking purposes as it has shown excellent performance in terms
of SBR [9]. OF-FF has two parameters: the SD period, which defines the
number of request arrivals between two defragmentation cycles, and the num-
ber of connection reallocations per SD cycle. We evaluate the performance
of OF-FF under different configurations and report on two representative set-
tings to enable a fair comparison with DeepDefrag. The first setting has the
same defragmentation overhead as DeepDefrag, enabling us to compare their
performance in terms of SBR. In the second configuration, we ensure that the
OF-FF has comparable levels of SBR as DeepDefrag. This enables a direct
comparison of their performance in terms of SD overhead, namely the number
of connection reallocations and SD cycles.

We also simulate the X-SD approach to find a (heuristic) lower bound on
the SBR by reallocating an unlimited number of connections upon each con-
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nection departure and applying FF spectrum assignment to find the new slots.
Note that the service blocking in this strategy occurs due to lack of resources,
which cannot be avoided by any proactive defragmentation scheme. More-
over, achieving the absolute minimum SBR would require the use of optimal
techniques (e.g., ILP). However, these techniques are not practical for this
problem due to their complexity and scalability issues. Finally, the No-SD
approach represents the network performance without defragmentation.

To implement the DeepDefrag scheme, we extended the Optical RL-Gym
framework, which models optical networking problems related to resource
management and reconfiguration as RL environments [39]. The DRL agent
was trained using Stable-Baselines3 [40], an open-source implementation of
DRL algorithms in Python. We trained the DRL agent using the DQN algo-
rithm with a learning rate of 5 ∗ 10−6, exploration rate 0.2, and a discount
factor of 0.96. The NN has 5 layers with 384 neurons each. The values of DRL
hyperparameters were defined through a hyperparameter analysis performed
offline. Ten possible options for the oldest connections are introduced to the
DRL agent.

To assess the impact of defragmentation penalties on the performance of
DeepDefrag, we conduct experiments using two sets of penalty factors. The
first one consists of Ps=0.8 and Pe=0.1, while the second set has Ps=0.3
and Pe=0.05. In both sets, the value of Ps is higher than Pe, reflecting the
higher cost associated with initiating an SD cycle compared to a connection
reallocation. The use of these two penalty sets allows us to understand the
impact of SD penalties on the behavior of DeepDefrag, showing that network
operators can fine-tune the penalty values based on their specific requirements,
costs, and priorities.

Finally, we assess the performance of the proposed DeepDefrag approach
under varying traffic load. To this end, we initiate the network operation with
a load of 80 Erlang for the NSFNET topology. Subsequently, we change the
load to new values: a higher load of 90 Erlang, and a lower load of 70 Erlang.
This allows us to assess the agent’s ability to adjust and converge to effective
solutions under changing load conditions.

To train the agent, we set the episode length to 400 decision steps and
perform training over 8000 episodes, which includes approximately 2 million
service arrivals. It is important to note that fluctuations in the results are
expected due to the inherent stochastic nature of the Poisson process. Hence,
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Figure 4: Episodic sum of reward values for NSFNET.

we conduct simulations of the DeepDefrag agent using 10 different seeds for the
random number generator of the network environment to ensure robustness of
the numerical results. We assess the performance of the DeepDefrag agent as
it is trained and average the results over the last 1000 episodes for statistical
purposes, followed by a calculation of the confidence interval to quantify the
level of uncertainty in the results.

6 Numerical results
Figure 4 depicts the progression of the episodic sum of reward values for
DeepDefrag with the penalty set (0.8, 0.1) in the NSFNET topology. The
plot shows the sum of the rewards of all actions taken within an episode. The
result demonstrates how DeepDefrag optimizes its policy over time, leading to
higher reward values. Eventually, around episode 6,000, the agent converges
to a stable value. Naturally, as discussed later in this section, in normal
operating conditions, the agent will continue to be trained in order to reflect
the latest network conditions.
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Figure 5: Performance of the considered spectrum defragmentation schemes for the
NSFNET network topology.

Figure 5 shows the performance of the considered schemes for the NSFNET
topology, indicating the advantages of DeepDefrag. As shown in Fig. 5a,
the two approaches performing the best and the worst in terms of the SBR
are X-SD and No-SD, respectively. X-SD achieves 49% lower SBR than No-
SD, which indicates the potential gain that can be achieved by sequential
proactive SD algorithms. Figures 5b and 5c depict the number of SD cycles
and connection reallocations per 100 arrivals for the different strategies.

Upon convergence of the DRL agent, DeepDefrag leads to a notable SBR
reduction compared to the No-SD scenario. With the penalty set (0.8, 0.1),
DeepDefrag achieves a 32% lower SBR than No-SD. For the penalty set (0.3,
0.05), DeepDefrag reduces the SBR by 38.6%. The confidence interval of the
results for DeepDefrag is 1.6% with a 95% confidence level. For the sake of
simplicity, we select penalty configuration (0.8, 0.1) for the rest of the paper.
Two different configurations are evaluated for OF-FF. The first configuration
is denoted by OF-FF (5, 15), with the SD period equal to 5 connection depar-
tures, and allowing up to 15 connection reallocations per SD cycle. OF-FF
(5, 15) achieves approximately the same SBR as DeepDefrag in the NSFNET
topology, allowing for a comparison of their defragmentation overheads. The
second configuration is denoted by OF-FF (8, 10), with the SD period equal
to 8 request departures and 10 reallocations per cycle. This results in almost
the same defragmentation overhead as DeepDefrag, enabling an examination
of their SBR. On average, the OF-FF (8, 10) and OF-FF (5, 15) schemes yield
a 20.2% and 29.4% lower SBR than No-SD, respectively, which aligns with
the result reported by [9]. As shown in these figures, DeepDefrag has almost
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6 Numerical results

the same defragmentation overhead as OF-FF (8, 10), while it reduces SBR
by 15.8%. The X-SD achieves 23.3% lower SBR than and DeepDefrag, but at
the cost of a higher defragmentation overhead. This confirms the effectiveness
of DeepDefrag in reducing the SBR by selecting appropriate actions. Next, we
move our attention to the configuration when DeepDefrag and OF-FF have
close SBR performance, i.e., OF-FF (5, 15). DeepDefrag triggers 14.1 SD
cycles per 100 arrivals on average as depicted in Fig. 5b. This is 29.5% lower
than the number of SD cycles triggered by OF-FF. As shown in Fig. 5c,
DeepDefrag reallocates 132 connections per 100 request arrivals on average,
which is a 56% reduction compared to OF-FF (5, 15).

The observed results illustrate how, during the training phase, the lower
SBR values can be attributed to the agent’s frequent execution of SD cy-
cles and reallocation of a significant number of connections. As the agent
progresses and learns to make better decisions, it finds a beneficial trade-off
between the SBR and extensive reallocation, i.e., reduces the number of SD
cycles and connection reallocations, while slightly increasing the SBR.

When comparing the two penalty sets, DeepDefrag with the (0.3, 0.05) con-
figuration achieves a 10.2% lower SBR than the (0.8, 0.1) configuration. This
advantage comes at the expense of a 44.2% higher number of connection real-
locations and a 30% higher number of SD cycles. These results highlight the
trade-offs involved in selecting penalty values for DeepDefrag. By adjusting
the penalties, operators can effectively balance the reduction in SBR with the
associated costs of connection reallocations and SD cycles.
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Figure 6: Performance of the considered spectrum defragmentation schemes for the
German network topology.

Figure 6 depicts the SD performance when the considered schemes are ap-
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plied in the German topology. Also for this topology, DeepDefrag, after con-
vergence, outperforms all the benchmark SD heuristics. In this case, X-SD
reduces the SBR by 69.5% compared to No-SD (Fig. 6a). DeepDefrag with
the penalty set (0.8, 0.1) achieves 50% lower SBR than No-SD. Moreover, it
decreases the SBR by 34.8% in comparison with OF-FF (8, 10), which has an
equivalent defragmentation overhead to DeepDefrag. In addition, DeepDefrag
has comparable SBR as OF-FF (5, 20), while reducing the number of SD cycles
and connection reallocations by 34.1% and 75%, respectively (Figs. 6b and
6c). Similar trends for the different sets of DeepDefrag penalties are observed
as in the case of the NSFNET topology, trading-off the frequency and volume
of reallocations for the SBR. Examining the learning aspects depicted in the
figures indicates the ability of DeepDefrag to reduce the SD overhead in terms
of connection reallocations and defragmentation cycles upon 5,500 and 6000
training episodes for the NSFNET and the German topology, respectively.

The gap between X-SD and No-SD in terms of SBR is 49% and 69.5% for
the German and the NSFNET topology, respectively, indicating a more promi-
nent effect of SF in the German network under the considered traffic scenario.
Hence, the ability of DeepDefrag to select appropriate actions becomes more
substantial, resulting in a better overall performance in the German topology
compared to the NSFNET. In summary, DeepDefrag outperforms the consid-
ered SD heuristic algorithms evaluated across all of the examined metrics. It
also achieves an acceptable performance in terms of SBR compared to X-SD.
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Figure 7: Performance of DeepDefrag for the NSFNET network topology with
changing load conditions. The black dashed vertical line indicates the
moment when the load changes.

Figure 7 illustrates the results for the scenario with changing load con-

C24



7 Conclusion

ditions in the NSFNET topology. The agent is initially trained when the
network is experiencing a load of 80 Erlang. Around episode number 5,800,
indicated by the black dashed vertical line, the load changes to 90 Erlang and
70 Erlang, respectively. The results demonstrate that the agent successfully
adapts to both an increase and a decrease of the traffic load. To ensure a
fair comparison, in this case we report the results for the configurations of
the OF-FF scheme that have equivalent SD overhead as DeepDefrag. For the
load of 90 Erlang, DeepDefrag outperforms the No-SD scheme by 36.7% in
terms of SBR. Additionally, it exhibits an 18.2% improvement over the OF-FF
(6,10) configuration. Similarly, for the load of 70 Erlang, DeepDefrag demon-
strates a 28.9% performance advantage over the No-SD scheme, and a 9.5%
improvement compared to the OF-FF (10,8) configuration. These findings
highlight DeepDefrag’s ability to adapt to acceptable solutions across varying
load levels, demonstrating its effectiveness in managing spectrum resources
throughout the network lifetime under different operating conditions.

7 Conclusion

In this paper, we propose a deep reinforcement learning (DRL)-based frame-
work called DeepDefrag. The framework jointly addresses different aspects of
the spectrum defragmentation (SD) problem. DeepDefrag determines when
to perform SD, which connections to reallocate and in what order, and which
target spectrum slots to be utilized by the reconfigured connections. DeepDe-
frag considers spectrum occupancy information, including three fragmentation
metrics (i.e., number of cuts, Shannon entropy (SE), and root of sum of squa-
ress (RSSs)), as input to the decision process. Simulation results show that
DeepDefrag can effectively reduce the service blocking ratio (SBR) while re-
quiring fewer SD cycles and connection reallocations compared to heuristic
methods from the literature. In some cases, the SBR achieved by DeepDefrag
approaches that of an exhaustive method, while incurring substantially lower
overhead. Finally, simulations with varying load conditions demonstrate that
DeepDefrag is able to effectively adjust to changing network conditions.
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1 Introduction

Abstract

This demonstration showcases the applicability and benefits of
a deep reinforcement learning (DRL) agent for spectrum de-
fragmentation in a realistic deployment. This is achieved by
integrating the DRL agent with the operations of a carrier-
grade optical network digital twin via standard T-API mes-
sages. © 2023 The Author(s)

1 Introduction
One of the main challenges in dynamic elastic optical networks (EONs) is
spectrum fragmentation (SF) which stems from the discrepancy between the
incoming connection requests and the available spectral gaps. SF leads to
inefficient use of the spectrum, degrading the performance of EON in terms
of SBR[1]. SD is a way to consolidate the spectrum usage by reconfiguring a
subset of connections, thus reducing gaps unsuitable for incoming connectivity
services. Numerous SD approaches rely on, e.g., threshold-based heuristic
algorithms[2] or integer linear programming models[3], typically aimed at SBR
minimisation. Such methods may require bespoke threshold configuration or
take long to find a solution, which limits their flexibility and applicability in
dynamic service provisioning scenarios.

Intelligent and adaptable techniques, such as those based on machine learn-
ing (ML), are needed to meet the network operators’ quest for efficient and
automated network management. DeepDefrag[4], a recently proposed SD
framework based on DRL, has been shown to outperform existing determin-
istic algorithms in SBR minimisation. DeepDefrag performs proactive SD by
deciding on the reconfiguration timing, the concerned subset of connections,
and their target spectrum.

Integrating ML-based techniques in real-world optical network deployments
is challenging due to, among other, potential mismatch between the data
these techniques require and information made available by vendor-specific
management tools. Optical network disaggregation addresses this issue by
defining, among other elements, a set of standard application programming
interfaces (APIs) that allow operators to interact with network elements[5].
Transport API (T-API), an example of such standards, supports a hierarchical
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software-defined networking (SDN) architecture that fits multi-vendor/multi-
domain scenarios. T-API is regarded as a promising standard for different use
cases, including connectivity service creation over dense wavelength-division
multiplexing (DWDM) networks[6] and enabling quantum encryption of op-
tical end-to-end services[7]. However, so far, the potential benefits of SD
techniques have not been validated in T-API systems, especially those using
carrier-grade T-API implementations. Such implementations can be provided
by, e.g., a digital twin[8], which mirrors the behaviour of real devices, al-
lowing a realistic and real-time system performance evaluation without the
prohibitive overhead of testing on real devices.

In this demonstration, we develop a new defragmentation module that uses
standard T-API messages to realise SD decisions taken by a DRL agent, i.e.,
DeepDefrag. We demonstrate the module’s capabilities through a dashboard
that enables the audience to parameterise network operation settings, view the
fragmented network state, observe the DRL-based SD decisions, and inspect
their realisation over a carrier-grade digital twin. The DRL agent intelligently
decides when to trigger defragmentation, selects the connections and the order
of their reallocation, and finds the target spectrum slots.

2 Workflow
Figure 1 illustrates the workflow of the proposed demonstration, including
the message exchange between the SD module and the T-API-enabled digital
twin. In the following, we describe each message, highlighting the associated
T-API use case[9].

In phase 1, the SD module periodically requests information about existing
connectivity services (including their unique identifiers) and topology from
the digital twin (use cases 0a and 0b). The defragmentation module uses this
information as input to the DRL agent, which, based on the current network
state, decides whether to initiate an SD cycle or not.

Phase 2 starts when the DRL agent initiates an SD cycle. The DRL agent
iteratively selects a connectivity service for reallocation and the target spec-
trum. Note that the path does not change during defragmentation. This
process is repeated until the DRL agent stops the SD cycle.

Connectivity services are reallocated following a break-before-make approach.
The service selected for reallocation is removed (use case 10), after which it is
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SD module T-API enabled 
digital twin

Periodic service interface points discovery

GET service interface points

Periodic topology discovery

GET information of topology 

loop [For each optical service selected to be reallocated]

Service deletion

DELETE connectivity service 

Service creation

POST connectivity-context 

1

2

Figure 1: Communication between the spectrum defragmentation (SD) module and
the digital twin.

re-established by specifying the nodes, links and target spectrum slots. The
process of establishing a connectivity service, which traverses specific nodes or
links and occupies specific spectrum slots, is defined in use cases 2c, 3a, and
3b, respectively. The break-before-make approach allows our defragmentation
module to take advantage of defragmentation solutions that overlap with the
spectrum currently used by the service under reconfiguration.

3 Demonstration implementation
Figure 2 illustrates the deployment adopted in this demonstration. The de-
fragmentation module is implemented specifically for this demonstration using
Python. It uses the Optical RL-Gym[10] to generate connectivity service re-
quests following a Poisson process. The aim is to obtain a representation of the
network state resulting from long-term operation (i.e., steady state represen-
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Figure 2: Demonstrator architecture.

tation). The DeepDefrag[4] DRL agent making the defragmentation decisions
during the demonstration is trained separately beforehand for practical pur-
poses.

The digital twin of the optical network is implemented by mirroring each
optical network element instance in its digital form, i.e., using the same op-
erating system running over virtual machines. The deployed digital twin is
controlled by a production-grade SDN domain controller, supporting T-API
in the northbound and NETCONF in the southbound interface. The interac-
tion between the defragmentation module and the digital twin uses the T-API
specification version 2.1[9]. The defragmentation module and dashboard run
on the demonstrator computer connected to the digital twin located at a re-
mote lab through a secure channel.
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Figure 3: Simple network example with 7 connectivity services.

4 Demonstration storyline

The demonstration begins with an empty network and fully unassigned spec-
trum. In the first part, the demo focuses on simulating a fragmented network
state. The audience can select the parameters for generating the connectivity
service requests (e.g., inter-arrival time, holding time, bandwidth) in addition
to the simulation run time. The fragmented network state at the end of the
simulation is consolidated into the digital twin. Fig. 3 illustrates a simple net-
work topology and a snapshot of active connectivity services. Fig. 4(a) shows
the fragmented spectrum resulting from the simulated arrivals and departures
consolidated into the digital twin.

The second part of the demo consists in invoking the DeepDefrag agent
and graphically showing its decisions about services selected for reallocation
and their target spectrum. Fig. 4(b) illustrates a hypothetical decision where
the agent, based on the spectrum state from Fig. 4(a), decides to reallocate
connectivity service Dy from slot 12 to 6.

The audience can inspect the execution of individual decisions within a
defragmentation cycle or advance to the end of the cycle. Fig. 4(c) illustrates
the spectrum state at the end of a hypothetical defragmentation cycle that
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Figure 4: The spectrum grid shown on the dashboard at different stages.

started with the state in Fig. 4(a). Note that 5 out of 7 connectivity services
were reconfigured, representing an aggressive defragmentation cycle. For the
demo, a more realistic number of slots is set up, and the number of active
services will depend on the parameters set by the audience (e.g., inter-arrival
time, holding time, and simulation time).

In addition to the spectrum visualisation illustrated in Fig. 4, various spec-
trum fragmentation metrics (e.g., number of cut [11], and root of sum of
squares [12]) that vary with time are displayed to the audience, not included
here due to space constraints. The impact of provisioning, departures, and
defragmentation of connectivity services on the variations of these metrics is
presented to the audience. The audience can also inspect the messages ex-
changed by the module and the digital twin, revealing how T-API can be
leveraged to implement the proposed approach.

5 Innovation
This demonstration is the first to take advantage of DRL to perform intelligent
spectrum management over a T-API-enabled carrier-grade optical network
deployment, exemplified here by a digital twin. The demonstration serves
not only as a proof-of-concept of defragmentation operations over T-API, but
also showcases a dashboard where the audience configures connectivity service
parameters, and observes how the DRL agent intelligently defragments the
spectrum. This work can foster discussions and spark interest in the ECOC
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community regarding the real-world implementation of intelligent spectrum
management strategies in optical networks and their realisation using cur-
rently available interfaces.

6 Conclusions
This paper presents the first experimental and interactive demonstration of a
proactive spectrum defragmentation module for elastic optical networks using
the ONF! (ONF!) Transport API standard over a digital twin. The algo-
rithm uses the merits of deep reinforcement learning to find the best set of
actions based on the network condition.
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1 Introduction

Abstract

Efficient utilization of fiber bandwidth is essential for reduc-
ing the total cost of ownership associated with deploying new
fiber plants. One of the challenges in dynamic multi-band elas-
tic optical networks (DMB-EONs) is spectrum fragmentation.
It stems from the wavelength continuity constraint, the dy-
namic arrival and departure of service requests, and variations
in quality of transmission (QoT) across the wavelength divi-
sion multiplexing (WDM) channels. This study introduces
a QoT-aware algorithm for routing, band, modulation for-
mat and spectrum assignment (RBMSA) that considers the
spectrum fragmentation along each channel to reduce SBR in
DMB-EONs. Simulation results indicate that the proposed al-
gorithm reduces SBR by up to 33.2% compared to a reference
RBMSA algorithm that considers only QoT at the cost of in-
creasing the average path length by 4.4%.

1 Introduction
Traditional C-band elastic optical networks (EONs) face challenges in keeping
pace with the data traffic surge triggered by the proliferation of high-bit-rate
applications like video streaming, cloud computing, and internet of thing (IoT)
devices [1]. Dynamic multi-band elastic optical network (DMB-EON) provide
a cost-effective solution to enhance data transmission capacity by efficiently
utilizing multiple wavelength bands across the optical spectrum, i.e., the L,
S, E, O, and U bands [2].

One of the crucial challenges in EON is spectrum fragmentation (SF),
where spectrum resources become divided into small, non-continuous, and
non-contiguous idle chunks over the links due to the dynamic nature of ser-
vice demands and wavelength availability [3]. SF can lead to inefficient use of
network capacity and increased blocking probability for incoming service re-
quests. SF-aware algorithms proactively utilize information on how spectrum
resources are used to reduce the number of blocked service requests [4].

Moreover, the quality of transmission (QoT) of an optical connection (i.e.,
a lightpath (LP)) varies across different channels due to the inter-channel
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stimulated Raman scattering (ISRS) phenomenon, which results in power de-
pletion from shorter to longer wavelengths in wavelength division multiplex-
ing (WDM) systems using resources outside the C-band [5]. ISRS, together
with the dynamic behavior of service requests with varying capacity require-
ments and the wavelength continuity constraint increases the SF in the net-
work. Hence, the joint SF- and QoT-aware routing, band, modulation format
and spectrum assignment (RBMSA) algorithm is crucial for DMB-EONs. The
[6] uses Q-learning to address fragmentation and impairment-aware routing,
modulation and spectrum assignment (RMSA) in C+L band elastic optical
networks. In this paper, for the first time, we propose a heuristic algorithm for
the spectrum fragmentation- and QoT-aware (SFQA) RBMSA for C+L+S-
band DMB-EONs. The proposed heuristic algorithm considers two different
SF metrics and the generalized signal to noise ratio (GSNR) level of the chan-
nels available along different candidate paths. We conduct a comprehensive
performance evaluation of the proposed algorithm and compare it to other
heuristic algorithms from the literature, demonstrating that the SFQA algo-
rithm outperforms the ones that consider only the QoT of the channels in the
terms of service blocking ratio (SBR).

2 System Model and Physical Layer Assumptions
We consider a DMB-EON scenario in which service requests arrive and depart
throughout the network’s lifetime. Transmission is possible in multiple bands,
utilizing pre-defined channels, each comprising six spectrum slots. For each
service request, we must determine a path from the source to the destination
node and a set of channels along that path that collectively meet the requested
bit rate. Different channels may be allocated for the same service request, but
they must all follow the same path. Additionally, the continuity constraint
dictates that the channels assigned to a particular path must be the same
across all links along the chosen path.

We assume that nodes are equipped with C+L+S-band bit-rate variable
transponders (BVTs) and reconfigurable optical add-drop multiplexers (ROADMs).
A BVTs utilizes flexible modulation formats, soft decision forward error cor-
rection, and variable bit rates [7]. The in-line amplifier sites are equipped
with C-band erbium-doped fiber amplifiers (EDFA) for the C-band chan-
nels, L-band EDFAs for the L-band channels, and thulium doped fiber am-
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plifier (TDFA) for the S-band. The amplified spontaneous emission (ASE)-
shaped noise is considered for the idle channels to guarantee the power profile
consistency [8], [9]. Moreover, the in-line amplifier sites are equipped with
the digital gain equalizers (DGEs) to have the optimal launch power for each
span based on the hyper-accelerated power optimization strategy proposed in
[10].

Regarding the GSNR estimation, we apply a Gaussian noise (GN)/enhanced
GN semi-closed form model to estimate the non-linear interference (NLI) noise
power, including the Kerr effects and ISRS [11], [12]. This model was validated
through field trials experiments [13]. According to the incoherent GN model
for uncompensated optical transmission links [14], the end-to-end GSNR for
a LP on channel i can be derived as follows:

GSNRi
LP|dB = 10 log10

[(
OSNR−1

ASE+SNR−1
NLI+SNR−1

TRx
)−1

]
−σFlt|dB−σAg|dB,

(E.1)
where OSNRASE = Σs∈SP s+1,i

tx /P s,i
ASE and SNRNLI = Σs∈SP s+1,i

tx /P s,i
NLI.

Moreover, P s+1,i
tx is the launch power at the beginning of span s + 1, P s,i

ASE =
nFhf i(Gs,i − 1)Rch is noise power caused by the doped fiber amplifier (DFA)
equipped with the DGE, and the NLI noise power (P s,i

NLI) is calculated from
(2) in [11]. Moreover, nF, h, f i, Gs,i = P s+1,i

tx /P s,i
rx , S, and Rch are the noise

figure of DFA, the Planck constant, channel frequency, center frequency of
the spectrum, DFA gain, set of spans, and channel symbol rate, respectively.
P s,i

rx is the received power at the end of span s. SNRTRx, σFlt, σAg are the
transceiver signal-to-noise ratio (SNR), SNR penalty due to wavelength selec-
tive switches filtering, and SNR margin due to the ageing. Hence, the GSNR
for all potential connections from arbitrary sources to destinations in the net-
work can be computed. Subsequently, the modulation format profiles of the
K shortest path-channel pairs are pre-calculated, employing GSNR thresholds
for each modulation format as defined in the literature [15].

3 Proposed Spectrum Fragmentation- and
QoT-Aware (SFQA) RBMSA

Various metrics have been introduced in the literature to measure SF in EONs,
aiding network operators in monitoring and optimizing the utilization of op-
tical spectrum resources [16]. Our proposed fragmentation-aware method uti-

E5



Paper E

Department of Electrical Engineering1

1

4

2

3

𝑒!

𝑒"

𝑒#

5

𝑒$ 𝑒%

𝑒&

𝑒!

𝑒"

𝑒#

𝑒$

𝑒%

𝑒&

𝑐! 𝑐" 𝑐# 𝑐$ 𝑐%

𝑑!

𝑑" 

𝑓!"" 𝑐# =
2$ + 1$

2 + 1
= 0.72

𝑑#

𝑑#

𝑑!

𝑑" 𝑑"

𝑐#

𝑑#

𝑑!𝑑!

Free channel

Connections

(a) (b) (c)

𝐷#

𝑏% 3 = 2

𝑏$ 3 = 1
𝐵 = 2

Figure 1: An example with a subset of six network links supporting three services
(a). The spectrum occupancy state (b). Calculation of the RSS metric
value for channel 3 (c).

lizes two SF metrics that specifically consider fragmentation in the channels,
i.e., number of cuts (NoC) and root of sum of squares (RSS). To illustrate how
these metrics are calculated, Fig. 1 presents a snapshot of a simple network
example with five nodes and six links, with each link having a capacity of 5
channels. The figure illustrates the current state of the network with three
established services, denoted as d1 to d3. The spectrum allocation of each link
is shown in Fig. 1b. The notation includes the following parameters: e is the
index of a link, c is the index of a channel, bi is the size of the ith free block,
and B is the number of free blocks.

fRSS(c) =

√∑B
i=1(bi(c))2∑B
i=1 bi(c)

(E.2)

Figure 1c illustrates the value for the RSS metric for the channel c3 as de-
fined in (E.2). To determine the value of NoC for each channel, an assessment
of the state of all links within the designated channel is conducted. The NoC
for a link with respect to a given channel corresponds to the instances where
the state of the link is different from the state of its adjacent links within the
same channel. The state of a link refers to whether it is occupied or unoc-
cupied. In the example in Fig. 1b, link e5 uses channel c3. Looking at its
neighbors we see that links e4 is not using c3 while e6 does. So, there is a
cut between links e4 and e5, and the NoC for link e5 with respect to channel
c3 is 1. The NoC value for all the links with respect to c3 can be calculated
analogously. The value of NoC across the network for a given channel is equal
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to the summation of the NoC value of all the links, i.e., 10 with respect to c3
in the example.

Algorithm 3: The SFQA algorithm
Input: d, P , C, MF T , COM , T ∈ [RSS, NoC],
Output: Cs

1 Cs ← ∅; // channels selected for each service request
2 for each p in P do
3 for each c in C do
4 if c is free on p by checking COM then
5 M(p, c)← get modulation level using MF T
6 if T is RSS then
7 F S(p, c)← Festablished(p, c)− Fcurrent(p, c)
8 else if T is NoC then
9 F S(p, c)← Fcurrent(p, c)− Festablished(p, c)

10 Psorted ← sort the paths P based on best M(p, c) of their channels, and if
two paths have the same best modulation format of their channels, sort
based on the best F S(p, c) of their channels

11 br ← the bit rate of d
12 for each p in Psorted do
13 Csorted ← sort the channels on path p based on best M(p, c), and if two

channels have the same best modulation format, sort based on the best
F S(p, c)

14 r ← br
15 for each c in Csorted do
16 Cs appends the channel c
17 r ← r − 100 ∗M(p, c)
18 if r < 0 then
19 return Cs

20 Cs ← ∅
21 return Cs

The pseudo-code of the SFQA algorithm for RBMSA of a service request is
given in Algorithm 3. The basic intuition of this approach is to optimize the
selection of paths and channels for service requests based on the available mod-
ulation format options and the fragmentation metric targets. The algorithm
receives as input the service request d, the set of candidate paths between the
source and the destination of d as P , the complete set of channels that can be
used across all frequency bands C, pre-computed modulation format tables
for all paths and channels MFT , the channel occupancy matrix COM , and
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the desired fragmentation metric, denoted as T . The algorithm outputs a list
of selected channels whose combined bit rate satisfies the requested bit rate;
an empty list signifies that the service request is blocked.

The algorithm comprises two parts. The first part involves computing the
fragmentation score (FS) for all potential paths and channels available for
the service request. Meanwhile, the second part focuses on selecting the path
and corresponding channels based on the calculated FS. Upon the arrival of
the service request d, the algorithm is triggered and evaluates all candidate
paths between the source and destination nodes. For each path, it assesses the
free channels and retrieves their respective modulation formats, storing them
in M(p, c) (lines 2–5). Subsequently, it calculates the FS for each channel,
considering a hypothetical scenario where the channel is selected to establish
the service. This involves computing the difference between the SF value in the
current spectrum state (Fcurrent) and the hypothetical SF value (Festablished)
assuming the service is hypothetically established on the channel (line 6–9).
If the metric of interest is RSS, the Fcurrent and Festablished are computed
using (E.2). If NoC is considered, the Fcurrent and Festablished refer to the
two corresponding values of NoC for channel c.

The second part of the algorithm aims to find the best path for the service
request. The paths are sorted based on the best modulation format of their
channels. If two paths have the same best modulation format, the FS is
used to sort them (line 10). The algorithm proceeds by iteratively examining
each path in Psorted (line 12) and sorting its available channels according to
their modulation format. If multiple channels exhibit identical modulation
formats, the algorithm prioritizes them based on their FSs (line 13). Finally,
the algorithm iterates through the sorted channels, appending each channel
to the list of selected channels, and evaluating the residual bit rate r by
considering the channel modulation format and the service request bit rate
(line 16–17).

However, there is a chance that the selected path does not have sufficient
channels to support the full bit rate requested. In such cases, the selected
channels are reset, and the algorithm proceeds to examine another path (line
20). If none of the paths contain enough channels to accommodate the request,
the algorithm returns Cs with an empty value, indicating that the service d

is blocked.
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4 Simulation Settings and Results

This paper focuses on C+L+S-band EONs, where an aggregate bandwidth of
20 THz (6+6+8) is divided into 268 channels, each one with 75 GHz (6 * 12.5
GHz), considering a 400 GHz gap between adjacent bands. The simulations
are conducted on the Japanese network topology with 14 nodes, 22 links
[17], and a maximum span length of 80 km. Six modulation formats are
evaluated, ranging from PM-BPSK to PM-64QAM at 64 Gbaud. Each channel
can support bit rates spanning from 100 to 600 Gb/s when employing PM-
BPSK and PM-64QAM, respectively. EDFAs with noise figures of 4.5 dB and
5 dB are employed for the C- and L-bands, respectively. A TDFA with a
noise figure of 6 dB is utilized for the S-band. Standard single mode fiber
with a zero-water peak is assumed, and spectrum continuity is enforced for
channel assignment along a given path. A dynamic scenario is considered
where the service requests are generated using a Poisson process, and an
exponential distribution is assumed for the holding time of the services, with
an average of 25 time units. The offered traffic load values are adjusted to
achieve approximately 0.01% to 1% SBR for the proposed algorithms. The bit
rate for service requests is selected randomly between 50 Gb/s and 600 Gb/s
with a granularity of 50 Gb/s. Two million service requests are simulated,
with the SFQA algorithm executed for each service request. The value of
K is set to 5. The proposed algorithm is developed in the Optical RL-Gym
framework [18].

Two versions of the proposed heuristic algorithm are analyzed depending on
the SF metric used: the one that uses the NoC metric is referred to as SFQA-
Cut, and the one that uses the RSS metric is called SFQA-RSS. To evaluate
the performance of the proposed algorithm, a comparison is made with two
heuristic algorithms, namely BM-SP, and SP-BM. BM-SP selects a path with
the best modulation format across its channels, favoring shorter paths in case
of a tie in terms of best modulation format. Conversely, SP-BM favors path
length minimization over modulation format efficiency. It always selects the
shortest path first and then identifies the channel with the best modulation
that is possible along the chosen path. Note that in all approaches, when
confronted with identical modulation formats or fragmentation metrics for
the channels along the same path, preference is given to the channel with the
lowest frequency.

Figure 2 depicts the performance of the considered strategies as a function of
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Figure 2: Performance of the RBMSA schemes for Japanese topology.

the offered load. The SFQA algorithm demonstrates superior performance in
terms of SBR as shown in Fig. 2a. More specifically, SFQA-RSS slightly out-
performs SFQA-Cut and surpasses BM-SP and SP-BM algorithms by 33.2%
and 74% on average across all loads, respectively. This highlights the ad-
vantages of incorporating occupancy state information into the path and the
channel selection processes. This observation is further supported by Fig. 2b,
illustrating the in GSNR levels across different scenarios. While the GSNR
level of BM-SP surpasses the one of SFQA, its SBR performance suffers due
to its lack of consideration for SF metrics. However, as can be seen in Fig.
2c, the benefit of SFQA in terms of SBR come at a cost of longer paths. More
specifically, the SFQA-RSS algorithm exhibits (on average) paths 4.4% and
10.2 % longer than the ones from obtained with the BM-SP and SP-BM al-
gorithms. To obtain a deeper insight into the network performance, Fig. 2d
presents the network RSS metric values for different algorithms, The analysis
shows that the network with greater fragmentation (lower RSS values) tend to
experience higher SBR. Furthermore, Fig. 2d illustrates that the RSS metric
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decreases as load increases, indicating stronger fragmentation under higher
loads.

5 Conclusion
This paper presents a heuristic algorithm for routing, band, modulation for-
mat and spectrum assignment (RBMSA) in dynamic multi-band elastic op-
tical network (DMB-EON) that utilizes the QoT of the channels, and the
spectrum occupancy information, measured by the number of cuts (NoC) and
root of sum of squares (RSS) metrics. Simulation results demonstrate the
effectiveness of the proposed algorithm in reducing SBR compared to bench-
mark algorithm by up to 33.2%, at the cost of increasing the average path
length by 4.4%
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1 Introduction

Abstract

Multi-band elastic optical networks (MB-EONs) transmit in-
formation in multiple bands to increase the available capac-
ity. However, they suffer from QoT degradation caused by
the inter-channel stimulated Raman scattering effect, which
requires addressing through tailored resource assignment. Ad-
ditionally, dynamically arriving and departing optical connec-
tion requests generate SF, where spectrum resources become
scattered into non-continuous chunks and aggravate SBR even
when the total available bandwidth is sufficient. To jointly ad-
dress these challenges, we propose an SF- and QoT-aware algo-
rithm for RBMSA, along with proactive spectrum defragmen-
tation (SD), referred to as SFQA-defrag. The algorithm con-
siders SF metrics and QoT levels of available channels across
multiple candidate paths to ensure spectrum allocations that
meet the QoT requirements while minimizing the SF. The
SD process proactively reorganizes spectrum allocation to re-
store continuity, thus reducing fragmentation and lowering the
SBR. The SFQA-defrag algorithm is evaluated against bench-
mark algorithms using three reference backbone topologies.
The results demonstrate that it significantly reduce SBR and
SF compared to benchmarks, albeit with a slight increase in
the average path length.

1 Introduction
The growing demand for bandwidth, driven by high-bit-rate applications such
as video streaming, cloud services, and IoT, along with the continuous emer-
gence of new services, requires dynamic and resource-efficient optical network
operations [1]. This increasing demand is rapidly surpassing the capabilities
of traditional C-band elastic optical networks (EONs) [2]. Multi-band elas-
tic optical networks (MB-EONs) provide an economical way to significantly
enhance data transmission capacity by utilizing multiple wavelength bands
across the optical spectrum, such as L, C, S, E, O, and U bands [3]. Within
each band, the optical spectrum is divided into frequency slots of fine gran-
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ularity, and a channel is formed by grouping one or more contiguous slots
allocated along the path carrying a modulated optical signal. Each channel
operates through a dedicated BVT, which enables flexible modulation and bit
rate adaptation based on the signal quality of the lightpath. The versatility
of this architecture ensures that the next-generation EON can accommodate
varying traffic patterns and future growth, making it an indispensable infras-
tructure for enabling communication and driving innovation across industries
[4]. However, the shift from conventional routing, modulation and spectrum
assignment (RMSA) in EONs to routing, band, modulation format and spec-
trum assignment (RBMSA) in MB-EONs introduces additional complexity
due to the necessity of choosing wavelength bands alongside paths, spectrum
and modulation formats. Additionally, the QoT of optical lightpaths varies
across wavelength bands due to nonlinear impairments. A further challenge
arises from the inefficient use of transceiver (TRx) capacity, especially when
low-bit-rate service requests are provisioned on dedicated lightpaths, leading
to underutilized spectrum resources. Moreover, the dynamic nature of service
requests leads to spectrum fragmentation (SF), where spectrum resources be-
come fragmented into small, disjoint, and non-contiguous segments across
the links [5]. This can result in inefficient network capacity utilization and
higher blocking probabilities for the incoming service requests. Thus, effective
resource allocation strategies in MB-EONs must consider QoT and SF simul-
taneously. These strategies should also incorporate traffic grooming, which
aggregates multiple low-bit-rate service requests onto existing lightpaths with
available capacity, minimizing the need for deploying new TRx.

To alleviate the impact of fragmentation, SF-aware RBMSA algorithms
leverage information on spectrum resource utilization to minimize service
blocking ratio (SBR) [6]. In addition to the preemptive, SF-aware service pro-
visioning, SF can also be addressed through spectrum defragmentation (SD)
[5]. The goal of SD is to reallocate lightpaths such that the spectral gaps are
consolidated and aligned more effectively across network links, consequently
allowing for the accommodation of more services and improving overall spec-
trum utilization. SD approaches can be categorized into two main types: reac-
tive and proactive [7]. Reactive approaches are triggered by service-blocking
events, whereas proactive approaches are executed without waiting for block-
ing to occur, typically by monitoring network performance metrics to deter-
mine the good timing for SD or by performing it periodically. While SD
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has been shown to reduce SBR, it also introduces a reconfiguration overhead,
undesirable for network operators. Depending on the specific SD approach,
this overhead may involve terminating, reallocating, and reestablishing se-
lected lightpaths. The frequency of SD cycles and the number of reallocations
within each cycle are key metrics used to assess SD overhead [8]. This indi-
cates that potential improvements in SBR and the associated overhead must
be jointly considered when designing and evaluating SD approaches.

In addition to SF, another aspect to consider for the resource allocation
in MB-EONs is the variation of the QoT in the optical lightpaths. This
variation stems from NLI, including Kerr effects and the ISRS phenomenon,
which results in self-phase modulation, cross-phase modulation, and power
depletion from shorter to longer wavelengths when resources outside the C-
band are used [9], [10].

QoT-aware provisioning can reduce SBR and enhance spectrum usage ef-
ficiency by assigning spectrum resources that support the highest possible
modulation, based on the physical-layer quality of each channel [11]. It eval-
uates the QoT of predefined channels, each composed of a fixed number of
frequency slots, and selects the ones offering the best transmission quality.
However, this approach may inadvertently exacerbate SF. This occurs be-
cause channels with the best QoT may not always be continuous across the
entire source-destination path. Also, fulfilling the requested bit rate of a ser-
vice request often necessitates allocating multiple non-contiguous spectrum
segments, leading to several isolated channels in the same path. This issue
is particularly pronounced in multi-band scenarios such as C+L+S-band net-
works, where differences in QoT caused by ISRS are substantial.

To address the issues mentioned above in a resource-efficient way, it is es-
sential to balance the trade-offs between SF and QoT management in dynamic
MB-EONs, and to solve the SF- and QoT-aware routing, band, modulation
format and spectrum assignment (RBMSA) problem jointly. In [12], we pro-
posed a first heuristic algorithm for the SFQA RBMSA for C+L+S-band
dynamic MB-EONs. The algorithm considers two SF metrics along with the
QoT of available channels on different candidate paths to determine the most
suitable path and channel.

In this paper, we extend that work by proposing an enhanced algorithm re-
ferred to as SFQA-defrag, which integrates the SFQA RBMSA with proactive
SD. The SFQA-defrag algorithm incorporates the occupancy state informa-
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tion into the path and channel selection processes. Additionally, SFQA-defrag
includes traffic grooming during service provisioning and traffic re-grooming
during SD cycles, to further improve spectrum utilization and reduce the SBR.

The physical layer model used in this study considers the impact of ISRS on
both ASE noise and NLI, enabling an accurate QoT estimation across differ-
ent bands [11]. Finally, the NoC metric used to evaluate SF is refined to better
reflect the impact of SF across neighboring links where services are allocated
over discrete channels. The performance of SFQA-defrag is evaluated through
extensive simulations on three real-world network topologies: Japanese back-
bone (JPNB), United States backbone (USB), and Spanish backbone (SPNB).
The results show that SFQA-defrag significantly outperforms benchmark algo-
rithms that consider only QoT or SF metrics, achieving lower SBR in dynamic
MB-EONs.

The rest of the paper is organized as follows. Section 2 reviews the state
of the art for the resource management methods in dynamic MB-EONs. Sec-
tion 3 presents the system model and physical layer assumptions. Section 4
describes SFQA-defrag. Section 5 outlines the simulation settings, while Sec-
tion 6 evaluates the algorithm’s performance. Finally, Section 7 concludes the
paper.

2 Related Work
The resource allocation problem in MB-EONs is particularly challenging due
to the presence of physical-layer impairments, such as ISRS. Conventional
RMSA techniques, primarily developed for single-band scenarios, fall short
in capturing these additional impairments and constraints, making new ap-
proaches essential to meet the required QoT levels in MB-EONs. The authors
in [13] extend the RMSA problem to the RBMSA problem for the first time
and present a basic GSNR-aware provisioning strategy based on the general-
ized Gaussian noise model, which enables more accurate QoT estimation and
efficient spectrum utilization. To improve performance and reduce blocking
probability, the authors in [14] develop a family of band allocation algorithms
that adapt to the characteristics of service requests, such as route length and
bit rate. The main idea is that selecting bands based on individual service
attributes leads to more effective spectrum utilization. The authors in [15] in-
vestigate the impact of increased configuration granularity in next-generation
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BVTs for flexible-grid elastic optical networks. They consider practical band-
width variable transponders implementations, by optimizing configuration se-
lection for data rate and bandwidth combinations.

In recent years, substantial research has focused on SF and its mitigation,
utilizing integer linear program (ILP) models, (meta) heuristics, and machine
learning-based techniques. The study in [16] models the proactive parallel
lightpath reconfiguration problem in EONs as an ILP formulation and ana-
lyzes its computational complexity. The work in [17] explores heuristic meth-
ods for hitless bandwidth defragmentation, such as spectrum sweeping and
hop tuning. In [8], SD is conducted periodically, with lightpath selection
for reallocation based on service parameters. A deep reinforcement learning-
based framework is developed in [18], which jointly manages when to initiate
SD, which lightpaths to reconfigure, and how to reassign spectrum resources.
However, most of these studies are limited to the C band and rely on fixed
reach and capacity values, primarily due to the lack of efficient, low-complexity
methods for QoT estimation. To the best of our knowledge, few studies fo-
cus on fragmentation management in multi-band scenarios. Some address
SF-aware service provisioning, while others explore SD in multi-band optical
networks.

On the SF-aware RBMSA side, the authors in [19] propose a Q-learning-
based dynamic routing algorithm for C+L-band EONs, considering fiber im-
pairments such as ISRS. The algorithm incorporates SF effects and spectrum
constraints, employing first-fit, last-fit, and exact-fit allocation strategies. In
[20], the authors tackle the trade-off between SNR and spectrum efficiency in
C+L-band optical networks by proposing a resource allocation approach us-
ing C+L optical cross-connects with all-optical wavelength converters. Their
method minimizes link load, manages SNR impacts, and reduces SF. Simi-
larly, the authors in [21] introduce a survivability-focused RBMSA algorithm
for C+L band EONs, addressing challenges such as ISRS, SF, and service
disruptions caused by link failures.

Regarding SD, [22] presents an adaptive cross-layer bandwidth defragmen-
tation algorithm to reduce bandwidth fragmentation arising from mismatches
between services and channels in multi-band optical networks. Additionally, a
signal-quality-aware proactive SD scheme for C+L-band EONs is presented in
[23]. This approach minimizes SF and maintains QoT during spectrum retun-
ing using machine learning-based QoT estimation. It incorporates nonlinear-
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Table 1: Literature on resource allocation for MB-EONs considering impairments
and SF. SFA: spectrum fragmentation-aware, EGGN: enhance general-
ized Gaussian noise, TGR: traffic grooming and re-grooming,
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[19] ✓ × × × ✓ ×
[20] ✓ × × × ✓ ×
[21] ✓ × × × ✓ ×
[22] × ✓ × × ✓ ✓
[23] × ✓ × × ✓ ×

This study ✓ ✓ ✓ ✓ ✓ ✓

impairment-aware SD algorithms to enhance spectrum utilization while ad-
dressing ISRS effects.

Table 1 summarizes the most relevant studies in the literature, specifically
those addressing impairment considerations and fragmentation management
in MB-EONs. To the best of our knowledge, no existing work has accounted
for all impairments, including the ISRS effect in ASE and NLI noise, while
simultaneously integrating SF-aware resource allocation with proactive SD.
Our study addresses this gap by employing a comprehensive physical layer
model that supports SF management, and QoT-aware service provisioning.
In addition, we extend the analysis beyond the conventional C+L band sys-
tems considered in prior studies to include the S band, enabling performance
evaluation over a broader optical spectrum.

3 System Model and Physical Layer Assumptions
In this section, we present the system model employed in this work. We outline
the node functionality and network infrastructure, present the methodology
used for QoT estimation, and describe the SF metrics employed in our ap-
proach. In this study, the GSNR is used as the indicator of QoT, accounting
for both linear and nonlinear noise components.
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3.1 Node and Network Architecture Model

We consider a network that comprises a set of nodes and links, representing
a dynamic MB-EON scenario where service requests continuously arrive and
depart. Transmission can take place in multiple bands, utilizing pre-defined
channels. Each channel comprises six spectrum slots and has a total band-
width of 6 × 12.5 = 75 GHz. For each service request, we must determine a
path from the source to the destination node and a set of channels along that
path that collectively meet the requested bit rate. Multiple channels may be
allocated to a single service request depending on its needed bit rate, but they
must all follow the same path. Additionally, the continuity constraint dictates
that the channels assigned to a particular service must be the same across all
links along the chosen path. The channels assigned to a path do not need
to be contiguous, as each channel utilizes a separate BVT. Furthermore, we
assume bidirectional traffic model, where both directions of a service request
share the same path and modulation format.

Each node in the network is equipped with C+L+S-band BVTs and ROADMs,
enabling reconfigurable add/drop operations across multiple bands. The in-
line amplifier sites are equipped with C-band EDFAs for the C-band channels,
L-band EDFAs for the L-band channels, and TDFAs for the S-band. The
ASE-shaped noise is considered for the idle channels to guarantee the power
profile consistency [24], [25]. Moreover, the in-line amplifier sites are equipped
with DGEs to ensure optimal launch power for each span based on the fast
power optimization strategy proposed in [11]. Furthermore, the BVTs at each
node support flexible modulation format selection, soft-decision forward error
correction, and variable bit rate operation [26] Based on the GSNR of each
channel, the transmission rate of each TRx can be adaptively tuned by adjust-
ing its modulation format. This flexibility is provided by uniform standard
quadrature amplitude modulation with adaptive variable code-rate, proba-
bilistic constellation shaping, or time-domain hybrid-format technologies [27].

The ability to vary the transmission rate at the TRx level enables traffic
(re-)grooming at the optical, rather than the IP/MPLS layer. The optical
layer traffic (re-)grooming is managed by an orchestrator that controls both
the IP/MPLS and optical layer software-defined networking (SDN) controller
agents. Consequently, when a new request arrives, the spare capacity of the
already established lightpath between the same source and destination is uti-
lized; if this spare capacity is insufficient to meet the required bit rate, a new
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lightpath must be deployed.

3.2 QoT estimator
For GSNR calculation, we apply an enhanced generalized Gaussian noise
(EGGN) semi-closed form model to estimate the NLI noise power, includ-
ing the Kerr effects and ISRS [28], [29]. The EGGN is versus the classical
GGN. EGGN includes an extra term that corrects for the modulation for-
mat dependence, improving the accuracy of nonlinear interference modeling.
This model was validated through field trial experiments [30]. According to
the concept of incoherent GN model for uncompensated optical transmission
links [31], the end-to-end GSNR for a lightpath on channel i can be derived
as follows:

GSNRi
LP|dB = 10 · log10

[(
Σs∈Sσs + σ−1

TRx
)−1

]
− σFlt|dB − σAg|dB, (F.1)

σs = ( P s+1,i
tx

P s,i
ASE + P s,i

NLI
)−1 (F.2)

Moreover, P s+1,i
tx is the launch power at the beginning of span s + 1, P s,i

ASE =
nFhf i(Gs,i−1)Rch is noise power caused by the DFA equipped with DGE, and
the NLI noise power (P s,i

NLI) is calculated from (2) in [28]. nF, h, f i, Gs,i =
P s+1,i

tx /P s,i
rx , S, and Rch are the noise figure of DFA, the Planck constant, the

channel frequency, the center frequency of the spectrum, the DFA gain, the
set of spans, and the channel symbol rate, respectively. P s,i

rx is the received
power at the end of span s. σTRx, σFlt, σAg are the transceiver SNR, the SNR
penalty due to wavelength selective switches filtering, and the SNR margin
due to aging.

Using F.1, GSNR is calculated for any lightpath from an arbitrary source
to an arbitrary destination in the network. Subsequently, for each of the K
shortest paths, the feasible modulation format for every channel along the
path is pre-calculated by comparing the estimated GSNR of each channel
to the modulation format thresholds defined in the literature [4]. The pre-
computed modulation format levels are then used during the RBMSA decision
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Figure 1: An example with a subset of five network links supporting five services
(a). The spectrum occupancy state (b). Calculation of the root of sum
of squares (RSS) metric value for channel 3 (c).

process to efficiently evaluate which path–channel combinations can satisfy a
given bit rate request, reducing the computational overhead during service
provisioning.

3.3 Spectrum fragmentation (SF) metrics

Various metrics have been proposed in the literature to quantify SF within an
EON, enabling network operators to monitor and optimize spectrum resource
utilization [32]. Our proposed fragmentation-aware method utilizes two key
SF metrics, i.e., NoC and RSS, designed to gauge fragmentation of spectrum
channels along the network links. Since the spectrum contiguity constraint
is not required, as explained in Sec. 3.1, we adjust these metrics to focus
solely on measuring the fragmentation of channels across neighboring links.
Figure 1 illustrates a simple network example with four nodes, labeled v1 to
v4, and five links, denoted by e1 to e5. Each link has six available channels,
denoted by c1 to c6. Five active services, denoted by d1 to d5, are established
in the network, and their respective channel allocations is shown in Fig. 1(b).
Note that some channels are fully occupied, while others have spare capacity
available for incoming service requests. Let us denote the sizes of the B free
blocks on all links for a channel c by b1(c), . . . , bB(c). The RSS metric can
then be defined as follows:

fRSS(c) =

√∑B
i=1(bi(c))2∑B
i=1 bi(c)

(F.3)
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Figure 1(c) illustrates the value of the RSS metric for channel c3 as defined
in (F.3).

NoC quantifies the SF level of a channel across the network. It is calculated
per channel by assessing the occupancy state of that channel on all links in
the network. The NoC for a given channel on a link is defined as the number
of times the channel’s state on that link differs from the state of the same
channel on its adjacent links. The total NoC for a channel is then obtained
by summing these values across all links.

In the example shown in Fig. 1(b), no service occupies channel c3 on link
e3. Looking at its neighbors, we see that services occupy c3 on links e2 and e5
while links e1 and e4 have c3 unoccupied. So, there are cuts between links e3
and e2, as well as links e3 and e5. Therefore, the NoC for channel c3 on the
link e3 is 2. The NoC value for channel c3 on all the links can be calculated
analogously, and the total NoC is obtained by summing these values, resulting
in a total of 12 for this channel.

4 The Spectrum Fragmentation- and QoT-Aware
(SFQA) RBMSA Algorithm with Spectrum
Defragmentation (SD)

In this section, we introduce the proposed algorithm for SFQA RBMSA with
proactive SD in MB-EON. We start by detailing the RBMSA algorithm,
followed by a presentation of the proactive SD algorithm, and then provide a
complexity analysis to evaluate their computational cost.

4.1 Spectrum Fragmentation- and QoT-Aware (SFQA)
RBMSA

The core idea of the SFQA RBMSA algorithm is to reduce the SBR by jointly
considering QoT and SF during path and channel selection. For each service
request, the algorithm prioritizes paths and channels that support the highest
possible modulation format while also minimizing SF. The pseudocode is
presented in Algorithm 4.

Inputs include the service request d, a set of candidate paths P between
the source node s and the destination node d, the complete set of usable
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Figure 2: The channel occupancy matrix O (a), the modulation format table M
(b), and the channel state S (c) for the simple network example in Fig.
1

channels across all frequency bands C, the pre-calculated modulation format
tables M for all paths and channels, the channel occupancy matrix O, the
matrix showing the remaining capacity of the established channels S, and the
selected spectrum fragmentation metric T .

To illustrate these variables, an example based on the network topology in
Fig. 1 is shown in Fig. 2. Figure 2(a) shows the O matrix where 1 indicates
that a channel is fully or partially occupied by a service on a link, while 0
otherwise. Figure 2(b) presents the M table, which contains the modulation
format levels for K paths between each source–destination pair and for all
channels. For simplicity, the example shows only the values corresponding to
the shortest path of each pair. The modulation format levels in the M table
range from m = {1, 2, 3, 4, 5, 6}, corresponding to bit rates from 100 Gbps
to 600 Gbps. For instance, a value of 6 for a given channel means that the
channel can support up to 600 Gbps. Some services may not fully utilize a
channel’s capacity depending on their bit rate requirements. For example,
service d3, which requires 800 Gbps, occupies the full capacity of channel c2
and uses only 200 Gbps of channel c3. The remaining capacity of partially
used channels is tracked in the S matrix, as shown in Fig. 2(c). Each entry in
the S matrix is a tuple that indicates the service request occupying the channel
and the remaining capacity of its corresponding BVT on that path. In this
case, the unused 400 Gbps on channel c3 between nodes v2 and v3 represents
an active BVT that can be used by future incoming service requests.

The algorithm’s outputs are the selected path and a list of new channels
that collectively meet the requested bit rate. If no suitable channels are found,
the service request is blocked. The constraints are that all channels assigned
to a service must follow the same path, and the continuity constraint requires
that the same set of channels be available on every link along that path.
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Algorithm 4: The spectrum fragmentation- and QoT-aware (SFQA)
algorithm
Input: d, P, C, M , O, S , T
Output: Cs

1 Cs ← ∅; // channels selected for the service request
2 br ← the bit rate of d

3 for each p in P do
4 r ← br

5 for each c in S of p do
6 rc← free capacity on channel c

7 if rc > 0 then
8 Cs ← Cs ∪ {c}
9 r ← r − β ∗ rc

10 if r <= 0 then
11 update the channel state S

12 return p, Cs

13 Cs ← ∅
14 for each p in P do
15 for each c in C do
16 if O(e, c) == 0 for all e in p then
17 if T is RSS then
18 F S(p, c)← Fnew(p, c)− Fcurrent(p, c)
19 else if T is NoC then
20 F S(p, c)← Fcurrent(p, c)− Fnew(p, c)
21 Psorted ← sort P by descending modulation level M(p, c), then F S(p, c)
22 for each p in Psorted do
23 Csorted ← sort channels on p by descending M(p, c), then F S(p, c)
24 r ← br

25 for each c in Csorted do
26 Cs ← Cs ∪ {c}
27 r ← r − β ∗M(p, c)
28 if r <= 0 then
29 update the channel occupancy matrix O

30 update the channel state S

31 return p, Cs

32 Cs ← ∅
33 return Cs

The algorithm operates in three phases. In phase one, the algorithm checks
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whether a service request can be accommodated using existing established
channels, i.e., using traffic grooming. If grooming is not successful, the algo-
rithm proceeds to phase two where it computes the fragmentation score (FS)
for all candidate paths and available channels. Finally, in phase three, the
algorithm selects a path and the corresponding channels based on the mod-
ulation format and the computed FS values. More details about each phase
are provided next.

In phase one (lines 3–13), upon arrival of service request d, the algorithm
starts by analyzing all candidate paths between the source and destination
nodes. For each candidate path p ∈ P , the algorithm initializes a temporary
variable r with the required bit rate of the service request (line 4). It then
iterates through the set of established channels along p stored in S. For each
channel c, the algorithm retrieves the remaining free capacity rc and checks
whether it is greater than zero (lines 6–7). If a channel has available capacity,
it is added to the set of selected channels and β × rc is subtracted from r

(lines 8–9), where β is the unit of capacity per modulation level (set at 100
Gbps in our work). This indicates how much of the service request bit rate
can be covered by reusing that channel. If there is sufficient free capacity on
existing channels to accommodate the entire request, the updated value of r

drops to zero or less (line 10), triggering an update in S and returning the
selected path p along with the set of reused channels Cs (lines 11–12). If no
path can fully accommodate the service request using existing channels, the
algorithm proceeds to the second phase.

The second phase (lines 14–20) starts by identifying the free channels along
each candidate path using the occupancy information from the O.

For each candidate channel, the algorithm calculates the difference in FS

obtained by assigning the channel to the service request Fnew, relative to the
current value Fcurrent (lines 17–20). If RSS is used as the metric, Fcurrent
and Fnew are determined by (F.3). If the metric is NoC, then Fcurrent and
Fnew correspond to the respective NoC values for channel c. Since low SF
corresponds to either a high RSS or a low NoC value, the FS must be defined
differently for the two metric to represent improvements in SF consistently.
With the RSS metric, the FS is defined as FS = Fnew−Fcurrent, whereas with
NoC, FS = Fcurrent − Fnew. The algorithm is designed to select the channels
with the highest FS values, as they correspond to the greatest reduction in
SF.
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Figure 3: An example of the SFQA algorithm provisioning a new service via traffic
grooming (a), and by establishing a new lightpath (b).

The third phase of the algorithm identifies the best path-channel(s) combi-
nation that satisfies the service request. The list of candidate paths is sorted
(Psorted) in the descending order of the highest supported modulation format,
recorded in M(p, c) (line 21). In case of ties, paths are further ranked based
on the highest FS of their candidate channels.

For each path in Psorted, the available channels are then sorted in the de-
scending order of their modulation format level (line 23), or the FS value if
the modulation levels are the same. The sorted channels are then iteratively
selected to support the current request (lines 26–27) until the requested bit
rate is fully served and r becomes zero or less (line 28). At this point, the
channel occupancy matrix O is updated to reflect the new allocation. S is
also adjusted to reflect the remaining free capacity on the selected channels
(lines 29–31). However, if there are not enough channels along a path to meet
the requested bit rate, the selected channels are cleared, and the algorithm
proceeds to the next path (line 32). Should none of the paths provide suffi-
cient channels to satisfy the request, the algorithm returns an empty set Cs,
indicating that the service request d cannot be accommodated and is therefore
blocked (lines 32–33).

Figure 3 provides an illustrative example of the SFQA algorithm for the
network topology from Figure 1, where two candidate paths are considered
for each incoming service request. The modulation format level for each
path–channel pair is shown as M(p, c). The blacked-out parts in each channel
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indicate capacity that cannot be utilized due to the limitations of the selected
modulation format. For example, if the modulation format level is 4, then 4
out of 6 capacity units can be used, and the remaining 2 are marked in black.

In Fig. 3(a), when service request d6 arrives, requiring 300 Gbps between
nodes v2 and v3, the algorithm first attempts to groom the traffic by checking
whether any of the established channels along the candidate paths p1 and p2
have sufficient free capacity. Since p1 is the shorter path, p1 is checked first.
Channel c3 of sufficient free capacity, allowing the service to be supported
without activating a new channel. Figure 3(b) depicts the arrival of service
request d7, requiring 400 Gbps from v1 to v3. While two paths are available,
neither has an established channel with enough capacity to accommodate d7.
Hence, a new lightpath is needed. Channels c1 on p1 and c2 and c5 on p2
are available. The algorithm calculates the FS for each channel based on
the NoC metric, as shown on the right side of Fig. 3(b). For example, for
channel c1 on path p1, the fragmentation score is computed as FS(1, 1) =
Fcurrent(1, 1) − Fnew(1, 1) = 4. This score reflects the reduction in SF if c1
is used by d7. Among the candidates, c1 on p1 and c2 on p2 offer the same
highest modulation format level, so c1 on p1 is selected due to its superior
FS.

4.2 Proactive spectrum defragmentation

The proposed SD algorithm proactively initiates SD cycles, which can be
triggered periodically or when a performance indicator threshold is exceeded.
The pseudo-code for an SD cycle of SFQA-defrag is presented in Algorithm 5.
The main objective of the SD algorithm is to reduce spectrum fragmentation
by reorganizing the channels which improve the SF most significantly. Rather
than reallocating entire services, individual service channels are considered for
reallocation the fact that multiple non-contiguous channels can be assigned
to a single service and reallocated independently.

The algorithm receives as input the set of active services whose channels
are candidates for reallocation, D, the maximum number of service channels
allowed for reallocation, N , the list of the channels C, pre-calculated modu-
lation format table M , the channel occupancy matrix O, the channel state
matrix S, and the selected spectrum fragmentation metric T to be used.
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Algorithm 5: The spectrum defragmentation (SD) cycle
Input: D, N , C, M , O, S

34 MovedCount ← 0;
35 Ds ← ∅; // service selected for reallocation
36 for each d in D do
37 for each c in channels of d do
38 if there is a channel c′ on the same path that can be re-groomed with

c by checking S then
39 Re-groom c and c′

40 Update S

41 Update O

42 MovedCount←MovedCount + 1;
43 if MovedCount ≥ N then
44 break ; // Stop if the maximum allowed movements are

reached
45 DO ← ∅;
46 for each d in D do
47 for each c in channels of d do
48 if c is fully occupied by d then
49 if T is RSS then
50 DS(pd, c)← Fremoved(pd, c)− Fcurrent(pd, c)
51 else if T is NoC then
52 DS(pd, c)← Fcurrent(pd, c)− Fremoved(pd, c)
53 if DS(pd, c) > 0 then
54 DO ← DO ∪ (c, d, DS(pd, c))
55 DOsorted ← sort DO by descending DS(p, c),
56 RSbest ← 0;
57 ctarget ← ∅;
58 for each (c, d, DS(pd, c)) in DOsorted do
59 for each c′ in C do
60 if O(e, c′) == 0 for all e in pd then
61 if M(pd, c′) >= M(pd, c) then
62 if T is RSS then
63 RS(pd, c′)← Fnew(pd, c′)− Fcurrent(pd, c′)
64 else if T is NoC then
65 RS(pd, c′)← Fcurrent(pd, c′)− Fnew(pd, c′)
66 if RS(pd, c′) > RSbest then
67 RSbest ← RSd(i)
68 ctarget ← c′

69 if RSbest ≥ DS(pd, c) then
70 move channel c to ctarget

71 update the channel occupancy matrix O

72 update the channel state S

73 MovedCount←MovedCount + 1;
74 if MovedCount ≥ N then
75 break ; // Stop if the maximum allowed movements are reached
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SFQA-defrag comprises three parts. The aim of the first is to re-groom
traffic by consolidating partially occupied channels and freeing up resources.
In the second part, the best service channel for reallocation is identified. In
the third, the algorithm seeks the best target channel to reassign the selected
service channel. More details on each part are provided next.

The first step iterates through all active services and their associated chan-
nels. For each service channel c, it checks whether another channel c′ on
the same path can be re-groomed with it, based on the remaining capacity
recorded in S (lines 36–38). If re-grooming is possible, the channels are con-
solidated and channel c′ is freed up. The O and S are updated to reflect new
allocations, and the counter of the number of moved service channels is incre-
mented (lines 39–42). Re-grooming is preferred because it releases resources.
In contrast, channel reallocation merely relocates a channel to a position that
is more favorable in terms of SF. If the number of moved service channels
reaches the maximum allowable limit N , the algorithm stops (lines 43–44).
Otherwise, it moves to the second part.

The second part identifies the best service channels for reallocation. The
defragmentation options are stored in set DO, initially empty (line 45). The
algorithm calculates the defragmentation score (DS) for the fully occupied
channels, i.e., channels of fully utilized capacity on a given path. This ensures
that only channels with no remaining capacity are considered for reallocation,
avoiding unnecessary movement of partially utilized channels that could ac-
commodate additional services (lines 46–48). For each eligible service channel,
the algorithm calculates the value of DS by hypothetically removing the chan-
nel and computing the difference in the SF metric before Fcurrent and after its
removal Fremoved (lines 49–52). The goal is to identify channels whose removal
would improve the overall fragmentation state of the spectrum. The definition
of the DS depends on the selected SF metric. If RSS is used, higher values
indicate lower SF. The score is computed as Fremoved − Fcurrent. A positive
value means that removing the channel leads to an increase in RSS, and thus,
a decrease in SF. In contrast, when NoC is used, lower values indicate less
fragmentation. The score is calculated as Fcurrent−Fremoved. A positive value
in this case implies a reduction in SF. Therefore, in both cases, the algorithm
selects the reallocation that yields the highest DS. Only service channels
with a positive DS value, i.e., indicating that their removal would reduce SF,
are added to DO, along with their corresponding service and computed score
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(lines 53–54). This list is then sorted in descending order based on the DS

values, so that the channels offering the highest potential improvement in SF
are considered first (line 55)

In the third phase, the algorithm begins by initializing two variables: one
to keep track of the best SF improvement score found, and another to store
the corresponding target channel (lines 56–57). For each candidate service
channel in the sorted DO, the algorithm searches along the same path for
alternative channels that are currently free and compatible, meaning they
can support the modulation format of the candidate service channel, based
on the values in the M table (lines 58–61). Each eligible target channel is
then evaluated by computing the reallocation score (RS), which measures the
change in SF if the service channel were moved to that channel. To calculate
RS, the algorithm hypothetically assumes that the candidate target channel
is chosen for reallocation and the service channel is moved to it. The RS

value is calculated as the difference in the SF metric before and after this
hypothetical movement. Depending on the chosen SF metric, the algorithm
selects the reallocation option that yields either a higher value (for RSS) or
a lower value (for NoC) (lines 62–65). Next, the algorithm compares the
calculated RS for the current target channel with the highest score found so
far (line 66) and updates the best target channel, denoted as ctarget, if the
new RS value is better (lines 67–68).

After evaluating RS for all available target channels and identifying the best
option, the algorithm compares the RS with the DS of the candidate service
channel (line 69). This comparison determines whether removing the service
channel and moving it to a new channel would yield a benefit in terms of the
SF metric. If no improvement is achieved, the movement is not executed. If
there is a gain in the SF metric, the selected service channel, c, is reallocated
to the target channel. The counter for the number of moved service channels
is incremented, and the channel occupancy (O) and channel state (S) matrices
are updated (70-73). The algorithm continues until the maximum number of
allowed reallocated service channels, N , is reached, at which point the SD
cycle terminates (lines 74–75).

Figure 4 illustrates an example of a SD cycle based on the network state
shown in Fig. 1, after accommodating service requests d6 and d7. In the
first phase, the algorithm scans all active services and their corresponding
channels to identify candidates for traffic re-grooming. Services d5 and d1
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Figure 4: An example of defragmentation done via traffic re-grooming (a), and by
reallocating a service channel (b).

share the same path, and channel c3 has sufficient capacity to accommodate
d5. Consequently, the service channel of d5 is consolidated to channel c3. As
a result, the original service channel of c6 is released (Fig. 4(a)).

In the second phase, the algorithm identifies candidates for reallocation
(Fig. 4(b)). For simplicity, only service channels c4 and c5 of node d4 are
considered in this example. The DS value is computed for these channels
based on the NoC metric. As a result, c5 is selected for reallocation due to its
higher DS value.

In the third phase, the algorithm searches for the best target channel along
the path of d4, considering free channels that support the modulation format
of c5. Channels c2 and c3 meet these criteria. For each candidate target
channel, the algorithm calculates RS, as shown on the right side of Fig. 4(b).
The RS is computed based on the NoC metric, ultimately selecting c3 as the
target channel.

4.3 Complexity Analysis
In the worst-case scenario, when phase 1 of the SFQA algorithm fails to ac-
commodate the incoming request through grooming, the algorithm proceeds
to evaluate all path–channel combinations. This includes checking the modu-
lation format level from the M look-up table and sorting the available chan-
nels for each of the |P | candidate paths. The total time complexity can be
expressed as:

TSFQA = O
(
|P ||S|

)
+ O

(
|P | |C|

)
+ O

(
|P | |C| log |C|

)
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which simplifies to by considering max |CS| = |C|

TSFQA = O
(
|P | |C| log |C|

)
.

For the SFQA-defrag algorithm, the worst-case time complexity of the SD
cycle, assuming no early termination, can be expressed as:

TSD = O(|D|Cd) + O(|D|Cd)
+ O

(
|D|Cd log(|D|Cd)

)
+ O(|D|Cd |C|),

where |D| is the number of demands and Cd the number of channels per
demand. Noting that Cd ≤ |C|, this expression simplifies to

TSD = O(|D| |C|2).

Despite these worst-case bounds, both SFQA and SFQA-defrag maintain
lightweight computational complexity, making them suitable for real-time
spectrum reallocation in dynamic MB-EON environments.

5 Simulation Setting
This study explores C+L+S-band EONs with a total bandwidth of 20 THz,
distributed as 6 THz for the C-band, 6 THz for the L-band, and 8 THz for the
S-band, divided into 268 channels, each occupying 75 GHz (6 × 12.5 GHz). A
400 GHz guard band is maintained between adjacent bands. Simulations are
conducted on three topologies: the JPNB (12 nodes and 17 links), the USB
topology (14 nodes and 22 links), and the SPNB topology (30 nodes and 56
links) [11]. The maximum span length is set to 80 km. The analysis consid-
ers six modulation formats, from PM-BPSK to PM-64QAM, operating at 64
Gbaud, with supported bit rates ranging from 100 Gbps (PM-BPSK) to 600
Gbps (PM-64QAM). In our simulation, we set β = 100 Gbps, corresponding
to the granularity of modulation level.

The network utilizes EDFAs with noise figures of 4.5 dB and 5 dB for the
C- and L-bands, respectively, and a TDFA with a 6 dB noise figure for the
S-band. Standard single-mode fiber with a zero-water peak is assumed, with
spectrum continuity constraints applied for channel assignments along given
paths.
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Service requests are characterized by randomly generated end nodes, uni-
formly selected, and bit-rates uniformly distributed between 50 Gbps and 600
Gbps, with a granularity of 50 Gbps. The arrival of service requests follows
a Poisson process with an average arrival rate of λ = 25 requests per unit
time. The service request holding time is modeled as a negative exponential
distribution with an average of 1/µ unit time. Consequently, the offered traf-
fic load is expressed as λ/µ normalized traffic units (NTUs). Given that the
average bit-rate of a single request is 325 Gbit/s, a traffic load of 100 NTUs
corresponds to approximately 32.5 Tbps of offered traffic load. The offered
traffic load is approximately adjusted to achieve a SBR between 0.01% and
1% for the proposed SFQA-defrag algorithm. Each simulation run processes
two million service requests employing the SFQA algorithm for each request.
The parameter K, representing the number of pre-computed shortest paths,
is fixed at 3. The proposed defragmentation algorithm is implemented within
the Optical RL-Gym framework for efficient evaluation and comparison [33].

This study considers two variations of the SFQA algorithm, differentiated by
the SF metric used. The version employing the NoC metric is termed SFQA-
NoC, while the version using the RSS metric is referred to as SFQA-RSS.
When the RBMSA algorithm is combined with proactive SD, the resulting
algorithms are named SFQA-defrag-NoC and SFQA-defrag-RSS. Specifically,
SFQA-defrag-NoC applies the NoC metric in both the RBMSA and SD pro-
cesses, while SFQA-defrag-RSS uses the RSS metric. The SD period is set to
10 service request arrivals, with a maximum of N = 10 allowed reallocations
for proactive SD. These values are chosen to have a balance between SBR
gain and SD overhead [8].

To evaluate the performance of the proposed algorithm, we compare it with
three benchmark algorithms: QA, which considers only the QoT of the chan-
nels during resource assignment [11]; FA-NoC and FA-RSS, which rely solely
on fragmentation metrics, specifically the NoC and RSS, respectively; and
SAP, a baseline approach that selects the shortest path first and then iden-
tifying the channel supporting the highest efficient modulation format along
that path. For all methods, when identical modulation formats or SF metrics
are encountered, channels with the lowest frequency are prioritized.
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(a) JPNB topology
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(b) USB topology
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Figure 5: The service blocking ratio (SBR) for the three topologies under exam.

6 Numerical results

Figures 5a, 5b, and 5c show the SBR for various strategies under different
offered traffic loads for the JPNB, USB, and SPNB topologies, respectively.
The results show that QA consistently outperforms SAP by 23.7%, 19%, and
10% for the JPNB, USB, and SPNB topologies, respectively. This indicates
that prioritizing physical-layer knowledge in the service provisioning process
leads to improved performance. Furthermore, it becomes clear from the figures
that the algorithms FA-NoC and FA-RSS, which incorporate only SF metrics
into the decision-making process, outperform SAP across all topologies.

The SFQA algorithm, which jointly considers QoT and SF, achieves su-
perior performance compared to all benchmark algorithms. Specifically, the
SFQA-NoC algorithm slightly outperforms SFQA-RSS, and significantly sur-
passes QA and FA-NoC by 23% and 22% on average across all traffic loads
for the JPNB topology. A similar trend is observed for the USB topology,
where SFQA-NoC outperforms QA and FA-NoC by 28% and 19% on aver-
age, with performance levels close to SFQA-RSS. However, a different trend
is seen for the SPNB topology, where SFQA-NoC outperforms SFQA-RSS
by 22%. Additionally, in the SPNB topology, SFQA-NoC outperforms the
QA and FA-NoC algorithms by 39% and 22%, respectively. The overall su-
perior performance of the SFQA algorithms over QA highlights the benefits
of incorporating occupancy state information into the path and channel se-
lection processes. Also, jointly considering both QoT and SF metrics leads to
more informed routing and allocation decisions, resulting in improved resource
utilization compared to strategies focusing on only one aspect.

Figure 5 also presents the SBR results for SFQA-defrag-RSS and SFQA-
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Figure 6: Spectrum defragmentation (SD) overhead for three network topologies.

defrag-NoC, which combine RBMSA with the proposed proactive SD method.
These algorithms outperform their counterparts, i.e., SFQA-defrag-NoC and
SFQA-defrag-RSS show 41.2% and 20% improvements over SFQA-NoC and
SFQA-RSS, respectively, for the JPNB topology. Similar improvements (i.e,
43% and 41%) are observed for the USB topology. For the SPNB topology, the
improvements are 44% and 18%. It is important to note that SD introduces
additional overhead in terms of the number of reallocations and completed SD
cycles, which are crucial factors in evaluating SD algorithms. Figure 6 illus-
trates the average number of channel reallocations and completed SD cycles
for the network topologies under exam. The performance gains of SFQA-
defrag-NoC come at a cost of 8.3 completed SD cycles and 23.8 reallocations
(per 100 arrivals) for the JPNB topology. The numbers for SFQA-defrag-RSS
become 9.5 SD completed cycles and 39.6 reallocations. Given that we start
one SD cycle every ten service arrivals, and we allow at most N = 10 real-
locations per cycle, the theoretical maximum number of SD cycles per 100
arrivals is 10, resulting in potentially 100 total reallocations. However, these
limits are never reached regardless of the topology. The number of SD cy-
cles and reallocations varies across the three network topologies, depending
on their specific characteristics, such as path diversity and link distribution,
which influence the level of fragmentation and modulation format of the chan-
nels. These factors affect how often reallocation opportunities arise and how
effective they are in reducing SF.

The effects of SF metrics on the performance of the proposed algorithms
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Figure 7: The average generalized signal to noise ratio (GSNR) for the three topolo-
gies under exam.

in terms of SBR can be analyzed by comparing the performance of SFQA-
defrag-RSS and SFQA-defrag-NoC, as shown in the Fig. 5. In all three topolo-
gies, SFQA-defrag-NoC consistently outperforms SFQA-defrag-RSS, suggest-
ing that the NoC metric better represents the level of SF in the network.
However, the SD overhead must also be considered (Fig. 6). In the JPNB
topology, SFQA-defrag-NoC is superior to SFQA-defrag-RSS by 29% while
requiring fewer reallocations and SD cycles. In the USB topology, both al-
gorithms perform similarly in terms of SBR and SD cycles, though SFQA-
defrag-RSS reallocates 26% more service channels. For the SPNB topology,
SFQA-defrag-NoC demonstrates significantly better SBR performance than
SFQA-defrag-RSS by 46%, albeit reallocating 15.7% more service channels
with 6% more SD cycles. A similar trend is observed in the RBMSA algor-
tihms without SD, where SFQA-NoC shows better performance than SFQA-
RSS, and FA-NoC outperforms FA-RSS. These results highlight that the NoC
metric is better suited than RSS for capturing SF in MB-EONs where services
are allocated over discrete channels.

Figure 7 shows the average GSNR levels across different scenarios for the
topologies under exam. Since paths are not changed during the reallocation
process in SFQA-defrag, their GSNR levels are close to those of the corre-
sponding SFQA algorithms and are therefore not shown in the figure. Among
all the algorithms, QA achieves the highest GSNR, surpassing the SFQA
variants by 1%, 0.5%, and 4% for the JPNB, USB, and SPNB topologies,
respectively. However, this improvement in signal quality does not translate
into better performance in terms of SBR. On the contrary, the SBR results
presented earlier show that the SFQA algorithms significantly outperform QA.
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Figure 8: The average path length for the three topologies under exam.

This implies that while QA selects the best channels in terms of GSNR levels,
its failure to consider SF of the channel grid leads to degraded performance
compared to the SFQA algorithms. This observation highlights the impor-
tance of incorporating occupancy state and SF information into the routing
and spectrum allocation process, rather than relying solely on physical-layer
quality parameters. Also, the worst GSNR levels are observed for FA-NoC
and FA-RSS, which rely solely on fragmentation metrics and disregard QoT
of the channels.

Figure 8 shows the average path lengths for different scenarios under various
loads for all topologies under exam. As seen in the figure, the benefit of SFQA
in terms of SBR comes at the cost of longer paths. Specifically, the SFQA-
NoC algorithm exhibits (on average) paths that are 8% and 13% longer than
those obtained with the QA and SAP algorithms for the JPNB topology, 2%
and 4% longer for the USB topology, and 9% and 10% longer for the SPNB
topology. This behavior arises because SFQA prioritizes SF reduction when
selecting paths and channels. As a result, it may bypass the shortest path
in favor of routes that offer better spectrum availability, ultimately lowering
the SBR. As expected, the SAP algorithm performs best in this metric, as it
prioritizes shorter path lengths over other metrics.

7 Conclusion
This paper presents a heuristic algorithm for routing, band, modulation for-
mat, and spectrum assignment in multi-band elastic optical networks, leverag-
ing quality of transmission-aware knowledge and spectrum fragmentation (SF)
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metrics, such as NoC and root of sum of squares (RSS). The proposed ap-
proach integrates proactive spectrum defragmentation (SD) and traffic groom-
ing for incoming service requests, alongside traffic re-grooming during SD cy-
cles, to enhance spectral efficiency.

Simulation results across three network topologies demonstrate that the
proposed algorithm significantly reduces service blocking ratio compared to
benchmark algorithm by up to 44%, on average for topologies, while improv-
ing SF metrics. This improvement comes at the cost of a modest increase in
average path length, which is observed to rise by up to 13%. Additionally,
the analysis highlights the importance of selecting appropriate SFs, as SFQA-
defrag-NoC outperforms SFQA-defrag-RSS for all the topologies. These re-
sults emphasize that incorporating fragmentation and occupancy information
into the resource allocation process can lead to more effective spectrum uti-
lization than relying solely on physical-layer quality indicators.
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