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 a b s t r a c t

Destination prediction is an essential problem for many location-based applications and services. Although pre-
vious works partly solved the sparsity of GPS location data by methods such as discretization and embedding, 
the problem of properly extracting and utilizing geographical information of trajectories is still unsolved. The 
paper proposes the TransGTE model, a Transformer-based framework with a novel geographical embedding and 
fusion mechanism, to adaptively extract and fuse geographical features with trajectories’ sequential patterns. 
TransGTE uses the Graph Convolutional Network (GCN) and Transformer to extract geographical and sequential 
features and adopts a dynamic gating mechanism to control the weights of sequential and geographical infor-
mation adaptively. We perform extensive experiments on four taxi trajectory real-world datasets from Porto, 
Chengdu, Shenzhen and San Francisco, where the TransGTE averagely outperform the best benchmark mod-
els by 4.24%, 2.87%, 5.91% and 4.11% in terms of the Mean Haversine Distance Error. The ablation study 
validates the effectiveness of the proposed trajectory location representation and dynamic gating mechanism 
modules used to embed taxi GPS trajectories. Finally, we compare the proposed trajectory embedding with the 
commonly used transformer-based model, and it highlights the effectiveness of the proposed embedding ap-
proach in representing geographical similarities between trajectories. The code for this paper is available at: 
https://github.com/qzl408011458/TransGTE.

1.  Introduction

With the rapid development of intelligent transportation systems, 
massive trajectory data have been collected from different sources, and 
one example is the taxi trajectory data from GPS sensors. The taxi GPS 
trajectories provide the foundation for a spectrum of applications related 
to urban mobility. Particularly, destination prediction, i.e., predicting 
the trip destination given a partially realized trajectory of a whole trip 
up to a certain time, is a fundamental problem supporting many bene-
ficial applications such as POI recommendation (Feng et al., 2015; Yin, 
Wang, Wang, Chen, & Zhou, 2017), sharing mobility (Hu & Creutzig, 
2022), and route recommendations (Cui, Luo, & Wang, 2018; Dai, Yang, 
Guo, & Ding, 2015).

The destination prediction problem has three major challenges: data 
sparsity, trajectory sequential patterns, and geographical relationships 
between trajectories. The data sparsity refers to that vehicle trajecto-
ries (e.g., taxi GPS (Moreira-Matias, Gama, Ferreira, Mendes-Moreira, & 
Damas, 2013) or human mobility trajectories (Zheng, Xie, & Ma, 2010)) 
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are impossible to cover all possible spaces in a city (Wang, Wang, Ku, 
Cheng, & Guo, 2017; Xue et al., 2015). To extract location-related fea-
tures from the sparse data, most studies represent locations as grids, i.e., 
splitting the studied area into grids and assigning GPS coordinates of a 
trajectory to corresponding grids (Endo, Nishida, Toda, & Sawada, 2017; 
Manasseh & Sengupta, 2013; Pecher, Hunter, & Fujimoto, 2016), then 
transforming grids to dense representations through the embedding pro-
cess to extract context semantics (Zhao et al., 2018). Given the trajectory 
discretization and embedding, deep recurrent neural networks (such as 
LSTM (Ebel, Gol, Lingenfelder, & Vogelsang, 2020; Li, Cui, Zhang, Liu, & 
Song, 2021)) are commonly used to model sequential patterns (e.g., reg-
ularity and sequential dependencies). Such modeling pipeline achieves a 
good performance in representing the temporal information. However, 
it has limited capability in capturing dynamic geographical relationships 
between trajectories depending on trip contexts. For example, assuming 
that two GPS trajectories close in geography are converted to a discrete 
format (e.g., grid sequence), they may have entirely different represen-
tations but actually close distanceswhen they are assigned to the grids 

https://doi.org/10.1016/j.eswa.2025.128159
Received 2 October 2024; Received in revised form 21 April 2025; Accepted 11 May 2025

Expert Systems With Applications 287 (2025) 128159 

Available online 14 May 2025 
0957-4174/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0000-0003-1747-9508

$k$


$k$


$k\times k$


$k\in \mathbb {N}^*$


$S^m=\{l_1, l_2, \ldots , l_m\}$


$i$


$l_i=(lng_i,lat_i)$


$lng_i$


$lat_i$


$S^m$


$S^{m_r}=\{l_1, l_2, \ldots , l_{m_r}\}$


$r\in [0.1, 1)$


$m_r=round(r\times m)$


$round(\cdot )$


$S^m=\{l_1, l_2, \ldots , l_m\}$


$\{t_1, t_2, \ldots , t_m\}$


$t_i$


$(11:00, 17/10/2013)$


$t_1$


$h$


$w$


$t_1$


$Z=q\times k$


$L\in [1,2, \ldots , Z]$


$S_L^{m_r}=\{L_1, L_2, \ldots , L_{m_r}\}$


$L_i \in \mathbb {N}^*$


$i$


$l_i(lng_i,lat_i)$


$G=(V_G, E_G, A)$


$V_G=\{v_1, v_2, \ldots , v_Z\}$


$E_G$


$A \in \mathbb {R}^{Z \times Z}$


$(L_i, L_j)$


$A(i,j)$


$S^{m_r}$


$TLV$


$S_L^{m_r}$


$TLV = [\sum _{i=1}^{m_r} O(L_i)]$


$O(\cdot )$


$L_i$


$O(L_i) \in \mathbb {R}^{1 \times Z}$


$TLV$


$S_L^{m_r}=\{1, 1, 1, 2, 5, 5, 6\}$


$TLV$


$[3, 1, 0, 0, 2, 1, 0, 0, 0]$


$L\in [1,2, \ldots , 9]$


$S_L^{m_r}=\{1, 1, 1, 2, 5, 5, 6\}$


$TLV=[3, 1, 0, 0, 2, 1, 0, 0, 0]$


$TLV \in \mathbb {R}^{1 \times Z}$


$S_L^{m_r}$


$G$


$S^{m_r}$


$t, w$


$l_{\hat {y}}(lng_{\hat {y}},lat_{\hat {y}})$


$S^m=\{l_1, l_2, \ldots , l_m\}$


$S_L^{m_r}=\{L_1, L_2, \ldots , L_{m_r}\}$


$TLV$


$A$


$V^G_L$


$S^{m_r}$


$S_L^{m_r}$


$t$


$w$


$L$


$t$


$w$


$O(L)$


$O(t)$


$O(w)$


\begin {align}\label {eq1} V_L &= O(L) \times M_L, \\ V_h &= O(t) \times M_h, \\ \label {eq3} V_w &= O(w) \times M_w,\end {align}


$M_L$


$M_t$


$M_w$


$L$


$t$


$w$


$O(L)$


$O(t)$


$O(w)$


$V_L$


$V_t$


$V_w$


$\textbf {S}$


$\textbf {S}_O$


$\textbf {S}_D$


$\textbf {S}_O$


$\textbf {S}_D$


\begin {align}\label {4} &\textbf {S}'_{O}, \textbf {S}'_{D} = \Theta (\textbf {S}_O, \textbf {S}_D), \\ \label {5} &\textbf {C} = \Gamma (\textbf {S}'_{O}, \textbf {S}'_{D}),\end {align}


$\Gamma (\cdot )$


$\textbf {S}'_O$


$\textbf {S}'_D$


$\Theta (\cdot )$


$\Gamma (\cdot )$


$\Theta (\cdot )$


$mask(\cdot )$


\begin {align}\label {11} & TLV' = softmax(mask(TLV)), \\ \label {12} & H_{i+1} = tanh(\tilde {D}^{\frac {1}{2}} \hat {A} \tilde {D}^{\frac {1}{2}} H_i W_i),\end {align}


\begin {align}\label {13} H^p_2 &= softmax(mask(H_2)),\end {align}


$TLV$


$A$


$L$


$M_L$


$mask(\cdot )$


$TLV$


$TLV'$


$TLV$


$H_i$


$i$


$TLV'$


$\hat {A}=A+I_n$


$I_n$


$\tilde {D}$


$\hat {A}$


$W_i$


$i$


$H^p_2$


$S_H^{m_r}$


$H_2$


$H^p_2$


\begin {align}V^G_L = H^p_2 \times M_L,\end {align}


$V^G_L$


$S_H^{m_r}$


\begin {align}\label {eq_gate} & \gamma _i = \sigma (W_{\gamma } [V_{L_i}, V^G_{L_i}] + b_{\gamma _i}), \\ \label {eq_upd1} & C_{1_i} = tanh(W_{C_{1_i}} V_{L_i} + b_{C_{1_i}}), \\ \label {eq_upd2} & C_{2_i} = tanh(W_{C_{2_i}} V^G_{L_i} + b_{C_{2_i}}), \\ \label {eq_merge} & V^H_i = (1 - \gamma _i) * C_{1_i} + \gamma _i * C_{2_i},\end {align}


$\gamma _i$


$\sigma (\cdot )$


$C_{1_i}$


$C_{2_i}$


$V_{L_i}$


$V^G_{L_i}$


$V^H_i$


$L_i$


$\odot $


$\oplus $


$Add$


$\sigma $


$Tanh$


$X_t$


$h_{t-1}$


$V_{L_i}$


$V^G_{L_i}$


$V_{L_i}$


$V^G_{L_i}$


$C_{1_i}$


$C_{2_i}$


$L_i$


$V^H_i$


$S_L^{m_r}$


$S_H^{m_r}=\{V^H_1, V^H_2, \ldots , V^H_{m_r}\}$


$g_i$


$S_{g_i}= \{d_k \| k\in \{1,2,\ldots ,K\},d_k=(lng_k,lat_k)\}$


$g_i$


$d_k$


$k^{th}$


$K$


$g_i$


$(lng_k,lat_k)$


$d_k$


$S_{g_i}\neq \emptyset $


$g_i$


\begin {align}\label {eq_centroid} &M_{g_i}=(lng_{g_i},lat_{g_i}), \\ &lng_{g_i}=\frac {1}{K} \sum _{k=1}^K lng_k, \\ &lat_{g_i}=\frac {1}{K} \sum _{k=1}^K lat_k,\end {align}


$M_{g_i}$


$g_i$


$(lng_{g_i},lat_{g_i})$


$M_{g_i}$


$S_{g_i}= \emptyset $


$g_i$


$P=[p_{g_1},p_{g_2},\ldots ,p_{g_N}]$


\begin {align}\label {decision_making} &P = softmax(W_p (\textbf {C} \oplus V_h \oplus V_w) + b_{p}), \\ \label {pred_lng} &lng_{\hat {y}} = \frac {1}{N}\sum _{i=1}^N p_{g_i}lng_{g_i}, \\ \label {pred_lat} &lat_{\hat {y}} = \frac {1}{N}\sum _{i=1}^N p_{g_i}lat_{g_i},\end {align}


$\oplus $


$P$


$S_{g_i}$


$l_{\hat {y}}=(lng_{\hat {y}},lat_{\hat {y}})$


$N$


$l_{\hat {y}}=(lng_{\hat {y}},lat_{\hat {y}})$


$l_y=(lng_y,lat_y)$


\begin {equation}\begin {aligned} MSE &= \frac {1}{2 N_{\pi }}\sum _{\pi \in \Pi } [(lng_{\hat {y}_{\pi }} - lng_{y_{\pi }})^2 + (lat_{\hat {y}_{\pi }} - lat_{y_{\pi }})^2], \end {aligned} \label {Xeqn1-20}\end {equation}


$\Pi $


$N_{\pi }$


$\times $


$\times $


$\times $


$\times $


$^2$


$\times $


$\times $


$\times $


$\times $


\begin {equation}\begin {aligned} \label {hd} HD(y_1, y_2) &= 2 \cdot R \cdot arctan(\sqrt {\frac {\alpha }{1-\alpha }}), \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \alpha &= {sin}^2(\frac {\phi _2 - \phi _1}{2}) + \\ & \cos (\phi _1)cos(\phi _2){sin}^2(\frac {\lambda _2 - \lambda _1}{2}), \end {aligned} \label {Xeqn3-22}\end {equation}


$\phi $


$\lambda $


$R=6371km$


$HD(y_1, y_2)$


$r$


$r$


$r=0.7$


$r = 0.7$


$r=0.9$


$r$


$r$


$r$


$r$


$r$


$r$


$r$


$TLV$


$S^{m_r}$


$S^{m_r}$


$S^{m_r},TLV$


$S^{m_r},TLV$


$S^{m_r},A,TLV$


$S^{m_r},A,TLV$


$S^{m_r},A,TLV$


$r$


$TLV$


$NRV$


$TLV$


$NRV$


$TLV$


$NRV$


$TLV$


$\textbf {S}=\{V_1,V_2,\ldots ,V_{m_r}\}$


$S_H^{m_r}=\{V^H_1, V^H_2, \ldots , V^H_{m_r}\}$


\begin {align}\label {eq_traj_mean} & \overline {V} = \frac {1}{m_r}\sum _{i=1}^{m_r} V_i, \\ \label {eq_traj_sim} & sim(\textbf {S}_1, \textbf {S}_2) = \frac {\overline {V}_1 \overline {V}_2}{\|\overline {V}_1 \| \| \overline {V}_2 \|},\end {align}


$\overline {V}$


$\textbf {S}$


$sim(\textbf {S}_1, \textbf {S}_2)$


$[V_{L_i}, V^G_{L_i}]$


$\gamma _i$


$V_i$


$r=0.9$


$\prime $

https://orcid.org/0000-0001-9990-4269
https://orcid.org/0000-0002-2141-0389
https://github.com/qzl408011458/TransGTE
mailto:zhema@kth.se
https://doi.org/10.1016/j.eswa.2025.128159
https://doi.org/10.1016/j.eswa.2025.128159
http://creativecommons.org/licenses/by/4.0/


Z. Qin et al.

Fig. 1. Example of the different utility of geographical information. The trajectories in Fig. 1(a) have pretty different representations but are similar in reality, so 
geographical similarity positively affects the prediction in this case. In Fig. 1(b), the difference in visited grids 5 and 8 results in different destinations, in which case 
incorporating the geographical similarity of grids 5 and 8 has a negative effect on the prediction.

using distinct indices. The conventional representation model only con-
siders the sequence information of the trajectory grids and thus treats 
these trajectories as totally different travel patterns, which may eventu-
ally deteriorate the destination prediction performance.

Modeling the geographical relationships between trajectories is chal-
lenging in the context of the destination prediction problem. First, it is 
nontrivial to model the geographic proximity between grids (i.e., GPS 
locations), which is not directly observed from the grid sequence. Most 
models (Ebel et al., 2020; Zhao et al., 2018) are based on NLP tech-
nologies (Jatnika, Bijaksana, & Suryani, 2019; Jin, Zhang, & Liu, 2018). 
They can mine statistical correlations of GPS locations from the context 
but cannot effectively model the geographic proximity, such as neigh-
boring relationships between grids for the two trajectories as shown in 
Fig. 1(a). Second, indiscriminately using geographical similarity could 
mislead the prediction model training without considering critical sec-
tions of the studied trajectory. For example, Fig. 1(b) shows that grids 
5 and 8 are adjacent, however, they should not be treated as simi-
lar based on the trip context. The visited grid 8 indicates picking up 
a child from a kindergarten, which most likely ends up at a different 
destination (eating outside by visiting grid 9) instead of directly go-
ing home (visiting grid 7). In this case, it is misleading to incorporate 
geographical similarity between grids 5 and 8, i.e., considering grids 
5 and 8 as the same pattern based on their close distance. In sum-
mary, the geographical features should be represented and modeled 
in a dynamic manner in the destination prediction depending on trip
contexts.

To address these gaps and challenges in taxi trajectory destination 
prediction, we propose a novel deep learning-based destination predic-
tion model, i.e., TransGTE, which uses Graph Convolutional Network 
(GCN) models to extract geographical features and Transformer models 
to extract sequential features. We also propose a dynamic neural gating 
mechanism to adaptively/dynamically fuse sequential and geographical 
features by controlling the utilization of geographical features depend-
ing on trip contexts in predicting trip destinations. Key contributions 
include:

• Propose a Transformer-based trip destination prediction model 
(TransGTE) to predict the trip destination coordinates given the par-
tially realized GPS trajectory up to the prediction time. It simultane-
ously considers sequential and geographical similarities of trajecto-
ries.

• Propose a context-aware trajectory embedding model that uses the 
GCN to capture the neighboring information of a given trajectory and 
also a gating model to dynamically fuse geographical and sequential 
features depending on the trip contexts extracted by the GCN and 
Transformer models.

• Conduct systematic experiments to validate the model performance 
in predicting the destination coordinates using four real-world 
datasets and comparing with state-of-art benchmark models. Ab-
lation studies are also performed to understand model component 

contributions and illustrate the proposed GPS trajectory embedding 
method in representing trajectory similarities.

The remainder of the paper is organized as follows: Section 2 reviews 
the related approaches in the literature. Section 3 defines the studied 
problem and proposes the destination prediction methodology, includ-
ing representing GPS trajectory, modeling sequential patterns, and pre-
dicting the trip destination. Case studies using open-source benchmark 
datasets are presented in Section 3.2. The final section concludes the 
main findings and discusses future work.

2.  Related work

The studied problem focuses on the trip destination prediction using 
GPS trajectories. The relevant studies in the literature include the in-
dividual mobility prediction and trip destination prediction, which are 
reviewed separately in the paper. Also, we focus on reviewing studies 
using GPS trajectory data from the modeling perspective. For a detailed 
review of individual mobility and trip destination prediction problem, 
please refer to Ma and Zhang (2022).

2.1.  Individual mobility prediction

Individual mobility prediction is a task to predict the next loca-
tion (or/and the time) by mining mobility patterns from individual 
travel records. Early studies used Markov models (Gambs, Killijian, & 
Del Prado Cortez, 2012; Lu, Wetter, Bharti, Tatem, & Bengtsson, 2013; 
Thiagarajan et al., 2009) to model location transition probabilities, i.e., 
estimating a candidate location’s probability that an individual will 
visit next. Recently, various deep learning-based prediction models have 
been proposed to tackle the task, and Recurrent Neural Networks(RNN) 
is a commonly used model. For example, Liu, Wu, Wang, and Tan (2016) 
extended the RNN by using the time-specific and distance-specific tran-
sition matrices to model local temporal and spatial contexts in each RNN 
layer. Jiang et al. (2018) utilized the urban ROI labels and constructed 
a deep-sequence learning model with RNN to predict the next possi-
ble destination. Most recently, the long short-term memory (LSTM) and 
gated recurrent unit (GRU) have been used for human mobility pre-
diction (Chen et al., 2020; Yang, Sun, Zhao, Liu, & Chang, 2017). The 
attention mechanisms are commonly used in the time sequence predic-
tion task. For example, Feng et al. (2018) proposed a prediction model 
DeepMove based on the seq2seq framework to capture the multi-level 
periodicity for mobility prediction from lengthy and sparse trajectories. 
Following that, Chen et al. (2020) incorporated the GCN model into 
the DeepMove to capture the spatial dependence of individual mobility. 
Compared to statistical models, deep learning models tend to achieve a 
better performance in individual mobility prediction. Recently, Zhang, 
Koutsopoulos, and Ma (2023) formulates a different problem and pro-
poses a DeepTrip model to predict the next trip information with arbi-
trary prediction times (the time when the prediction is made). It also 
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Table 1 
Comparison between the most related methods and TransGTE.
 Model  Sequential pattern podel Location feature extraction  Main input type  Prediction category
 MLP (De Brébisson, Simon, Auvolat, Vincent, & Bengio, 2015)  Fully connected netowrk –  Raw GPS  Coordinate
 Multi-Input (Ebel et al., 2020) LSTM  LSTM Embedding of 𝑘-d tree grid in-

dex
 GPS grid  Coordinate

 T-CONV (Lv, Sun, Li, & Moreira-Matias, 2019)  Multi-layer CNN CNN  Raw GPS  Coordinate
 TALL (Zhao et al., 2018)  Bi-LSTM Embedding of 𝑘 × 𝑘 grid index, 

𝑘 ∈ ℕ∗
 GPS grid  Grid index

 GPS-embedding BiLSTM (Liao et al., 2022)  Bi-LSTM lnglat and Quadtree grid index  GPS grid and Grid-lnglat  Coordinate
 DeepMove (Feng et al., 2018)  GRU Embedding  Check-in data  Location index
 MobTCast (Xue et al., 2021)  Transformer Embedding  Check-in data  Location index
 MHSA (Hong et al., 2023)  Transformer Embedding  Check-in data  Location index
 TransGTE  Transformer GCN-based GPS embedding 

with a gating mechanism
 GPS grid  Coordinate

proposes a novel overlapped embedding method to represent continu-
ous travel attributes capturing simultaneously the categorical and nu-
merical feature information. Moreover, several studies in individual’s 
next location prediction adopt a Transformer backbone to capture mo-
bility features from check-in data (Hong, Zhang, Schindler, & Raubal, 
2023; Xue, Salim, Ren, & Oliver, 2021), which shows the potential of 
the Transformer model applied to mobility-related tasks.

2.2.  Destination prediction

Given a partially realized trajectory as a query, the destination pre-
diction task is to predict the location where the passenger will go. 
Most studies model the spatiotemporal patterns of a given GPS trajec-
tory to match other trajectories in the database with similar patterns 
and known destinations to infer the destination. These methods parti-
tion the space of all trajectories into discrete grids (Krumm & Horvitz, 
2006; Wei, Zheng, & Peng, 2012) and assign each GPS point win in-
dex or id. However, they tend to have low prediction accuracy due to 
the data sparsity issue from the partition. Some improved methods are 
proposed to solve the sparsity problem, which considers the difference 
between destinations (Li, Li, Gong, Zhang, & Yin, 2016) or split trajec-
tories into sub-trajectories to link geographically close locations (Xue 
et al., 2015). Also, some studies apply clustering algorithms to extract 
centralized points with highly visited frequencies. For example, Alvarez-
Garcia, Ortega, Gonzalez-Abril, and Velasco (2010) extracted important 
spatial points by clustering and used the HMM model to model the re-
lationship between these points. Yang, Xu, Xu, Zheng, and Chen (2014) 
identified the specific features of stay points where people stay a cer-
tain time for some activities using a variant of the DBSCAN clustering 
algorithm and then used the ordered Markov Model to predict the next 
locations. Besse, Guillouet, Loubes, and Royer (2018) used the Gaussian 
mixture model to cluster historical trajectories into several clusters and 
assigned a new trajectory to the cluster that it most likely belongs to. 
The final destination is predicted by using the characteristics extracted 
from these clusters.

In recent years, deep learning techniques have been developed 
rapidly and applied to the destination prediction task. The deep 
learning-based model proposed by De Brébisson et al. (2015) performs 
the best in the ECML/PKDD 15 competition. It feeds the first k points 
from the origin and the last k points close to the destination of a 
given query trajectory into Multi-Layer Perceptron (MLP). Zhang, Zhao, 
Zheng, and Li (2020) used raw GPS data and applied an ensemble learn-
ing approach for destination prediction. Some studies used CNN to ex-
tract spatial features in predicting the destination, such as Lv, Sun, 
Li, and Moreira-Matias (2020) and Zhang, Zhang, Liang, and Ozioko 
(2018). These models transform GPS trajectories into multi-resolution 
images and extract multi-scale spatial features by CNN. However, the 
CNN model can not differentiate trajectories with similar shapes and 

long distances due to its translation invariance (Le et al., 2010). RNN-
based models are also reported in predicting the trajectory destination.

To extract rich semantics of locations, the deep learning based ap-
proaches usually transform sparse GPS coordinates into discrete grids, 
and then obtain low-dense vectors by embedding the grids. For exam-
ple, Ebel et al. (2020) adopted a 𝑘-d tree-based space discretization to 
map GPS locations to discrete regions and used the LSTM to model the 
sequential pattern of trajectories. Endo et al. (2017) used a grid-based 
discretization method to convert trajectories into a grid space and used 
an RNN encoder-decoder model to predict the visiting probabilities of 
candidate locations for moving objects. Zhao et al. (2018) also adopted 
a grid-based discretization and proposed an LSTM-based model named 
’TALL’ in predicting destinations for exploring meaningful mobility pat-
terns with different spatial grid granularities. Liao et al. (2022) hier-
archically partitioned the city into grids and used the ’Grid-lnglat’ (us-
ing the centric coordinate to represent a GPS point) and ’Quadtree’ (a 
method of GPS discretization with multiple spatial scales) embedding 
to represent raw GPS trajectories. Then, the attention-based dual BiL-
STMs neural network is used to model the relationship between the 
heading destination and the bidirectional sequential context of visited 
locations. Besides, Transformer-based models also are developed for 
mobility-related prediction tasks, like origin-destination demand pre-
diction (Huang et al., 2023; Li et al., 2024; Lin, He, Liu, Gao, & Qu, 
2023), traffic flow prediction (Tian, Wang, Hu, & Ma, 2023). Such mod-
els are usually combined with other spatial feature extraction method, 
such as adding road network information, to extract the spatio-temporal 
patterns in the observed traffic data. However, most studies used cluster-
based methods to narrow down destination candidates when the predic-
tion task aims to output GPS coordinates of the destination (De Brébis-
son et al., 2015; Ebel et al., 2020,?; Liao et al., 2022; Lv et al., 2020; 
Zhang et al., 2018). The selected clustering algorithm may impact the 
model prediction performance and thus requires significant efforts to 
tune clustering parameters which tend to be subjective and overfitting.

In summary, deep learning based methods outperform conventional 
methods in the mobility related prediction tasks. We summarize the 
main features of the methods closely related to our study in Table 1. 
It shows that the recurrent network structures with GPS discretization 
are commonly used in existing studies. The key reason to use grid em-
bedding (not raw GPS locations) is due to the sparseness of the GPS 
data in both time and space while a huge continuous learning space in 
the model. The grid embedding can significantly narrow the learning 
space for an efficient model training (Ebel et al., 2020; Liao et al., 2022; 
Zhao et al., 2018) and surpass the methods directly using the raw data 
(De Brébisson et al., 2015). Although existing works achieved a good 
performance in mobility prediction, very limited studies were found in 
effectively tackling with the dilemma of how to control the extraction 
of geographical information to adapt to different prediction scenarios 
like the example shown in Fig. 1. The study absorbs some existing tech-
niques (such as GPS discretization) for agile modeling and proposes a 
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Fig. 2. Examples of grids’ neighboring relationships. There are mainly three 
types of neighboring relationships given that the (blue) grids are located at the 
corner, margin, and inside of the grid network. Each blue grid is enclosed by 
the surrounding orange grids, counted as the number of the blue grid’s edges.

Transformer-based trip destination prediction model to realize dynam-
ical extraction and fusion of the features of geographical information 
and sequential patterns.

3.  Methodology

3.1.  Problem definition

To formally define the problem, we first introduce the following def-
initions.

Definition 1. Taxi GPS Trajectory. A complete taxi GPS trajectory 
is represented as 𝑆𝑚 = {𝑙1, 𝑙2,… , 𝑙𝑚}, where the 𝑖-th GPS point 𝑙𝑖 =
(𝑙𝑛𝑔𝑖, 𝑙𝑎𝑡𝑖) includes longitude (𝑙𝑛𝑔𝑖), latitude (𝑙𝑎𝑡𝑖). A partial trajectory 
of 𝑆𝑚 is defined as 𝑆𝑚𝑟 = {𝑙1, 𝑙2,… , 𝑙𝑚𝑟

}, where 𝑟 ∈ [0.1, 1) is the com-
pletion ratio of partial trajectory, 𝑚𝑟 = 𝑟𝑜𝑢𝑛𝑑(𝑟 × 𝑚) and 𝑟𝑜𝑢𝑛𝑑(⋅) the op-
eration to obtain an integer.
Definition 2. Temporal Attributes. Given a taxi GPS trajectory 𝑆𝑚 =
{𝑙1, 𝑙2,… , 𝑙𝑚}, its corresponding time logs are {𝑡1, 𝑡2,… , 𝑡𝑚}. Each 
time log 𝑡𝑖 consists of a specific time point and date, such as (11 ∶
00, 17∕10∕2013). To represent the temporal pattern of the trajectory, 
we use the departure time 𝑡1’s hour ℎ and week 𝑤 (transformed 
by the date of 𝑡1) as the temporal attributes fed into the prediction
model.

Definition 3. Grids. We partition the city into 𝑍 = 𝑞 × 𝑘 grids and as-
sign a unique index to each grid 𝐿 ∈ [1, 2,… , 𝑍]. Then a partial taxi tra-
jectory can be transformed into a grid trajectory 𝑆𝑚𝑟

𝐿 = {𝐿1, 𝐿2,… , 𝐿𝑚𝑟
}, 

where 𝐿𝑖 ∈ ℕ∗ is the 𝑖-th grid with GPS point 𝑙𝑖(𝑙𝑛𝑔𝑖, 𝑙𝑎𝑡𝑖).
Definition 4. Grid Network. The grid network is represented as an un-
weighted graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐴), where 𝑉𝐺 = {𝑣1, 𝑣2,… , 𝑣𝑍} is the set of 
grids, 𝐸𝐺 the collection of edges, and 𝐴 ∈ ℝ𝑍×𝑍 the adjacency matrix. 
There are three types of neighboring relationships in the grid network, 
including corner, margin, and inside as shown in Fig. 2, in which the 
blue grids have 3, 5, and 8 edges, respectively, linking to neighboring 
grids (orange ones). For each grid pair of (𝐿𝑖, 𝐿𝑗 ), 𝐴(𝑖, 𝑗) equals 1 if there 
is an edge between them; 0 otherwise.
Definition 5. Trajectory Location Vector. Given a partial trajectory 
𝑆𝑚𝑟 , the corresponding Trajectory Location Vector 𝑇𝐿𝑉  is constructed 
from its grid trajectory 𝑆𝑚𝑟

𝐿 : 𝑇𝐿𝑉 = [
∑𝑚𝑟

𝑖=1 𝑂(𝐿𝑖)], where 𝑂(⋅) is the 
one-hot encoding (Harris & Harris, 2012) transforming a grid index 
𝐿𝑖 into a vector 𝑂(𝐿𝑖) ∈ ℝ1×𝑍 . For example, Fig. 3 shows that, given 
a grid network with 𝐿 ∈ [1, 2,… , 9] and a partial trajectory 𝑆𝑚𝑟

𝐿 =
{1, 1, 1, 2, 5, 5, 6}, 𝑇𝐿𝑉 = [3, 1, 0, 0, 2, 1, 0, 0, 0], 𝑇𝐿𝑉 ∈ ℝ1×𝑍 maps the tra-
jectory 𝑆𝑚𝑟

𝐿  into Grid Network.

Fig. 3. An example of the Trajectory Location Vector 𝑇𝐿𝑉 . The green grids 
represent the visited grids in the trajectory 𝑆𝑚𝑟

𝐿 = {1, 1, 1, 2, 5, 5, 6}, and the gray 
grids denote other grids out of the trajectory. The green color shade is positively 
related to how many times the corresponding grid appears in the trajectory. 
By the Definition 5, 𝑇𝐿𝑉  equals to [3, 1, 0, 0, 2, 1, 0, 0, 0] representing where the 
trajectory is in Grid Network.

The studied problem is to predict a taxi passenger’s destination in a 
trip, formally defined as: Given a grid network 𝐺, a partial trajectory 
𝑆𝑚𝑟  and its temporal attributes 𝑡, 𝑤, predict the trip destination location 
𝑙�̂�(𝑙𝑛𝑔�̂�, 𝑙𝑎𝑡�̂�).

3.2.  Methodology framework

Fig. 4 shows the proposed TransGTE framework. It consists of three 
major modules: the Geographical Feature Extraction, the Sequential Pat-
tern Model and the Prediction Module. The Geographical Feature Ex-
traction module transforms a taxi GPS trajectory 𝑆𝑚 = {𝑙1, 𝑙2,… , 𝑙𝑚} into 
a grid trajectory 𝑆𝑚𝑟

𝐿 = {𝐿1, 𝐿2,… , 𝐿𝑚𝑟
}, embeds each GPS point of the 

grid trajectory. Additionally, the corresponding temporal attributes are 
embedded into dense vectors to extract the trajectory’s temporal pat-
terns. Graph Convolutional Network (GCN) takes Trajectory Location 
Vector 𝑇𝐿𝑉  and adjacency matrix 𝐴 as inputs to extract the geograph-
ical features 𝑉 𝐺

𝐿 . And sequential features are extracted through the Se-
quential Pattern model. The Adaptive Neural Fusion Gate (ANFG) links 
the sequential and geographical features, and dynamically fuses them to 
generate a context-aware trajectory representation. Finally, the Predic-
tion Module takes inputs of the results from Sequential Pattern Model 
and temporal embedding vectors, and outputs the predicted destina-
tions.

Compared with the recurrent network structures applied in previ-
ous works, we used the Transformer as the Sequential Pattern Model 
which is proven having better capacity to model most of time series 
prediction tasks (Xue & Salim, 2021; Zhou et al., 2021) and NLP tasks 
(Devlin, Chang, Lee, & Toutanova, 2018; Wang et al., 2019) given its 
self-attention mechanism. Also, conceptually the GPS trajectory patterns 
exhibit characteristics of both time series and text-like semantic context 
(after GPS discretization). It is promising and reasonable to model the 
problem using the Transformer structure to capture the sequential and 
semantic pattern features of GPS trajectories. However, the prediction 
model can still not be aware of the geographical information. To the best 
of our knowledge, we firstly applied GCN in capturing the geographical 
features of GPS trajectory in trip destination prediction. GCN is com-
monly employed in other traffic prediction tasks (Sun, Jiang, Lam, & 
He, 2022; Zhao et al., 2020) like traffic flow prediction to capture neigh-
boring flow information of nodes of road network since it constructs a 
filter transferring the operations on a graph to the Fourier domain to ag-
gregating spatial features between nodes using its first-order neighbor-
hood information. Different from such applications, GCN in our study 
only captures the neighboring information of the given GPS trajectory, 
not the network nodes. Besides, the previous methods in traffic flow 
prediction usually used fully-connected networks to directly fuse spa-
tial/geographical features (extracted by GCN) and sequential features 
(the hidden vectors in RNN models) from the historical traffic volumes 
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Fig. 4. The overview of the TransGTE model.

(without any parameterized representation like embedding). This way 
may cause confusion of the two features since they are both extracted 
from (GPS trajectory’s) grid embeddings by GCN and Transformer in our 
model. Therefore, it is necessary to use the newly developed ANFG mod-
ule to eliminate the confusion, which is inspired by the GRU model with 
the modification of supporting the parallel inputs including embeddings 
of unit/grid in a given trajectory and its neighbors, instead of recursive 
inputs in the original structure. It benefits the prediction model to auto-
matically adapt to all kinds of prediction scenarios by learning effective 
ratios of sequential and geographical features given different prediction 
contexts (i.e., already observed GPS trajectories).

3.3.  Grid and time embedding

We first transform the GPS trajectory 𝑆𝑚𝑟  into grid trajectory 𝑆𝑚𝑟
𝐿 . 

Additionally, we incorporate the time of day (in hour) 𝑡 and day of week 
𝑤 of the trip departure time as extra temporal attributes (Definition 2).

Inspired by the word2vec (Mikolov, Chen, Corrado, & Dean, 2013), 
we transform the grid label 𝐿, time of day 𝑡 (represented in hour), and 
day of week 𝑤 into one-hot vectors 𝑂(𝐿), 𝑂(𝑡) and 𝑂(𝑤), and then con-
vert them into low-dimensional dense representations by multiplying a 
transformation matrix:
𝑉𝐿 = 𝑂(𝐿) ×𝑀𝐿, (1)

𝑉ℎ = 𝑂(𝑡) ×𝑀ℎ, (2)

𝑉𝑤 = 𝑂(𝑤) ×𝑀𝑤, (3)

where 𝑀𝐿, 𝑀𝑡 and 𝑀𝑤 are the learnable transformation matrices of 𝐿, 𝑡
and 𝑤, respectively. Then high-dimensional vectors 𝑂(𝐿), 𝑂(𝑡), and 𝑂(𝑤)
are embedded into low-dimensional dense vectors 𝑉𝐿, 𝑉𝑡, and 𝑉𝑤, which 
contain more informative features.

3.4.  Sequential pattern model

The sequential features, i.e., the sequential dependency between vis-
iting locations, are important information for the destination prediction. 
The deep recurrent neural networks like LSTM (Ebel et al., 2020) and 
Seq2seq (Sutskever, Vinyals, & Le, 2014) are widely applied in various 
sequential modeling tasks. Besides, several recent studies (Trivedi, Sil-
verstein, Strubell, Shenoy, & Iyyer, 2021; Xue et al., 2021; Yan, Zhao, 
Song, Yu, & Dong, 2023) adopt the Transformer model to mine se-
quential features from mobility data and achieve desirable performance. 
Compared with the recurrent neural networks, the Transformer uses a 
multi-head attention mechanism, one of self-attention mechanisms, to 
process the time series data, which is proven to be more efficient in 

Fig. 5. An example of extracting geographical information by GCN. Given a taxi 
trajectory (green), the 1-layer GCN can capture information within the red box, 
and the 2-layer GCN can capture the geographical information within the blue 
box.

many time-series learning tasks (Wen et al., 2022). The study adopts 
the Transformer (Vaswani et al., 2017) to extract the sequential pat-
terns, as shown in Fig. 4. We divide the trajectory S into two parts, i.e., 
S𝑂 and S𝐷, where S𝑂 is the part close to the origin and S𝐷 close to 
the destination. The motivation is that the trajectory’s first and last por-
tions may have different impacts on the destination prediction (Lv et al., 
2020), and thus their corresponding dependencies should be modeled 
separately. The sequential feature extraction process is formulated as 
follows:

S′𝑂 , S
′
𝐷 = Θ(S𝑂 , S𝐷), (4)

C = Γ(S′𝑂 , S
′
𝐷), (5)

where C is context feature of the trajectory S (the last vector of the 
decoder’s outputs), Γ(⋅) denotes the sequence processing operation with 
S′𝑂 and S′𝐷 as inputs of its encoder and decoder, and Θ(⋅) is the position 
encoding function (PE).

Note that conceptually, the order of visited locations is critical for the 
studied trajectory-based destination prediction problem which is simi-
lar to the importance of the word order in a sentence. The structure of 
the encoder and decoder in Γ(⋅) is the same as the vanilla Transformer 
(Vaswani et al., 2017), which uses multi-head attention modules and 
position-wise feed-forward networks. However, the multi-head atten-
tion modules lack ability in directly modeling sequential order infor-
mation like RNN or convolution structures applied in previous works. 
We introduce the position encoding function Θ(⋅), which is a standard 
trigonometric transformation and the same as the vanilla Transformer. 
Through Eqs. 4 and 5, the Sequential Pattern Model accomplishes ex-
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Fig. 6. The computation operation of the GCN.

tracting the context feature C of sequential patterns from the trajectory
S, whose representation is generated by the ANFG in Section 3.6.

3.5.  Geographical embedding

The geographically close trajectories may share several same or ad-
jacent trajectory sections. Capturing the geographical information, con-
tributing to the awareness of spatial proximity between trajectories or 
their passing route segments, is essential for precise destination predic-
tion. In other words, vehicle trips are highly likely to visit the same 
destinations through these passing route segments.

We employ the GCN to extract geographical information. The GCN 
can model the geographical relationships between visited grids of the 
vehicle trajectory and their neighbors (Fig. 5). Different from other traf-
fic prediction studies (Sun et al., 2022; Zhao et al., 2020) that apply 
the GCN to aggregate the neighboring information of each node in the 
whole road network, we use the GCN to aggregate the neighboring in-
formation of a given taxi trajectory in the local grid network since the 
information of grids far away from it may confuse the model in the geo-
graphical similarity of trajectories. The related operations to filter such 
redundant information are realized by the 𝑚𝑎𝑠𝑘(⋅) in Eqs. 6 and 8.

As shown in Fig. 6, there are 3 variables involved in the calculation 
related to GCN, i.e., the trajectory location vector 𝑇𝐿𝑉 , the adjacency 
matrix 𝐴, and 𝐿’s transformation matrix 𝑀𝐿. The operation is:

𝑇𝐿𝑉 ′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑚𝑎𝑠𝑘(𝑇𝐿𝑉 )), (6)

𝐻𝑖+1 = 𝑡𝑎𝑛ℎ(�̃�
1
2 �̂��̃�

1
2 𝐻𝑖𝑊𝑖), (7)

where 𝑚𝑎𝑠𝑘(⋅) sets all zero-value cells in 𝑇𝐿𝑉  to a large negative num-
ber, and 𝑇𝐿𝑉 ′ is the normalized vector of 𝑇𝐿𝑉 . 𝐻𝑖 is the 𝑖-th GCN 
layer’s output and 𝑇𝐿𝑉 ′ is the first GCN layer’s input. �̂� = 𝐴 + 𝐼𝑛 is the 
matrix with the added self-connection, where 𝐼𝑛 is the identity matrix. 
�̃� is the degree matrix of �̂� and 𝑊𝑖 the 𝑖-th GCN layer’s parameters 
to be trained. In this study, we use a 2-layer GCN model referring to 
other spatiotemporal time series studies (Li, Yu, Shahabi, & Liu, 2017; 
Liang, Zhao, & Sun, 2022; Zhao et al., 2020), which means that 2-hop 
geographical information of each grid is considered (Fig. 7). Then we 
transform the GCN output obtained by Eq. 7 to a probability distribu-
tion:

𝐻𝑝
2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑚𝑎𝑠𝑘(𝐻2)), (8)

where 𝐻𝑝
2  is the percentage of geographical information that the vis-

ited grids of 𝑆𝑚𝑟
𝐻  aggregate from neighboring grids. And 𝐻2 is the geo-

graphical information captured by the 2-layer GCN model. To obtain the 
geographical features, we embed 𝐻𝑝

2  into the semantic space of grids:

𝑉 𝐺
𝐿 = 𝐻𝑝

2 ×𝑀𝐿, (9)

where 𝑉 𝐺
𝐿  represents the geographical dependence of 𝑆𝑚𝑟

𝐻  within a 2-hop 
distance.

Fig. 7. The example of the 2-hop geographical dependence. The 2-layer GCN 
model can make each grid (blue) aggregate the information of its neighboring 
grids (yellow) within the 2-hop distance.

3.6.  Adaptive neural fusion gate and trajectory embedding

To automatically determine the extent of geographical feature uti-
lization, we propose a gating mechanism that adaptively fuses the se-
quential and geographical features.

𝛾𝑖 = 𝜎(𝑊𝛾 [𝑉𝐿𝑖
, 𝑉 𝐺

𝐿𝑖
] + 𝑏𝛾𝑖 ), (10)

𝐶1𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐶1𝑖
𝑉𝐿𝑖

+ 𝑏𝐶1𝑖
), (11)

𝐶2𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐶2𝑖
𝑉 𝐺
𝐿𝑖

+ 𝑏𝐶2𝑖
), (12)

𝑉 𝐻
𝑖 = (1 − 𝛾𝑖) ∗ 𝐶1𝑖 + 𝛾𝑖 ∗ 𝐶2𝑖 , (13)

where 𝛾𝑖 is the gating coefficient matrix controlling the utility weights 
of geographical features, and 𝜎(⋅) is the sigmoid function. 𝐶1𝑖  and 𝐶2𝑖
denote the content extracted from 𝑉𝐿𝑖

 and 𝑉 𝐺
𝐿𝑖
. 𝑉 𝐻

𝑖  is the embedding 
vector of grid 𝐿𝑖’s hybrid features.

The design of the ANFG is inspired by the GRU model mechanism 
(Chung, Gulcehre, Cho, & Bengio, 2014). As shown in Fig. 8, the GRU 
model accepts information of the current state 𝑋𝑡 and previous hidden 
state ℎ𝑡−1 while the ANFG model accepts two embedding vectors 𝑉𝐿𝑖

 and 
𝑉 𝐺
𝐿𝑖

 representing different features of GPS trajectories. Then both models 
use the similar operations of information filtering (Eq. 13). The gating 
mechanism’s effectiveness in filtering redundant sequential information 
is adequately validated in time series learning tasks (Mahmoud & Mo-
hammed, 2021). Thus, it has a high potential for merging the informa-
tion of sequence and geography in our studied task. However, different 
from the GRU model, the ANFG model uses forward neural networks 
to update 𝑉𝐿𝑖

 and 𝑉 𝐺
𝐿𝑖

 in Eqs. 11 and 12 respectively, in which suitable 
representations of 𝐶1𝑖  and 𝐶2𝑖  are learned from data.
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Fig. 8. The structures of GRU and ANFG. The ⊙, ⊕, and 𝐴𝑑𝑑 respectively denote Hadamard product, vector concatenation and vector sum. 𝜎 and 𝑇 𝑎𝑛ℎ represent 
forward neural networks with activation functions of sigmoid and hyperbolic tangent.

Based on Eqs. 1 to 6, each 𝐿𝑖 is transformed into a hybrid em-
bedding vector 𝑉 𝐻

𝑖 . The grid trajectory 𝑆𝑚𝑟
𝐿  is embedded into 𝑆𝑚𝑟

𝐻 =
{𝑉 𝐻

1 , 𝑉 𝐻
2 ,… , 𝑉 𝐻

𝑚𝑟
}, which serves as the input of Eq. 4.

3.7.  Prediction module

To predict GPS coordinates of the destination location, it is essen-
tial to obtain the coordinates of the destination candidates (Besse et al., 
2018; De Brébisson et al., 2015; Lv et al., 2020). Existing approaches 
cluster the destination coordinates of the taxi GPS trajectories and use 
the clustering centers as the destination candidates. To simplify this pro-
cedure, we obtain the destination candidates as follows. Given a grid 𝑔𝑖, 
and a set 𝑆𝑔𝑖 = {𝑑𝑘‖𝑘 ∈ {1, 2,… , 𝐾}, 𝑑𝑘 = (𝑙𝑛𝑔𝑘, 𝑙𝑎𝑡𝑘)}, which contains 
all the trajectory destinations located at 𝑔𝑖, where 𝑑𝑘 is the 𝑘𝑡ℎ trajectory 
destination, 𝐾 is the number of destinations located at 𝑔𝑖, and (𝑙𝑛𝑔𝑘, 𝑙𝑎𝑡𝑘)
denotes the longitude and latitude of destination 𝑑𝑘. If 𝑆𝑔𝑖 ≠ ∅, we cal-
culate 𝑔𝑖’s centroid coordinate as:
𝑀𝑔𝑖 = (𝑙𝑛𝑔𝑔𝑖 , 𝑙𝑎𝑡𝑔𝑖 ), (14)

𝑙𝑛𝑔𝑔𝑖 =
1
𝐾

𝐾
∑

𝑘=1
𝑙𝑛𝑔𝑘, (15)

𝑙𝑎𝑡𝑔𝑖 =
1
𝐾

𝐾
∑

𝑘=1
𝑙𝑎𝑡𝑘, (16)

where 𝑀𝑔𝑖  is the centroid of grid 𝑔𝑖. (𝑙𝑛𝑔𝑔𝑖 , 𝑙𝑎𝑡𝑔𝑖 ) are the longitude and 
latitude of 𝑀𝑔𝑖 , respectively. For the case that 𝑆𝑔𝑖 = ∅, we set the cen-
troid coordinate of 𝑔𝑖 as the geographical center. Compared to other 
approaches using clustering to obtain the centroid matrix, our method 
greatly reduces the computation time on clustering hyper-parameter 
tuning.

The prediction module takes the decoder’s output obtained in Eq. 5 
as the input of a fully-connected network with a softmax function. It out-
puts the grids’ probability distribution 𝑃 = [𝑝𝑔1 , 𝑝𝑔2 ,… , 𝑝𝑔𝑁 ]. The desti-
nation coordinate is calculated as:
𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑝(C⊕ 𝑉ℎ ⊕ 𝑉𝑤) + 𝑏𝑝), (17)

𝑙𝑛𝑔�̂� =
1
𝑁

𝑁
∑

𝑖=1
𝑝𝑔𝑖 𝑙𝑛𝑔𝑔𝑖 , (18)

𝑙𝑎𝑡�̂� =
1
𝑁

𝑁
∑

𝑖=1
𝑝𝑔𝑖 𝑙𝑎𝑡𝑔𝑖 , (19)

where ⊕ is the concatenation operation to link the three features, in-
cluding context of sequential patterns and temporal patterns of depar-
ture time’s hour and week. Then Eq. 17 uses a fully-connected net-
work to fuse them to output a probability distribution 𝑃  of destina-
tion candidates. By assigning the probabilities to the 𝑆𝑔𝑖  and computing 
the weighted sum in Eqs. 18 and 19, we obtain the coordinate of the 
predicted destination 𝑙�̂� = (𝑙𝑛𝑔�̂�, 𝑙𝑎𝑡�̂�), where 𝑁 is the number of grids. 

Table 2 
The statistics of datasets.
 Dataset  Porto  Chengdu  Shenzhen  San Francisco
 Taxi number  442  about 26,000  14,453  About 500
 Processed samples  656,171  591,426  250,570  173,057
 Grid granularity  50×50  70×70  70×70  60×60
 Grid area (m2)  233×105  246×203  441×252  232×193

To train the model, we use the Mean Squared Error (MSE) to mea-
sure the difference between the predicted 𝑙�̂� = (𝑙𝑛𝑔�̂�, 𝑙𝑎𝑡�̂�) and the true 
𝑙𝑦 = (𝑙𝑛𝑔𝑦, 𝑙𝑎𝑡𝑦) destinations: 

𝑀𝑆𝐸 = 1
2𝑁𝜋

∑

𝜋∈Π
[(𝑙𝑛𝑔�̂�𝜋 − 𝑙𝑛𝑔𝑦𝜋 )

2 + (𝑙𝑎𝑡�̂�𝜋 − 𝑙𝑎𝑡𝑦𝜋 )
2], (20)

where Π is the train set with a size of 𝑁𝜋 .

4.  Experiments

4.1.  Data description

We use the real-world taxi trajectory datasets from four cities 
to evaluate the proposed model, i.e., Porto1, Chengdu, Shenzhen2 
(Zhang, Zhao, Zhang, & He, 2015) and San Francisco3 (Piorkowski, 
Sarafijanovic-Djukic, & Grossglauser, 2009). The GPS trajectories are 
produced by taxi orders with anonymous passengers. We first remove 
the possibly invalid trips under 5 minutes that may be generated by pas-
sengers’ order cancellations. Since the original datasets are too large to 
train models, we randomly select the trajectories in the municipality of 
each city. Each dataset is split into a training set, validation set, and test 
set with a ratio of 7:1:2. The processed datasets and split settings are 
adapted to training and test for all the models used in the Experiments 
section. The final statistics of these datasets are presented in Table 2. 
All the datasets are used to validate the TransGTE model performance 
compared to other benchmark models in Section 4.5 and only the Porto 
dataset is utilized in Section 4.6 and 4.7.

4.2.  Evaluation metrics

We use the Mean Haversine Distance Error (the average differ-
ence between predicted and true coordinates) to evaluate model per-
formance, which was also used in the ECML/PKDD 15 competition as 
the evaluation metric. It measures distances between two points on a 

1 https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-
trajectory-i/data.
2 https://people.cs.rutgers.edu/~dz220/data.html.
3 https://ieee-dataport.org/open-access/crawdad-epflmobility.
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sphere based on their latitudes and longitudes.

𝐻𝐷(𝑦1, 𝑦2) = 2 ⋅ 𝑅 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛(
√

𝛼
1 − 𝛼

), (21)

𝛼 = 𝑠𝑖𝑛2(
𝜙2 − 𝜙1

2
)+

cos(𝜙1)𝑐𝑜𝑠(𝜙2)𝑠𝑖𝑛2(
𝜆2 − 𝜆1

2
),

(22)

where 𝜙 is the latitude, 𝜆 is the longitude, and 𝑅 = 6371𝑘𝑚 denotes the 
earth radius. The unit of 𝐻𝐷(𝑦1, 𝑦2) is km in Eq. 21, which is replaced 
with meter (m) presented in the Experiment section for better under-
standing.

4.3.  Baseline

To validate the TransGTE model, we compare it with 9 bench-
mark models in two categories (i.e., cluster-based model and grid-based 
model):

• MLP (De Brébisson et al., 2015): a cluster-based model that adopts 
the Multi-Layer Perceptrons framework with inputs of the first and 
last 5 points of raw GPS trajectories. It was the winning model in the 
taxi destination prediction competition (ECML/PKDD 15).

• Multi-Input LSTM (Ebel et al., 2020): a cluster-based model that 
maps GPS locations to discrete regions and embed them into dense 
vectors, and then transforms GPS trajectories into vector sequences. 
It merges the vector sequences and discrete variables as inputs of 
LSTM.

• T-CONV (Lv et al., 2019): a cluster-based model that transforms tra-
jectories into two-dimensional images, and uses a convolutional neu-
ral network (CNN) model to capture multi-scale patterns for the pre-
cise destination prediction.

• GPS-embedding BiLSTM (Liao et al., 2022) a cluster-based model 
that uses two GPS embedding methods to convert trajectories into 
embedding sequences, and adopts an attention-based dual BiLSTMs 
neural network to capture sequential features.

• TALL (Zhao et al., 2018): a grid-based model that uses bi-LSTM to 
model sequence and gives more attention to meaningful locations 
having strong correlations with the destination using the attention 
mechanism. It was originally designed to predict which grid the des-
tination is in.

• Seq2seq-GCN (Chen et al., 2020): It is applied in the check-in loca-
tion prediction task. It adopts the encoder of seq2seq framework to 
generate the hidden state and cell state of the historical trajectories. 
The GCN is used to generate graph embeddings of the location topol-
ogy graph. Finally, it predicts future check-in locations by aggregated 
the temporal dependence and graph embeddings in the decoder. It 
is a state-of-the-art model in mobility prediction tasks.

• DeepMove (Feng et al., 2018): It develops a multi-modal embedding 
recurrent neural network to capture the complicated sequential tran-
sitions and uses a historical attention model with two mechanisms 
to capture the multi-level periodicity in a principle way.

• MobTCast (Xue et al., 2021): It first uses the Transformer encoder to 
capture mobility features with both the history POI sequence and se-
mantic information. The embeddings of mobility attributes like POI 
location are concatenated as the input of encoder.

• MHSA (Hong et al., 2023): It utilizes the Transformer encoder to 
learn location transition patterns from historical location visits, their 
visit time and activity duration, as well as their surrounding land use 
functions, to infer an individual’s next location. The embeddings of 
mobility attributes like POI location are fused by adding operation 
as the input of encoder.

4.4.  Experimental settings

In the training step, we randomly initialize all parameters of the 
TransGTE. We set 250 training epochs in total and the early stop point 

Table 3 
Hyper-parameter setting of model structure.
 Hyper-parameter name  Value
 h embedding size  16
 w embedding size  16
 Grid embedding size  256
 GCN hidden size  4
 Multi-head size of encoder & decoder  8
 Layers of encoder & decoder  1
 Feedforward neuron size of encoder & decoder  1024

when the model has no improvement in the validation set in 10 epochs. 
We use Adam as the optimizer with a 0.0001 learning rate and set the 
batch size as 64. The above training settings are applied to all the base-
line models and TransGTE. The main hyper-parameters related to the 
model structure are shown in Table 3. All the model training and exper-
imental evaluations are conducted on a workstation with Intel Xeon(R) 
CPU E5-2650 v3 @2.30GHz, Nvidia 1080ti GPU, and 64-GB memory. 
And the framework of TransGTE is mainly realized by Pytorch 1.6 in 
Python 3.7 virtual environment, which also can be easily deployed to 
other devices like mobile phone by employing the corresponding Python 
libraries.

Besides, the completion ratio of the partial trajectory 𝑟 is an essen-
tial factor in the experiment. The prediction models can extract more 
information in the trajectories with a higher completion ratio, which is 
also closer to the destinations. To explore the influence of the comple-
tion ratio, we set 𝑟 as 0.1, 0.3, 0.5, 0.7, and 0.9 to get various predic-
tion scenarios. rend to the training loss. Therefore, the TransGTE model 
as well as the ANFG can converge in training. Due to the complexity 
of mathematical proof, we show the model convergence performance 
numerically (common practice in deep learning studies, such as GRU 
model in Bahdanau, Cho, and Bengio (2014)). The loss and ANFG gra-
dient are representatively visualized in Fig. 9 given 𝑟 = 0.7 on the Porto 
dataset. In Fig. 9a, we found that the model achieved the best perfor-
mance in validation set with about 10 epochs. Then training loss and 
validation loss tend to converge after about 100 epochs. Fig. 9b shows 
the L2 norm of ANFG gradient in training, which has a similar trend to 
the training loss. These results show that the TransGTE model and the 
training algorithm can converge well in training.

Compared to the baseline modes, the TransGTE model has a more 
complex model structure that may lead to a longer inference time for 
the practical deployment. From the structure of Fig. 4, there are al-
most linear matrix operations like embedding, ANFG, and Sequential 
Pattern models (i.e., Transformer). The most time cost stems from the 
GCN computation that has not been adequately optimized in current 
literature. Even so, the TransGTE model only has 25.37MB parameters 
(shown in Table 3). Given the completion ratio 𝑟 = 0.9, it takes about 
0.02, 0.06, 0.03 and 0.02 seconds of inference time on average sample 
batch for Porto, Chengdu, Shenzhen and San Francisco, respectively. It 
can be optimized further using practical deployment technologies and 
strategies, such as model compression (Choudhary, Mishra, Goswami, & 
Sarangapani, 2020) and knowledge distillation (Gou, Yu, Maybank, & 
Tao, 2021).

4.5.  Performance comparison

Table 4 summarizes the performance comparison results in Mean 
Haversine Distance Error with different trajectory completion ratios on 
the Porto. Generally, grid-based models outperform cluster-based mod-
els by significant margins, which shows the effectiveness of the devel-
oped grid-based prediction module with less tuning efforts for cluster-
ing. In grid-based benchmark models, the MHSA achieves the best per-
formance. Compared with the MHSA, the TransGTE model improves the 
prediction performance by 2.38%, 2.31%, 4.92%, 5.95%, and 5.62% 
for different 𝑟 (4.24% improvement in average). The models using at-
tention mechanisms (TransGTE, mHSA, MobTcast, DeepMove, Seq2seq-
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Fig. 9. The visualization of training process given 𝑟 = 0.7. The left subfigure plots training loss and validation loss (MSE). The right subfigure plots the L2 norm of 
ANFG gradient in training.
Table 4 
The Mean Haversine Distance Error (m) of different models in terms of 𝑟 for the 
Porto dataset.The bold and underline numbers respectively denote the best and 
the second best performance given the same 𝑟. The marks are adapted to all the 
performance comparison tables.

Category Model
𝑟

 0.1  0.3  0.5  0.7  0.9

Cluster-based

 MLP  2991  2180  1363  854  758
 Multi-input LSTM  2687  1915  1248  809  652
 T-CONV  2820  2074  1348  850  666
 GPS-embedding BiLSTM  2848  2036  1086 560  304

Grid-based

 TALL  1809  1364  953  616  277
 Seq2seq-GCN  1797  1315  926  587  260
 Deepmove  1795  1310  919  580  237
 MobTCast 1787  1306  917  572  237
 MHSA  1804 1294 913 571 231
 TransGTE  1761  1264  868  537  218

GCN, TALL, and GPS-embedding BiLSTM) have better performance than 
the non-attentive model (Multi-Input LSTM), especially in the long se-
quence dataset (given a large 𝑟). The Seq2seq-GCN also uses geograph-
ical information, but it performs worse than the TransGTE model since 
it cannot adaptively control the utility of geographical information. The 
Transformer-based models MobTCast and MHSA have superiority in 
capturing sequential features than most of other baseline models from 
the results. However, they are still insensitive to geographical features 
that lead to falling behind the TransGTE.

The cluster-based models applied in the Porto dataset all use the 
same clustering centers for destination candidates provided by the MLP 
(De Brébisson et al., 2015). Moreover, there are short of details about 
clustering methods adopted by these models to obtain the clustering 
centers for other datasets. Therefore, we only test the grid-based mod-
els on the remaining datasets for further validation. As shown in Ta-
ble 5, the TransGTE averagely outperforms the best baseline models 
Deepmove on the Chengdu by about 2.87%. Moreover, the TransGTE 
respectively achieves a best performance on the Shenzhen and San Fran-
cisco by 5.91% and 4.11% on average compared to the best benchmark 
MHSA. Therefore, the results from Tables 4 and 5 show the state-of-the-
art performance of TransGTE and imply that it can adapt to different 
city scales and urban layouts.

4.6.  Ablation analysis

We conduct an ablation analysis to explore the effectiveness of the 
proposed ANFG mechanism and the constructed trajectory location vec-
tor 𝑇𝐿𝑉 . In the ablation studies, all the ablation models use the same 
hyperparameters and structures in the sequential pattern model, which 
are validated on the Porto dataset. The detailed settings of these models 
are presented in Table 6.

Table 5 
The Mean Haversine Distance Error (m) of grid-based models in terms of 𝑟 for 
three different datasets.
 Dataset 𝑟  TALL  Seq2seq-GCN  Deepmove  MobTCast  MHSA  TransGTE

Chengdu

 0.1  2007  1999  1982 1981  2001  1959
 0.3  1542  1511 1492  1518  1532  1470
 0.5  1064  1062 1037  1056  1071  1002
 0.7  660  654 629  648  660  602
 0.9  251  241 221  234  238  212

Shenzhen

 0.1  4039  4153  4039 3999  4036  3975
 0.3  3102  3005  2965 2943  2959  2822
 0.5  2185  2109  2072  2041 2032  1882
 0.7  1455  1373  1305  1319 1315  1221
 0.9  744  644  623  632 618  563

San Francisco

 0.1  2476  2459 2405  2417  2427  2402
 0.3  2002  2076  1997  1990 1975  1877
 0.5  1516  1528  1465  1490 1414  1358
 0.7  1015  1097  1018  1051 1006  952
 0.9  747  668  585  584 573  543

Table 6 
Ablation module settings.
Model  Input Architecture description
(1)Transformer 𝑆𝑚𝑟 It removes the GCN and ANFG in Fig. 4, 

and is the same as a vanilla Transformer 
with encoder and decoder.

(2)Trans-
former+NRV+GCN+ANFG

𝑆𝑚𝑟 It replaces the TLV with a normal random 
vector (NRV) as GCN’s input in Fig. 4.

(3)Trans-
former+TLV+FCN+ANFG

𝑆𝑚𝑟 , 𝑇𝐿𝑉 It is obtained by replacing the GCN in Fig. 4 
with a fully-connected network (FCN).

(4)Trans-
former+TLV+CNN+ANFG

𝑆𝑚𝑟 , 𝑇𝐿𝑉 It replaces the GCN in SFER in Fig. 4 with 
a 1D convolutional neural network (1D-
CNN).

(5)Trans-
former+TLV+GCN+ADD

𝑆𝑚𝑟 , 𝐴, 𝑇𝐿𝑉 It replaces the ANFG in Fig. 4 with a non-
parametric additive operation.

(6)TransGTE 𝑆𝑚𝑟 , 𝐴, 𝑇𝐿𝑉 The overall TransGTE model is presented. 
It removes the temporal embedding vec-
tors

(7)TransGTE without TEV 𝑆𝑚𝑟 , 𝐴, 𝑇𝐿𝑉 (TEV) produced by the pipeline at the bot-
tom of Fig. 4.

Table 7 
Ablation studies evaluated by Mean Haversine Distance Error (m).
 Model 𝑟

 0.1  0.3  0.5  0.7  0.9
 (1)Transformer  1781  1286  904  564  227
 (2)Transformer+NRV+GCN+ANFG  1775  1280  881 545  220
 (3)Transformer+TLV+FCN+ANFG  1780  1282  888  558  224
 (4)Transformer+TLV+CNN+ANFG  1782 1270 880  557 219
 (5)Transformer+TLV+GCN+ADD 1772  1278  890  557  226
 (6)TransGTE  1761  1264  868  537  218
 (7)TransGTE without TEV  1789  1276  884  548  227
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Fig. 10. The left subfigure describes the relationship between ANFG inputs and weights, and the right one describes the relationship between ANFG weights and 
trajectory representations.

Table 7 shows the ablation results. Firstly, comparing models (1) 
with (2)-(6), replacing any part in the framework of Fig. 4 can improve 
the performance, implying these models, except model (1), are able to 
capture geographical information to different levels of extent. Specifi-
cally, the models with the 𝑇𝐿𝑉  obtain improvement from the results of 
(1) and (3)-(6). When using a normal random vector (𝑁𝑅𝑉 ) to replace 
it, we find that the model performance decreases compared to models 
(2) and (6), which means that the 𝑇𝐿𝑉  is more efficient than 𝑁𝑅𝑉  in 
representing the geographical features. As shown in Figs. 3 and 5, the 
main reason is that the GCN with 𝑇𝐿𝑉  as input only focuses on the 
trajectories’ neighboring information, while 𝑁𝑅𝑉  may comprise long-
distance geographical information that is not significant to destination 
prediction. Through models (3), (4), and (6), we compare three ways to 
extract geographical features from the 𝑇𝐿𝑉 . The results show that the 
GCN achieves better performance than other extractors, which implies 
that GCN has an advantage in capturing geographical features. From 
the results of models (5) and (6), we observe that our gating mechanism 
combined with GCN has superiority compared to the other two combi-
nations. It suggests that the ability to merge sequential and geographical 
features adaptively using the gating mechanism would benefit the pre-
diction performance. Moreover, the model without temporal embedding 
vectors has significant performance decline from the results of (6) and 
(7). It means that temporal information about trips is also essential to 
the trajectory destination prediction.

4.7.  Interpretation of GPS trajectory representation

To illustrate the advantage of our proposed method in modeling 
GPS trajectory’s geographical similarity, we compare the TransGTE and 
Transformer models by visualizing their predictions and measuring the 
similarity of their embedding trajectories. Inspired by the definition of 
semantic similarity between sentences in NLP (Gomaa & Fahmy, 2013), 
we use a cosine measurement (Orkphol & Yang, 2019; Si, Zheng, Zhou, 
& Zhang, 2019) to compute the similarity between two embedding tra-
jectories. To simplify the calculation, we use the mean of a given em-
bedding trajectory S = {𝑉1, 𝑉2,… , 𝑉𝑚𝑟

} like the hybrid embedding tra-
jectory 𝑆𝑚𝑟

𝐻 = {𝑉 𝐻
1 , 𝑉 𝐻

2 ,… , 𝑉 𝐻
𝑚𝑟

} in the Section 3.5. The calculation is 
as follows:

𝑉 = 1
𝑚𝑟

𝑚𝑟
∑

𝑖=1
𝑉𝑖, (23)

𝑠𝑖𝑚(S1, S2) =
𝑉 1𝑉 2

‖𝑉 1‖‖𝑉 2‖
, (24)

where 𝑉  is the mean of the embedding trajectory S, and 𝑠𝑖𝑚(S1, S2) the 
similarity of the two embedding trajectories.

We first investigate the relationship between the ANFG weights and 
different trajectory data distributions. We randomly select a GPS trajec-
tory from test set as the frame of reference and other 5000 trajectories as 

Fig. 11. The similarity of embedding trajectories in the 4 cases.

object of reference. Then the 5000 trajectories can be located by the first 
one. Since the TransGTE uses trajectory embeddings instead of original 
GPS trajectories, the embeddings of 5001 trajectories represent the tra-
jectory data distributions. The differences of the data distributions can 
be measured by the similarity between frame and object trajectories 
that are represented by the ANFG input [𝑉𝐿𝑖

, 𝑉 𝐺
𝐿𝑖
] in Eq. 10. The ANFG 

dynamic adaptations can be measured by the cosine of ANFG weights 
(the 𝛾𝑖 in Eq. 10) between frame and object trajectories. Here, tensors 
of the ANFG inputs and weights are arithmetically averaged along the 
sequence dimension to fit different trajectory lengths. The above com-
putational process of tensor similarity is similar to Eqs. 23 and 24 where 
the 𝑉𝑖 is replaced with the corresponding tensors. Through cubic curve 
data fitting, Fig. 10a shows a trend that two trajectories’ ANFG weights 
become more similar as the cosine of two ANFG inputs increases. The 
cosine of two trajectories’ ANFG weights consistently has large values 
over 0.97 because the geographical features are aggregated by the se-
quential features in the GCN. Although the sequential features have a 
small weight in Eq. 13, the ANFG model can still adjust its weights under 
different trajectory data distributions to obtain different GPS trajectory 
representations as shown in Fig. 10b.

To illustrate if capturing trajectories’ geographical similarity can ef-
fectively improve destination prediction, we select 4 typical case exam-
ples in which each pair of trajectories are geographically close in differ-
ent scenarios: (a) two trajectories have the same origin and destination 
grids; (b) two trajectories share the same origin and destination grids but 
have partly different route segments; (c) two trajectories have the same 
destination and share a large part of route segments, but they start from 
adjacent grids with a 1-hop distance; (d) two trajectories have the same 
destination and share a large part of route segments, but they start from 
adjacent grids with a 2-hop distance. Besides, we use the Transformer as 
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Fig. 12. The visualization of two models’ prediction in the 4 cases.

the control group (model settings in Table 6), which can capture rich se-
quential patterns but poor geographical features. Our proposed TranGTE 
and the Transformer models are both pre-trained with a completion rate 
of 𝑟 = 0.9 for the experiment.

The results are shown in Figs. 11 and 12. Fig. 12(a) shows that the 
two trajectories are mainly different in the first several grids. The Trans-
GTE has precise destination predictions while the Transformer has a 
significant prediction deviation from the true destination of Trajectory 
2. Quantitatively, Fig. 11(a) shows that the TransGTE model predicts 
that the two trajectories are 98.57% similar while Transformer’s assess-
ment is 70.41%. It implies that the TransGTE can capture branch roads 
relationship (i.e., the geographically close branch routes may merge 
into the major roads). Fig. 12(b) illustrates that one of the trajectories 
changes to a branch road near the destination grid. In this case, the 
Transformer is uncertain about the two trajectories’ similarity (54.40% 
in Fig. 11(b)), but the TransGTE still precisely captures the similarity 
(89.94% in Fig. 11(b)) since it is aware of the neighboring grids’ loca-
tion information. In Fig. 12(c), the two trajectories have adjacent origins 
with a 1-grid distance. Compared with TransGTE, the Transformer has 
a major error in predicting Trajectory2′s destination because it just par-
tially captures major roads’ similarity (52.04% in Fig. 11(c)) while the 
TransGTE captures origins’ proximity (96.72% in Fig. 11(c)). Fig. 12(d) 
shows the case that the origins are in about a 2-grid distance. The Trans-
former can not accurately predict one of the true destinations (Destina-
tion 2), and it has an extremely low assessment of the two trajectories’ 
similarity (44.97% in Fig. 11(d)). It implies that a long distance between 
the origins has a negative impact on capturing major roads’ similarity 
using the Transformer. The TransGTE evaluates two trajectories to be 
97.17% in their similarity (Fig. 11(d)) since it can capture 2-grid loca-
tions efficiently by 2-hop geographic-aware GCN that filters the redun-
dant sequential information of branches before entering the major road 
by the gating mechanism. In summary, the TransGTE has competitive 
advantages in representing GPS trajectories’ geographical similarity for 
a better prediction performance compared to the commonly used se-
quential pattern models, such as the Transformer.

5.  Conclusion

This paper proposes a novel deep learning model, TransGTE, for the 
trajectory-based individual trip destination prediction task. The Trans-
GTE model uses the GCN and Transformer to extract geographical and 
sequential features of GPS trajectories. The TransGTE adopts a gate 

mechanism to dynamically fuse these two types of features and outputs 
GPS trajectory embeddings. Also, the TransGTE uses a grid-based pre-
diction module to predict the destination coordinates (rather than the 
cluster-based methods) to reduce the computation complexity and cost.

Four real-world taxi trajectory datasets from different cities includ-
ing Porto, Chengdu, Shenzhen and San Francisco are used to validate the 
model performance. We compared the TransGTE with representative 
baseline models including models using the sequential modeling (e.g, 
LSTM and attention mechanism) and spatial feature extraction frame-
works (e.g., CNN and GCN). The results show that the TransGTE re-
spectively outperforms the best benchmark models by 4.24%, 2.87%, 
5.91% and 4.11% on the Porto, Chengdu, Shenzhen and San Francisco 
in terms of the Mean Haversine Distance Error. The ablation study re-
sults show that the combination of GCN and ANFG modules achieves 
the best performance. Finally, we numerically analyze ANFG’s adap-
tive mechanism and visualize the similarity of embedding trajectories 
in cases with geographically proximate paths. This comparative anal-
ysis elucidates how our method utilizes effective GPS trajectory repre-
sentations to capture geographical similarities and explains why these 
similarities enhance predictive accuracy.

Future work may explore improving the model prediction perfor-
mance by incorporating more mobility-related data or changing condi-
tions contributing to the prediction task, e.g., city POI data, weather 
or event information. Given that urban environments, such as high-rise 
buildings, can significantly impact the quality of GPS data during col-
lection, future study can include addressing these biases and examining 
their potential effects on the model’s predictions.
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