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ABSTRACT

Cyber-physical systems (CPSs) are often complex and safety-critical, making it both challenging and
crucial to ensure that the system’s specifications are met. Simulation-based falsification is a practical
testing technique for increasing confidence in a CPS’s correctness, as it only requires that the system
be simulated. Reducing the number of computationally intensive simulations needed for falsification
is a key concern. In this study, we investigate Bayesian optimization (BO), a sample-efficient approach
that learns a surrogate model to capture the relationship between input signal parameterization and
specification evaluation. We propose two enhancements to the basic BO for improving falsification:
(1) leveraging local surrogate models, and (2) utilizing the user’s prior knowledge. Additionally,
we address the formulation of acquisition functions for falsification by proposing and evaluating
various alternatives. Our benchmark evaluation demonstrates significant improvements when using
local surrogate models in BO for falsifying challenging benchmark examples. Incorporating prior
knowledge is found to be especially beneficial when the simulation budget is constrained. For some
benchmark problems, the choice of acquisition function noticeably impacts the number of simulations
required for successful falsification.

Keywords Cyber-Physical Systems · Testing · Falsification · Bayesian Optimization

1 Introduction

Cyber-physical systems (CPS) [1] are frequently complex and safety-critical. Testing is a common approach for evaluat-
ing correctness, with the primary goal of identifying inputs that falsify given specifications, known as counterexamples.

In many industrial systems, explicit mathematical models for analysis are unavailable, and only system simulations
are possible. In this paper, we assume the availability of a black-box model representing the system under test (SUT),
which can be simulated.

For numerous industrial CPSs, simulations can be computationally expensive, making it desirable to minimize the
number of simulations required during falsification. Simulation-based falsification using optimization aims to reduce
the number of tests, i.e., simulations, by employing an optimization method to determine the next set of input signals
based on previous simulation results. A key challenge lies in selecting an efficient optimization method and identifying
the information an optimizer should use to decide on the next input signals.
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When the SUT is represented as a black-box model, the optimization approach is limited to gradient-free optimization
methods [2]. Optimization-based methods are generally divided into two categories: direct-search [3] and model-based
methods [2]. Direct-search methods evaluate the objective function directly without sharing information between
consecutive evaluations, while model-based searches create a surrogate model of the objective function to explore and
exploit the search space [2, 4].

Model-based methods are suitable when the SUT is expensive to simulate, and it might be worth the additional
cost of building a surrogate model. Bayesian optimization (BO) [4] is a model-based optimization method that has
been successfully applied to various problems, such as machine learning hyperparameter optimization [5, 6] and
robotics [7, 8].

Often BO outperforms conventional optimization when addressing costly-to-evaluate nonconvex functions with multiple
local optima [4]. As falsification of CPSs is typically a high-dimensional problem, the computational requirements for
vanilla BO (i.e., the standard Bayesian optimization approach) are not well suited.

In [9], it is demonstrated that BO is comparable with respect to other optimization methods, such as CMA-ES [10],
for falsification of CPSs. However, [9] is using a dimensionality reduction method REMBO [11]. REMBO and its
extensions, such as HeSBO [12] and ALEBO [13], project the search space to a low-dimensional subspace using a
linear embedding. In these methods, a Gaussian process model is trained on a low-dimensional space, from which
the original high-dimensional input space for evaluations is derived via inverse random projection. Consequently,
points outside the search domain are projected to the boundary, upper or lower bound, resulting in over-exploitation of
the boundary region. However, determining the optimal size of a linear embedding is a challenging task in practice.
Creating an adequate linear embedding with the optimal size for different falsification problems is an open research
question. In general, it is impractical for practitioners to specify linear embeddings in real-world applications without
having multiple intensive trials.

Moreover, in [9], the authors use different linear embeddings for each example, and there is no clear suggestion on
which embedding is optimal. Furthermore, the benchmark problems used in [9] have been updated to more recent
benchmarking problems used in the falsification community [14, 15].

A different and more practical approach would be to use an approach that does not require input from the practitioner.
TuRBO [16] is such a method that is based on trust regions [17]. A trust region (TR) is a subset of the input space
centered at the current-best solution where the objective function is approximated locally. Instead of focusing on a linear
embedding, TuRBO searches for the objective function locally with a sequence of local optimization runs. Using TRs
in which a probabilistic model is trained similarly to the global BO framework helps to avoid overexploiting and thus
provides a balance between exploration and exploitation. In some practical applications of falsification, the objective
function can be constant in large regions or may have discontinuities. In these situations, vanilla BO will have difficulty
learning anything credible. However, this limitation can be easily omitted by shrinking the search locally within a TR as
done in TuRBO. Although, the final performance of BO depends crucially on the selection of the acquisition function.
The acquisition function determines how exploration and exploitation are balanced in BO [18, 19, 20], an aspect that is
not discussed in [9]. One acquisition function can be used to emphasize model uncertainty more than prediction, while
another acquisition function can be used to accelerate convergence but might get trapped in local optima easily. To
address this issue, in addition to the default choice with Thompson Sampling (TS) [18], TuRBO is modified, as part of
this work, to use the lower confidence bound (LCB) [19], and an adjusted version of the probability of improvement
(PI) [20] that emphasizes more failure events as our primary goal is to find configurations that falsify the SUT.

Despite being a popular method for optimizing expensive black-box functions, plain BO does not incorporate the
expertise of domain experts. For certain falsification problems, there is prior knowledge about where a falsified point
can potentially be located. Such an example is the corner points, that is, values at the boundaries of the allowed input
ranges, that are shown to be likely to falsify many falsification problems; this is further discussed in [21]. In such
situations, prior knowledge can be incorporated into the model-based method to increase efficiency. The recent works,
BOPrO [22] and πBO [5] propose how to incorporate the prior injection about the optimal solution in BO, which allows
the practitioner to emphasize certain regions that potentially a falsified point can be located. The methods can forget
incorrect prior knowledge and eventually converge to an optimal solution. To our knowledge, injecting a prior belief
about the falsifiable area has never been evaluated for falsification of CPSs. In [22], a user-provided prior distribution is
combined with a data-driven model to form a pseudo-posterior. Still, this approach does not allow for arbitrary priors to
be integrated. Furthermore, this method does not allow for different acquisition functions. A generalized approach,
πBO, is proposed in [5] to address these issues. In contrast to other works, while being conceptually simple, πBO can
easily be integrated with existing BO works and different acquisition functions. Furthermore, [5] provides a theoretical
guarantee proving convergence at regular rates independently of the prior.

2



In this paper, we investigate how TuRBO, a BO method for high-dimensional problems, and πBO, a BO method for
including prior knowledge, can be used for falsification. We propose the modification of the TuRBO method with
different acquisition functions, evaluate them on benchmark problems, and compare them with other state-of-the-art
methods.

These mentioned limitations and shortcomings can be one of the reasons why BO has not yet received much attention in
the falsification community. Moreover, since the initial work [9] on BO was proposed a few years ago, the new standard
benchmark problems for falsification have emerged [14, 15]. Therefore, a new study on BO optimization for falsification
is necessary. We have formulated the following research questions in this paper. (1) How can recent contributions from
the BO community be exploited to efficiently solve falsification problems? (2) Which formulation of the acquisition
functions is suitable for the falsification process? (3) How can guesses about falsification points be included in the BO
approach? The contributions in this paper are: (i) A discussion of recently proposed BO optimization methods that
include trust regions and allow the possibility to inject prior knowledge in the problem formulation. In particular, we
discuss how these new features are affecting the falsification process. (ii) A new acquisition function that is tailor-made
for falsification problems is proposed. (iii) An extensive evaluation of the proposed methods and acquisition functions
on a representative set of benchmark problems. The evaluations demonstrate that recent trust-region-based Bayesian
optimization is, for hard problems to falsify, outperforming traditional optimization-based approaches.

This paper is organized as follows: Section 2 reviews the related work. Section 3 introduces the first falsification
process briefly, then the BO method. Section 4 introduces the methods used in this paper. The evaluation results on the
benchmark problems are discussed in Section 5. Finally, Section 6 summarizes the contributions.

2 Related Work

Different optimization methods have been evaluated for falsification of CPSs. In [23], the optimization methods,
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10], Nelder-Mead (NM) [24], SNOBFIT [25], and
Simulated Annealing [26] were evaluated on benchmark problems [14] to evaluate the effect of different optimization
techniques on falsification problems. The evaluation shows that there is a significant difference in the efficiency of
the falsification process. SNOBFIT [25], a model-based approach, demonstrated the best performance for falsification
in [23]. Still some benchmark problems were not possible to falsify using this approach. On the basis of the observation
of SNOBFIT’s performance, it was discovered that SNOBFIT often explores new parameters at the extremes of
parameter ranges (known as corner points) when it does not receive any hints from the quantitative semantics as to
which direction to continue its search. This motivated the paper [21] in which a new falsification method, Line-Search
falsification (LSF) [21], is proposed. LSF is a direct-search method specifically developed for falsification problems
and has demonstrated better performance than SNOBFIT as described in [21]. An explanation of the good performance
of LSF is the ability of LSF to merge random exploration with local search by creating random lines in the parameter
space and optimizing over line segments as well as the ability to investigate corner points while searching. Although
LSF outperforms previous approaches in falsifying benchmark problems, it is a direct-search method that does not
attempt to learn a surrogate model of the objective function. LSF will, for this reason, be compared with BO methods
since it has exhibited strong performance in solving falsification problems, as discussed in [21].

BO has been previously explored for falsification of CPSs in [9, 27, 28, 29]. In [27], BO was adapted for use with
conjunctive requirements, focusing on solving problems with numerous requirements. In [28], the Gaussian process
upper confidence bound (GP-UCB) was employed for falsifying conditional safety properties, which require a safety
property to hold whenever an antecedent condition is met. Gaussian process regression was utilized to identify the
input search space region where the antecedent condition holds. The GP-UCB algorithm for conditional safety was
further enhanced in [29] by concentrating on points satisfying the antecedent. The GP-UCB approach is suitable for
moderate-dimensional spaces, up to approximately 10 dimensions. However, for high-dimensional parameter spaces,
this method is not feasible.

ALEBO [13] addresses REMBO’s limitations, such as nonlinear distortion in the objective function and a low probability
of containing an optimum within a linear embedding, by using a Mahalanobis kernel and sampling a linear embedding
from the unit hypersphere. HeSBO [12] offers an alternative by defining a linear embedding through hashing and
sketching. Nevertheless, the performance of both methods still heavily depends on the optimal selection of the linear
embedding size, which is difficult to determine in practice.
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Figure 1: The process of optimization-based falsification [30].

3 Background

3.1 Falsification of Cyber-Physical Systems

The process of optimization-based falsification is shown in Figure 1. Initially, a generator creates input signals to the
system based on an input parametrization. The input parameters x ∈ Rn with n, as the number of parameters, are used
to generate an input trace describing a sequence of input vectors, xsi [k], where k ranges from the start to the end of the
simulation, for the input (i) signals (s). For example, a sinusoidal signal can be parameterized using the amplitude
and the period or a piecewise constant signal by the values and time instants at which the signal changes value. Next,
a simulator generates simulation traces of output signals xso, where the SUT is simulated with the xsi as inputs. The
combination of both xsi and xso, i.e. xs, are used with the specification φ, possibly containing temporal operators, to
evaluate the specification using a quantitative semantics.

A quantitative semantics determines whether the specification is satisfied and a measure of to what extent the specification
is fulfilled. If the specification is falsified, the process ends. However, if it is not falsified, a parameter optimizer
generates a new set of parameters for the input generator, and a new simulation of the system takes place. Mapping
between the input parametrization and the objective value y ∈ R of the selected quantitative semantics is taken as a
black-box function fφ(xs) : X −→ R. In falsification, y = fφ(xs) < 0 denotes that the specification is falsified. Thus,
minimizing the objective function fφ(xs) should guide us to a point with fφ(xsfalsified) < 0 if the system is possible to
falsify. With slight abuse of notation, we will write f(x) as shorthand for fφ.

In falsification, the specification is often modeled using signal temporal logic (STL) or metric interval temporal logic
(MITL) with their quantitative semantics defined in [31] and [32], respectively. In this paper, STL specifications are
used.

3.2 Signal Temporal Logic

The syntax of STL [33] is defined as follows:

φ ::= µ | ¬µ |φ ∧ ψ |φ ∨ ψ |□[a,b]ψ |♢[a,b]ψ |φU[a,b]ψ,

where the predicate µ is µ ≡ µ(xs) > 0 and xs is a signal; φ and ψ are STL formulas; □[a,b] denotes the globally
(always) operator between times a and b (with a < b); ♢[a,b] denotes the eventually operator between a and b; and U[a,b]
denotes the until operator between a and b.

4



The satisfaction of the formula φ for the discrete signal xs, consisting of both inputs and outputs to the SUT, at the
discrete-time instant k is defined:

(xs, k) |= µ ⇔ µ(xs[k]) > 0

(xs, k) |= ¬µ ⇔ ¬((xs, k) |= µ)

(xs, k) |= φ ∧ ψ ⇔ (xs, k) |= φ ∧ (xs, k) |= ψ

(xs, k) |= φ ∨ ψ ⇔ (xs, k) |= φ ∨ (xs, k) |= ψ

(xs, k) |= □[a,b]φ ⇔ ∀k′ ∈ [k + a, k + b], (xs, k′) |= φ

(xs, k) |= ♢[a,b]φ ⇔ ∃k′ ∈ [k + a, k + b], (xs, k′) |= φ

(xs, k) |= φ U[a,b]ψ ⇔ ∃k′ ∈ [k + a, k + b] (xs, k′) |= ψ

∧ ∀k′′ ∈ [k, k′), (xs, k′′) |= φ

Two quantitative semantics defined for STL are Max and Additive. Both of these can be expressed in terms of
VBools [30], but in this paper, we focus on using Max since it is the most widely used quantitative semantics in
falsification. A VBool ⟨v, z⟩ is a combination of a Boolean value v (true ⊤, or false ⊥) together with a real number z
that is a measure of how true or false the VBool is. This real value will estimate how convincingly a test passed or how
severely it failed. The quantitative semantics defines this value.

3.3 Quantitative Semantics

For Max semantics, the and (∧), or (∨), always (□), eventually (♢), and until (U) operators are introduced.

The and-operator is defined as

(⊤, s) ∧ (⊤, z) =
(
⊤,min(s, z)

)
,

(⊤, s) ∧ (⊥, z) = (⊥, z),
(⊥, s) ∧ (⊤, z) = (⊥, s),

(⊥, s) ∧ (⊥, z) =
(
⊥,max(s, z)

)
.

Using the de Morgan laws, the or operator can be defined in terms of and, as: (vs, s) ∨ (vz, z) = ¬v(¬v(vs, s) ∧
¬v(vz, z)), where VBool negation is defined as ¬v(vs, s) = (¬vs, s).
The always operator over an interval [a, b] is straightforwardly defined in terms of and-operator, as

□[a,b]φ =

b∧
k=a

φ [k] ,

where φ is a finite sequence of VBools defined for all the discrete-time instants in [a, b].

Furthermore, the eventually operator is for both semantics defined over an interval [a, b] in terms of always-operator, as:
♢[a,b]φ = ¬(□[a,b](¬v φ)).
Finally, the Max until-operator as:

φ U[a,b] ψ =

b∨
k=a

(
ψ[k] ∧

(
a−1∧
k′=0

φ[k′]

))
.

3.4 Bayesian Optimization

BO [4] assumes a probabilistic belief about the mapping between the input parametrization x and the objective value
y. Designing an acquisition function guides the optimization procedure to the optimal solution by selecting adequate
configurations for evaluation. While different regression models such as random forest can work as a surrogate model,
a probabilistic model in BO is typically based on Gaussian processes regression [34]. In principle, Gaussian process
regression defines the output of a simulation-based falsification as p(y) = GP(y;µ′,K), where µ′ is a prediction mean
value, and K is a covariance that returns similarity between points where σ(x) =

√
K(x, x) is the marginal standard

deviation of f(x).
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Algorithm 1 Bayesian Optimization for falsification
1: Input: Input space X ⊆ Rn, the initial design size M , the max number of simulations N .
2: Output: A falsified design - if possible, to find within the given simulation budget.
3: {xi}Mi=1 ∼ U(x), {yi ←− f(xi)}Mi=1, {Sample random configurations from the uniform distribution and evaluate using

simulation.}
4: if the specification is falsified at one of {xi}Mi=1 then
5: return The falsified point {Falsification is successful.}
6: else
7: D0 ←− {(xi, yi)}Mi=1 {Collect the initial design set.}
8: for (j = 1, 2, . . . , N) do
9: x∗ ←− argminx∈X α(x,Dj−1) {Train a probabilistic model as p(y|D) = GP(y;µ′

y|D,Ky|D) with Dj−1 and find the
next configuration x∗ by minimization of the acquisition function α.}

10: y∗ ←− f(x∗) {Evaluate the objective function by using simulation followed by the quantitative semantics.}
11: if y∗ < 0 then
12: return x∗ {Falsification is successful.}
13: else
14: Dj = Dj−1 ∪ {(x∗, y∗)} {Update the sample set.}
15: end if
16: end for
17: end if

We summarize the main steps of BO for falsification in Algorithm 1. At the start, we need to evaluate the objective
function f(x) on an initial number of samples (points) that is noted here as M numbers, line 1. Defining the initial
points in the search space X ⊆ Rn, where n is the dimensional parameter space, is typically done by randomly
selecting parameters within the allowed range, line 3. After evaluating f(x), if the specification is falsified at any of
the initial samples, lines 4-5, the algorithm terminates with the falsified point. Otherwise, we create the initial sample
set D0 ←− {(xi, yi)}Mi=1 based on an initial probabilistic model, line 7. Using the trained probabilistic model, we can
decide which configuration to evaluate next. This process is done by minimization of the used acquisition function
which will be introduced in 4.1.

A key challenge is a trade-off between exploring regions of the parameter space not yet explored versus investigating
areas around the most promising parameter values yet found. This trade-off is called the exploration-exploitation
dilemma. Balancing adequately between exploring yet unexplored areas and exploiting promising regions determines the
efficiency of the falsification process. Too much exploitation results in a greedy optimization where a surrogate model
can easily be trapped in a local minimum. Vice versa, too much exploration would result in an inefficient performance
where a surrogate model evolves with every new iteration without any exploitation. Therefore, an acquisition function
that balances exploration vs. exploitation is used to select the next configuration for evaluation. Since an acquisition
function is built on top of a surrogate model with a clear analytical form, optimizing it can be done efficiently. In
general, acquisition functions come with different concepts in exploring and exploiting, which we discuss in Section. 4.

The algorithm selects the next configuration, point x∗, for evaluation by optimizing a predefined acquisition function,
line 9. Once evaluated by simulating the SUT with the generated input from the parameters x∗, the corresponding
objective value y∗ is checked, line 10. If y∗ < 0, we have found a falsifying configuration, and the optimization
procedure ends, lines 11-12. Otherwise, the sample set D is updated, lines 13-14, and the previous steps are repeated.
This continues until the total number of simulations, N , is exhausted, lines 8-16.

4 Method

The cost of using the Gaussian process for the surrogate model scales cubic with the number of samples evaluated,
see [34]. High-dimensional applications typically require more evaluations to converge, so using vanilla BO in
this setting becomes impractical [12, 35]. Furthermore, it is noted that BO searches more the edges, the lower and
upper bounds of the input ranges, of the search space in high-dimensional applications, this results in suboptimal
performance [11, 16]. In [16], this is mitigated by building multiple local probabilistic models in an approach called
TuRBO.
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4.1 TuRBO

TuRBO, a trust-region (TR) BO method, utilizes a sequence of local optimization runs using independent probabilistic
models to overcome the problem of overexploiting. Furthermore, an implicit multi-armed bandit strategy at each
iteration addresses the global optimization where a local run is selected for additional evaluations. It is possible
to represent a TR as a sphere, a polytope, or a hyperrectangle, with its center located at the point of the lowest
objective function found so far in the optimization process. TuRBO uses Gaussian process (GP) models within a
hyperrectangle TR. A hyperrectangle centered at the current best solution is created with the predefined length. Within
the hyperrectangle, a local surrogate model is trained. Large enough TR would be equivalent to standard global BO
methods. Therefore, TR should be large enough to encompass good solutions while remaining small enough to build an
accurate local model. Consequently, there are limitations for the size of TR (Lmin, Lmax). The TR is expanded when a
new point with a better objective function is found in that region; otherwise, TuRBO shrinks when it appears stuck. At
the beginning of the TuRBO process, a base side length is initialized for TR, Linit. An acquisition function is used at
each iteration, i, to select a batch of q candidates x(i)1 , . . . , x

(i)
q within TR. If better points are searched consecutively

within TR, the size of TR is doubled, i.e., min(Lmin, 2L). If TuRBO fails to find better points, TR is halved in size,
L/2. If the size of TR is less than Lmin or greater than Lmax, the current TR is discarded, and a new TR with Linit

is initialized. The evaluated TuRBO method in this paper uses a single local BO strategy using a TR method in each
search. TuRBO uses the best current point with the lowest objective function that has been found so far as the most
promising within a local optimization run instead of just doing random restarts. This leads to a more efficient use of the
evaluation budget.

Using standard acquisition functions, TuRBO finds the best-next configuration x∗ for evaluation. If the best-next
evaluation f(x∗) is better than the current best solution, then the trust region is expanded. Otherwise, it is shrunk.
The default acquisition function used in TuRBO is Thompson sampling (TS). To demonstrate the usage of TuRBO
in falsification and preferably w.r.t. the global BO methods, our work covers a detailed study on the selection of
an acquisition function. As part of this work, TuRBO has been modified to work with Lower Confidence Bound
(LCB) [19], and a version of Probability of improvement (PI) [20].

4.1.1 Thompson Sampling (TS)

TS [18] is a simple yet effective approach for handling the exploration-exploitation dilemma in Bayesian optimization.
Once we have a trained surrogate model, the concept is to greedily sample a configuration from the posterior with the
lowest value, and sampling from the posterior generates TS’s randomness.

4.1.2 Lower Confidence Bound (LCB)

Each prediction made by a surrogate model comes with the confidence interval explained with a corresponding standard
deviation. The standard deviation is a measure of uncertainty. Thus, LCB has been introduced to leverage this measure
for exploration and exploitation. It refers to the lower bound of the uncertainty of the surrogate model. In this paper,
we consider the minimization problem where the lower bound is of interest; for maximization problems, the Upper
Confidence Bound (UCB) is used instead. The best-next configuration x∗ is [19]

αLCB(x
∗) ∈ argmin

x∈X
µ′(x)− β · σ(x), (1)

where the parameter β ∈ R ≥ 0 balances exploitation and exploration. Note that the argmin of a black-box function
returns a set since more than one value might achieve the minimum. Small β values mean more greedy exploitation,
while large values mean more exploration. Defining an optimal value for β is an open question, in this work, we use a
well-known formulation used in practice [36], β =

√
0.125 log(2j + 1), where j is the number of simulations.

4.1.3 Probability of Improvement (PI)

PI [20] defines the probability that the best-next configuration x∗ leads to an improvement with respect to a target value
τ , which ideally can be seen as the optimal solution fmin. Thus, we write

P(f(x) < τ) = P

(
f(x)− µ′(x)

σ(x)
<
τ − µ′(x)

σ(x)

)
= Φ

(
τ − µ′(x)

σ(x)

)
, (2)

where Φ is the standard normal cumulative distribution function. As the optimal solution fmin is unknown, τ is
typically defined as the current best solution, although for falsification a negative value is required. Thus, if a potential
configuration has an associated predicted value larger than the current best solution, then the optimization procedure
is not improving. Scaling the difference between the current best solution and a prediction value with the standard
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deviation creates the exploitation nature of PI. Because of maximizing the improvement, the next-best x∗ is

αPI(x
∗) ∈ argmax

x∈X
Φ

(
τ − µ′(x)

σ(x)

)
. (3)

The fraction in (3) is sometimes referred to as the U-function [37]. Instead of maximizing (3), we can minimize the
U-function as

αU(x
∗) ∈ argmin

x∈X
−τ − µ

′(x)

σ(x)
= argmin

x∈X

µ′(x)− τ
σ(x)

. (4)

The formulation in (4) with the absolute value of |µ′(x∗)− τ | is also found in reliability analysis, where the objective
is to approximate the probability of failure. Using the absolute value here improves the threshold between failure
and non-failure events. In reliability analysis, the best-next configuration x∗ close to τ from any side is sufficient for
evaluating [37, 38]. As we are only interested in falsification for CPSs (i.e., having values less than 0), defining τ ≤ 0
emphasizes failure events [37, 38]. In the present study, we experiment with two choices, τ = 0 and τ = −1.

4.2 Incorporating prior belief

In certain situations, the practitioner has an available prior belief about the potential location of the optimum [22, 5].
While this source of information might be available, vanilla BO fails to incorporate it. Therefore, the work previously
done in [22, 5] proposed how to modify BO to inject this prior. In particular, the latest algorithm πBO [5] is conceptually
simpler than the previous work. The objective is to modify an acquisition function by multiplying it with a predefined
probability distribution π(x) as

x∗ ∈ argmax
x∈X

α(x,Dj−1) · π(x)β
∗/j . (5)

for the j-th iteration with j ∈ {1, . . . , N}. β∗ ∈ R+ is a hyperparameter that is used as the practitioner’s confidence
about the prior knowledge. Here, a probability distribution π(x) serves to describe our belief about the optimum.
For example, in falsification, falsified points for several benchmark problems are located at the edges of the search
space, making it easy to falsify if this information is known [21]. Therefore, in the present study, we defined π(x) as a
U-shaped distribution where the edges are weighted more than the inside area. Even though the prior can be wrong, BO
can still converge the optimal solution as a result of the forgetting factor in (5) as proven in [5]. By raising π(x) in (5)
to a power of β∗/j, the wrong prior decays towards zero with growing j.

5 Experimental Evaluation

We evaluate the proposed BO methods on benchmark problems from [14], and [15] which are introduced briefly in
appendix A. For the benchmark problems in [14], two variants of input signals are considered Instance 1 and Instance 2,
respectively. Instance 1 allows arbitrary piecewise continuous input signals, but with a finite number of discontinuities
in the ARCH19 competition. On the other hand, Instance 2 is restricted to constrained input signals, i.e., the input
signal format is fixed, but discontinuities are allowed. The problems such as AT, CC, NN, and SC include both Instance
1 and Instance 2 type, while the problem AFC, WT, and F16 do not include different types of instances. Additionally,
three benchmark problems from [15] are included, i.e., AT ′, modulator ∆− Σ, and SS.

5.1 Experimental Setup

The performance of the proposed BO methods compared to vanilla BO is compared against state-of-the-art methods
found in the literature, such as HCR (i.e., an optimization-free method) [21] and line-search falsification LSF method
(i.e., a direct-search optimization method). We set up the experiments using Breach [39], with Max semantics [31, 30].
As BO methods require a set of initial samples to start the process, we set the initial number of samples to 2 ·n, where n
is the number of input parameters (i.e., the dimensionality of the optimization problem). This method is implemented in
Python. In this implementation, the optimization process is conducted in Python, while the simulation and evaluation of
the objective function are performed in MATLAB. For πBO, a U-shaped distribution is used, which assigns a probability
density to different points in the space: "prior:[0.4,0.1,0.1,0.4]". Similar to TuRBO, πBO is implemented in Python and
interacts with MATLAB. For the LSF method, the maximum number of iterations to improve a single line is set to three.
The presented results for LSF use Option 4, which works with lines extending beyond the boundaries of input ranges
and thus has a higher chance of resulting in corner values; see [21] for more details. The HCR method starts with a
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Table 1: Results for the problems that are easily falsified using an optimization-free method. Instances refer to different
types of input parameterization and interpolation. The first number is the relative success rate of falsification in percent,
and the number in parenthesis is the average number of simulations (rounded) per successful falsification out of 1000
simulations.

Specifications Instances Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR
Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT
6 Instance 1 8 65 (322) 100 (90) 100 (84) 100 (143) 100 (68) 100 (55) 100 (63) 100 (117)

φAT
7 Instance 1 8 100 (165) 95 (166) 100 (38) 100 (32) 100 (59) 100 (85) 100 (13) 100 (130)

φAT
8 Instance 1 8 95 (143) 100 (32) 100 (79) 100 (64) 100 (70) 100 (242) 100 (26) 100 (178)

φAT
2 Instance 2 40 100 (13) 95 (167) 100 (87) 100 (161) 100 (90) 100 (62) 100 (187) 100 (3)

φAT ′
3 (T = 4.5) - 10 100 (15) 85 (300) 85 (312) 90 (289) 100 (176) 100 (82) 100 (173) 100 (21)
φAT ′

4 (T = 1) - 10 100 (54) 65 (345) 100 (308) 70 (504) 95 (335) 75 (363) 60 (376) 100 (1)
φAT ′

5 (T = 1) - 10 100 (5) 100 (301) 100 (219) 100 (174) 95 (323) 100 (29) 100 (37) 100 (120)
φAT ′

8 (ω̄ = 3500) - 10 100 (47) 35 (511) 30 (679) 25 (576) 20 (411) 100 (83) 55 (324) 100 (5)

φCC
2 Instance 2 40 100 (6) 100 (151) 90 (104) 75 (242) 100 (137) 100 (30) 90 (304) 100 (1)

φNN
2 Instance 1 12 100 (283) 25 (445) 10 (415) 15 (502) 20 (345) 35 (232) 80 (253) 100 (83)

φSS
1 (γ = 0.7) - 2 100 (18) 90 (393) 95 (405) 85 (235) 95 (435) 100 (18) 100 (66) 100 (3)

φSS
1 (γ = 0.8) - 2 100 (24) 60 (17) 65 (523) 70 (202) 50 (274) 100 (15) 100 (60) 100 (3)

φSS
1 (γ = 0.9) - 2 100 (52) 35 (803) 55 (282) 0 (-) 30 (257) 100 (16) 100 (121) 100 (121)

Table 2: Results for the problems that are not easily falsified using an optimization-free method and require a large
number of simulations for successful falsification. Instances refer to different types of input parameterization and
interpolation. The first number is the relative success rate of falsification in percent, and the number in parenthesis is
the average number of simulations (rounded) per successful falsification out of 1000 simulations.

Specifications Instances Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR
Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT
7 Instance 2 40 0 (-) 100 (200) 100 (242) 100 (185) 100 (184) 5 (645) 100 (121) 0 (-)

φAT
8 Instance 2 40 0 (-) 100 (287) 100 (300) 95 (359) 100 (334) 0 (-) 100 (127) 0 (-)

φAT
9 Instance 2 40 0 (-) 100 (248) 100 (225) 100 (215) 100 (195) 0 (-) 100 (75) 0 (-)

φAT ′
6 (T = 10) - 10 0 (-) 95 (126) 100 (161) 90 (191) 85 (196) 90 (293) 30 (543) 0 (-)

φAT ′
6 (T = 12) - 10 15 (768) 100 (67) 100 (43) 95 (78) 100 (64) 100 (228) 95 (173) 60 (297)

φAT ′
7 - 10 0 (-) 45 (632) 25 (507) 45 (337) 35 (708) 35 (525) 25 (568) 30 (621)

φCC
4 Instance 1 8 0 (-) 75 (431) 80 (348) 55 (365) 65 (351) 30 (629) 40 (381) 0 (-)

φCC
4 Instance 2 40 0 (-) 45 (620) 95 (717) 0 (-) 60 (808) 0 (-) 10 (620) 0 (-)

φNN
2 Instance 2 3 35 (230) 10 (343) 15 (570) 5 (135) 5 (191) 25 (299) 45 (400) 0 (-)

φ∆−Σ
1 U ∈ [−0.35, 0.35] - 4 100 (108) 95 (156) 90 (124) 95 (122) 95 (149) 100 (149) 100 (249) 0 (-)

φF16
1 - 3 25 (685) 70 (515) 70 (303) 85 (337) 80 (356) 60 (350) 65 (530) 5 (767)

corner point, and the next point is a uniform random (UR) point. It switches between the corners and UR points until
the maximum number of simulations, N = 1000, is reached or a falsified point is found. The number of corners is
limited and depends on the dimensionality of the SUT since there are 2n corners. If the maximum number of corners is
reached, HCR continues using only random input points. Both LSF and HCR are implemented in MATLAB.

In Tables 1-2, we present and discuss the benchmark problems where the choice of the optimization method affects the
falsification process. The results for the benchmark problems that are easily falsified with a few simulations regardless
of which used optimization method are shown in Appendix B. We also include the results for the specifications that are
hard to falsify regardless of the optimization methods, in Appendix C.

In these tables, the first column denotes the specifications; the second refers to which instance is used to evaluate the
specification. The third column shows the number of dimensions, and the rest of the columns contain the evaluation
results for vanilla BO, TuRBO with TS, LCB, and PI; πBO, LSF, and HCR, respectively. Two different target values
are considered for PI, τ = 0, and τ = −1. Each falsification is set to have 1000 maximum number of simulations.
Since the falsification process contains random elements, we repeat the falsification process 20 times. Two values are
presented for each specification; the first is the relative success rate of falsification in percent. There are 20 falsification
runs for each parameter value and specification; thus, the success rate is a multiple of 5%. The second value, inside
parentheses, is the average number of simulations (rounded) per successful falsification.
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5.2 Results

While Table 1 includes the benchmark problems that can be easily falsified using a straightforward approach such as
HCR, Table 2 covers the hard problems and specifications where the number of simulations to falsify easily exceeds the
maximum simulation budget [21]. In particular, in Table 1, these selected specification are φAT

6 -φAT
8 for Instance 1 of

AT problem; Instance 2 of φAT
2 ; φAT ′

3 (T = 4.5), φAT ′

4 (T = 1), φAT ′

5 (T = 1), φAT ′

8 (ω̄ = 3500); Instance 2 of φCC
2 ;

Instance 1 of φNN
2 and all specifications of SS problem.

For AT problem, TuRBO (regardless of a selected acquisition function), πBO, and LSF perform better than vanilla BO.
Vanilla BO is not successful in falsifying φAT

6 and φAT
8 in each run. However, in Instance 2 of AT problem, vanilla BO

for φAT
2 of this problem performs as well as HCR and better than other optimization-based methods. When vanilla

BO is used for high-dimensional applications, exploration of the edges is more frequent. Search spaces expand faster
than sampling budgets resulting in regions with high posterior uncertainty which are typically located at the edges
due to the extrapolation of a model. Hence, a typical acquisition function would overemphasize the edges and fail
to exploit promising areas. Hence, vanilla BO searches for more edges and likely more corners. As a result, vanilla
BO falsifies φAT

2 within a few simulations. On the other hand, πBO also shows a good performance here because it
emphasizes more the corners following our prior U-shaped distribution. TuRBO is prone to explore fewer corner points
as the search is limited to local trust regions. In particular, TS is not always successful, while PI and LCB require more
simulations than HCR and vanilla BO.

For the specifications of AT ′ problem, vanilla BO and πBO, except for φAT ′

4 (T = 1), also perform quite well with
a 100% success rate. Further, the TuRBO method and LSF are not always successful for the benchmark problems
φAT ′

3 (T = 4.5), φAT ′

4 (T = 1), φAT ′

5 (T = 1), φAT ′

8 (ω̄ = 3500). In contrast, vanilla BO falsifies them with only a
few simulations. Also, for φAT ′

5 (T = 1), vanilla BO and πBO beats HCR with fewer evaluations. While vanilla BO
required 5 simulations on average to falsify, πBO needed 29 simulations. The better performance of vanilla BO and
πBO results in φAT ′

8 (ω̄ = 3500) performing among the top optimization-based methods, but not better than HCR that
only requires 5 simulations.

For φCC
2 of instance 2, πBO and vanilla BO work similarly to HCR and much better than other optimization-based

methods. This specification can be falsified at some of the corner points. Among TuRBO results, PI (τ = −1) and TS
perform better than LCB and PI (τ = 0), which are successful only 90% and 75%, respectively.

The benchmark problem φNN
2 is falsified with HCR with 100% and using 83 simulations on average. In contrast,

vanilla BO is the only optimization-based method that is successful in each independent trial. Based on the evaluation
of falsified points, we observe that this specification is falsifiable where at least some input parameters are at the upper
or lower bound of input ranges. Hence, vanilla BO and HCR performed better than TuRBO. TuRBO never evaluates the
corner points, or the points are on the bound of the input ranges. However, πBO does not falsify efficiently, only 35%
are successfully falsified; it might be because the number of dimensions is increased, and hence the efficiency of πBO
drops.

SS is a two-dimensional synthetic problem that tricks the optimizing algorithms that try to estimate gradients to search
in the wrong direction. For all specifications of SS, HCR, vanilla BO, LSF, and importantly πBO provide better results
than TuRBO. Both input parameters are defined within the range [−1, 1] in this special case. The target specification is
falsified at the corner point xT = [1, 1] and close to it. The gradient cannot point toward the falsification area if the
initial samplings of First Input and Second Input are approximately in the ranges (−1, 1) and (−1, 0.8), respectively
when γ = 0.7, which is a threshold parameter in this problem. Hence, the three methods HCR, vanilla BO, LSF, and
πBO that can search the corner points which lead that all falsify this problem better than TuRBO. On the other hand,
TuRBO searches more within the input ranges. Thus, it is difficult for TuRBO to approach the failure area with a
local hyperrectangle trust region that is centered at the best solution found. A larger value for γ such as (γ = 0.8)
and (γ = 0.9) results in a smaller failure surface. Thus, the performance of TuRBO drops additionally with the best
performance with PI (τ = 0) as 70% and LCB as 55% for (γ = 0.8) and (γ = 0.9), respectively.

Next, we discuss the benchmark problems noted here as the hard problems because an optimization-free method such
as HCR cannot falsify them. The results are provided in Table 2. For the specifications, 7-9, of AT problem, HCR,
vanilla BO, and πBO cannot falsify them. Based on our evaluation of these specifications, they are not falsifiable close
to corners or edges using the chosen input parameters and used optimization methods. In particular, emphasizing the
corners as done in πBO is wrong. However, as a result of the forgetting factor, πBO still converges to the optimal
solution as it was successful in only one run out of 20 runs in φAT

7 . Like any other global BO approach in a high-
dimensional setting, the efficiency of πBO eventually drops significantly as the bias of a Gaussian process to exploit the
edges of the search space is emphasized. In TuRBO, this shortcoming is handled, as shown in the results for the hard
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problems. In TuRBO, the training of a Gaussian process is done locally within a trust region that shrinks and expands
based on the performance. Hence, the inherent presence of regions with large posterior uncertainty commonly found in
the global BO approach due to the curse of dimensionality is reduced. The performance of TuRBO is similar regardless
of the acquisition function used. Compared to LSF, more simulations are needed.

In the AT ′ problem, we can see a clear advantage of TuRBO over other BO methods and state-of-the-art approaches.
For φAT ′

6 , with both (T = 10), (T = 12), LCB is successful in each run, with 161 and 43 average on simulations
respectively, while LSF is only successful 30 and 95%. Another BO method, πBO, also demonstrates a good
performance for φAT ′

6 , with 95% success rate when (T = 10) and 100% when (T = 12). Because the dimensionality
for these specifications is moderate, πBO forgets the wrong prior and eventually converges to the falsified areas. Vanilla
BO is not successful in falsifying these specifications because simulations are mostly evaluated at the edges that are not
falsifiable.

φAT ′

7 is one specification that is a hard problem to be falsified with a specific feature. The STL formula of this
specification is φAT ′

7 = ¬
(
(□[0,1]gear == 1) ∧ (□[2,4]gear == 2) ∧ (□[5,7]gear == 3) ∧ (□[8,10]gear ==

3) ∧ (□[12,15]gear == 2)
)

. In general, it is impossible to determine how close we are to fulfilling equality predicates,
such as gear == 1, gear == 2, or gear == 3. In other words, if the gear is 1, for example, the objective value
using Max semantics will be a positive constant value if the specification is fulfilled, otherwise, a negative constant
value. For simplicity, we assume that the positive constant value is 1 while the negative constant value is -1. In this
specification, always-operators are combined in one big conjunction. The first always-operator checks to see whether
gear == 1 between t = 0 sec and t = 1 sec or not. If it is satisfied, the always-operator has the total objective value
min([1, 1, . . . , 1]) = 1, which means that the gear is always equal to 1 in t = [0, 1]. Similarly, for the gear == 2 and
gear == 3 at other times, the specification has a positive constant value of 1. On the other hand, if the specification is
not satisfied at any time we will have something like min([1,−1, . . . , 1]) = −1. Since the Max yields the same value
for different inputs, model-based methods such as BO cannot learn anything meaningful to sufficiently explore and
exploit the given search space. The main assumption of BO is that the target function should be sufficiently smooth.
TS and PI (τ = 0) provide slightly better performance compared to LCB and PI (τ = −1) with a 45% success rate.
Because TS puts more emphasis on exploitation than other methods, it is expected to show better performance. Other
methods balance equally between exploitation and exploration, which is useless in this specific case. Even though the
learning is not adequate,TuRBO, and πBO can still falsify this problem but not always, as shown in Table 2.

For both instances in φCC
4 , we see a significant advantage of using TuRBO w.r.t. other optimization-based or

optimization-free methods. For Instance 1, there is not much difference between the performance of TuRBO with
different acquisition functions, although LCB performs slightly better with 80%. TuRBO performs much better than
other optimization methods, e.g., 40% increasing rate than LSF. For Instance 2, there is a difference between the
performance of PI when the target value is specified differently. By evaluating the objective value of the falsified point
in each run of this specification, we could understand that the global optimum is close to and less than −1. Hence,
having a target of 0 does not provide good results. This specification was one of the hardest benchmark problems
evaluated in [21] where the proposed method, LSF, was able to falsify φCC

4 in 10% of the runs. As it can be seen
from Table 2, more simulations are needed to falsify this specification. The acquisition function LCB in TuRBO needs
fewer simulations for falsification than other methods and has a success rate of 95%. Based on the evaluation collected
from this problem, we could conclude that the falsification, in this case, happens in a small region of the search space.
Therefore, random approaches might not be a good choice to find this small region. A target of −1 is appropriate since
the minimum achievable object value is close to −1.

In the benchmark problem φNN
2 (Instance 2), LSF performs the best with the success rate of 45%, exceeding especially

TuRBO with 5, 10, and 15%. Based on the evaluation of the falsified point, there are reasons why all other methods are
not successful in falsifying for each trial. First, this specification is falsifiable, where at least some input parameters are
at the upper or lower bound of the input interval. The falsifiable region is small, and close to the boundaries.

For the modulator problem, vanilla BO and πBO slightly work better than others in falsifying each trial. These results
demonstrate that πBO works well when the number of dimensions is relatively small. For F16, TuRBO with PI (τ = 0)
provides a better result with a success rate of 85% compared to other methods.

To examine and study the performance of different optimization-based methods, an aggregated comparison is provided
in Figure 2 with the hard specifications presented in Table 2. As shown in Figure 2 and evident from our early discussion,
TuRBO falsifies more benchmark problems with fewer simulations if we select LCB w.r.t. other acquisition functions
such as PI (τ = −1), PI (τ = 0) and the default TS. TuRBO with LCB falsified 5 specifications out of 11 that are
specified as the hard problems in Table 2 with the success rate of 100%, while TS and PI (τ = −1) could falsify four
specifications similarly as LSF. PI (τ = 0) falsified 2 specifications similarly to πBO. On the other hand, vanilla BO is
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Figure 2: A cactus plot showing the performance of optimization-based methods on the hard problems in Table 2. The
plotted values show how many successful falsifications (x-axis) were completed in less than always simulations (y-axis,
logarithmic scale).

successful only for one specification in each trial. By taking the average of these success rates, we can see that LCB
provides the best performance on average, with a success rate of 79.55%. Other acquisition functions have the average
success rate as follows TS with 75.90%; PI (τ = −1) with 75.45%, PI (τ = 0) with 69.54%, LSF with 64.54%, πBO
with 38.18%, and finally, vanilla BO with 15.90%.

5.3 Discussion

Discussion of Optimization Methods: The performance of each evaluated BO method depends on the SUT and how
the falsified area or falsified points are located based on the input ranges for each benchmark problem. Vanilla BO,
which is the standard global BO method, showed a good performance for those specifications and problems that can be
falsified at boundaries of input spaces or corners. When the number of dimensions is high vanilla BO searches the edges
more because the prediction error and the uncertainty of the surrogate model at the edges become large. On the other
hand, using local regions, exploration and exploitation in TuRBO are limited to local trust regions, which results in less
efficient falsification compared to vanilla BO for those easily falsifiable problems where failure points are at corners.
Hence, vanilla BO showed better performance for those benchmark problems with the ability to be falsified at corners.
However, the efficiency of TuRBO increases with the number of dimensions showing a remarkable performance even
for hard problems that are not falsified with other methods. Compared to the other BO methods for high-dimensional
settings, such as the previously proposed REMBO [11], TuRBO does not need any setup, it can be used as an out-of-box
tool. The πBO allows injecting prior knowledge about a failure region. πBO has shown good performance for those
problems that are easily falsified at corners due to the U-shaped distribution that was used as prior knowledge based on
previous falsification experiments. Even though πBO does not scale well in a high dimensional setting, it still shows
good performance for a moderate number of dimensions of the input space.

Discussion of Acquisition Functions: Comparing the performance of different acquisition functions in TuRBO, LCB
showed the best performance. LCB depends on mean and variance, not on the target value, as PI does. A challenging
aspect of the LCB is choosing the optimal value for β. TS, on the contrary, does not require any parameters to be
selected. Choosing the best target value for PI is difficult as it depends on the application and knowing where the optimal
value is. This information is, in general, unknown to us. While the default setting in BO is to use the best-current value,
we here assume constant values of 0 and −1 to emphasize failure points. For those specifications with minimum optima
between (−1, 0), PI does not perform well because it assumes that −1 is the lowest objective value and neglects the
failure points having an objective value > −1 from the surrogate model, that indeed falsifies the specification. Objective
function values calculated using the Max semantics can be constant in large regions. It means the same objective
function value for different input parameters. Hence, optimization methods cannot get any sense of direction from the

12



objective function. A benefit of using TS as an acquisition function is its randomness which may detect falsified points
where there is no information from the objective function to guide the optimization process. In TS, once we have a
trained surrogate model, the concept is to greedily sample a configuration from the posterior with the lowest value, and
sampling from the posterior generates TS’s randomness. As TS is focused more on exploitation, it is more efficient
w.r.t. other acquisition functions.

6 Conclusion

In this study, we assess Bayesian Optimization (BO) for falsifying cyber-physical systems (CPSs). BO learns the
system under test to strategically choose the next test to execute. We adapt BO in several ways, making it more efficient
for falsification compared to the vanilla BO. Specifically, we demonstrate how trust region-based BO approaches can
effectively handle the evaluated falsification problems in this paper with a high number of dimensions, and how prior
knowledge can be incorporated into BO. Our work establishes a practical framework for using BO as an out-of-box
tool, unlike previous studies that do not account for its practicality. We propose two notable BO methods, πBO, and
TuRBO, for falsification and provide a comprehensive evaluation demonstrating their efficiency in solving the standard
falsification problems available in the falsification community. In our experiments, TuRBO outperforms other state-of-
the-art methods for high-dimensional and difficult-to-falsify specifications, without requiring any information from the
practitioner. πBO allows the injection of prior knowledge about falsification if available. For benchmark examples with
fewer input parameters for optimization, πBO performs as well as or even better than HCR when the specifications are
falsifiable at corners or boundaries. A correct prior about falsification, such as a U-shaped distribution emphasizing
corners, can increase efficiency and reduce the number of simulations needed for falsification. Additionally, we conduct
a comprehensive evaluation of different acquisition functions in TuRBO, propose modifications for falsification, and
determine that using a LCB in TuRBO is the optimal choice, as it is less challenging to set up the parameters for good
performance on evaluated benchmark examples. In future work, we plan to combine various BO methods to further
enhance the overall efficiency.
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A Benchmark Problems

All evaluated benchmark problems [14, 15] are introduced here briefly. Table 3 presents the STL specifications for all
these benchmark problems.

Automatic Transmission (AT) There are two inputs for this problem, 0 ≤ throttle ≤ 100, and 0 ≤ brake ≤ 325,
which can be active at the same time [40]. This problem has two instances. In Instance 1, both input signals are
piecewise constant with a previous interpolation between them, corresponds to the previous sample value, while
Instance 2 has constrained input signals with discontinuities at most every 5 time units.

Chasing Cars (CC) This model has two inputs 0 ≤ throttle ≤ 1 and 0 ≤ brake ≤ 1 [41] with two instances. For
Instance 1, the input specifications allow any piecewise continuous signals to be distributed equally, with 8 segments.
However, in Instance 2, the input signals are piecewise constant signals with a previous interpolation with 20 segments.

Fuel Control of an Automotive Power Train (AFC) This system has two inputs of 0 ≤ θ ≤ 61.1 and 900 ≤ ω ≤
1100 [42]. The input signal θ is piecewise constant with 10 uniform segments, i.e., a previous interpolation while ω is
constant.

Neural Network Controller (NN) This benchmark problem has a reference value 1 ≤ Ref ≤ 3 for the position [43]
as input. For Instance 1 of this problem, the input signal needs discontinuities to be at least 3 time-units long, 12
segments, while Instance 2 requires exactly 3 constant segments.

Aircraft Ground Collision Avoidance System (F16) The system [44] is required to start with initial conditions
0.2π ≤ roll ≤ 0.2833π, −0.5π ≤ pitch ≤ −0.54π, and 0.25π ≤ yaw ≤ 0.375π.

Steam Condenser with Recurrent Neural Network Controller (SC) The only input of this system is 3.99 ≤ Fs ≤
4.01, [45], and the input signal should be piecewise constant with 12 and 20 evenly spaced segments for Instance 1 and
Instance 2, respectively.

Wind Turbine (WT) A simplified wind turbine model from [46] with only one input 8 ≤ v ≤ 16 is considered. The
input signal of this problem is piecewise with spline interpolation, a cubic polynomial interpolation between the control
points, each with specified derivatives.

Automatic Transmission (AT′) The two inputs to the model are 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 500 [47].
This problem has different specifications and a different input range for the brake compared to the ARCH problem
presented, AT . There are 7 control points for throttle and 3 for brake distributed uniformly with pchip interpolation.
To distinguish this problem from AT , it is called AT′.

Third Order ∆−Σ Modulator The third order ∆−Σ modulator has one input U , three states x1, x2, x3, and three
initial conditions xinit1 , xinit2 , xinit3 , all defined in [−0.1, 0.1] [48]. Three different ranges are considered for the input,
−0.35 ≤ U ≤ 0.35, −0.40 ≤ U ≤ 0.40, and −0.45 ≤ U ≤ 0.45.

16



Table 3: Specifications to falsify for all benchmark problems

Spec. Formula

φAT
1 □[0,20](v < 120)

φAT
2 □[0,10](ω < 4750)

φAT
3 □[0,30]

((
¬g1 ∧ ◦ g1

)
=⇒ ◦ □[0,2.5]g1

)
φAT

4 □[0,30]

((
¬g2 ∧ ◦ g2

)
=⇒ ◦ □[0,2.5]g2

)
φAT

5 □[0,30]

((
¬g3 ∧ ◦ g3

)
=⇒ ◦ □[0,2.5]g3

)
φAT

6 □[0,30]

((
¬g4 ∧ ◦ g4

)
=⇒ ◦ □[0,2.5]g4

)
φAT

7

(
□[0,30]ω < 3000

)
=⇒

(
□[0,4]v < 35

)
φAT

8

(
□[0,30]ω < 3000

)
=⇒

(
□[0,8]v < 50

)
φAT

9

(
□[0,30]ω < 3000

)
=⇒

(
□[0,20]v < 65

)
φAFC

1 □[11,50]

(
((θ < 8.8) ∧ (♢[0,0.05](θ > 40))

∨(θ > 40) ∧ (♢[0,0.05](θ < 8.8)) =⇒ (□[1,5]|µ| < 0.008)
)

φAFC
2 □[11,50]|µ| < 0.007

φNN
1 □[1,37]

(
¬(|Pos − Ref | > 0.005 + 0.03|Ref |)

=⇒ ♢[0,2]□[0,1]

(
0.005 + 0.03|Ref | ≤ |Pos − Ref |

))
φNN

2 □[1,37]

(
¬(|Pos − Ref | > 0.005 + 0.04|Ref |)

=⇒ ♢[0,2]□[0,1]

(
0.005 + 0.04|Ref | ≤ |Pos − Ref |

))
φWT

1 □[30,630]θ ≤ 14.2

φWT
2 □[30,630]21000 ≤ Mg,d ≤ 47500

φWT
3 □[30,630]Ω ≤ 14.3

φWT
4 □[30,630]♢[0,5]|θ − θd| ≤ 1.6

φCC
1 □[0,100](y5 − y4 ≤ 40)

φCC
2 □[0,100]♢[0,30]y5 − y4 ≥ 15

φCC
3 □[0,80]

(
(□[0,20]y2 − y1 ≤ 20) ∨ (♢[0,20]y5 − y4 ≥ 40)

)
φCC

4 □[0,65]♢[0,30]□[0,20](y5 − y4 ≥ 8)

φCC
5 □[0,72]♢[0,8]

(
(□[0,5]y2 − y1 ≥ 9) =⇒ (□[5,20]y5 − y4 ≥ 9)

)
φF16 □[0,15]altitude > 0

φSC □[30,35]

(
87 ≤ pressure ∧ pressure ≤ 87.5

)
φAT ′

1 ♢[0,T ](ω ≥ 2000)

φAT ′
2 □♢[0,T ](ω ≤ 3500 ∨ ω ≥ 4500)

φAT ′
3 □[0,T ](¬(gear == 4))

φAT ′
4 ♢(□[0,T ](gear == 3))

φAT ′
5

∧
i=1,...,4 □((¬(gear == i) ∧ ♢[0,ϵ](gear == i)

=⇒ (□[ϵ,T+ϵ](gear == i)))

φAT ′
6 □[0,T ](v ≤ 85) ∨ ♢(ω ≥ 4500)

φAT ′
7 ¬

(
(□[0,1]gear == 1) ∧ (□[2,4]gear == 2)

∧(□[5,7]gear == 3) ∧ (□[8,10]gear == 3)

∧(□[12,15]gear == 2)
)

φAT ′
8 □[0,20]

(
(gear == 4 ∧ throttle > 45

∧throttle < 50) =⇒ ω < ω̄
)

φ∆−Σ □
(∧3

i=1(−1 ≤ xi ∧ xi ≤ 1)
)
.

φSS □(y ≥ 0)
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Static Switched (SS) The static switched system is a model without any dynamics inspired by [49] with two inputs in
the range [−1, 1]. Three different values are considered for parameter γ = 0.7, 0.8, 0.9.

B Other Experiments on ARCH Benchmark

The results for the benchmark examples that can be falsified easily with a few simulations regardless of which
optimization method are presented in Table 4-6. Table 4 and 5 refers to result for the specifications of AT , CC, and
NN systems with Instance 1 and Instance 2, respectively. On the other hand, Table 6 includes the results for the
specifications of AT ′, φ∆−Σ

1 , WT and AFC systems that only one input instance are evaluated on them.

Table 4: Results for the specifications ofAT , CC, andNN systems, Instance 1 which are not included in the tables 1- 2.

Specifications Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR

Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT
1 8 100 (7) 100 (86) 100 (81) 100 (79) 100 (80) 100 (37) 100 (34) 100 (5)

φAT
2 8 100 (3) 100 (13) 100 (12) 100 (9) 100 (9) 100 (8) 100 (9) 100 (3)

φAT
3 8 100 (70) 100 (17) 100 (43) 100 (46) 100 (22) 100 (12) 100 (37) 100 (27)

φAT
4 8 100 (41) 100 (16) 100 (17) 100 (22) 100 (14) 100 (11) 100 (31) 100 (25)

φAT
5 8 100 (52) 100 (22) 100 (11) 100 (18) 100 (18) 100 (11) 100 (21) 100 (23)

φAT
9 8 100 (104) 100 (28) 100 (30) 100 (21) 100 (40) 100 (77) 100 (22) 100 (61)

φCC
1 8 100 (2) 100 (6) 100 (9) 100 (7) 100 (9) 100 (4) 100 (8) 100 (5)

φCC
2 8 100 (3) 100 (3) 100 (4) 100 (6) 100 (5) 100 (6) 100 (14) 100 (5)

φCC
3 8 100 (2) 100 (13) 100 (11) 100 (11) 100 (12) 100 (6) 100 (14) 100 (5)

φCC
5 8 100 (6) 100 (59) 100 (55) 100 (52) 100 (61) 100 (18) 100 (32) 100 (5)

φNN
1 12 100 (145) 100 (32) 100 (21) 100 (32) 100 (19) 100 (32) 100 (25) 100 (39)

Table 5: Results for the specifications ofAT , CC, andNN systems, Instance 2 which are not included in the tables 1- 2.

Specifications Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR

Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT
3 40 100 (2) 100 (5) 100 (4) 100 (5) 100 (4) 100 (3) 100 (10) 100 (7)

φAT
4 40 100 (2) 100 (1) 100 (1) 100 (1) 100 (2) 100 (1) 100 (3) 100 (3)

φAT
5 40 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (2) 100 (2)

φAT
6 40 100 (1) 100 (2) 100 (2) 100 (2) 100 (1) 100 (2) 100 (4) 100 (3)

φCC
1 40 100 (6) 100 (59) 100 (55) 100 (52) 100 (61) 100 (18) 100 (32) 100 (5)

φCC
3 40 100 (2) 100 (18) 100 (28) 100 (24) 100 (26) 100 (8) 100 (13) 100 (5)

φCC
5 40 100 (56) 100 (49) 100 (47) 100 (34) 100 (70) 100 (31) 100 (67) 100 (38)

φNN
1 3 100 (7) 100 (48) 100 (37) 100 (42) 100 (58) 100 (11) 100 (65) 100 (125)

C Unfalsifiable benchmark examples

For some benchmark examples, falsification is challenging. We show here the result for φAT
1 with Instance 2 and

φSC
1 with both instances in Table 7. While φAT

1 , with 8 dimensions, shown in Table 4, can be easily falsified,
its high-dimensional version with 40 dimensions is hard to falsify, as seen in Table 7. For the SC problem, [50]
demonstrated that by combining a Simulated Annealing global search with an optimal control-based local search on the
infinite-dimensional input space, it is possible to falsify this specification. However, this is not a black-box approach.
In [51], the SC problem is shown to be falsified by using a pulse generator as the input generator. By optimizing over
the period, it is possible to find the right period that falsifies this specification.
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Table 6: Results for the specifications of AT ′, ∆−Σ, WT and AFC systems which are not included in the tables 1- 2.

Specifications Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR

Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT ′
1 (T = 20) 10 100 (27) 100 (26) 100 (27) 100 (23) 100 (21) 90 (82) 100 (63) 100 (1)

φAT ′
1 (T = 30) 10 100 (73) 100 (40) 100 (50) 100 (43) 100 (37) 100 (79) 100 (172) 100 (1)

φAT ′
1 (T = 40) 10 100 (146) 95 (128) 100 (80) 100 (109) 100 (60) 100 (190) 100 (241) 100 (1)

φAT ′
2 (T = 10) 10 100 (4) 100 (13) 100 (16) 100 (14) 100 (12) 100 (11) 100 (18) 100 (3)

φAT ′
3 (T = 5) 10 100 (11) 100 (104) 100 (60) 100 (133) 100 (85) 100 (36) 100 (81) 100 (21)

φAT ′
4 (T = 2) 10 100 (12) 100 (22) 100 (18) 100 (27) 100 (29) 100 (12) 100 (29) 100 (1)

φAT ′
5 (T = 2) 10 100 (1) 100 (4) 100 (3) 100 (3) 100 (3) 100 (2) 100 (6) 100 (10)

φAT ′
8 (ω̄ = 3000) 10 100 (4) 100 (9) 100 (13) 100 (10) 100 (7) 100 (5) 100 (11) 100 (5)

φ∆−Σ
1 U ∈ [−0.40, 0.40] 4 100 (11) 100 (57) 100 (79) 100 (39) 100 (115) 100 (14) 100 (52) 100 (5)

φ∆−Σ
1 U ∈ [−0.45, 0.45] 4 100 (11) 100 (29) 100 (54) 100 (42) 100 (64) 100 (21) 100 (39) 100 (11)

φWT
1 126 100 (1) 100 (2) 100 (1) 100 (2) 100 (1) 100 (1) 100 (3) 100 (3)

φWT
2 126 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (2) 100 (2)

φWT
3 126 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (1) 100 (2) 100 (2)

φWT
4 126 100 (37) 100 (85) 100 (112) 100 (125) 100 (111) 100 (37) 100 (66) 100 (30)

φAFC
1 11 100 (1) 100 (74) 100 (81) 100 (91) 100 (72) 100 (24) 100 (6) 100 (5)

φAFC
1 11 100 (1) 100 (15) 100 (20) 100 (15) 100 (10) 100 (8) 100 (2) 100 (5)

Table 7: Results for the specifications of φAT
1 , Instance 2 and φSC

1 for both instances.

Specifications Instances Number of vanilla TuRBO TuRBO TuRBO TuRBO πBO LSF HCR

Dimensions BO TS LCB PI (τ = 0) PI (τ = −1)

φAT
1 Instance 2 40 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

φSC
1 Instance 1 12 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

φSC
1 Instance 2 20 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

D An Aggregated Comparison

An aggregated comparison among all methods, including benchmark examples from the appendix, is shown in Fig. 3.
In general, TuRBO shows good performance w.r.t. state-of-the-art methods. In particular, selecting LCB provides better
results than LSF. However, PI and TS are less efficient than LSF, which was specifically developed to solve falsification
problems.
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Figure 3: A cactus plot showing the performance of all examples. The plotted values show how many successful
falsifications (x-axis) were completed for a given number of simulations (y-axis, logarithmic scale). A maximum of
1000 simulations are evaluated.
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