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SMAB: Simple Multimodal Attention for Effective BEV Fusion

Amer Mustajbasic1,3, Shuangshuang Chen2, Erik Stenborg3, and Selpi1

Abstract— Sensor fusion plays a crucial role in accurate
and robust environment perception for autonomous driving.
Recent works utilize Bird’s-Eye-View (BEV) grid as a 3D
representation, however, only using a partial set of multimodal
signals. This paper introduces Simple-Multimodal-Attention-
BEV (SMAB), a novel and simple approach to multimodal
sensor fusion in BEV perception. We propose an attention
mechanism called BEV feature aggregation that effectively
enhances BEV feature representations. It integrates bilinearly
interpolated semantic data from cameras with rasterized dis-
tance information from radars and/or lidars, and facilitates
training with full-modality data or partial-modality data with-
out modification of the method. In addition to the simplicity
of the design, we demonstrate that using all sensor modalities
improves segmentation accuracy. Meanwhile, SMAB is resilient
to sporadic sensor signal loss, which enhances the robustness
of the perception system. The proposed method outperforms
state-of-the-art methods while simplifying the model.

I. INTRODUCTION

Perception systems are critical for autonomous driving,
enabling vehicle for decision-making and control through
their interpretation of surroundings. Modern vehicles rely on
multimodal sensor suites, integrating lidars, radars and multi-
view cameras. Although the comprehensive array of sensors
elevates computational demands, it ensures a robust and
accurate perception stack for diverse environments. Cameras
are vital for providing rich semantic information but they lack
depth information. To mitigate this limitation and enhance
redundancy, vehicles often incorporate radars and lidars:
lidars offer precise depth measurements, while radars excel
in challenging weather conditions such as fog or rain. Unlike
cameras, these sensors generate sparse point cloud data,
necessitating effective sensor fusion to integrate the distance
data with the semantic information derived from cameras.

Recent advancements in sensor fusion techniques have
focused on unifying data from multiple modalities into
a coherent representation, with most methods utilizing a
Bird’s-Eye-View (BEV) grid to represent the 3D environment
around the vehicle in a flattened format [1], [2], [3], [4].
Previous works, e.g., BEVFusion [5], SimpleBEV [3], and
CRN [4], have explored multimodal signal fusion in the
BEV representations and showed improvements in some
vision tasks. However, it is not clear where the improvements
come from, due to the use of different and in many cases
complex architectures and training methods at the same time.
Moreover, these methods utilize only a partial set of multi-
modal signals, leaving our understanding on the impact and
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redundancy of using all multimodal signals during inference
unclear.

Inspired by SimpleBEV [3], a streamlined fusion architec-
ture with fewer parameters and a straightforward setup offers
clear advantages for deployment in real-time autonomous
driving, particularly under constraints on computational re-
sources and critical inference times. This simplicity enhances
scalability by reducing the need for complex layers and
extensive learning parameters, making it easy to incorporate
additional sensors with minimal modifications of method.

The main contribution of this paper is the introduction
of Simple-Multimodal-Attention-BEV (SMAB), a simple,
yet competitive method to handle robust multimodal sensor
fusion for images, radar and/or lidar (see Figure 1). The core
element of our method is the BEV feature aggregation (BFA),
a simple attention mechanism to enhance the BEV feature
representations. We demonstrate that:
• SMAB facilitates training with full-modality or partial-

modality data resulting in improved segmentation accu-
racy for each added modality in comparison to methods
with similar model complexity,

• BFA extracts an efficient representation especially when
the density of radar and/or lidar points is low,

• SMAB handles sporadic multimodal signal loss with
only a minor reduction in accuracy.

• SMAB enables scalability without modifying fusion
method, therefore, additional sensor modalities can be
integrated with minimal increase in model complexity.

II. RELATED WORK

BEV perception has become an important approach in
computer vision tasks and various autonomous driving func-
tions, as it enables more effective sensor fusion through a
unified spatial representation.

Camera-based BEV perception methods, such as [1], [2],
[6], handle the lack of external distance signals by focusing
on various lifting strategies, to project 2D image features into
3D space, thus allowing for more comprehensive representa-
tions in space. The Lift, Splat, Shoot (LSS) [2] parameterizes
the depth distribution along projected image rays, scaling
image features with these parameters. It is followed by
voxel pooling and the cumulative sum trick to aggregate
image features into a BEV representation. BEVFormer [6]
introduces attention-based lifting that uses deformable cross-
attention [7] to learn sampling offsets and attention matri-
ces to align the BEV grid with spatially structured image
features. SimpleBEV [3] on the other hand, takes a non-
parametric approach by bilinearly pulling features from the
image feature space into a voxel grid, compressing the height



Fig. 1: SMAB architecture. The imaging signal is merged with distance signals from radar and/or lidar to a common voxel grid
representation using learnable BEV query and BFA attention mechanism.

dimension into the BEV grid, and implicitly estimating
image feature projections into the BEV space.

In contrast, lidar-based perception leverages accurate dis-
tance information but it is limited by signal sparsity and a
narrow field-of-view. VoxelNet [8] addresses this by applying
PointNets [9] and 3D convolutions to voxelized point clouds,
achieving strong detection performance at the cost of high
computation. SECOND [10] builds on VoxelNet [8], im-
proves inference speed, though it still relies on expensive 3D
convolutions. PointPillars [11] further improves efficiency
by encoding point cloud features within vertical columns
(pillars) using PointNets [9], reducing complexity while
maintaining accuracy.

Radar-based perception has also seen significant advance-
ments. NVRadarNet [12] introduces deep convolutional neu-
ral networks to process radar signals to estimate free space in
the BEV. Inverse Sensor Model [13] is a deep neural network
trained in a self-supervised manner to convert raw radar scans
into grid maps of occupancy probabilities.

Recent research develops fusion techniques that combine
camera data with lidar and/or radar signals to improve the
performance and robustness of BEV perception, utilizing
the rich semantic information from camera images along
with the precise distance measurements from lidar and radar.
For instance, Frustum PointNets [14] uses PointNets [14]
to integrate both lidar and camera signals, and employs a
multi-stage process where the point cloud is segmented and
classified based on detection proposals in the image space.
BEVFusion [5] employs late fusion by concatenating LSS-
lifted image features [2] with lidar features into a shared BEV
representation, which is then processed by a convolutional
BEV encoder. CRN [4], on the other hand, focuses on
radar-camera perception and introduces radar-assisted view
transformation (RVT), scaling LSS-lifted image features with
radar occupancy maps, followed by cross-attention on image
and radar features.

SimpleBEV [3] explores the fusion with image-radar or
image-lidar combinations by rasterizing radar or lidar signals

in a 3D voxel grid, concatenating them with lifted image
features, and performing convolutional BEV compression
to reduce the height dimension. Convolutional operations,
however, have a limited receptive field, which restricts their
ability to capture broader contextual information across
modalities. In contrast, DeepInteraction [15] employs a
modality-interaction fusion strategy, yet its scalability is
limited, as adding an additional modality increases attention
complexity quadratically. BEVFusion4D [16] introduces a
fusion approach using a Lidar-Guided View Transformer,
however, it relies on the availability of all modalities making
the fusion process prone to failure if any signal drops.

Leveraging all sensor modalities like camera, radar, and
lidar, takes advantage of each sensor’s unique strengths and
enhances the robustness of a perception system such that the
reduced visibility of a camera in adverse conditions like rainy
weather can be compensated for by lidar. However, previous
works typically rely on only a subset of these modalities
during inference, most often combining the camera with
either radar or lidar, and using the camera as the primary
input. For instance, CRN [4] uses lidar during training to
assist depth estimation but excludes it during inference,
limiting the reliability of multimodal fusion in real-world
scenarios.

In contrast, SMAB introduces a streamlined architecture
that incorporates all sensor modalities during inference and
can seamlessly scale to include additional sensors without
altering the core framework, making it a flexible and effective
solution for various perception tasks.

III. METHOD

We introduce Simple-Multimodal-Attention-BEV
(SMAB), a novel fusion method for efficiently combining
image, radar, and lidar data in a simple, scalable architecture.
SMAB enhances robustness to signal loss and improves
inference accuracy. Unlike DeepInteraction [15], which
uses 260 times more voxels, SMAB optimizes memory and
computation with a fixed-size voxel grid and a constant



Fig. 2: BFA (BEV feature aggregator) architecture. Compressed multimodal BEV signals are sampled using learned reference point
offsets ∆pmbqk and aggregated for every attention head with learned attention weights Ambqk. See Section III-C for detailed explanation.

BEV query array, making it more efficient for real-time
applications. The fusion method is summarized in Figure 1.

A. Imaging signal path and lifting

Our input signals on the imaging path are multi-view
images I ∈ RN×C×H×W , where N, C, H, W stand for the
number of views, channels, height and width respectively.
They are passed through the image encoder Enc(·), which
outputs a spatial feature representation of the images by
IF =Enc(I)∈RN×CF×HF×WF . The image encoder can be e.g.
ResNet [17], where we create spatial feature output similarly
to the encoder in [3] where fine-grained features are com-
bined with the coarser ones. In order to have better spatial
resolution in feature space, we increase the spatial output size
so that the third layer of the encoder, upsamples features and
concatenates with second layer features, and then the features
are upsampled and concatenated with the first layer features.
To achieve transposed convolution, additional convolutional
layers are added with instance normalization [18] and ReLU
activation [19] after every up-sample and concatenation step.
With this design, the resulting spatial feature of the encoder
is 1/16 of the original image resolution where HF = H/4
and WF =W/4. Channel width is CF = 128.

After encoder, image features are sampled to voxel grid.
We use the lifting strategy on image features proposed
in SimpleBEV [3]. Every voxel along the ray is assigned
the same sampled image feature, but only one destination
voxel is valid along the ray, so it introduces a noise that is
suppressed implicitly during task learning. Using pre-defined
homogeneous voxel grid coordinates VR ∈RN×ZR×YR×XR×4 in
the reference camera R coordinate system where ZR, YR, XR
are grid dimensions in the reference frame, image features IF
are bilinearly sampled from N camera views using extrinsic
and intrinsic information in following steps:

1) The homogeneous voxel grid coordinates VN ∈
RN×ZN×YN×XN×4 in camera view N’s coordinate system are
obtained by applying the transformation matrices T(n)

N←R ∈
R4×4 from reference camera R to other camera views N to
the corresponding voxels V(n,z,y,x)

R ∈ R4:

V(n,z,y,x)
N = T(n)

N←RV(n,z,y,x)
R ; (1)

2) The pixel coordinates (uN ,vN) in the image features
plane of N camera views are obtained by projecting the
3D coordinates V(n,z,y,x)

N , obtained in Equation 1 using the
intrinsic matrix K(n)

N ∈ R4×4 for the n-th camera view:u(n,z,y,x)N

v(n,z,y,x)N
1

= P
(

K(n)
N V(n,z,y,x)

N

)
, (2)

where P(·) is an operator that scales on z coordinate and
removes the last dimension.

3) Image features voxel grid IV F ∈ RN×CF×ZR×YR×XR is
obtained by bilinear sampling and invalid projection filtering
of the image features, indexed by pixel coordinates from the
Equation 2:

IV F = IF⟨(uN ,vN ,0)⟩⊙M, (3)

where ⟨⟩ is bilinear sampling operator, ⊙ is element-wise
multiplication and M ∈ RN×1×ZR×YR×XR is a mask to filter
out features from outside the camera frustum, constructed
as:

M(uN ,vN ,dN) =

I(0≤ uN <W )⊙ I(0≤ vN < H)⊙ I(dN > 0), (4)

where I is an indicator function and dN is the depth
coordinate of VN . The generated voxel grid IV F , obtained
in the Equation 3, is then averaged over dimension N and
summed over dimension YR, resulting in the BEV grid IBEV ∈
RCF×ZR×XR .

B. Distance signal path

On the distance signal path, we use general notation for
both radar and lidar as Do ∈ RS×E×CD , where o is signal
type, S is sequence length, E is the number of distance signal
signatures and CD is the number of distance signal features.

The distance signal Do is first transformed into the ref-
erence camera R coordinate system using the extrinsics
transformation T(n)

R←Do ∈ R4×4 for each of N camera views:

Do
R
(n,e) = T(n)

R←DoDo(s,e). (5)



Using positional information in the signal, every distance
signal data point, transformed in Equation 5, is assigned with
a voxel index iR and placed to the distance feature voxel grid
Do

V F ∈ RCF×ZR×YR×XR using corresponding voxel indices.
The distance feature voxel grid Do

V F is compressed on
the YR dimension, using a convolutional layer with instance
normalization and GELU activation [20], turning to BEV
grid Do

BEV ∈ RCF×ZR×XR .

C. Fusion mechanism

We employ attention mechanism to fuse contextual infor-
mation from different BEV representations, capitalizing on
their complementary strengths. For instance, image signals
offer rich semantic context but lack depth information,
making spatial positioning challenging, while radar and lidar
signals provide precise spatial data but lack the detailed scene
context. These issues require us to introduce an attention
mechanism to better integrate contextual and structural in-
formation, resulting in a more comprehensive and cohesive
representation.

We adopt a similar architecture to the transformer in
[21], where blocks consisting of multi-head attention, feature
normalization, and feed-forward operations are repeatedly
stacked. We base our attention design on multi-scale de-
formable attention in Deformable DETR [7], but instead
of using multiple scales, we leverage multimodal signal
features represented in multimodal BEV grids. Our method
uses a learnable BEV array as the initial query to generate
sampling offsets and attention weights for cross-attending to
imaging and distance signals. A new BEV array is produced
at each attention block and used as the query for the next.
The final BEV array is then fed into the decoder. This
allows us to effectively integrate information from multiple
sources while maintaining the spatial consistency of the BEV
representation. One significant advantage of the BEV array
is that it retains the same number of parameters, regardless
of the number of additional sensor signals, ensuring efficient
scalability without increasing computational complexity. It is
also possible to optimize resource sharing across computa-
tional units and distributed sensor processing by allowing
a single BEV array to be shared across these units. The
operation can be explained through BEV feature aggregator
BFA (see Figure 2). Given BEV features from imaging and
distance signal paths Xb = {IBEV ,Do

BEV}, learnable BEV
query content feature zq ∈ RZ×X×C (C is BEV feature size
and same for imaging and distance BEVs), reference points
in BEV grid pq ∈RZ×X and reference point offsets ∆pmbqk ∈
RZ×X×M×B×K×2, the BEV feature aggregator BFA is defined
as:

BFA(zq,pq,Xb) =
M

∑
m=1

B

∑
b=1

K

∑
k=1

AmbqkWmbXb(pq +∆pmbqk), (6)

where M is number of attention heads, B is number of
BEV feature grids, K is number of sampling points. The
total number of sampling points, K ≪ ZX , improves the

efficiency of the attention mechanism as noted in [7]. Ambqk ∈
RZ×X×M×B×K is an attention weight that attends to both
signals and sampling points. Both Ambqk and ∆pmbqk are gen-
erated by linear projection of the learnable query feature zq.
Wmb ∈RZ×X×M×B is a parameter matrix applied to sampled
signals per attention head, and is generated through linear
projection of the multimodal signals. Sampling coordinates
(pq + ∆pmbqk) ∈ [0,1]2 are normalized for bilinear sam-
pling operator. Finally, the aggregated BFA representation
is processed through two layer normalization steps and a
feed-forward layer before being passed to segmentation task
decoder Dec(·).

IV. EXPERIMENT SETUP

To compare with the most relevant state-of-the-art ap-
proaches, we choose vehicle segmentation as downstream
task and IOU as performance metric like in FIERY [1] and
SimpleBEV [3]. We also add LSS [2], and CRN [4] to the
comparison. Vehicle segmentation is particularly important
for short-range perception in low-speed environments in
which BEV segmentation is more appropriate as it captures
the object layout in the immediate surroundings, without the
need for high vertical resolution.

A. Data

Dataset. We train and evaluate our approach on the
multimodal dataset nuScenes [22]. For training, we use
input image size 256× 704 and pre-trained ResNet-50 for
image encoder as the baseline of our method. For the radar
data, we aggregate it using multiple signal sweeps from
the timestamps (t, t − 1, t − 2) as in SimpleBEV [3]. We
utilize all 16 meta-data channels from the radar and disable
nuScenes built-in outlier filtering. For the lidar data, we
use only the sweep at current time t and distance information.

Data representation Following [3], we use a 3D voxel
representation of size 200×8×200 (Z,Y,X), with a feature
channel size of 128. The coordinate for the BEV grid is
right-handed where the Z axis points forward, the X axis
points left, and the Y axis points up. Each voxel represents
0.5m× 1.25m× 0.5m in practice, thus the total voxel grid
corresponds to 100m× 10m× 100m. The final output of
segmentation is 200×200 (Z,X).

Augmentations We follow similar signal augmentations as
in [3]. For camera signals, we randomly resize and crop the
input along the intrinsics in a scale range of [0.8, 1.2], and
change the reference camera that randomizes the 3D volume
orientation together with the orientation of the rasterized
annotations. We randomly drop one of the six cameras or
completely drop any individual signal path (10% of the time)
to improve the robustness of the network for missing signals.

B. Downstream task

Following LSS [2], we perform vehicle segmentation by
projecting the 3D bounding boxes from the vehicle meta-
category in nuScenes onto the BEV plane, assigning labels



TABLE I: Comparison of BEV vehicle segmentation on the nuScenes validation set with previous works and baselines. Using SMAB
signal fusion is better than baseline and previous work. Using a full multimodal setup with camera, radar and lidar is better than using a
single or two signal combinations. All FPS values are measured on the same GPU.

Method Modality Backbone Image Size FPS IOU

Lift-Splat-Shoot (LSS) [2] Camera EffNetB0 128 x 352 44 32.1
FIERY [1] Camera EffNetB4 224 x 480 1.7 35.8
BEVFormer [6] Camera ResNet-101 900 x 1600 4.3 46.7
SimpleBEV [3] Camera ResNet-101 448 x 800 16.8 47.4

SimpleBEV† Camera + Radar ResNet-50 256 x 704 18.5 53.0
SMAB Camera + Radar ResNet-50 256 x 704 22 55.1 (+2.1)‡
SimpleBEV [3] Camera + Radar ResNet-101 448 x 800 17 55.7
Camera Radar Net (CRN) [4] Camera + Radar (Lidar*) ResNet-50 256 x 704 ♢ 58.8

SimpleBEV [3] Camera + Lidar ResNet-101 448 x 800 16.6 60.8
SimpleBEV† Camera + Lidar ResNet-50 256 x 704 17.3 62.1
SMAB Camera + Lidar ResNet-50 256 x 704 22 63.4 (+1.3)‡

SimpleBEV† Camera + Radar + Lidar ResNet-50 256 x 704 17.5 62.9
SimpleBEV† Camera + Radar + Lidar ResNet-101 448 x 800 16 64.9
SMAB Camera + Radar + Lidar ResNet-50 256 x 704 21 64.9 (+2.0)‡
∗ only trained with lidar supervision
† done in this work
‡ compared to SimpleBEV [3] with same backbone & image size
♢ segmentation code/model not available

accordingly and transforming them to the ego vehicle using
the provided extrinsics in nuScenes.

For the task decoder, we follow SimpleBEV [3] to process
the attended BEV feature using three blocks of ResNet-18
[17] to generate three feature maps. To bring coarser features
to the input resolution of 200× 200, skip connections are
added with bilinear upsampling. Two convolutional layers
are applied to generate the final segmentation.

We also implement additional task heads to predict center-
ness and offset as in FIERY [1] to better regularize model.
Centerness indicates the likelihood of a voxel center that is
the center of the object mask while the offset is a vector field
where each vector in the object mask points to the center of
the object.

C. Training and evaluation setup

We train the image encoder, distance signal compression
module, BFA components, and task decoder. With ResNet-
50 as encoder, our model has 31M parameters. Following
[3], we use the cross-entropy loss for segmentation, L1 loss
for centerness and offset prediction, and learn uncertainty
weights [23], [3] to balance three losses. All training uses
Adam-W [24] with a 1-cycle schedule [25] with initial rate
5e−4, batch size 16, and gradient aggregation over 5 steps.
The complete model is trained end-to-end for 15k steps,
with early stopping occurring around 12k steps. Training
takes 24h on 4 A100 GPUs. Unlike [6], [4], we do not
use temporally aggregated BEV representations. We use
IOU to evaluate the performance on the full BEV grid,
with the front camera as a reference and without cropping.
For redundancy analysis, signals are selectively dropped
according to a predefined rate. To evaluate computational
cost of various methods, we measure inference speed using
a single GPU (A100) without any additional accelerators,

and evaluate only the model’s performance, excluding any
pre- or post-processing steps.

V. RESULTS AND DISCUSSION

In this section, we demonstrate that SMAB effectively
handles a complete multimodal signal setup and remains
resilient to sporadic signal loss while maintaining a simple
architecture.

A. Multimodality

We demonstrate the advantage of using the full set of
multimodal signals. Table I compares different BEV vehicle
segmentation methods on nuScenes, showing that SMAB
with camera, radar, and lidar outperforms variants with
partial signals, even with a smaller image size and encoder.
Despite radar’s sparsity, integrating radar with multi-view
images and lidar improves IOU from 63.4 to 64.9 when
using SMAB, which highlights the benefit of leveraging
all available signals. To our knowledge, it is the first time
the performance is reported using all three modalities at
inference time, achieving significant gains in accuracy.

B. BEV fusion

We further investigate our proposed BFA attention fusion
to the closest baseline - SimpleBEV [3] under different
combinations of modalities. Table I also shows that SMAB
with BFA improves IOU against the baseline by 2.1 when
using only camera and radar, 1.3 only camera and lidar, and
2.0 using all modalities. BFA attention fusion shows the
ability to capture contextual information from multimodal
BEV feature grids across all available signals by integrating
multimodal features through learned BEV query. We show a
more detailed analysis in the next section.

We also examine the effect of image size on the segmen-
tation performance. Table II shows the segmentation IOU



TABLE II: Effect of image size on BEV vehicle segmentation. All
experiments use ResNet-50 as image encoder. “C”, “R”, and “L”
stand for camera, radar, and lidar, respectively.

Method Modality Image Size IOU

SMAB C+R 256 x 704 55.1
SMAB C+R 448 x 800 55.5 (+0.4)
SMAB C+R+L 256 x 704 64.9
SMAB C+R+L 448 x 800 65.7 (+0.8)

TABLE III: Effect of image encoder size. All experiments are
done using all modalities i.e. camera, radar and lidar.

Method Backbone Image Size IOU

SMAB R-101 256 x 704 64.5(-0.4)
SMAB R-50 256 x 704 64.9

Fig. 3: IOU across radial distances for different sensor setups.
The blue square-marked line represents the baseline, while the red
circle-marked line represents SMAB. Arrows indicate IOU gains
over the baseline, with the green area highlighting improvements.
BFA enhances representation, especially when radar/lidar density is
low.

under different image size and modalities. It can be seen that
larger image size, e.g., increased from 256x704 to 448x800,
slightly improves IOU: +0.4 using camera and radar only;
+0.8 using all modalities but at the cost of almost doubled
pixels and thus longer inference and training time.

Like SimpleBEV [3], we evaluate the choice of the image
encoder on the performance. Table III shows that a larger im-
age encoder, e.g. ResNet-101, does not improve performance
when all modalities are used.

Fig. 4: Comparison of radar and lidar point density in vehicle box
versus radial distance w.r.t. the ego-vehicle in the nuScenes [22]
dataset. The black and red, circle marked curves represent the mean
number of lidar and radar points respectively, for a given distance
while the blue, square marked curve indicates the number of boxes
of vehicle.

C. Radial distance analysis

In addition to overall IOU across various models (Table
I), we assess SMAB’s fusion mechanism by examining
IOU variations across radial distances with different sensor
combinations. Figure 3 shows IOU gains (green area), when
comparing SMAB to SimpleBEV [3]. SMAB better captures
radar features even when its density decreases (Figure 4) as
shown in Figure 3a, where SMAB improves 6 points over
the SimpleBEV [3] baseline at larger radial distances. SMAB
also improves camera-lidar combination (Figure 3b) at far
distances.

Figure 3 also illustrates that IOU decreases with distance.
This can be attributed to image resolution limitations, as
objects at farther distances occupy fewer pixels. Interestingly,
density of the distance signals, i.e. lidar in Figure 4, plays a
less significant role at short distances (Figure 3); for example,
camera-radar fusion achieves 75 IOU at 5m even with sparse
radar points while camera-lidar fusion achieves 82 IOU
at 5m with significantly higher density of the lidar signal.
Overall, IOU performance is primarily affected by image
resolution and distance signal quality, while the model is
relatively insensitive to vehicle box distribution.

D. Redundancy

To further investigate the robustness of our trained model,
i.e., its capability in handling transient signal losses caused
by environmental disturbance, we deliberately drop signals
and present incomplete data to model. Table IV shows the
performance of the trained models evaluated under various
signal drop scenarios. When 5% signal drop occurs, IOU
decreases minimally for radar (from 64.9 to 64.5), slightly
more for lidar (to 63.9), and most significantly for camera
(to 61.8). The results suggest that the radar drop has the
least effect on performance regression while camera signal
plays the most important role for accuracy of segmentation
task. Notably, when drop rate increases from 5% to 10%, the



TABLE IV: Redundancy analysis: Impact of randomly dropping
different sensor signals at various rates on the IOU values. The
evaluation sequence is run for each signal drop scenario and
corresponding drop rate.

Method Drop Only L Only R Only C
rate (%) drop drop drop

SMAB 5 63.9 64.5 61.8
SMAB 10 63.4 64.4 59.7

performance of model deteriorates, however, still remaining
relatively minor.

E. Performance

We evaluate the performance of SMAB and SimpleBEV
[3] by comparing Frames per Second (FPS) against IOU.
Figure I demonstrates that SMAB outperforms SimpleBEV
[3] when using image and radar as input modalities, as
well as when incorporating image, radar, and lidar. This
improvement holds for both the larger SimpleBEV [3] model,
which utilizes a larger image resolution and image backbone,
and the smaller SimpleBEV [3] model, which uses the same
image resolution and image backbone as SMAB. Addition-
ally, we observe that incorporating lidar only marginally
reduces FPS, indicating that SMAB can efficiently scale
across modalities without significant performance loss.

VI. CONCLUSION

SMAB provides an efficient and robust solution for mul-
timodal sensor fusion in autonomous vehicles, integrating
diverse sensor inputs with a customized attention mecha-
nism. Unlike prior work, it utilizes all sensor modalities
during inference, improving segmentation accuracy while
maintaining model simplicity by using learnable parameters
only where necessary. Despite its efficiency, SMAB has room
for improvement. Exploring multimodal signal grouping into
sub-modules and reusing shared learnable BEV queries could
enhance performance. Future work will investigate these
optimizations and extend SMAB to different datasets.

ACKNOWLEDGMENT

This work was conducted as part of the project ”Deep
Multimodal Learning for Automotive Applications”, funded
by Sweden’s Innovation Agency Vinnova, grant no. 2023-
00763. The computations were enabled by the Berzelius
resource provided by the Knut and Alice Wallenberg Foun-
dation at the National Supercomputer Centre in Sweden.

REFERENCES

[1] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan,
R. Cipolla, and A. Kendall, “Fiery: Future instance prediction in
bird’s-eye view from surround monocular cameras,” in Proc. of the
IEEE/CVF International Conf. on Computer Vision, 2021, pp. 15 273–
15 282.

[2] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV 16. Springer, 2020, pp. 194–210.

[3] A. W. Harley, Z. Fang, J. Li, R. Ambrus, and K. Fragkiadaki, “Simple-
bev: What really matters for multi-sensor bev perception?” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2023, pp. 2759–2765.

[4] Y. Kim, J. Shin, S. Kim, I.-J. Lee, J. W. Choi, and D. Kum, “Crn:
Camera radar net for accurate, robust, efficient 3d perception,” in Proc.
IEEE/CVF Int. Conf. on Computer Vision, 2023, pp. 17 615–17 626.

[5] Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. L. Rus, and S. Han,
“Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye
view representation,” in IEEE Int. Conf. on Robotics and Automation
(ICRA, 2023, pp. 2774–2781.

[6] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and
J. Dai, “Bevformer: Learning bird’s-eye-view representation from
multi-camera images via spatiotemporal transformers,” in European
conference on computer vision. Springer, 2022, pp. 1–18.

[7] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
detr: Deformable transformers for end-to-end object detection,” arXiv
preprint arXiv:2010.04159, 2020.

[8] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4490–4499.

[9] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 652–660.

[10] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[11] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proc. IEEE CVPR, 2019, pp. 12 697–12 705.

[12] A. Popov, P. Gebhardt, K. Chen, and R. Oldja, “Nvradarnet: Real-
time radar obstacle and free space detection for autonomous driving,”
in IEEE ICRA, 2023, pp. 6958–6964.

[13] R. Weston, S. Cen, P. Newman, and I. Posner, “Probably unknown:
Deep inverse sensor modelling radar,” in 2019 international conference
on robotics and automation (ICRA). IEEE, 2019, pp. 5446–5452.

[14] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proc. IEEE CVPR, 2018,
pp. 918–927.

[15] Z. Yang, J. Chen, Z. Miao, W. Li, X. Zhu, and L. Zhang, “Deepin-
teraction: 3d object detection via modality interaction,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran
Associates, Inc., 2022, pp. 1992–2005.

[16] H. Cai, Z. Zhang, Z. Zhou, Z. Li, W. Ding, and J. Zhao, “Bevfusion4d:
Learning lidar-camera fusion under bird’s-eye-view via cross-modality
guidance and temporal aggregation,” arXiv preprint arXiv:2303.17099,
2023.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE CVPR, 2016, pp. 770–778.

[18] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture net-
works: Maximizing quality and diversity in feed-forward stylization
and texture synthesis,” in Proc. IEEE CVPR, 2017, pp. 6924–6932.

[19] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. ICML 2010, pp. 807–814.

[20] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016.

[21] A. Vaswani, “Attention is all you need,” Advances in Neural Informa-
tion Processing Systems, 2017.

[22] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proc. IEEE CVPR,
2020, pp. 11 621–11 631.

[23] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proc.
IEEE CVPR, 2018, pp. 7482–7491.

[24] I. Loshchilov, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[25] L. N. Smith and N. Topin, “Super-convergence: Very fast training of
neural networks using large learning rates,” in Artificial intelligence
and machine learning for multi-domain operations applications, vol.
11006. SPIE, 2019, pp. 369–386.


