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Gut microbiota mediates SREBP-1c-driven
hepatic lipogenesis and steatosis in response to
zero-fat high-sucrose diet
Mattias Bergentall1, Valentina Tremaroli1, Chuqing Sun1, Marcus Henricsson1, Muhammad Tanweer Khan1,
Louise Mannerås Holm1, Lisa Olsson1, Per-Olof Bergh1,6, Antonio Molinaro1, Adil Mardinoglu2,3,
Robert Caesar1,*, Max Nieuwdorp4, Fredrik Bäckhed1,5,**
ABSTRACT

Objectives: Sucrose-rich diets promote hepatic de novo lipogenesis (DNL) and steatosis through interactions with the gut microbiota. However,
the role of sugar-microbiota dynamics in the absence of dietary fat remains unclear. This study aimed to investigate the effects of a high-sucrose,
zero-fat diet (ZFD) on hepatic steatosis and host metabolism in conventionally raised (CONVR) and germ-free (GF) mice.
Methods: CONVR and GF mice were fed a ZFD, and hepatic lipid accumulation, gene expression, and metabolite levels were analyzed. DNL
activity was assessed by measuring malonyl-CoA levels, expression of key DNL enzymes, and activation of the transcription factor SREBP-1c.
Metabolomic analyses of portal vein plasma identified microbiota-derived metabolites linked to hepatic steatosis. To further examine the role of
SREBP-1c, its hepatic expression was knocked down using antisense oligonucleotides in CONVR ZFD-fed mice.
Results: The gut microbiota was essential for sucrose-induced DNL and hepatic steatosis. In CONVR ZFD-fed mice, hepatic fat accumulation
increased alongside elevated expression of genes encoding DNL enzymes, higher malonyl-CoA levels, and upregulation of SREBP-1c. Regardless
of microbiota status, ZFD induced fatty acid elongase and desaturase gene expression and increased hepatic monounsaturated fatty acids.
Metabolomic analyses identified microbiota-derived metabolites associated with hepatic steatosis. SREBP-1c knockdown in CONVR ZFD-fed mice
reduced hepatic steatosis and suppressed fatty acid synthase expression.
Conclusions: Sucrose-microbiota interactions and SREBP-1c are required for DNL and hepatic steatosis in the absence of dietary fat. These
findings provide new insights into the complex interplay between diet, gut microbiota, and metabolic regulation.

� 2025 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD) has
increased in parallel with the global obesity epidemic and is now the
most common liver disease. The initial stage of MAFLD is liver stea-
tosis, which can lead to more severe disease stages such as metabolic
associated steatohepatitis, liver fibrosis, cirrhosis and liver cancer
(Fazel et al., 2016).
MAFLD is associated with an imbalanced gut microbiota [1,2], and
several MAFLD-associated traits have been identified in the human
microbiome [3e5]. In addition, hepatic steatosis can be transmitted
1Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgren
Gothenburg, SE-413 45, Sweden 2Science for Life Laboratory, KTH - Royal Institute of T
Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, UK
Centers, University of Amsterdam, Amsterdam, the Netherlands 5Department of Clinic
Sweden, Sweden

6 Current address: Chalmers Mass Spectrometry Infrastructure, Deparment of Life Sc

*Corresponding author. E-mail: Robert@wlab.gu.se (R. Caesar).

**Corresponding author. Wallenberg Laboratory, Department of Molecular and Clinic
University of Gothenburg, Gothenburg, SE-413 45, Sweden. E-mail: Fredrik@wlab.gu.

Received March 3, 2025 � Revision received April 23, 2025 � Accepted May 2, 2025

https://doi.org/10.1016/j.molmet.2025.102162

MOLECULAR METABOLISM 97 (2025) 102162 � 2025 The Authors. Published by Elsevier GmbH. This is
www.molecularmetabolism.com
from humans to mice through transfer of the microbiota [4], suggesting
that the gut microbiota plays a causal role in the development of
MAFLD.
Diets high in calories and with excessive amounts of saturated fats
and sugars contribute to the development of hepatic steatosis [6].
Experiments in mice have shown that diet composition affects the
role of the gut microbiota in the development of diet-induced stea-
tosis. A Western-style diet high in saturated fat and sucrose leads to
steatosis in conventionalized mice, but not in germ-free (GF) mice [7].
In contrast, high-fat diet with high content of saturated fatty acids and
a low content of sucrose does not cause steatosis in either
ska Center for Cardiovascular and Metabolic Research, University of Gothenburg,
echnology, Stockholm, Sweden 3Centre for Host-Microbiome Interactions, Faculty of
4Department of (Experimental) Vascular Medicine, Amsterdam University Medical
al Physiology Region Västra Götaland, Sahlgrenska University Hospital Gothenburg

iences, Chalmers University of Technology, Gothenburg, Sweden.

al Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research,
se (F. Bäckhed).

� Available online 7 May 2025

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1

Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
http://creativecommons.org/licenses/by/4.0/
mailto:Robert@wlab.gu.se
mailto:Fredrik@wlab.gu.se
https://doi.org/10.1016/j.molmet.2025.102162
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmet.2025.102162&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


Original article
conventional or GF mice [8]. Furthermore, several studies have
demonstrated that sucrose or fructose can induce steatosis in ro-
dents in a manner dependent on gut bacteria [9e11]. Taken
together, these observations suggest that dietary sugar interacts with
the gut microbiota to induce MAFLD. Here, we use GF mice and a
sucrose-rich zero-fat diet (here called ZFD) to determine how sucrose
interacts with the microbiota to produce hepatic steatosis in the
absence of dietary fat.

2. MATERIALS AND METHODS

2.1. Mice
Male C57Bl/6 mice (11e17 weeks old) were housed at 20� 1 �C with
45e70% humidity under a 12-hour light/dark cycle (lights on 7 a.m.e7
p.m.) in specific-pathogen-free (SPF) or GF conditions. Mice were pro-
vided ad libitum access to a sterile, irradiated high-sucrose diet (ZFD;
Harlan TD.03314: 0% kcal fat, 24.2% kcal protein, 75.8% kcal sucrose)
or an autoclaved chow diet (LabDiet, St. Louis, MO, USA) along with
sterile water. The mice were fasted 4 h before blood samples were
collected under deep isoflurane anesthesia and the mice were
euthanized.

2.2. Liver histology
Liver biopsies were fixed in 4% paraformaldehyde (PFA) in PBS for
24 h, followed by cryoprotection in 10% and 20% sucrose solutions in
PBS for 12 h each. Tissue sections were prepared at HistoCenter
(Gothenburg, Sweden). Neutral lipids were stained with Oil Red O using
a Leica Autostainer or manual methods and visualized using a Zeiss
Axio Imager M1 microscope. Digital image acquisition was performed
using Axiovision software (Zeiss, Germany).

2.3. Liver triglycerides
Hepatic triglycerides were extracted using the semi-automated BUME
method for lipid analysis [12]. The extracts were diluted in chloroform
(1:2) containing 5 mM ammonium acetate and analyzed via direct
infusion mass spectrometry [13] using a TriVersa NanoMate (Advion
BioSciences, Ithaca, NY) coupled to a QTRAP 5500 mass spectrometer
(ABSciex, Canada).

2.4. Gene expression analyses
RNA was isolated from snap-frozen liver tissue using the RNeasy kit
(Qiagen, Germany), including on-column DNase treatment. RNA
integrity was assessed using a Bioanalyzer (Agilent Technologies), with
RIN values ranging from 9.3 to 10.0. RNA sequencing was conducted
at Science for Life Laboratory (Stockholm, Sweden) using Illumina
TruSeq RNA libraries. Sequencing was performed on an Illumina
HiSeq2500 platform with single-end 50 bp reads, generating over 680
million reads. Reads were trimmed (Phred score �15; minimum
length 40 bp) using the Fastx-toolkit and mapped to the Mus musculus
GRCm38 genome with TopHat v2.0.4 using the Bowtie2 aligner. Gene
counts were obtained using HTSeq-count.
For qRT-PCR, cDNA synthesis was performed with the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) using 0.5 mg
RNA. Gene expression was quantified with SYBR Green-based PCR
(Thermo Scientific, Waltham, MA) and normalized to Rpl32. Primer
sequences are provided in Supplementary Table 5.

2.5. Malonyl-CoA quantification
Hepatic malonyl-CoA levels were quantified using a mouse malonyl-
CoA ELISA kit (MyBioSource, San Diego, CA) according to the manu-
facturer’s protocol.
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2.6. SREBP-1c knockdown
Srebf1-specific antisense oligonucleotides (ASOs; sequence: CCA-
GATCTGCCACTAGAGGT) were prepared at a concentration of 2.5 mg/
mL in sterile PBS, filtered, and stored at �20 �C. Mice received
intraperitoneal injections of 25 mg/kg ASO twice weekly for three
weeks, with injection volumes not exceeding 250 mL.

2.7. Metabolomics
Portal vein blood samples were collected into EDTA tubes, centrifuged
at 10,000 rpm for 5 min, and the plasma supernatant was stored
at �80 �C. Chromatography and mass spectrometry analyses were
performed by Metabolome Inc., and metabolic pathway integration
was visualized using the Cytoscape MetaboLync plugin.

2.8. 16S rRNA profiling of the cecal microbiota
Genomic DNA was extracted from cecum samples of mice fed ZFD
(n¼ 9) or chow diet (n¼ 8), and approximately 50 ng of template DNA
were amplified in duplicate reactions as previously described [14]
using dual-indexed primers 515F and 806R [15] targeting the V4 re-
gion of the 16S rRNA gene. Amplicons were sequenced in an Illumina
Miseq instrument using the V2 kit (2� 250 bp paired-end reads). Raw
paired-end reads were processed using QIIME 2 (version 2024.10) [16]
Quality profiles of the raw sequences were assessed with FastQC
(v0.12.1) [17] and aggregated using MultiQC [18] to determine optimal
trimming parameters. Denoising was performed using DADA2 [19]
with forward and reverse reads truncated at 200 bp and 180 bp,
respectively. This step generated a feature table, representative se-
quences, and denoising statistics. Taxonomic classification of ampli-
con sequence variants (ASVs) was conducted using a pre-trained Naive
Bayes classifier based on the SILVA 138 reference database [20,21].
The feature table was subsequently collapsed to genus level to
calculate taxon-wise relative abundances, resulting in 104 genera
included in the analyses. Graphical representations and statistical
analyses of gut microbiota profiles were performed using R v.4.4.3
[22] with packages vegan v.2.6e10 [23] and ggplot2 v.3.5.1 [24].
Genus-level abundance data were rarefied to the minimum sequencing
depth across samples using the vegan package; a-diversity was
computed using the Shannon diversity index and b-diversity was
computed using the BrayeCurtis distance.

2.9. Statistical analyses
Statistical analyses of RNA-seq and metabolomics were performed
using R Version 4.4.1 (R Foundation for Statistical Computing, Vienna,
Austria), R package rstatix 0.72 was used for two-way ANOVA analyses
followed by Tukey’s post hoc test. False discovery rate correction was
performed to calculate adjusted p-values. vegan 2.6e8 for ADONIS,
ropls 1.36.0 was used for PLS analyses. Analysis of enrichment of
regulated genes within functional categories gene ontology categories
(GO) [25] was performed using the software David [26]. The results of
the enrichment calculation were filtered for GO categories that were
significantly enriched (FDR <0.01) Other statistical analyses were
performed using GraphPad Prism (v10.2.3). Unpaired two-tailed Stu-
dent’s t-tests were used for pairwise comparisons. Two-way ANOVA
followed by Tukey’s post hoc test was used for comparisons involving
multiple factors. For gut microbiota analyses, differences in a-diversity
were assessed using the Wilcoxon rank sum test. Differential abun-
dance of ASVs collapsed at genus level was assessed using MaAsLin2
[27] and the Benjamini-Hochberg procedure was used to adjust for
false discovery rate [28]; significance was defined for features with an
adjusted p-value <0.01. Differences in b-diversity were assessed
using the adonis function [29,30] in vegan v.2.6e10 [23].
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2.10. Data availability
The sequencing data generated in this study has been deposited in the
European Nucleotide Archive (ENA) under the project number
PRJEB85296.

3. RESULTS

3.1. ZFD diet induces hepatic steatosis and DNL in the presence of
a gut microbiota
To assess how the interaction between a high-sucrose, fat-free diet
(ZFD; 75.8% kcal sucrose) and gut microbiota influences hepatic
steatosis and metabolism, we fed conventionally raised (CONVR) and
GF mice either ZFD or standard chow for 3 weeks. CONVR and GF mice
on chow, as well as CONVR mice on ZFD, gained 5e10% body weight,
whereas GF mice on ZFD did not gain weight (Figure 1A). Relative
weights of epididymal white adipose tissue (EWAT) and liver were
significantly lower in GF mice compared to CONVR mice on both diets
(Figure 1B and C).
Neutral lipid staining and triglyceride quantification using mass
spectrometry revealed increased hepatic fat accumulation in CONVR
Figure 1: The gut microbiota contributes to ZFD-induced steatosis. Mice were fed ZFD
(B) Relative weight of EWAT and (C) liver (n ¼ 7e12/group). (DeE) Representative microgr
derived fatty acids and (G) relative amounts of SFA, MUFA, and PUFA (n ¼ 3e7/group).
centrations of malonyl-CoA (n ¼ 3e7/group). Significant p values for diet and colonization s
presented as mean � SD. Abbreviations: CONVR e conventionally raised; GF e germ-free;
PUFA e polyunsaturated fatty acids; Srebf1 e sterol regulatory element binding transcriptio
Coenzyme A desaturase 1. (For interpretation of the references to color in this figure leg
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mice fed ZFD (Figure 1DeF, Supplementary Table 1). Hepatic tri-
glyceride levels of saturated fatty acids (SFA) correlated with steatosis
severity (Supplementary Table 1). Meanwhile, the triglycerides in ZFD-
fed mice exhibited increased proportions of monounsaturated fatty
acids (MUFA) and decreased polyunsaturated fatty acids (PUFA)
(Figure 1G). This shift in fatty acid composition is expected, as ZFD
lacks PUFA, which cannot be synthesized de novo by mammals. The
gut microbiota increased MUFA levels and reduced the proportion of
SFA in hepatic triglycerides from mice fed ZFD, but not in those fed a
chow diet. SFA was significantly affected by the interaction between
diet and microbiota (p ¼ 0.006).
Building on the established role of hepatic de novo lipogenesis (DNL) in
MAFLD [31], we analyzed the expression of key genes involved in
lipogenesis. qRT-PCR analysis revealed that ZFD-fed CONVR mice
exhibited significantly higher expression of Srebf1 (encoding
SREBP1c), a major transcriptional regulator of DNL [32] (Figure 1H).
Srebf1 was significantly affected by the interaction between diet and
microbiota (p ¼ 0.0006). In contrast, the expression of Mlxipl
(encoding ChREBP, another key transcriptional regulator of DNL [33])
remained unchanged. The expression of Fasn (encoding fatty acid
or chow diet for 3 weeks. (A) Body weight gain after diet intervention (n ¼ 4e8/group).
aphs of Oil Red O staining for neutral lipids. Scale bar ¼ 200 mm. (F) Liver triglyceride-
(H) Hepatic gene expression determined by qRT-PCR (n ¼ 3e8/group). (I) Liver con-
tatus were determined by two-way ANOVA with Tukey’s multiple comparisons. Data are
ZFD e zero-fat diet; SFA e saturated fatty acids; MUFA e monounsaturated fatty acids;
n factor 1; Fasn e fatty acid synthase; Elovl6 e fatty acid elongase 6; Scd1 e stearoyl-
end, the reader is referred to the Web version of this article.)
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synthase) was significantly influenced by dietemicrobiota interaction
(p ¼ 0.006) and was elevated in response to ZFD compared to chow,
with further increases observed in the presence of a gut microbiota in
ZFD-fed mice. Similarly, the expression of Elovl6 and Scd1 (encoding
fatty acid elongase 6 and stearoyl-CoA desaturase-1, respectively) was
higher in ZFD-fed mice, although presence of a gut microbiota had no
impact on these genes. Notably, hepatic malonyl-CoA levels, a critical
substrate for fatty acid synthesis, were substantially elevated in ZFD-
fed CONVR mice (Figure 1I).
In summary, our results show that ZFD promotes hepatic steatosis and
DNL in the presence of a gut microbiota while also stimulating fatty
acid elongation and desaturation independent of microbial
colonization.

3.2. Interaction between ZFD and the gut microbiota regulates
hepatic lipid metabolism
To further explore how ZFD and the gut microbiota interact to regulate
hepatic physiology, we performed transcriptome analysis on liver
samples from CONVR and GF mice using RNA-seq. Partial Least
Squares Discriminant Analysis (PLS-DA) revealed distinct sample
clustering, with diet accounting for 18% of variance along the first
dimension and microbiota contributing 12% along the second
dimension (Figure 2A).
To assess microbiota-mediated regulation of hepatic gene expression,
we compared significantly regulated genes between CONVR and GF
mice. 1,213 genes were regulated by the microbiota in chow-fed mice,
544 in ZFD-fed mice, and 234 across both diets, indicating that
microbiota-driven gene regulation is largely diet-dependent
(Figure 2B).
Gene ontology enrichment analysis revealed that genes associated
with xenobiotic and steroid metabolism were regulated by the
microbiota in chow-fed mice (Supplementary Table 2), whereas lipid
metabolic processes were regulated across both diets. In ZFD-fed
mice, the microbiota upregulated genes involved in glucose meta-
bolism and downregulated genes associated with immune responses,
a trend observed across both diets.
Using two-way ANOVA, we identified genes whose expression was
modulated by the interaction between diet and gut microbiota
Figure 2: Interaction between ZFD and gut microbiota regulates hepatic lipid metabo
(n ¼ 5/diet) mice fed ZFD or chow diet for 3 weeks. (A) Partial least squares (PLS) analysis
point represents an individual sample. Axes indicate variance explained by the first two PLS
(y-axis). (C) Genes regulated by the interaction between diet and gut microbiota. Microb
categories enriched in subsets of genes located in quadrants Q1 and Q3 in panel (C). Statist
test. p-values were adjusted using false discovery rate (FDR) correction, and a corrected
Abbreviations: CONVR e conventionally raised; GF e germ-free; ZFD e zero-fat diet.
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(Figure 2C). Genes in Q1 (upregulated by the microbiota in chow-fed
mice and downregulated in ZFD-fed mice) were enriched for path-
ways related to steroid and estrogen metabolism. In contrast, genes in
Q3 (upregulated by the microbiota in ZFD-fed mice and downregulated
in chow-fed mice) were enriched for pathways associated with fatty
acid and lipid metabolism (Figure 2D).
RNA-seq analysis was in agreement with the expression data from
Figure 1H and revealed regulation of glucose and lipid transporters. In
addition, ZFD increased the expression of the long chain free fatty acid
transporter Cd36 in both GF and CONVR mice, consistent with prior
studies on high-sugar diets [34,35] (Supplementary Figure 1A). Cd36
was also elevated in GF compared with CONVR mice fed chow. Slc2a2,
encoding the sugar-transporter GLUT2, was significantly increased in
CONVR, but not in GF, mice fed ZFD, correlating with the observed rise
in de novo lipogenesis (Supplementary Figure 1B).
These findings demonstrate that the gut microbiota interacts with diet
to modulate hepatic gene expression and influences lipid and glucose
metabolism as well as immune responses in a diet-dependent fashion.

3.3. Interaction between ZFD and the gut microbiota regulates
portal vein plasma metabolome
The gut microbiota communicates with the host via bioactive metab-
olites, influencing key metabolic pathways [36]. To investigate how
diet and microbiota affect the metabolome, we performed untargeted
metabolomics on portal vein plasma.
PLS-DA analysis of metabolite profiles showed a clear separation of
samples, with diet explaining 24% of variance along the first dimen-
sion and the microbiota contributing 22% along the second dimension
(Figure 3A). We identified 536 metabolites, including 16 metabolites
increased and 42 decreased by the microbiota exclusively in ZFD-fed
mice, 30 increased and 33 decreased exclusively in chow-fed mice,
and 20 increased and 23 decreased across both diets (Figure 3B,
Supplementary Table 3). Two-way ANOVA identified metabolites
modulated by the interaction between diet and microbiota (Figure 3C).
Notably, metabolites in Q3 (upregulated by the microbiota in ZFD-fed
mice and downregulated in chow-fed mice), including inosine, deox-
yinosine, hypoxanthine, and xanthine, which are intermediates in pu-
rine metabolism.
lism. RNA-seq analysis was performed on liver tissue from CONVR (n ¼ 3/diet) and GF
of liver RNA-seq data, showing sample separation by microbiota status and diet. Each
components. (B) Microbiota-induced gene regulation in mice fed ZFD (x-axis) or chow
iota-induced regulation in mice fed ZFD (x-axis) or chow (y-axis). (D) Gene ontology
ical analysis was performed using a two-way ANOVA followed by Tukey’s HSD post-hoc
p-value <0.05 was considered statistically significant and are displayed in B and C.
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Figure 3: Interaction between ZFD and gut microbiota regulates the portal vein
metabolome. Analysis was performed on plasma from CONVR and GF mice fed ZFD or
chow diet for 3 weeks (n ¼ 5e6/group). (A) Partial least squares (PLS) analysis based
on 536 compounds, showing sample separation by microbiota status and diet. Each
point represents an individual sample. Axes indicate variance explained by the first two
PLS components. (B) Microbiota-induced metabolite regulation in mice fed ZFD (x-axis)
or chow (y-axis). (C) Metabolites regulated by the interaction between diet and gut
microbiota. Microbiota-induced regulation in mice fed ZFD (x-axis) or chow (y-axis).
Statistical analysis was performed using a two-way ANOVA followed by Tukey’s HSD
post-hoc test. p-values were adjusted using false discovery rate (FDR) correction, and a
corrected p-value <0.05 was considered statistically significant and are displayed in B
and C. Abbreviations: CONVR e conventionally raised; GF e germ-free; ZFD e zero-fat
diet.
These findings highlight the interplay between diet, the gut microbiota,
and the portal plasma metabolome, with a particular focus on purine
metabolism regulation.

3.4. ZFD and chow diets induce distinct gut microbiota
compositions
To assess the impact of the diet on gut microbiota, we performed 16S
rRNA gene sequencing and compared overall composition, species
diversity and abundance of taxa in in cecal samples from ZFD and
Chow fed mice. Principal Coordinate Analysis (PCoA) on BrayeCurtis
distance showed a clear separation (Adonis R2 ¼ 0.49, p ¼ 0.001)
between the ZFD and Chow groups indicating distinct compositions
MOLECULAR METABOLISM 97 (2025) 102162 � 2025 The Authors. Published by Elsevier GmbH. This is
www.molecularmetabolism.com
(Supplementary Fig. 2A). a-diversity measured by the Shannon index
did not differ significantly between the groups (Wilcoxon Rank Sum
Test, p ¼ 0.54; Supplementary Fig. 2B). Several taxa were differen-
tially abundant, with distinct enrichments in each group and correla-
tions with liver and metabolic parameters (Supplementary Fig. 2C).

3.5. ZFD induces hepatic lipogenesis and steatosis in
conventionally raised mice through SREBP-1c activation
To confirm the role of SREBP-1c in ZFD-induced lipogenesis and
steatosis, we treated ZFD-fed CONVR mice with Srebf1-specific anti-
sense oligonucleotides (ASO) for three weeks, causing a reduction of
hepatic Srebf1 expression by 70% (Supplementary Figure 3A). ASO
treatment was well-tolerated, with no effect on body weight gain
(Figure 4A) or Tnfa expression (Supplementary Figure 3B). However,
the treatment reduced relative EWAT weight (Figure 4B) and increased
relative liver weight (Figure 4C). Neutral lipid staining revealed reduced
hepatic fat in ASO-treated mice (Figure 4D), accompanied by a trend
towards lower triglyceride-derived fatty acid content (p ¼ 0.08;
Figure 4E). No major differences in fatty acid composition were
observed (Figure 4F and Supplementary Table 4). Expression of Fasn,
Elovl6, and Scd1 was significantly reduced in ASO-treated mice,
supporting decreased lipogenesis (Figure 4G).
Together, these data indicate that ZFD-induced hepatic steatosis in
CONVR mice is mediated by SREBP-1c activation, which drives lipo-
genesis and alters lipid metabolism.

4. DISCUSSION

Here we demonstrate that gut microbiota promotes DNL and steatosis
when fed high levels of sucrose in the absence of dietary fat through, at
least in part, a SREBP-1c dependent pathway. We also show that ZFD
promotes elongation and desaturation of fatty acids independent of
colonization status, resulting in increased hepatic levels of MUFA. Our
findings reveal that the interaction between diet and microbiota in-
fluences hepatic lipid metabolism as well as portal vein metabolite
levels, including metabolites involved in purine metabolism. These
results underscore the complex interplay between dietary composition,
microbial activity, and host metabolic pathways, highlighting the gut
microbiota’s role as a key modulator of metabolic outcomes.
Consistent with our findings, previous studies have established that
high-sugar diets, including those rich in fructose or sucrose, contribute
to hepatic steatosis in both humans and mice [37e39]. Specifically,
Chakravarthy et al. [40] showed that a fat-free, high-sugar diet induces
steatosis in mice without changes in body weight, liver weight, or
adiposity. These observations align with the notion that sugar-induced
steatosis is driven primarily by metabolic dysregulation rather than
excessive calorie intake. Our findings further build on this observation by
demonstrating the additional influence of the gut microbiota, suggesting
that microbial factors may amplify or modify the lipogenic response to
dietary sugar. Todoric et al. [41] further demonstrated that fructose
disrupts intestinal barrier integrity, leading to endotoxemia and hepatic
Tnfa expression, which activates SREBP-1c, promoting lipogenesis.
While our findings also implicate SREBP-1c in lipogenesis, we did not
observe increased hepatic expression of TNFa or other proinflammatory
genes, suggesting the involvement of alternative pathways. Further-
more, Zhao et al. [42] highlighted the role of gut microbiota in converting
fructose into acetate, which is transported to the liver and used as a
substrate for lipogenesis. However, our study found that the activation of
lipogenic genes in CONVR mice fed ZFD was not driven by gut
microbiota-derived acetate. This discrepancy points to other microbiota-
mediated mechanisms influencing lipogenesis.
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 5
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Figure 4: Srebf1 knockdown partially prevents ZFD-induced hepatic steatosis in CONVR mice. Mice were treated with Srebf1-specific ASO for 3 weeks and fed ZFD
(n ¼ 4e5/group). (A) Body weight gain, (B) relative EWAT weight, and (C) liver weight. (D) Representative micrographs of Oil Red O staining for neutral lipids. Scale bar ¼ 200 mm.
(E) Liver triglyceride-derived fatty acids and (F) relative amounts of SFA, MUFA, and PUFA. (G) Hepatic gene expression determined by qRT-PCR. Significant p values were
determined by Student’s t-test. Data are presented as mean � SD. Abbreviations: Srebf1 e sterol regulatory element binding transcription factor 1; ASO e antisense oligo-
nucleotide; SFA e saturated fatty acids; MUFA e monounsaturated fatty acids; PUFA e polyunsaturated fatty acids. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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We also find that ZFD induces steatosis in GF mice, possibly due to low
PUFA levels, which can increase SREBP-1c activity [43] and decrease
PPARa activity [44], leading to increased expression of lipogenic genes
like Elovl6 and Scd1 and a shift toward lipid synthesis.
We identified metabolites uniquely upregulated in ZFD-fed CONVR
mice, including several purine pathway metabolites. Elevated purine
metabolites are linked to increased xanthine oxidoreductase (XOR)
activity, which catalyzes their conversion to uric acid [45]. XOR activity
has been associated with hepatic oxidative stress and MAFLD devel-
opment [46]. and recent studies demonstrated that gut bacterial
metabolism influences host purine homeostasis [47]. It has also been
shown that excessive fructose intake causes lipid accumulation and
triglyceride synthesis via the purine degradation pathway [48]. How-
ever, it remains to be demonstrated if the purine metabolites identified
in this study drive or result from increased steatosis. It also remains to
be investigated if the altered gut microbiota following ZFD contributes
to the regulation of purine metabolism.
The transcriptional regulation of lipogenesis involves several factors,
with SREBP-1c being a key player [49]. Our findings show that Srebf1
expression is increased in CONVR mice fed ZFD, and its knockdown
reduces both Fasn expression and liver fat content. Notably, this
intervention did not affect body weight, aligning with prior observations
that reducing steatosis can occur independently of changes in body or
adipose tissue weight [50].
We observed a significant increase in the DNL precursor malonyl-CoA
in CONVR mice fed ZFD. Malonyl-CoA acts as a potent steric inhibitor of
carnitine palmitoyltransferase 1 (CPT1), limiting lipid transport into
mitochondria for b-oxidation (McGarry et al., 1978). This inhibition may
contribute to elevated hepatic lipid content by suppressing fatty acid
oxidation.
Taken together this study underscores the critical role of the gut
microbiota in mediating the metabolic effects of a high-sucrose, fat-free
6 MOLECULAR METABOLISM 97 (2025) 102162 � 2025 The Authors. Published by Elsevier G
diet, including its impact on lipogenesis and hepatic lipid metabolism. By
identifying SREBP-1c as a central regulator of diet- and microbiota-
induced lipogenesis, our findings provide valuable insights into the
mechanisms underlying diet-induced steatosis.
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