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Abstract
In this paper we develop a Neumann-Neumann type domain decomposition method
for elliptic problems on metric graphs. We describe the iteration in the continuous
and discrete setting and rewrite the latter as a preconditioner for the Schur comple-
ment system. Then we formulate the discrete iteration as an abstract additive Schwarz
iteration and prove that it converges to the finite element solution with a rate that is
independent of the finite element mesh size. We also show that the condition number
of the Schur complement is uniformly bounded with respect to the finite element mesh
size. We provide an implementation and test it on various examples of interest and
compare it to other preconditioners.

Keywords Quantum graphs · Elliptic partial differential equations · Nonoverlapping
domain decomposition methods · Finite element methods

Mathematics Subject Classification 35R02 · 65F08 · 65N22 · 65N55

1 Introduction

In recent decades differential operators on metric graphs have found a myriad of
applications when describing quasi-one-dimensional phenomena in a broad range of
fields, such as superconductivity in granular materials [1], classical wave propagation
in wave guide networks [2, 3], membrane potential of neurons [4], cell differentiation
[5], and optimal control [6–9].
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We consider a quantum graph; that is, a metric graph G equipped with an elliptic
differential operator on each edge and certain standard vertex conditions. The graph
consists of a finite set V of vertices and a finite set E of edges connecting pairs of
vertices. We assume that the graph is simple and does not contain parallel edges or
loops. Let n = |V| denote the number of vertices and m = |E| the number of edges.
We assume that the graph is directed; that is, each edge has a specified (but otherwise
arbitrary) orientation, and thus an origin and a terminal vertex. Each edge e ∈ E is
assigned a length �e ∈ (0,∞) and a local coordinate x ∈ [0, �e].

A function u on a metric graph G can be defined as a vector of functions and we
write u = (ue)e∈E, and consider it to be an element of a product function space, to be
specified later. Let ue(v) denote the value of u at v ∈ V along the edge e ∈ E.

To define the vertex conditions, let us denote by Ev the set of edges incident to the
vertex v ∈ V, and by dv = |Ev| the degree of v ∈ V. We denote by int(G) the set of
vertices with degree dv > 1 and by ∂G the set V\int(G). We seek solutions that are
continuous onG and satisfy the Neumann-Kirchhoff (often called standard) condition,
given as

∑

e∈E
u′
e(v) = 0, v ∈ V,

where the derivatives are assumed to be taken in the directions away from the vertex.
When there are (variable) diffusion coefficients or conductances present, represented
by the function c = (ce)e∈E defined on the graph, the Neumann-Kirchhoff condition
is defined as

∑

e∈E
ce(v)u′

e(v) = 0, v ∈ V.

If dv = 1, then this reduces to the classical zero Neumann boundary condition.
In order to write the vertex conditions more compactly, let us define the vector of

function values at v ∈ V as

U (v) = (ue(v)
)
e∈Ev ∈ R

dv

and the bi-diagonal matrix

Iv =
⎡

⎢⎣
1 −1

. . .
. . .

1 −1

⎤

⎥⎦ ∈ R
(dv−1)×dv .

Then IvU (v) = 0 ∈ R
dv−1 implies that the function values along the edges in Ev

coincide at v ∈ V. Similarly, we define

U ′(v) = (u′
e(v)

)
e∈Ev ∈ R

dv ,
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the vector of function derivative at v ∈ V and the row vector

C(v)� =
(
ce1(v) ce2(v) . . . cedv (v)

)
∈ R

1×dv .

Then C(v)�U ′(v) = 0 implies that the function u satisfies the Neumann-Kirchhoff
conditions at v ∈ V.

Then a quantum graph can be formally written as

⎧
⎪⎨

⎪⎩

−(ceu
′
e)

′(x) + pe(x)ue(x) = fe(x), x ∈ (0, �e), e ∈ E, (a)

0 = IvU (v), v ∈ int(G), (b)

0 = C(v)�U ′(v), v ∈ V, (c)

(1)

where the function p = (pe)e∈E represents a potential. The exact assumptions on the
functions u, c, p and f = ( fe)e∈E are to be defined later.

We wish to approximate the solution of (1) in the finite element framework. In [10]
a special finite element is assigned to the vertices that have a star shaped support on
the neighbouring edges ensuring the continuity of solutions, and use standard finite
elements on the edges. Then the authors prove usual error estimates and an upper bound
for the Neumann-Kirchhoff residual of the discrete solution. However, the size of the
corresponding stiffness matrix can grow quickly and it loses its banded (tridiagonal)
nature compared to one-dimensional problems.

Toovercome such issues,we investigate aNeumann-Neumann type nonoverlapping
domain decomposition method. Themathematical background of overlapping domain
decomposition methods originate from [11], which was further developed in [12–
14]. Later nonoverlapping methods gained attention due to their natural parallelism
and efficiency in numerical applications along with the growth of high performance
computing [15–17]. Many variants have been developed since, such as Lagrange mul-
tiplier based Finite Element Tearing and Interconnecting (FETI) methods [18, 19],
least squares-control methods [20, 21], and multilevel or multigrid methods [22–24].
In particular, Neumann-Neumann methods can be traced back to [25–28]. For intro-
ductory surveys we refer to [29, 30], see also [31, Chapter 7], while more thorough
theoretical background and historical overview can be found in [32–34].While certain
domain decomposition methods have been successfully designed and applied for opti-
mal control on networks [35–38] and its theory was established in [39], to the authors
knowledge, the performance and the convergence of Neumann-Neumann type itera-
tive substructuring methods was never addressed. First, we rewrite the method as a
preconditioner for the Schur complement system, then rigorously show via the abstract
additive Schwarz framework that the iteration converges to the finite element solution
with a geometric rate that is independent of the finite element mesh size, see Theorem
7. While preparing for this proof we also show, in Corollary 5, that the condition
number of the underlying Schur complement is uniformly bounded with respect to of
the finite element mesh size.

The paper is organized as follows. Section 2 contains a brief overview of the
abstract problem, the corresponding weak formulation and its FEM solution, and
the abstract additive Schwarz framework. In Section 3 we introduce the Neumann-
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Neumann method and prove its convergence to the FEM solution through the Schwarz
framework. We also formulate the method as a preconditioner to the Schur comple-
ment system. We note because of the quasi-one-dimensional nature of the problem
we can use powerful tools like Sobolev’s embedding, and thus our proofs are much
simpler and more transparent then that of classical domain decomposition methods
in two or more dimensions. Finally, in Section 4, we demonstrate the strength of our
approach through various examples and compare it to other preconditioners.

2 Preliminaries

Let L2(a, b) be the Hilbert space of real-valued square-integrable functions equipped
with the norm

‖ f ‖2L2(a,b) =
∫ b

a

∣∣ f (x)
∣∣2dx, f ∈ L2(a, b),

and L∞(a, b) be the Banach space of real-valued essentially bounded functions
equipped with the norm

‖ f ‖L∞(a,b) = ess sup
x∈(a,b)

∣∣ f (x)
∣∣, f ∈ L∞(a, b).

Let Hk(a, b) be the Sobolev space of real-valued square-integrable functions whose
generalized derivatives up to the kth order are also square-integrable, equipped with
the norm

‖ f ‖2Hk (a,b) =
k∑

j=0

∥∥∥ f ( j)
∥∥∥
2

L2(a,b)
, f ∈ Hk(a, b).

Finally, let C[a, b] be the Banach space of real-valued continuous functions equipped
with the supremum norm. Using these, we define the Banach spaces

L2(G) =
⊕

e∈E
L2(0, �e), L∞(G) =

⊕

e∈E
L∞(0, �e), Hk(G) =

⊕

e∈E
Hk(0, �e).

endowed with the natural norms

‖u‖2L2(G)
:=
∑

e∈E
‖ue‖2L2(0,�e)

, u = (ue)e∈E ∈ L2(G),

‖u‖2L∞(G) :=max
e∈E ‖ue‖L∞(0,�e) , u = (ue)e∈E ∈ L∞(G),

‖u‖2Hk (G)
:=
∑

e∈E
‖ue‖2Hk (0,�e)

, u = (ue)e∈E ∈ Hk(G).
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We note that the spaces L2(G) and Hk(G) are Hilbert spaces with the natural inner
products. Finally, we define the space of continuous functions defined on G as

C(G):=
{
u = (ue)e∈E

∣∣∣IvU (v) = 0, ∀e ∈ E : ue ∈ C[0, �e]
}
.

2.1 The abstract problem

On L2(G) we define the elliptic operator

Amax := diag

(
− dx

(
cedx

)
+ pe

)

e∈E
, D(Amax) = H2(G).

We further define the boundary operator B : D(Amax) �→ Y by

Bu =
[ (

IvU (v)
)
v∈V(

C(v)�U ′(v)
)
v∈V

]
, D(B) = D(Amax),

where the boundary space Y is isomorphic to R
2n endowed with the standard inner

product. Finally, we define

A := Amax, D(A) := {u ∈ D(Amax) : Bu = 0Y
}
.

Throughout the paper we assume that c = (
ce
)
e∈E : G �→ R is a positive Lipschitz

function, that the function p = (pe
)
e∈E ∈ L∞(G) satisfies ess inf x∈G p(x) ≥ p0 for

some p0 > 0, and that f = (
fe
)
e∈E ∈ L2(G). Using this, we can reformulate (1) as

follows: find u ∈ D(A) such that

Au = f . (2)

2.2 Weak formulation and FEM

While (2) is well-posed [40, Proposition 3.1], for our purposes it is convenient to
introduce a weak formulation of (1). The corresponding bilinear form a is defined as

a(u, v) =
∑

e∈E

(∫

e
ce(x)u

′
e(x)v

′
e(x)dx +

∫

e
pe(x)ue(x)ve(x)dx

)
,

D(a) = H1(G) ∩ C(G),

see [41, Lemma 3.3] and [42, Lemma 3.4]. We highlight that the Neumann-Kirchhoff
condition does not appear in this bilinear form or in its domain. Thus, we seek a
solution u ∈ D(a) such that

a(u, v) = f (v), v ∈ D(a), (3)

123



   27 Page 6 of 25 BIT Numerical Mathematics            (2025) 65:27 

where f (v):=〈 f , v〉L2(G). It is well-known that under our assumptions the symmetric
bilinear form a(·, ·) is bounded and coercive, and thus (3) is well-posed in light of
the Riesz representation theorem. Moreover, the unique solution of (3) is the unique
solution of (2).

Following [10] for the sake of notational simplicity we consider an equidistant
discretization on the edges. This approach and our subsequent analysis can be trivially
generalized to the nonequidistant case. We divide each edge e = (vea, v

e
b) into ne ≥ 2

intervals of length he ∈ (0, 1). For the resulting xej j=1,2,...,ne−1
nodes we introduce

the standard basis ψe
j j=1,2,...,ne−1

of hat functions

ψe
j (x) =

{
1 − |xej−x |

he
, if x ∈ [xej−1, x

e
j+1

]
,

0, otherwise,

where xe0 = vea and xene = veb. These functions are a basis of the finite-dimensional
space V e

h ⊂ H1
0 (0, �e) ∩ C[0, �e] of piecewise linear functions.

To each v we assign a special hat function φv supported on the neighbouring set
Wv of the vertex defined as

Wv =
⎛

⎝
⋃

e∈E:vea=v

[
v, xe1

]⎞

⎠ ∪
⎛

⎝
⋃

e∈E:veb=v

[
xene−1, v

]
⎞

⎠ .

Then φv is defined as

φv(x
e) =

{
1 − |xev−xe|

he
, if xe ∈ Wv,

0, otherwise,

where xev is either 0 or �e depending on the orientation of the edge.
We define the space

Vh(G) =
(
⊕

e∈E
V e
h

)
⊕ spanφvv∈V

of piecewise linear functions. Note, that Vh(G) ⊂ H1(G)∩C(G) by construction. Any
function wh ∈ Vh(G) is a linear combination of the basis functions:

wh(x) =
∑

e∈E

ne−1∑

j=1

αe
jφ

e
j (x) +

∑

v∈V
βvφv(x).

Thus the solution of (3) can be approximated by finding uh ∈ Vh(G) such that

a(uh, vh) = f (vh), vh ∈ Vh(G). (4)
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Equivalently, we can test only on the basis functions. Since the neighbouring set of
distinct vertices are disjoint we have that

a(wh, ψ
e
k ) =

∑

e∈E

ne−1∑

j=1

αe
j

∫

e

(
ceψ

e
j
′
ψe
k

′ + peψ
e
j ψ

e
k

)
dx

+
∑

v∈V
βv

∫

e

(
ceφv

′ψe
k

′ + peφvψ
e
k

)
dx = f (ψe

k ), k = 1, 2, . . . , ne−1, e ∈ E,

a(wh, φv) =
∑

e∈E

ne−1∑

j=1

αe
j

∫

e

(
ceψ

e
j
′
φv

′ + peψ
e
j φv
)
dx

+
∑

v∈V
βv

∫

e

(
ceφv

′φv
′ + peφvφv)dx = f (ψe

k ), v ∈ V.

(5)

Let us denote by

u =
[
uE
uV

]
, uE =

⎡

⎢⎢⎢⎣

ue1

ue2
...

uem

⎤

⎥⎥⎥⎦ , ue =

⎡

⎢⎢⎢⎣

ue1
ue2
...

uene−1

⎤

⎥⎥⎥⎦ , uV =

⎡

⎢⎢⎢⎣

uv1
uv2
...

uvn

⎤

⎥⎥⎥⎦

the vector of values that define the finite element function

uh(x) =
∑

e∈E

ne−1∑

j=1

uejφ
e
j (x) +

∑

v∈V
uvφv(x),

and by

f =
[
fE
fV

]
, fE =

⎡

⎢⎢⎢⎣

f e1

f e2
...

f em

⎤

⎥⎥⎥⎦ , f e =

⎡

⎢⎢⎢⎣

f e1
f e2
...

f ene−1

⎤

⎥⎥⎥⎦ , fV =

⎡

⎢⎢⎢⎣

fv1
fv2
...

fvn

⎤

⎥⎥⎥⎦

the vector of values

f ek =
∫

e
f ψe

k dx, fv =
∫

Wv

f φvdx .

Then (5) can be rewritten as

Au = f , (6)

where the stiffness matrix A has a block structure as follows:

A =
[
AE AEV
AVE AV

]
+
[
BE BEV
BVE BV

]
.
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Here

1. the matrix AE = diag(Ae)e∈E is block diagonal and the entries of the tridiagonal
matrix Ae are given by

[Ae] jk =
∫

e
ceψ

e
j
′
ψe
k

′dx, j, k = 1, 2, . . . , ne − 1

2. the entries of the blocks of A�
EV = AVE = (Ae)e∈E are given by

[Ae]vk =
∫

Wv

ceφv
′ψe

k
′dx, k = 1, 2, . . . , ne − 1, v ∈ V,

3. the entries of the diagonal matrix AV = diag(Av)v∈V are given by

Av =
∫

Wv

ceφv
′φv

′dx,

4. the matrix BE = diag(Be)e∈E is block diagonal and the entries of the tridiagonal
matrix Be are given by

[Be] jk =
∫

e
peψ

e
j ψ

e
k dx, j, k = 1, 2, . . . , ne − 1

5. the entries of the blocks of B�
EV = BVE = (Be)e∈E are given by

[Be]vk =
∫

Wv

peφvψ
e
k dx, k = 1, 2, . . . , ne − 1, v ∈ V,

6. the entries of the diagonal matrix BV = diag(Bv)v∈V are given by

Bv =
∫

Wv

peφvφvdx .

Similarly to standard error estimates in the FEM framework the H1(G) error of the
finite element solution uh and the weak solution u isO(ĥ), where ĥ:=maxe∈E he and
the L2(G) error is O(ĥ2), see [10, Theorem 3.2] for the special case when c ≡ 1 and
[40, Propositions 6.1-6.2] for the general case.

2.3 Abstract additive Schwarz framework

In this section we recall the abstract Schwarz framework based on [34, 43]. Let V be a
finite dimensional space with inner product b(u, v) and consider the abstract problem

b(u, v) = f (v), v ∈ V . (7)
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Let

V = V1 + V2 + · · · + VN

be a not necessarily direct sum of spaces with corresponding symmetric, positive
definite bilinear forms bi (·, ·) defined on Vi × Vi . Define the projection-like operators
Ti : V �→ Vi by

bi (Tiu, vi ) = b(u, vi ), vi ∈ Vi

and let

T = T1 + T2 + · · · + TN .

Note that if bi (u, v) = b(u, v) then the operator Ti is equal to the b(·, ·)-orthogonal
projection Pi . However, the generality of this framework allows the use of inexact
local solvers.

The operator T is used to equivalently reformulate (7) as

Tu = g =
N∑

i=1

gi =
N∑

i=1

Tiu, (8)

where gi is obtained by solving

bi (gi , vi ) = b(u, vi ) = f (v), vi ∈ Vi .

The following theorem is the cornerstone of the abstract additive Schwarz frame-
work [43, Theorem 1].

Theorem 1 Assume that

(i) there exists a constant C0 > 0 such that there exists a decomposition u =∑N
i=1 ui for all v ∈ V , where ui ∈ Vi , such that

N∑

i=1

bi (ui , ui ) ≤ C2
0b(u, u),

(ii) there exists a constant ω > 0 such that the inequality

b(ui , ui ) ≤ ωbi (ui , ui ), ui ∈ Vi

holds for i = 1, 2, . . . , N,
(iii) there exist constants εi j ≥ 0 such that

b(ui , u j ) ≤ εi j b
1
2 (ui , ui )b

1
2 (u j , u j ), ui ∈ Vi , u j ∈ Vj ,
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for i, j = 1, 2, . . . , N.

Then T is invertible and

C−2
0 b(u, u) ≤ b(Tu, u) ≤ ρ(E)ωb(u, u), u ∈ V ,

where ρ(E) is the spectral radius of the matrix E = εi j
N
i, j=1.

Theorem 1 ensures the existence of a unique solution of (8) and provides the
bound κ(T ) ≤ C−2

0 ρ(E)ω for the condition number of T w.r.t. the inner product
b(·, ·), through its Rayleigh quotient. Thus, an upper bound can be computed for the
geometric convergence rate of a conjugate gradient (CG) or minimal residual method
applied to (8).

3 Neumann-Neumannmethod

In [10] the authors proposed a nonoverlapping decomposition, where each subdomain
consistedof a single edge.Wegeneralize this approachbydecomposingG into arbitrary
disjoint (w.r.t. its edges) subgraphs

{
Gi = (Vi , Ei )

}
i=1,2,...,N with ni = |Vi | and

mi = |Ei |. We note that each subgraph is itself a metric graph and that a subgraph
may consist of only one edge. The set of vertices that are shared on the boundary of
multiple subgraphs will be denoted with� and called the interface. The corresponding
function values are denoted as u� = (u(v)

)
v∈�

.

3.1 Continuous version

The idea of Neumann-Neumann methods is to keep track of the interface values and
iteratively update these values based on the deviation from the Neumann-Kirchhoff
condition. Formally, we start the algorithm from a zero (or any inexpensive) initial
guess u0� . For n ≥ 0 the new iterate is computed as follows: first we solve the Dirichlet
problems

(Di )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fe(x) = −(ceu
k+ 1

2
e

′
)′(x) + pe(x)u

k+ 1
2

e (x), x ∈ (0, �e), e ∈ Ei , (a)

0 = IvU
k+ 1

2
i (v), v ∈ Vi\�, (b)

uk�(v) = U
k+ 1

2
i (v), v ∈ Vi ∩ �, (c)

0 = Ci (v)�U
k+ 1

2
i

′
(v), v ∈ Vi\�. (d)

Here the functionCi is the restriction ofC toGi . Note, thatwe impose natural boundary
conditions on the set of vertices ∂Gi ∩ ∂G, but we will still refer to these problems as
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Dirichlet problems. Thenwe compute the solutions of the residual Neumann problems

(Ni )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = −(cew
k+1
e

′
)′(x) + pe(x)w

k+1
e (x), x ∈ (0, �e), e ∈ Ei , (a)

0 = IvW
k+ 1

2
i (v), v ∈ Vi\�, (b)

0 = Ci (v)�Wk+1
i

′
(v), v ∈ Vi\�, (c)

∑

i :v∈Vi
Ci (v)�U

k+ 1
2

i

′
(v) = Ci (v)�Wk+1

i
′
(v), v ∈ Vi ∩ �. (d)

Finally, we update the interface values as

uk+1
� (v) = uk�(v) − θ

∑

e∈Ev
wk+1
e (v), v ∈ �,

with an appropriate θ ∈ (0, θmax), for some θmax > 0 [34, Chapter C.3].

3.2 Discrete version

In this section we briefly overview some technical tools essential for our subsequent
results based on [32, 34]. While in our analysis we will mostly rely on variational
notations we will introduce some of the tools in matrix form. For the sake of nota-
tional simplicity the following introduction is carried out for a decomposition into two
subgraphs.

Let us consider the linear equation Au = f arising from the finite element approx-
imation of an elliptic problem on the quantum graph G = (V, E), where A is a
symmetric, positive definite matrix. We assume that G is partitioned into two nonover-
lapping subgraphs

{
Gi = (Vi , Ei )

}
i=1,2; that is, we have that

E = E1 ∪ E2, E1 ∩ E2 = ∅, � = V1 ∩ V2.

We recall that in traditional domain decomposition methods we would require that the
solution be continuous along the interface and that the normal derivatives w.r.t. the
domains sum to zero; that is, they are virtually identical to the continuity andNeumann-
Kirchhoff conditions at the vertices. We highlight, that while the latter condition is
quite natural and has a clear interpretation for quantum graphs, it is not straightforward
to define its functional meaning for problems on domains.

3.2.1 Subassembly and Schur complement systems

Let us partition the degrees of freedom into those internal to G1 and to G2, and those
on � and introduce

A =
⎡

⎢⎣
A(1)
I I 0 A(1)

I�

0 A(2)
I I A(2)

I�

A(1)
� I A(2)

� I A��

⎤

⎥⎦ , u =
⎡

⎣
u(1)
I

u(2)
I
u�

⎤

⎦ , f =
⎡

⎣
f (1)
I

f (2)
I
f�

⎤

⎦ .
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A crucial observation is that the stiffness matrix A and load vector f can be subassem-
bled from the corresponding components of the (two) subgraphs. If for i = 1, 2 we
denote by

f (i) =
[
f (i)
I

f (i)
�

]
, A(i) =

[
A(i)
I I A(i)

I�

A(i)
� I A(i)

��

]

the right hand sides and local stiffness matrices of the corresponding elliptic problems
with Neumann conditions, then we have that

A�� = A(1)
�� + A(2)

��, f� = f (1)
� + f (2)

� .

We can find an approximation of the coupled problem as

⎧
⎪⎪⎨

⎪⎪⎩

A(i)
I I u

(i)
I + A(i)

I�u
(i)
� = f (i)

I , i = 1, 2

u(1)
� = u(2)

� =: u�

A(1)
� I u

(1)
I + A(1)

��u
(1)
� − f (1)

� = −(A(2)
� I u

(2)
I + A(2)

��u
(2)
� − f (2)

�

) =: λ�,

(9)

which is equivalent to (6). Clearly, if we know the boundary values u� or the approx-
imate normal derivative λ� the approximate solution inside the domains can be
computed by separately solving two Dirichlet or two Neumann problems, respec-
tively. Two well-known corresponding families of domain decomposition algorithms
are the Neumann-Neumann and FETI methods. In this article we focus on the former.

To prepare our formal analysis the first standard step of iterative substructuring
methods is to eliminate the unknowns u(i)

I with a block factorization

A =
⎡

⎣
I 0 0
0 I 0

A(1)
� I A

(1)
I I

−1
A(2)

� I A
(2)
I I

−1
I

⎤

⎦

⎡

⎣
A(1)
I I 0 A(1)

I�

0 A(2)
I I A(2)

I�
0 0 S

⎤

⎦ ,

where I is the identity matrix and S = A�� − A(1)
� I A

(1)
I I

−1
A(1)
I� − A(2)

� I A
(2)
I I

−1
A(2)
I� is the

Schur complement relative to the unknowns on �. The corresponding linear system is
given by

⎡

⎣
A(1)
I I 0 A(1)

I�

0 A(2)
I I A(2)

I�
0 0 S

⎤

⎦ u =
⎡

⎣
f (1)
I

f (2)
I
g�

⎤

⎦ ,

where g� = f� − A(1)
� I A

(1)
I I

−1
f (1)
I − A(2)

� I A
(2)
I I

−1
f (2)
I . This can be further reduced to

the Schur complement system

Su� = g�. (10)
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The Schur complement S is a sparse matrix that has the same sparsity pattern as the
graph Laplacian of the underlying graph G [10, 44]. The fact that A�� and f� can
be subassembled from local contributions shows that the same holds for S and g� .
Indeed, if for i = 1, 2 we define the local Schur complements by

S(i) := A(i)
�� − A(i)

� I A
(i)
I I

−1
A(i)
I�

and

g(i)
� = f (i)

� − A(i)
� I A

(i)
I I

−1
f (i)
I ,

we have that S = S(1) + S(2) and g� = g(1)
� + g(2)

� . We recall the elementary fact that
the Schur complement of an invertible block w.r.t. a positive definite matrix is also
positive definite.

Let us define the discrete version of the Neumann-Neumann iteration. Starting from
a cheap initial guess u0� , in an iteration first we solve the Dirichlet problems

(Di ) A(i)
I I u

(i),k+ 1
2

I + A(i)
I�u

k
� = f (i)

I , i = 1, 2,

then using the approximation r� for the flux residual (see the third row of (9)) we
solve the Neumann problems

(Ni )

[
A(i)
I I A(i)

I�

A(i)
� I A(i)

��

][
w

(i),k+1
I

w
(i),k+1
�

]
=
[
0
r�

]
, i = 1, 2.

Finally, we update the interface values as

uk+1
� = uk� − θ

(
w

(1),k+1
� + w

(2),k+1
�

)
.

Eliminating the variables interior to the subdomains of both Dirichlet and Neumann
problems shows that

uk+1
� − uk� = θ

(
S(1)−1 + S(2)−1

)(
g� − Suk�

);

that is, the Neumann-Neumann algorithm is a preconditioned Richardson iteration for

(10) using S(1)−1 + S(2)−2
as a preconditioner. Often an improved convergence rate

can be reached if a further diagonal scaling is used based on the degrees of the vertices
on � leading to a preconditioner of the form

D−1
�

(
S(1)−1 + S(2)−1

)
D−1

� ,

where the diagonal elements of D� are dv for v ∈ �. We note that we formulate this
Richardson iteration mainly for historical reasons and to avoid the inconvenience of
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expressing the update of u� in the case of a more sophisticated iteration. However, in
practice, one should instead use a preconditioned conjugate gradient (PCG) orminimal
residual method. Furthermore, the S(i) matrices and especially their inverses should
usually not be formed, unless the solver is to be reused multiples times, since we only
need to know their effect when applied to a vector. Indeed, instead of multiplying
with S(i) (and in particular with the inverse of A(i)

I I ) we solve a Dirichlet problem and

instead of multiplying with S(i)−1
we solve a Neumann problem. The complexity of

each iteration is O(mnE), where nE = maxe∈E ne.
Other well-known iterative substructuring methods can similarly be character-

ized by finding a preconditioner for (10). For example, the Dirichlet-Neumann (or

Neumann-Dirichlet) corresponds to multiplying the equation with S(2)−1
(or S(1)−1

).

Then the preconditioned operator S(2)−1
S = I + S(2)−1

S(1) corresponds to solving a
Dirichlet problem on one subgraph and then solving a Neumann problem on the other.

If we partition G into many subgraphs a region is called floating if ∂Gi ∩ ∂G = ∅.
On floating subgraphs Neumann problems of certain elliptic equations, for example if
there is no potential, are not uniquely solvable. A possible solution is to use balancing
Neumann-Neumann methods, in which we choose a unique solution according to
some compatibility condition. In this case the subsequent proof have to be slightly
modified, see [34] for more details.

Finally, the use of domain decomposition was proposed in [10], where the Schur
complement system was solved with conjugate gradient method equipped with diag-
onal or polynomial preconditioner. These preconditioners are obtained by truncating
the Neumann series expansion of

S−1 = (I − D−1
S (DS − S)

)−1
D−1

S =
∞∑

k=0

(
D−1

S (DS − S)
)k
D−1

S

to zeroth and first order, respectively, where DS is a diagonal matrix containing the
diagonal elements of S.While the assembly of S can be avoided, the diagonal DS needs
to be extracted, for example via probing techniques or approximated with randomized
methods [45, 46]. This means that preparing a diagonal or polynomial preconditioner
can bemore expensive than theNeumann-Neumannpreconditioner, but the complexity
of a single iteration is the same for all of them. Alternatively, diagonal preconditioning
can be performed with D−1

� instead of D−1
S . This diminishes the cost of preparing the

preconditioner but yields similar results, as in certain cases the Schur complement is
equal to the graph Laplacian of G, see [10, Theorem 4.3].

While usually the condition number of the stiffness matrix A is O(ĥ−2
)
and that

of the Schur complement S isO(ĥ−1
)
, the authors in [10] observed that for scale-free

graphs the condition number of S seems to be independent of ĥ and proportional to
the maximum degree. Furthermore, the dependence on the degree could be rectified
with diagonal or polynomial preconditioning. However, these are purely algebraic
preconditioners without the formalism of subdomains and without rigorous analysis.
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3.2.2 Discrete harmonic functions

The space of discrete harmonic functions is an important subspace of finite element
functions and are directly related to the Schur complements and to the interface values
u� .

Let us define for u, v ∈ Vh(G) the bilinear forms corresponding to the global
stiffness matrix A and local stiffness matrices Ai as

a(u, v) = u�Av =
N∑

i=1

a(i)(u, v) =
N∑

i=1

u(i)�
I A(i)v

(i)
I .

A function u(i) defined on Gi is said to be discrete harmonic on Gi if

A(i)
I I u

(i)
I + A(i)

I�u
(i)
� = 0. (11)

Clearly such a function is completely defined by its values onVi∩� and it is orthogonal,
in the ai (·, ·)-inner product, to the space Vh(G)∩H1

0 (Gi ,Vi ∩�), where H1
0 (G,VD) ⊂

H1(G) is the Sobolev space of functions that vanish on VD ⊂ V.We denote the discrete
harmonic extension as u(i) =: Hi

(
u(i)

�

)
.

We denote the space of global, piecewise discrete harmonic functions by Vh(�) ⊂
Vh(G), which consists of functions that are discrete harmonic on each subgraph. Based
on subassembly arguments a function u is in Vh(�) if and only if AI I u I + AI�u� = 0
and such a function is completely determined by its values on the interface�. The space
Vh(�) is orthogonal, in the a(·, ·)-inner product, to each space Vh ∩ H1

0 (Gi ,Vi ∩ �).
We denote the piecewise discrete harmonic extension as u =: H(u�).

In the subsequent analysis we will also rely on the bilinear form defined by the
Schur complement given by

s(u, v) = u�
� Sv�.

We recall that s(·, ·) is symmetric and coercive.
The preceding argument shows that Neumann-Neumann methods can be regarded

as computing the global, piecewise discrete harmonic part of the solution of (4) by
defining an appropriate preconditioner for the Schur complement S. Before we inves-
tigate the convergence we must show the equivalence of the interface space, the Schur
complement energy and the space of piecewise discrete harmonic functions in H1. The
following Lemma shows the energy equivalence of the Schur complement systems and
piecewise discrete harmonic functions.

Lemma 2 Let u(i)
� be the restriction of a finite element function to Vi ∩�. The discrete

harmonic extension u(i) = Hi
(
u(i)

�

)
satisfies

si
(
u(i), u(i)) = ai

(
u(i), u(i)) = min

v(i)|Vi∩�=u(i)
�

ai
(
v(i), v(i)).
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Similarly, if u� is the restriction of a finite element function to�, the piecewise discrete
harmonic extension u = H(u�) satisfies

s(u, u) = a(u, u) = min
v|�=u�

a(v, v). (12)

Proof The statement follows directly from the definition of (piecewise) discrete har-
monic functions in (11). ��

We define di = ∣∣Vi ∩ �| to be the number of vertices of Gi on the interface
and the norm ‖·‖Vi∩� = ‖·‖

R
di . Let Ai,max : H2(Gi ) �→ L2(Gi ) be the operator

corresponding to Gi inherited from G with D(Ai,max) = H2(Gi ) and define B̃i :
D(Ai,max) �→ Ỹi by

B̃i u =
[ (

IvU (v)
)
v∈Vi(

C(v)�U ′(v)
)
v∈Vi\�

]
, D(B̃i ) = D(Ai,max),

where Ỹi � R
2ni−di . Finally, we define the continuous operator Ãi : H2(Gi ) �→

L2(Gi ) as

Ãi := Ai,max, D(Ãi ) := {u ∈ D(Ai,max) : B̃i u = 0Ỹi

}
.

That is, a function u ∈ D(Ãi ) is continuous and satisfies the Neumann-Kirchhoff
condition at the vertices but not necessarily on the interface �. A function u ∈ D(Ãi )

is said to be harmonic onGi if u ∈ Ker(Ãi ). A function u ∈ H2(G)∩C(G) is said to be
piecewise harmonic if u

∣∣
Gi

∈ D(Ãi ) ∩Ker(Ãi ). Similarly to the discrete case, such a
function is expected to be completely determined by the values atVi ∩�. The following
lemma establishes the existence of the harmonic extension and the equivalence of the
interface space and the space of piecewise harmonic functions in H2(Gi ).

Lemma 3 For given boundary data u� there exists a unique harmonic extension into
Gi , and consequently a unique piecewise harmonic extension u intoG. Moreover, there
exist positive constants c and C such that

c ‖u�‖2Vi∩� ≤ ‖u‖2H2(Gi )
≤ C ‖u�‖2Vi∩� .

Proof Let us define the L : H2(Gi ) �→ R
di trace operator. Then for any v ∈ H2(Gi )

we have that

‖Lv‖Vi∩� ≤ ‖v‖L∞(Gi ) ≤ c ‖v‖H1(Gi )
≤ c ‖v‖H2(Gi )

. (13)

Clearly A0:=Ãi
∣∣
Ker(L)

is the generator of a strongly continuous semigroup [42], see
also [47, Section 6.5.1]. We have that 0 is in the resolvent set ofA0 sinceA0 is invert-
ible, and thus [48, Lemma 1.2] shows that L

∣∣
Ker(Ãi )

is an isomorphism of Ker(Ãi )
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onto R
di ; that is, the following inequality holds

‖u‖H2(Gi )
≤ C ‖Lu‖Vi∩� ,

and the proof is finished. ��
Finally, the following lemma shows that a similar statement holds for discrete

harmonic functions.

Lemma 4 Let u be a piecewise discrete harmonic function on G. Then there exist
positive constants c and C independent of ĥ such that

c ‖u�‖2Vi∩� ≤ ‖u‖2H1(Gi )
≤ C ‖u�‖2Vi∩� .

Consequently, for some positive constants c̃ and C̃ independent of ĥ, we have that

c̃
N∑

i=1

‖u�‖2Vi∩� ≤ s
(
u, u

) ≤ C̃
N∑

i=1

‖u�‖2Vi∩� . (14)

Proof Let u be piecewise discrete harmonic on G with boundary data u� . The first
inequality follows from (13). For the second inequality, let us consider the harmonic
extension v ∈ H2(Gi ) of u� into Gi , which uniquely exists in light of Lemma 3.
Furthermore, the function v is continuous and the standard linear interpolation operator
Ih can be used resulting in the finite element function Ihv ∈ H1(Gi ). Then by (12)
we have that

‖u‖H1(Gi )
≤ Cai (u, u) ≤ Cai (Ihv, Ihv) ≤ C ‖Ihv‖H1(Gi )

,

since the H1(Gi ) norm is equivalent with the ai (·, ·)-norm. Furthermore,

‖Ihv‖H1(Gi )
≤ ‖Ihv − v‖H1(Gi )

+ ‖v‖H1(Gi )
≤ (Cĥ + 1) ‖v‖H2(Gi )

≤ C ‖u�‖Vi∩� .

The third inequality is shown in the proof of [10, Theorem3.2] and in the last inequality
we used Lemma 3. ��

Let us define d = |�|, the norm ‖·‖� = ‖·‖Rd and dmax = maxv∈�

∣∣{ j : v ∈ V j
}∣∣.

Then (14) implies that

c ‖u�‖2
Rd ≤ s(u, u) ≤ Cdmax ‖u�‖2

Rd .

The following statement is an immediate consequence.

Corollary 5 The condition number κ(S) of the Schur complement S is uniformly
bounded in ĥ and satisfies the explicit bound κ(S) ≤ Cdmax, for some C > 0 that is
independent of ĥ.

We note that this phenomenonwas already observed, although not rigorously inves-
tigated, for scale-free graphs in [10].

123



   27 Page 18 of 25 BIT Numerical Mathematics            (2025) 65:27 

3.3 Schwarz iteration

With the above auxiliary results we can reformulate the Neumann-Neumann method
as an abstract additive Schwarz iteration. We choose V = Vh(�) and Vi = Vi (�),
where Vi (�) ⊂ Vh(�) denotes the subspace of discrete harmonic functions that vanish
on �\Vi . For the bilinear forms we set b(u, v) = s(u, v) on V × V and

bi (u, v) = si
(
Ih(νi u), Ih(νiv)

) = ai
(Hi (νi u),Hi (νiv)

)

on Vi × Vi . The counting functions νi are defined on � ∪ ∂G by

νi (v) =
{∣∣{ j : v ∈ V j

}∣∣, v ∈ (� ∩ Vi ) ∪ ∂Gi ,

0, v ∈ �\Vi .

The pseudoinverses ν
†
i of the νi functions, given as

ν
†
i (v) =

{
ν−1
i (v), v ∈ (� ∩ Vi ) ∪ ∂Gi ,

0, v ∈ �\Vi ,

define a partition of unity on � ∪ ∂G; that is,

N∑

i=1

ν
†
i (v) ≡ 1, v ∈ � ∪ ∂G.

Finally, the operators Ti : V �→ Vi are defined by

bi (Tiu, v) = b(u, v), v ∈ Vi ,

and the operator T by

T = T1 + T2 + · · · + TN . (15)

Proposition 6 The operator T defined by (15) is invertible and for all u ∈ V the
following inequality holds

γ0s(u, u) ≤ s(Tu, u) ≤ γ1ρ(E)s(u, u),

where γ0 and γ1 are constants independent of ĥ, where E = εi j
N
i, j=1 is defined ele-

mentwise by

εi j =
{
1, Vi ∩ V j �= ∅,

0, otherwise.
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Proof We have to establish the three estimates of Theorem 1.
Assumption (i): For u ∈ V we choose ui = Ih

(
ν
†
i u
)
, i = 1, 2, . . . , N . Clearly,

ui ∈ Vi and u =∑N
i=1 ui holds, and

bi (ui , ui ) = ai (Hi u,Hi u) = ai (u, u).

By subassembly, this shows that

N∑

i=1

bi (ui , ui ) = a(u, u) = s(u, u) = b(u, u).

Assumption (ii): For ui ∈ Vi we have that

s(ui , ui ) = si (ui , ui ) +
∑

j :V j∩Vi �=∅
s j (ui , ui ).

Using Lemma 4 shows that si (ui , ui ) ≤ C ‖ui‖Vi∩� and that

s j (ui , ui ) ≤ C ‖ui‖2V j∩� ≤ C ‖ui‖2Vi∩� ,

since ui ∈ Vi , and thus ui (x) = 0 for x ∈ (V j ∩ �)\Vi . Using Sobolev’s embedding
we can further bound ‖ui‖2Vi∩� as

‖ui‖2Vi∩� ≤ C ‖ui‖2L∞(Gi )
≤ C ‖ui‖2H1(Gi )

≤ Cai (ui , ui )

= Csi (ui , ui ) ≤ Csi
(
Ih(νi ui ), Ih(νi ui )

) = Cbi (ui , ui ).

Combining the above yields b(ui , ui ) ≤ Cbi (ui , ui ) for ui ∈ Vi as required.
Assumption (iii): It is easy to see that

εi j =
{
1, Vi ∩ V j �= ∅,

0, otherwise,

as Vi ∩ Vj �= ∅ if and only if Vi ∩ V j �= ∅. ��
This shows that the condition number of the preconditioned system is independent

of ĥ. We note that ρ(E) ≤ dmax via Gershgorin’s theorem. Finally, we state our main
theorem.

Theorem 7 The Neumann-Neumann algorithm converges to the solution of (6) with
a geometric rate that is independent of ĥ.

Proof The statement follows from Proposition 6 and Lemma 4. ��
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Remark 8 We note that in a multidimensional setting one usually assumes that the
substructures and the elements are shape regular, meaning that the number of neigh-
bours of any subdomain, and thus ρ(E), is bounded by a constant. Furthermore, the
verification of assumption (i) and (ii) is more challenging, and accordingly the esti-
mates on s(Tu,u)

s(u,u)
are more complicated. In particular, usually polylogarithmic bounds

of the form h̃−2
(
1+ log h̃

ĥ

)2
appear, where h̃ denotes the size of a typical subdomain,

see [34, 43]. The main technical difficulty is the fact that the boundary spaces of the

domains are equipped with the H
1
2 Sobolev-Slobodeckij seminorm, which cannot be

so straightforwardly estimated as in our case.

4 Numerical experiments

In this sectionwe introduce and discuss somenumerical experiments. TheC++ imple-
mentation mainly relies on Eigen 3.4.0 and is compiled with GCC 13.2.1. The graphs
are generated with NetworkX 3.1 in Python 3.11.6. The experiments have been per-
formed on a computer with Intel(R) Core(TM) i7-8565U CPU@ 1.80GHz and 16 GB
of RAM. The Schur complement problems are solved respectively without precondi-
tioning, with degree preconditioning, with diagonal preconditioning, with first-degree
polynomial preconditioning and finally, with Neumann-Neumann preconditioning.
While our convergence theory holds for arbitrary (nonoverlapping) decomposition, in
all experiments, we completely decompose the quantum graph so that each subgraph
consists of a single edge. Despite this, to anticipate more general decompositions,
we solve the subproblems with Cholesky decomposition without assembling the S(i)

matrices or their inverses. The DS diagonal is extracted in a naive way by solving n
equations where the right-hand sides are set to unit vectors of R

n . We set the length of
each edge to 1. Furthermore, the ce conductances are set to sigmoid functions, the pe
potentials are set to double-well functions and the fe forcing is set as a short shock at
the start of the edges; that is, we have

ce(x) = 1

1 + exp
(− 25(x − 0.5)

) + 1,

pe(x) = 0.05

0.22
(|x − 0.5| − 0.2

)2 + 0.05,

fe(x) = exp(−1000x2).

The initial guess is set to the zero vector and the iteration is stopped after the relative
residual norm reduces below the square root of the machine precision ε ≈ 2.2204 ·
10−16.

While Corollary 5 shows that condition number of the Schur complement is inde-
pendent of ĥ, it might still increase as the number of vertices, and thus the maximum
degree grows, as indicated by the results below. Interestingly, this dependence is
already somewhat mitigated with a diagonal preconditioner and seemingly elimi-
nated with a polynomial or Neumann-Neumann preconditioner. Instead, the condition

123



BIT Numerical Mathematics            (2025) 65:27 Page 21 of 25    27 

Fig. 1 The graphs DGM(1), DGM(2) and DGM(3)

Table 1 Number of PCG iterations for the Schur complement systems of Dorogovtsev-Goltsev-Mendes
graphs of increasing size with log2

(
ĥ−1) = 6

Graph No prec. Degree Diagonal Polynomial Neumann-Neumann

DGM(5) 26 14 13 9 10

DGM(6) 35 14 13 11 11

DGM(7) 53 15 15 12 12

DGM(8) 73 19 16 13 14

DGM(9) 90 20 19 13 14

number of these preconditioners seem to only scale with the average degree. In fact,
we found that for small graphs with |V| � 1000 solving the Schur complement sys-
tem without preconditioning is the fastest independently of ĥ, but for larger graphs
preconditioning is more and more crucial as log2

(
ĥ−1
)
increases.

4.1 Dorogovtsev-Goltsev-Mendes graphs

The first set of test graphs are a family of scale-free planar graphs introduced in [49],
defined iteratively as follows. The graph DGM(0) is the path graph with two ver-
tices. The graph DGM(k + 1) is generated from DGM(k) by adding a new vertex for
each edge and connecting it with the endpoint of the edge. The graph DGM(k) has
|V| = 3

2

(
3k + 1

)
and |E| = 3k . Figure 1 shows the first few graphs of this iteration.

First we set log2
(
ĥ−1
) = 6 and apply PCG to the Schur complement system of DGM

graphs of increasing size. Table 1 shows the number of necessary iterations with-
out preconditioning and with degree, diagonal, polynomial and Neumann-Neumann
preconditioning. Table 2 shows the same for DGM(7) with increasing log2

(
ĥ−1
)
.

4.2 Barabási-Albert model

Next, we test our method on scale-free graphs with |E| ≈ 2|V| generated using the
Barabási-Albert model [50]. Unlike the DGM graphs, which are generated determin-
istically, the Barabási-Albert model has randomness involved, and thus the following
results have to be understood in a probabilistic sense.
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Table 2 Number of PCG iterations for the Schur complement system of DGM(7) with increasingly finer
meshes

log2
(
ĥ−1) No prec. Degree Diagonal Polynomial Neumann-Neumann

4 53 15 15 12 12

6 53 15 15 12 12

8 53 15 15 12 12

10 53 15 15 12 12

12 59 15 15 12 12

Table 3 Number of PCG iterations for the Schur complement systems of scale-free graphs of increasing
size with log2

(
ĥ−1) = 6

Graph No prec. Degree Diagonal Polynomial Neumann-Neumann

SF(100) 39 25 25 13 13

SF(500) 63 28 28 15 15

SF(1000) 74 29 29 15 15

SF(2000) 90 28 28 15 15

SF(5000) 106 28 28 14 14

Table 4 Number of PCG iterations for the Schur complement system of SF(100) with increasingly finer
meshes

log2
(
ĥ−1) No prec. Degree Diagonal Polynomial Neumann-Neumann

4 73 29 29 15 15

6 74 29 29 15 15

8 74 29 29 15 15

10 75 29 29 15 15

12 74 29 29 15 15

5 Conclusion

Again,we set log2
(
ĥ−1
) = 6 and apply PCG to the Schur complement systemof scale-

free graphs of increasing size. Table 3 shows the number of necessary iterationswithout
preconditioning and with degree, diagonal, polynomial and Neumann-Neumann pre-
conditioning. Table 4 shows the same for SF(1000) with increasing log2

(
ĥ−1
)
.
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