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Richard de Grijs10,11,19, Bailey Martin1 , David Moise Nataf20, Melissa Ness1,2, Adam D. Rains12, Tim Scarr1,
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Abstract
The stars of the Milky Way carry the chemical history of our Galaxy in their atmospheres as they journey through its vast expanse. Like
barcodes, we can extract the chemical fingerprints of stars from high-resolution spectroscopy. The fourth data release (DR4) of the Galactic
Archaeology with HERMES (GALAH) Survey, based on a decade of observations, provides the chemical abundances of up to 32 elements
for 917 588 stars that also have exquisite astrometric data from the Gaia satellite. For the first time, these elements include life-essential
nitrogen to complement carbon, and oxygen as well as moremeasurements of rare-earth elements critical tomodern-life electronics, offering
unparalleled insights into the chemical composition of the Milky Way. For this release, we use neural networks to simultaneously fit stellar
parameters and abundances across the whole wavelength range, leveraging synthetic grids computed with Spectroscopy Made Easy. These
grids account for atomic line formation in non-local thermodynamic equilibrium for 14 elements. In a two-iteration process, we first fit
stellar labels to all 1 085 520 spectra, then co-add repeated observations and refine these labels using astrometric data from Gaia and 2MASS
photometry, improving the accuracy and precision of stellar parameters and abundances. Our validation thoroughly assesses the reliability of
spectroscopic measurements and highlights key caveats. GALAH DR4 represents yet another milestone in Galactic archaeology, combining
detailed chemical compositions frommultiple nucleosynthetic channels with kinematic information and age estimates. The resulting dataset,
covering nearly a million stars, opens new avenues for understanding not only the chemical and dynamical history of the Milky Way but
also the broader questions of the origin of elements and the evolution of planets, stars, and galaxies.
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1. Introduction and workflow

1.1. Motivation

The history of our Milky Way galaxy is written in starlight. By
capturing and analysing the light from millions of stars, which are
now millions or billions of years old, we can uncover the chemical
compositions embedded in their atmospheres since birth and
use stars as time capsules into the past evolution of the Milky
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Way. The light of stars can thus guide us to explore and map our
environment and Country, just as it has guided Aboriginal and
Torres Strait Islander peoples and their astronomers for tens of
thousands of years.

With this fourth data release (DR4) from the Galactic
Archaeology with HERMES (GALAH) Survey, we are proudly
publishing the next set of measurements of stellar chemical abun-
dances for almost a third of the elements in the periodic table
that are created by stars. The initial motivation for measur-
ing so many elemental abundances was laid out by De Silva
et al. (2015) and included the major motivation – chemical tag-
ging – with the aim to trace back stars that were born together
through their (expected) similar chemical compositions. The
recent and ongoing efforts of GALAH and other surveys like
the SDSS/APOGEE surveys (e.g. Abdurro’uf et al. 2022; Kollmeier
et al. 2017), LAMOST (Zhao et al. 2012), Gaia-ESO (Gilmore
et al. 2022; Hourihane et al. 2023), RAVE (Steinmetz et al. 2020),
and Gaia RVS (Recio-Blanco et al. 2023) have taught us that the
chemical evolution of our Galaxy and stars is complex and it is
difficult to recover stellar siblings on a large scale due to limita-
tions in our observations, analysis methods, and intrinsic changes
to chemical composition due to stellar evolution. New observa-
tions and innovations in the analysis that are presented in this data
release will allow us to make significant progress towards chemical
tagging.

The unique observational setup of GALAH allows us to deliver
chemical abundance information for a powerful and substantial
set of stars: those which have exquisite astrometric information
from the revolutionary Gaia satellite (Gaia Collaboration et al.
2016) and for whichwe can estimate stellar ages either from empir-
ical or theoretical models, like stellar isochrones or mass- and
age-dependent relations of chemical compositions. By combining
stellar ages, orbits, and chemistry, we have made major advances
in the understanding of our Galaxy. In particular, the discovery
of the major merger of the Milky Way with another slightly less
massive galaxy between 8 and 10 Gyr ago (Belokurov et al. 2018;
Helmi et al. 2018) was paradigm shifting andmotivated a new rush
to collect more (and more diverse) information about the stars in
our Milky Way.

GALAH DR4 presents two major improvements over the pre-
vious data releases. We have increased the quantity as well as
quality of observations and we have implemented a hybrid spec-
trum synthesis approach that allows us to fit 95% of the spectrum,
including broad molecular absorption features from C2 and CN.
This allows us to now infer up to 32 elements,a including N, with
unprecedented precision for a larger number of stars. GALAH
DR4 naturally continues both the observing program aimed at
acquiring spectra of 1 million stars (De Silva et al. 2015), and our
ongoing efforts to improve the spectrum reduction and analysis
pipelines, including the novel and more accurate line modelling
with non-local thermodynamics equilibrium. In GALAHDR1 and
DR2 (Martell et al. 2017; Buder et al. 2018), we developed a novel,
data-driven pipeline using the interpolation and fitting code The
Cannon (Ness et al. 2015). However, for DR3 (Buder et al. 2021),
we reverted to the more computationally expensive method of
spectrum synthesis, applying it to a limited wavelength range to
confirm the accuracy of our data-driven approach. In this data
release, we are now implementing a hybrid approach. We create

aLi, C, N, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr,
Mo, Ru, Ba, La, Ce, Nd, Sm, and Eu.

Figure 1. Workflow of GALAH DR4.

a training set of synthetic spectra across the full wavelength range
using the same synthesis code as DR3, then train a neural net-
work to interpolate the spectra efficiently in a high-dimensional
space with up to 36 dimensions. By using neural networks, we
can model the entire wavelength range, including broad molec-
ular absorption features from C2 and CN, rather than focusing on
narrow atomic line windows. This approach allows us to simulta-
neously model all stellar labels – global parameters and elemental
abundances. Additionally, we can infer the shape of the interstel-
lar spectrum from the differences between observed and synthetic
spectra, while also incorporating non-spectroscopic information
during the optimisation process.

In the following section, we outline our workflow and pro-
vide detailed explanations of our methodology throughout this
manuscript, offering insights that upcoming surveys like WEAVE
(Dalton et al. 2014), SDSS-V (Kollmeier et al. 2017), and 4MOST
(de Jong et al. 2019) can readily utilise.

1.2. Workflow

The workflow of GALAH DR4 is depicted in Fig. 1 and will serve
as a guideline for this manuscript: We first describe the collection
of data in Section 2, most notably the observation of HERMES
spectra.We explain howwe create synthetic stellar spectra to com-
pare with the observed ones in Section 3. This comparison is
done in two consecutive steps. In Section 4, we explain how we
extract stellar labels from individual observations (without non-
spectroscopic information folded into the optimisation), while
Section 5 describes how we co-add repeated observations and
fold in non-spectroscopic information for each star. We describe
the post-processing and validation of our data in Section 6. The
data products of this data release are explained in Section 7. We
describe identified caveats in Section 8 and make suggestions for
minimising them in the future, before concluding this manuscript
in Section 9.

2. Data

The GALAH Survey uses the 3.9-m Anglo-Australian Telescope
at Siding Spring Observatory on Gamilaraay Country and its
Two-Degree Field positioning system (2dF) top end (Lewis et al.
2002). 2dF magnetically places up to 400 fibre buttons on one
of two metal field plates, which can be tumbled to allow observ-
ing with one set of fibres while configuring the other. Light is
delivered through the fibres to the High Efficiency and Resolution
Multi-Element Spectrograph (HERMES) spectrograph (Barden
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Figure 2. Overview of the distribution of stars included in this fourth GALAH data release in Galactic coordinates with the centre of the Galaxy at the origin and the Gaia DR3
all-sky colour view (Gaia Collaboration et al., 2023) as background. Shown are the targets of GALAH Phase 1 (dark blue) and Phase 2 (medium blue), the targets of the K2-HERMES
follow-up along the ecliptic and TESS-HERMES in the TESS Southern Continuous Viewing Zone as well as CoRoT fields (pink). Both open and globular cluster points are shown in
purple and orange, respectively. All other targets are shown in in light blue across the Southern sky.

et al. 2010; Brzeski, Case, & Gers 2011; Heijmans et al. 2012;
Farrell et al. 2014; Sheinis et al. 2015) and dispersed into four non-
contiguous wavelength bands in the optical that cover ∼ 1 000 Å
in the range of 4 713–4 903 (blue CCD or CCD1), 5 648–5 873
(green/CCD2), 6 478–6 737 (red/CCD3), and 7 585–7 887 Å
(infrared IR/CCD4). The data used in this data release is primarily
based on observations of stars with this setup, but also makes use
of auxiliary photometric and astrometric information for the stars
where available.

In this Section, we describe which stars we have targeted as part
of configured fields (Miszalski et al. 2006) and observed with the
2dF-HERMES setup (Section 2.1), including the first description
of the second phase of GALAH observations (GALAH Phase 2)
which has a sharper focus on main-sequence turn-off stars to esti-
mate more precise ages. In Section 2.2, we briefly summarise the
properties of the spectroscopic data and how they were reduced to
one-dimensional spectra. We also point out major changes in the
observations and reductions with respect to the previous (third)
data release (Buder et al. 2021). We further elaborate on the
auxiliary information that was used for the analysis in Section 2.3.

2.1. Target selection and observational setup

GALAH DR4 is a combination of the main GALAH survey and
additional projects to observe asteroseismic targets from the K2
(Howell et al. 2014) and TESS (Ricker et al. 2015) missions, that is,
K2-HERMES (Sharma et al. 2019) and TESS-HERMES (Sharma
et al. 2018), as well as numerous smaller programs and public
HERMES data. Additional proposals with 2dF-HERMES have
contributed targeted observations of globular cluster members
(PI M. McKenzie and PI M. Howell), open clusters (PI G. De
Silva and PI J. Kos), young stellar associations (PI J. Kos and J.
Armstrong), and halo stars (PI S. Buder) in addition to their obser-
vation through the main surveys. The column survey_name in

our catalogues denotes the origin. An all-sky view of GALAHDR4
is shown in Fig. 2.

2.1.1. Target selection for GALAH Phase 1 and 2

For GALAH Phase 1 (DR1-DR3) and in the absence of a precise
and volume-complete survey in the optical, we used the 2MASS
photometric survey (Skrutskie et al. 2006) with its J and Ks fil-
ters as a precise and nearly volume-complete parent sample from
which we selected stars based on approximated (De Silva et al.
2015) visual magnitudes

VJKS =KS + 2(J −KS + 0.14)+ 0.382e((J−KS−0.2)/0.5). (1)

For GALAH Phase 1, a tiling pattern (with unique field_id
entries) with 2 deg fields of view below declination δ ≤ +10 deg
was created for regions with Galactic latitude |b| ≥ 10 deg to avoid
crowding and strong extinction. For each tile, a selection of 400
stars within magnitudes 9≤VJKS ≤ 12 for a bright magnitude
cut and 12≤VJKS ≤ 14 for the nominal magnitude cut is ran-
domly selected from the complete parent sample of 2MASS. Of
those, typically 350 stars are actually observed with around 2/3
main-sequence and turn-off stars and 1/3 evolved stars.

For GALAH Phase 2, a stronger focus on turn-off stars was
implemented with the photometric and astrometric information
of Gaia data release 2 as a parent sample. For each field, we there-
fore first allocate fibres to stars with absolute Gaia magnitude in
the range of 2≤MG ≤ 4, where

MG =G+ 5 · log10
( �

100mas

)
(2)

with apparent magnitude (G /mag≡ phot_g_mean_mag) and
parallax measurements (� /mas≡ parallax) from Gaia DR2
(Gaia Collaboration et al. 2018; Evans et al. 2018; Lindegren et al.
2018). Remaining fibres are filled with targets as done with the
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Table 1.Overview of stars observed for the programs included in GALAH DR4.
Numbers of open and globular cluster observations were estimated after
observations as described in Section 2.3.3. We have observed 30 globular
clusters (23 with≥ 5 stars) and 361 open clusters (109 with≥ 5 stars).

Program No. stars Program No. stars

galah_bright 67 680 k2_hermes 117 736

galah_main 434 901 tess_hermes 37 129

galah_faint 33 907 globular clusters 2 509

galah_phase2 172 494 open clusters 3 706

commissioning 2 625 other 44 901

Phase 1 selection function. This leads to a different selection func-
tion for each phase. For science cases in which selection functions
matter, we thus recommend to use the survey_name (Table 1) for
a clean selection of phase and selection function.

2.1.2. Observational setup

We list the observations under various sub-programs in Table 1.
Except for 2 935 spectroscopic observations with the high-
resolution mode of HERMES (R∼ 42 000) on 7, 8, 10, 11 and 12
February 2014, all observations were made in the low-resolution
mode (R∼ 28 000) with different total exposure times chosen
for different programs, but typically between 60 and 90 min.
Under sufficient conditions (no clouds and seeing below 2 arcsec),
GALAH Phase 1 and TESS-HERMES observed 3 exposures for 6
min for bright targets (9≤VJKS ≤ 12) and 3 exposures for 20 min
for the majority of targets (12≤VJKS ≤ 14).

GALAH Phase 2 extended these times to 3 exposures of 10 or
30 min, respectively, and included repeat observations of GALAH
Phase 1 main targets with another 3 exposures for 15 min. K2-
HERMES observations targeted stars with 13≤VJKS /mag≤ 15
or even 13≤VJKS /mag≤ 15.8 to complement the K2 Galactic
Archaeology Program (Stello et al. 2015). These fields were
observed for 2 h, similar to most globular and open cluster
stars. Worse seeing conditions leading to increasing full-width at
half maxima or thin clouds triggered between one (2< seeing≤
2.5 arcsec) and 3 (2.5< seeing≤ 3 arcsec) additional exposures.
In addition to the science frames, quartz fibre flat and ThXe arc
observations were taken directly before or after each set of science
exposures, and bias frames were taken at the beginning or end of
each observing night.

2.2. Spectroscopic data from GALAH observations

Since the commissioning of the HERMES spectrograph in late
2013 until 6 August 2023, the GALAH collaboration and its
partners have observed and successfully reduced 1 085 520
spectra of 917 588 stars. Each single observation is given a
unique sobject_id YYMMDDRRR01FFF that is based on its
year (YY), month (MM), and day (DD) of observations, its
exposure run number (RRRR), and the used fibre (FFF). A
reduced example spectrum of the asteroid Vesta (observed on 15
January 2014 during run 22 through fibre 239 with sobject_id
210115002201239) is shown in Fig. 3 and used as a reference for
a Solar spectrum. The reduction process to create FITS files of
reduced spectra from two-dimensional images from the cameras
employs an updated and publicly available version 6 of the already
well-tested reduction pipeline (Kos et al. 2017). The file extensions
are listed in Table 2 and created as follows.

Science frames are corrected by removing the bias, dividing
out the different gains (provided in the FITS headers) of the
two readout amplifiers per CCD, flagging bad pixels, and divid-
ing by master flat field frames, as well as removing cosmic rays
and scattered light. Subsequently, apertures for each fibre trace are
identified and used to extract the individual spectra.

Wavelength calibrations are performed via Chebyshev poly-
nomial functions based on the up to 62, 52, 41, or 31 emission
lines within the ThXe arc frames of CCDs 1-4, with wavelengths
reported in air, and the spectra are interpolated onto a linearly
increasing wavelength grid. Typical root mean square values for
the wavelength solutions of CCDs 1-4 are 0.010, 0.015, 0.019,
and 0.028 Å, respectively. The starting wavelength CRVAL1 and
dispersion CDELT1 are saved in the headers of each FITS file.

Finally, sky lines are subtracted and telluric features removed,
before a barycentric correction is applied to create the ‘reduced’
spectra that are saved in extension 0 of the reduction pipeline FITS
files and used for the subsequent analysis. Reduction pipeline spec-
tra are normalised by an eleventh order Legendre polynomial fit
and saved in extension 1 of the reduction products.

Fractional noise/uncertainties are saved in extension 2 and cal-
culated from the square root of the sum of squared counts, sky
features (extension 3), scattered light (extension 5), and crosstalk
(extension 6) measurements as well as the squared readout noise.

The wavelength dependent line spread functions (LSFs) are
measured from the arc calibration frames for each spectrum and
CCD by fitting modified Gaussian distributions with one boxiness
parameter b per CCD and full width half maxima fwhm for each
wavelength point in the spectrum, that is

exp
(−0.693147 · |2 · x/fwhm|b) (3)

The array x then includes the pixels around each wavelength step
that are used to apply the convolution from higher resolution to
GALAH resolution spectra. The fitted values of fwhm are saved in
extension 7 with b saved in the headers.

The achieved Signal-to-Noise Ratio (SNR) per pixel of the indi-
vidual exposures depends on the spectral types, reddening, and
observational conditions. In particular the repeat observations of
previous pointings have increased the SNR for co-added spectra
with respect to GALAH DR3. This can be appreciated from Fig. 4,
where we plot the cumulative distribution function for all stars of
GALAHDR3 (dashed lines) and GALAHDR4 (solid lines) for the
different CCDs.

2.3. Auxiliary data from Gaia, 2MASS, and literature

To support our spectroscopic analysis, we make use of astromet-
ric and photometric information from the Gaia satellite (Gaia
Collaboration et al. 2016) and 2MASS survey (Skrutskie et al.
2006), which is available for essentially all our targets. We fur-
ther use the value-added catalogues, like distance estimates for
field stars by Bailer-Jones et al. (2021) as well as open and globular
cluster membership probabilities from Cantat-Gaudin & Anders
(2020) as well as Vasiliev & Baumgardt (2021) and Baumgardt &
Vasiliev (2021).

2.3.1. Gaia DR3

We crossmatch our observations to the Gaia DR3 catalogue (Gaia
Collaboration et al. 2021a, 2023) using the 2MASS ID, via the
nearest neighbour crossmatches provided as part of Gaia DR3
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Figure 3. Comparison of normalised observed (black) and synthetic spectra (blue) of the asteroid Vesta with solar composition as well as examples of synthetic spectra with non-
solar abundances. Panels (a–d) show the observed and best-fitting synthetic spectrum as well as their absolute residual (pink) for the four wavelength channels of the HERMES
spectrograph. Panel (e) shows the beginning of the blue CCD 1 (left most part of panel a) with an additional synthetic spectrum with ten times higher [C/Fe] in orange, for which
the C2 Swan bands are prominent. Panel (f) shows the beginning of the green CCD 2 (left most part of panel b) and exemplifies with a synthetic spectrum in green that also has a
ten times lower [Na/Fe] abundance (for example, in accreted stars) can still be reliably detected. Panel (g) shows the end of the red CCD 3 with a synthetic spectrum of primordial
Li abundance of A(Li)= 2.75 in red. While this abundance could be detected, the line for the Solar value A(Li)= 1.05 is barely detectable. Panel (h) shows the end of the infrared
CCD 4, which would show strong molecular absorption features of the CNmolecule for [N/Fe]= +1 dex (purple).

(Torra et al. 2021). 911 754 (99.0 %) also have astrometric infor-
mation (Lindegren et al. 2021b) and 849 867 (93.0 %) have radial
velocity estimates (Katz et al. 2023). We apply the corrections to
both photometric (Riello et al. 2021) and astrometric (Lindegren
et al. 2021a) information. Where possible we prefer the photo-
geometric distances over the geometric distances from Bailer-
Jones et al. (2021). Where neither are available, we further try to
find parallaxes from van Leeuwen (2007). The average parallax
uncertainty of the GALAH stars is σ� /� = 1.6+2.6

−0.9 %. Only 2.3 %
of GALAH stars have no parallax measurementsb or parallax mea-
surements beyond 20% uncertainty, for which the priors adopted
by Bailer-Jones et al. (2021) start to dominate distance estimates.

2.3.2. 2MASS, WISE, and extinction

In addition to the excellent infrared photometry for 99.9 % of
our sources from the 2MASS survey (Skrutskie et al. 2006), 98.7
% of them have far-infrared measurements from the WISE mis-
sion (Cutri et al. 2014). We therefore can estimate the extinc-
tion in the KS band via the Rayleigh-Jeans colour excess (RJCE)
method (Majewski, Zasowski, & Nidever 2011) AKS = 0.917 ·
(H −W2− 0.08) for most stars. We confirm this estimate by
estimating the extinction in KS via the extrapolation of the
colour extinction of B−V , that is,AKS ∼ 0.36 · E(B−V) (Cardelli,
Clayton, & Mathis 1989). We revert to this value if it is less than
half the value of the RJCE estimate, or if either of the H and W2

bFor stars without parallaxes, we only perform an analysis without astrometric
information.

bands does not have an excellent quality flag ‘A’. For negative esti-
mates by the RJCE method and very nearby stars (< 100 pc) we
null the value.

2.3.3. Open and globular cluster members and distances

We identify open cluster members using the membership cata-
logue from Cantat-Gaudin & Anders (2020) via crossmatch with
the Gaia source_id and adjust their parallaxes and distance esti-
mates to the average cluster values if the latter are more precise.
We identify globular cluster members (with more than 70% prob-
ability) via the membership catalogue from Vasiliev & Baumgardt
(2021) by crossmatching with the Gaia source_id. We then
adjust the parallaxes and distances for the member stars to the
mean values listed by Baumgardt & Vasiliev (2021).

3. Synthetic spectra for 2DF-hermes

The goal of our spectroscopic analysis is to estimate the optimal
set of stellar properties (labels) that influence a stellar spectrum
by minimising the difference between observed stellar spectra and
synthetic ones. In this data release, we push the analysis further
by fitting up to 32 elemental abundances and stellar parameters
simultaneously across the full GALAH wavelength range with the
appropriate synthetic spectra.

To make this computationally feasible, we adopt a strategy
inspired by Rix et al. (2016), where we create flexible models for
smaller regions of the parameter space, utilizing only a limited
number of ab initio synthetic spectra (see also Ting, Conroy, & Rix
2016). These synthetic spectra are calculated using Spectroscopy
Made Easy (SME; Valenti & Piskunov 1996; Piskunov & Valenti
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Table 2.Data product 1: FITS files of reduced spectra.

FITS Ext. Description

Ext. 0 Un-normalised signal/counts

Ext. 1 Normalised signal (by reduction pipeline)

Ext. 2 Relative uncertainty of signal

Ext. 3 Subtracted sky signal/counts

Ext. 4 Applied telluric correction

Ext. 5 Scattered light/counts

Ext. 6 Cross-talk/counts

Ext. 7 Resolution profile/FWHM

Figure 4. Cumulative Distribution Function (CDF) of the logarithmic Signal-to-Noise
Ratio (SNR) per pixel for the 4 CCDs of the HERMES spectrograph comparing GALAH
DR4 (solid lines) and GALAH DR3 (dashed lines).

2017), covering the entire wavelength range and accounting for
all visible atomic and molecular lines. The spectra are generated
for random selections of elemental abundances and stellar param-
eters within the range allowed by MARCS atmospheric models
(Gustafsson et al. 2008), at much higher resolution and sampling
than our 2dF-HERMES spectra. From these, we select subsets of
spectra corresponding to restricted regions of the parameter space
defined by Teff, log g, and [Fe/H]. This method is analogous to
using Solar twins (see, e.g. Nissen 2015) or performing differential
abundance analysis of globular cluster stars (e.g. Yong et al. 2013;
Monty et al. 2023). By reducing the impact of systematic uncer-
tainties in atomic data and atmospheric models, these approaches
have proven to be highly effective (Nissen & Gustafsson 2018).

For each parameter subset, we train a neural network to map
stellar fluxes to their corresponding stellar parameters and abun-
dances, similar to The Payne (Ting et al. 2019). These models allow
us to generate synthetic spectra across the full wavelength range
for any combination of elemental abundances within the restricted
parameter space in under a second – compared to the minutes or
hours required by traditional physics-driven spectrum synthesis
approaches.

Another key motivation for creating smaller training sets is the
limited flexibility of interpolation methods when dealing with the
full parameter space. Spectroscopic surveys like GALAH, RAVE,
and APOGEE aim to fit all types of stellar spectra simultaneously,
including Sun-like stars, red clump stars, metal-poor stars, evolved
stars with strong molecular bands, and hot stars with shallow and
broad lines. Attempting to model this vast range with a single
model leads to systematic trends, particularly in extreme cases
(Casey et al. 2016; Buder et al. 2018; Ting et al. 2019). To mitigate

Figure 5. Coverage in Teff and log g of theMARCS2014 grid (red) and GALAHDR3 (black,
including density countours). Shown is also an example of one of the 3D bins used to
create stellar siblingmodels with each neural network. MARCS grid points Teff < 3 100 K
or [Fe/H]< − 3 dex are neglected for GALAH DR4.

these issues, we deliberately limit the complexity of the models by
creating smaller, more focusedmodels. For example, the model for
hot stars does not need to predict the strong molecular absorption
features seen in cooler stars. The potential caveats and limitations
of this approach are discussed in detail in Section 8.

In the following sections, we describe our approach to divid-
ing the parameter space into smaller bins for training (Section 3.2)
and explain how we generate high-resolution synthetic spectra
for this parent sample (Section 3.2). We also outline how we
train neural networks to rapidly interpolate these synthetic spectra
(Section 3.3).

3.1. Stellar twin training sets rather than one-fits-all

The base grid for our training set computation is the MARCS grid
(Gustafsson et al. 2008), which is shown with red points in Fig. 5.
Following the aforementioned idea of restricting ourselves to stel-
lar siblings, we create multiple 3-dimensional bins in Teff, log g,
and [Fe/H] within ±1 grid points in Teff (with either ±250 or
±100 K), log g (±0.5 dex), and [Fe/H] (±0.5 or ±0.25 dex). An
example box is shown for Solar siblings as a blue box in Fig. 5,
which is centred on Teff = 5 750± 250 K, log g = 4.5± 0.5 dex and
[Fe/H]= 0.0± 0.25 dex.

Within these bins we sample 280c synthetic spectra with no
rotational broadening, which are later broadened with different
rotational velocities v sin i to create between 1 680 and 2 240 train-
ing set spectra for each bin. For clarity, we explain the parameter
and abundance sampling for an example 3D bin centred on Teff =
5 750± 250 K, log g = 4.5± 0.5 dex and [Fe/H]= 0.0± 0.25 dex
(see blue box in Fig. 5.

Stellar parameters (Teff, log g, [Fe/H], vmic) and elemental abun-
dances [X/Fe] of all 32 elements are randomly sampled within
reasonable limits (see examples in Fig. 6 and Table 3) and fed
into SME to create self-consistent synthetic spectra over the full
HERMES wavelength range for MARCS atmospheres.

Microturbulence velocity (vmic) values are sampled uniformly
between the upper and lower limits of the empirical relation from
GALAHDR3 (Eqs. 4 and 5 fromBuder et al. 2021) and an adjusted

cThis number is chosen to match the 28 CPUs of our computing nodes.
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Figure 6. Coverage of stellar parameters and abundances for one of the 3D bins. Shown is the example of the Solar 3D bin (Teff / K= 5 750, log g / dex= 4.5, [Fe/H] / dex= 0.0).
Panel a): Teff and log g, Panel (b): [Fe/H] vs. A(Li), Panel (c): [Fe/H] vs. [O/Fe], Panel (d): [Fe/H] vs. [Mg/Fe]. While Teff , log g, and [Fe/H] are sampled randomly within the 3D bin,
the abundances are sampled both narrowly (blue) and broadly (purple) within limits as described in the text. Red points indicate the median label values and orange points the
adjusted label values (see Table 3) to test the gradient change of spectra with individual labels.

version of the relation of Dutra-Ferreira et al. (2016). The lat-
ter has been adjusted for T′

eff = Teff/K− 5 500 as well as log g ′ =
log g/dex− 4.0 to return vmic/km s−1:

vmic = 1.198+ 3.16× 10−4 · T′
eff − 0.253 · log g ′

−2.86× 10−4 · T′
eff · log g ′ + 0.165 · ( log g ′)2

(4)

3.2. High-resolution synthetic spectra with SME

We create training sets from high-resolution stellar spectra for
each smaller 3D bin region of the parameter space. We compute
oversampled synthetic intensity spectra at higher resolution and
sampling than the typical GALAH resolution with SME for seven
equal-area angles (see Fig. 7) of the plane-parallel or spherically
symmetric stellar surfaces (Gustafsson et al. 2008).

For each spectrum, we first run a test on all available lines in
the GALAH linelist. We use the same linelist as in GALAH DR3
(Buder et al. 2021). This linelist was adapted from the linelist of
Heiter et al. (2021) and implements numerous updates to line data,
such as updates or corrections of log gf values in the GALAH
wavelength range. The test is used to restrict the myriad of possi-
ble molecular lines to the visible ones with SME.depth above 0.001,
while keeping all atomic lines for the final synthesis.

Spectra are computed at a resolution of R= 300 000 on a fine
wavelength grid with 60 819 pixels spread over the extended wave-
lengths 4 675.1–4 949.9, 5 624.1–5 900.9, 6 424.1–6 775.9, and 7
549.1–7 925.9 Å. We note that these extend significantly beyond
the actual GALAH wavelength range.

We use one-dimensional (1D) MARCS atmospheres from the
MARCS grid (Gustafsson et al. 2008, version 2014) with a trilin-
ear interpolation for combinations of Teff, log g, and [Fe/H]. We
use grids of non-LTE departure coefficients from Amarsi et al.
(2020b), Amarsi, Liljegren, & Nissen (2022) for atomic lines of H,
Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, Fe, and Ba. For most ele-
ments, the non-LTE departure coefficient grids include isotropic
and coherent scattering for lines from background atomic and
ionic species (see Equation 7 of Amarsi et al. 2020b) as well as
Thompson and Rayleigh scattering. The calculations for C include
all background species in pure absorption (Equation 6 of Amarsi
et al. 2020b), whereas for Fe, Thompson and Rayleigh scatter-
ing were included but all background lines were treated in pure
absorption.

Our synthetic grid explicitly includes C and N abundances.
C was previously included in the analysis of GALAH DR3, but
limited to the atomic C line. The analysis thus neglected themolec-
ular absorption features of C2 and CN at the beginning of CCD1
and end of CCD4, respectively. With the new self-consistent grid,
we can include these features, as they hold valuable information
for both C and N, as well as several other features through the
molecular equilibrium in stars (see e.g. Ting et al. 2018).

To be able to test that the flux-label correlations found by our
interpolation routine are limited to reasonable wavelength ranges,
we also calculate one spectrum that is exactly in the middle of
the parameter range and additional spectra, where we increase the
value of one label at a time (e.g. increase [O/Fe] by 1 dex) to test
the response in the synthetic spectrum.

To save computational costs, we compute synthetic spec-
tra with no rotational or macroturbulence broadening (vmac =
v sin i= 0 km s−1), but save the continuum flux (sme.cmod) and
the specific intensities (sme.sint) as a function of the equal-
area midpoints of each equal-area annulusd μ (see Fig. 7). We
then apply the broadening of spectra due to rotation (v sin i) with
the flux integration code of the python-implementation PYSME
(Wehrhahn, Piskunov, & Ryabchikova 2023) of SME. Depending
on the expected rotational velocities (increasing with temperature)
we sample a range of

v sin i/ km s−1 ∈ {1.5, 3, 6, 9, 12, 18, 24, 36}. (5)

Note that v sin i= 24 km s−1 is only included for bins with
Teff≥ 5 000 K and v sin i= 36 km s−1 for those with Teff≥ 6 000 K.

3.3. Interpolating synthetic spectra with neural networks

To allow a fast interpolation with new and different stellar labels,
we use data-driven models to connect stellar fluxes at given pixels
from a combination of stellar labels. This method is well estab-
lished in stellar spectroscopy through the successful applications
of quadratic models with The Cannon (see e.g. Ness et al. 2015;
Ness et al. 2016; Casey et al. 2016; Casey et al. 2017; Ho et al. 2017;
Buder et al. 2018) as well as neural networks with The Payne (see
e.g. Ting et al. 2019; Xiang et al. 2019; Xiang et al. 2022). Because
of the needed flexibility to predict synthetic spectra with 36 stel-
lar labels for a large parameter space (for a detailed discussion

dμ ∈ [0.96, 0.89, 0.8, 0.71, 0.6, 0.46, 0.27].
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Table 3.Example of boundaries for the uniform sampling of synthetic spectrum labels (stellar parameters and elemental abundances) for the 3-dimensional bin of
Solar siblings 5750_4.50_0.00.

Parameter Sampling Element Sampling narrow Element Sampling broad

Teff / K 5500.5750.6000 A(Li) 1.05.2.75.3.26 A(Li) 0.00.4.00

log g / dex 4.0.4.5.5.0 C, N, O −0.5.0.0.1.0 C, N, O −1.0.1.5
[Fe/H] / dex −0.25.0.0.0.25 Y, Ba, La, Ce, Nd −0.5.0.0.1.0 Y, Ba, La, Ce, Nd −1.0.1.5
vmic / km s−1 0.5,1.5,4.0, but see Equation (4) [X/Fe] for Mg, Si, Ti −0.5.0.0.0.5 [X/Fe] for Mg, Si, Ti −0.5.1.0
v sin i / km s−1 0.0, but see Equation (5) [X/Fe] for all other elements −0.5.0.0.0.5 [X/Fe] for all other elements −1.0.1.0

Figure 7. Example output of SME for a solar spectrum in HERMES CCD3 (around the Balmer Hα line). Shown are the specific intensities (sme.sint) as a function of the viewing
angleμ = cos θ .

of advantages of neural networks over quadratic models see Ting
et al. 2019), we choose neural networks to interpolate between our
synthetic spectra in this data release.

In this work, we utilise the neural network architecture and
training algorithms from the spectrum interpolation framework
of The Payne (Ting et al. 2019). While we do not implement the
full functionality of The Payne, we specifically adopt its spectrum
interpolation capabilities. Unlike the version originally published
by Ting et al. (2019), we use the architecture of the latest available
version of The Payne. This modified architecture connects k stellar
labels � with the flux f at each wavelength pixel λ via

fλ =w · lReLU
(
w̃i

λ · lReLU
(
wk

λi�k + bλi

)
+ b̃

)
+ f̄λ, (6)

which encapsulates the so-called layers of a neural network with
i= 300 neurons with weights w and biases b as well as a leaky
Rectified Linear Unit (lReLU)

lReLU(x)=
{
x x≥ 0
0.01x x< 0.

(7)

After optimising the mean absolute error loss function for 104
steps, we consider the network trained with an optimised combi-
nation of three sets of weights and biases within the minimum and
maximum ranges of each label. We discuss the performance and
caveats of this particular neural network architecture and training
setup in Section 8.3. The trained networks can then be used with
new input labels to quickly create synthetic spectra for the label
optimisation. Computational resources could be conserved by
training neural networks exclusively on spectra from non-rotating

stars and subsequently applying broadening through convolu-
tion with a center-to-limb darkening law. This method, while less
accurate, could enable the fitting of broader velocity ranges and
enhance neural network performance by simplifying the spectral
shapes they must learn. However, shifting the broadening process
from training to post-processing does not necessarily guarantee a
reduction in computational costs.

4. Single spectrum analysis (ALLSPEC)

As outlined in Section 1, the workflow of GALAH DR4 includes
a first analysis step of all observed spectra without including non-
spectroscopic information for the optimisation. This allows us to
identify shifts in radial velocity between separate spectroscopic
observations of the same stare and a better co-adding of spectra
for the allstar analysis (see Section 5). Another motivation for
this step is to get a first estimate of stellar labels without potentially
biased photometric and astrometric information, for example for
binary stars.

The optimisation of stellar labels thus aims to minimise
the absolute difference between synthetic and observed spec-
tra, weighted by their uncertainty. Starting from a set of initial
labels (Section 4.1), we create high-resolution synthetic spectra
and convolve them to the resolution and wavelength grid of each
observed spectrum. We remind ourselves that in GALAH DR3,

eWhile repeat observations were only done for quality assurance in GALAH Phase 1, a
significant number of repeat observations was performed as part of Phase 2.
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we used a repeated combination of spectrum normalisation fol-
lowed by stellar parameter optimisation and a subsequent fit of
individual elements with fixed stellar parameters. In the analy-
sis of GALAH DR4, we perform an on-the-fly re-normalisation
of the observed spectrum for every change of the simultaneously
fitted stellar parameters and elemental abundances. This allows
a more accurate comparison of synthetic and observed spectra
(Section 4.2) and thus a more accurate stellar label optimisation
(see Section 4.3).

4.1. Initial stellar labels

Initial values of all stellar labels are needed for creating a first
synthetic spectrum. For vrad, Teff, log g, and v sin i we use a combi-
nation of sources. Where possible, we use the previous estimates
from GALAH DR3 (Buder et al. 2021), and otherwise use esti-
mates from the GALAH DR4 reduction pipeline (Section 2.2).
Because of the limited accuracy of the latter for cool stars with
Teff < 4 000 K as well as the hot stars with Teff > 6 500 K, we per-
form a consistency checkwith photometric information fromGaia
DR3 (Gaia Collaboration et al. 2021a) and 2MASS (Skrutskie et al.
2006). For most of the aforementioned cool and hot stars, we
therefore prefer the parameters from the Gaia DR3 photometric
pipeline GSP-Phot (Andrae et al. 2023; Fouesneau et al. 2023) as
initial values.

In selected cases, we further adjust the starting parameters
toward reasonable limits. For example, hot stars are likely to be
young and are adjusted to close to Solar metallicity. Furthermore,
we recalculate the initial vmic based on Equation (4) and limit
rotational broadening values to 3≤ v sin i≤ 10 km s−1 for stars
below Teff = 5 500 K and 3≤ v sin i≤ 20 km s−1 for hotter stars.
The explicit choices of starting values for Teff, log g, [Fe/H], vmic,
and v sin i are described in our online repositoryf and are depicted
in Fig. A1.

Based on the value of [Fe/H] we apply an offset to the α-
process elements O, Mg, Si, Ca, and Ti. The initial value is 0.4
for [Fe/H]< − 1, 0.0 for [Fe/H]> 0, and −0.4 · [Fe/H] for −1≤
[Fe/H]≤ 0. All other abundances are initialised at [X/Fe]= 0.

4.2. Comparison of synthetic spectra to observations

The major aim of our spectroscopic analysis is to predict the best
set of stellar labels by minimising the uncertainty-weighted differ-
ence between observed and synthetic spectra. In this section, we
describe several important steps to enable the pixel-level compari-
son of the higher resolution, oversampled synthetic spectra created
with the neural networks from Section 3.3 and the observational
data at actually measured resolution and sampling (presented in
Section 2.2).

4.2.1. Downgrading synthetic spectra to observed resolution

Because dedicated line-spread-function measurements are avail-
able for every spectrum (see Section 2.2), we use this information
to downgrade our synthetic spectrum with Gaussian kernels on an
equidistant velocity grid to the measured resolution of each obser-
vation. We then interpolate the oversampled synthetic spectrum
onto the observed wavelength grid.

fGALAH_DR4/spectrum_analysis/galah_dr4_initial_parameters.ipynb.

4.2.2. On-the-fly re-normalisation of observed spectra

Measurements of the GALAH flux and flux uncertainty are
reported in counts by the reduction pipeline. To compare with our
synthetic spectra, which are normalised to the continuum, we fit
an outlier-robust polynomial function to the ratio of observed and
synthetic spectra and re-normalise our observed spectra and their
uncertainties via this normalisation function.

This specific approach is similar to the internal routine of SME
and has the important advantage that no continuum points have
to be defined. This is advantageous because we try to cover the full
parameter range of FGKM stars for which positions of continuum
points – corresponding to 1 on a (pseudo-)continuum-normalised
spectrum – differ significantly or for which continuum points may
not even be present, or will be a strong function of Teff and [Fe/H]
(as is the case for M stars).

We make two additional adjustments to the reduced spectra,
which come in the form of counts and uncertainty per wavelength,
fλ and σf ,λ.

As we compare the observation to model spectra, we do not
have to restrict ourselves to an a priori normalisation, but can
take into account the residual information on the continuum in
parts of the spectrum. For each model spectrum that we compare
to, we therefore perform a normalisation by fitting a fourth order
Chebyshev polynomial with outlier clipping to the ratio of model
and observation (see Fig. 8). This allows us to both overcome pre-
vious shortcomings of the synthetic analysis in GALAH+ DR3
(Buder et al. 2021), which had to be restricted to small wave-
length segments and assumed a linear relation for those. Our
new approach allows us to properly assess the structure of deep
and steep molecular features that can dominate spectra of cool
stars and carry significant information on Teff, vrad, as well as
abundances (Mann et al. 2012).

4.3. Stellar label optimisation

In up to four major loops, we optimise the radial velocities and
all other stellar labels and report (a) their values, (b) their co-
variances, (c) the best-fitting synthetic and re-normalised spectra
along with (d) their uncertainties and (e) masks that indicate
which pixels were used in the final optimisation.

Starting from the initial values, a first synthetic spectrum
is computed and compared with the observation in order to
assess the initial radial velocity. This is done by applying the
SCIPY.SIGNAL.FIND_PEAKS algorithm on the normalised inverse
residuals of non-shifted observed and synthetic spectra, when the
latter is shifted by vrad = −1 000..(2)..1 000 km s−1 (see Fig. 9a).
If no peak is found, the initial vrad value is used hereafter. If
more than one peak is found (see Fig. 9 with Gaia DR3 agree-
ing with the systemic radial velocity), the two strongest peaks
are reported. For the purpose of the single star analysis, a nar-
rower search is conducted around the highest peak with a vrad
shift of −20.00..(0.04)..20.00 km s−1 around said peak by fitting a
Gaussian function to the inverse of the residuals that were nor-
malised with the smallest residual values (see Fig. 9c). The mean
of this fit and its uncertainty are reported by the pipeline.

The centerpiece of our optimisation is the SCIPY.OPTIMIZE
module’s CURVE_FIT function (Virtanen et al. 2020), which we
call with counts and uncertainties (our absolute sigmas) as input
for a placeholder function that self-consistently re-normalises the
observed spectrum. We estimate the labels via the least squares
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Figure 8. Example of normalisation for GALAHDR4 for amodel spectrum (Teff = 3 400 K, log g= 1.5, [Fe/H]= −1.0 dexbest− fitting) that is selected during the label optimisation.
Panel (a): Observed spectrum (counts). Panel (b): Ratio (blue) of observed spectrum and model spectrum as well as Chebyshev polynomial fit (orange). Panel (c): Normalised
observed spectrum (black) compared to the model spectrum (blue). Residuals (red) can then be used as input for the likelihood function.

Figure 9. Output of the radial velocity fitting step. Panel (a) shows the initial broad search on a vrad array of−1000..(2)..1000 km s−1. In the case of 2MASS J060846577815235, two
peaks (yellow, dashed) are visible for this double-lined spectroscopic binary. Panel (b) shows the same plot, but overlaid with the GALAH DR4 reduction pipeline (red) and Gaia
DR3 (blue, dashed) estimates for vrad. Panel (c) shows the narrow window of−20.00..(0.04)..20.00 km s−1 around the highest peak and its Gaussian fit (yellow). Despite their low
resolution (26 KB), these on-the-fly created diagnostic images already occupy 50GB in total.

optimisation within less than 104 iterations and a desired relative
error (xtol) below 10−4.

For each optimisation loop, a new, best-fitting 3D bin and neu-
ral network is identified via a grid search in the Teff, log g, and
[Fe/H] dimensions with SKLEARN.CKDTREE. If the stellar labels
that are being fitted have changed (for example if an element is
deemed not detectable for the new 3D bin during the neural net-
work training), the label and its value are either set to or initialised
with [X/Fe]= 0.

While the optimisation of the neural network selection has not
converged (the final parameters Teff, log g, and [Fe/H] are not
within the current 3D bin), the optimisation is repeated, starting
with the previous best-fitting parameters as starting guesses.

We measured the time taken for the individual steps in
the CURVE_FIT function’s execution to be approximately 80 ms.
The total fitting process for stellar labels, including input/output

overheads, was timed at 89+77
−29 s for the allspec module, and

125+81
−33 s for the more complex allstar module.

4.3.1. Which stellar labels are optimised?

As part of the synthetic grid computations, we have sampled
each label of stellar parameters and elemental abundances indi-
vidually between our chosen maximum and minimum ranges
(see Section 3.1). This allows us to also judge which stellar labels
to fit for each given star. We choose to fit a stellar label if either
of these two cases applies to said label for the GALAH wavelength
range when neglecting the cores of the Balmer lines: (i) The nor-
malised spectrum between minimum and maximum label value
at any pixel exceeds the threshold of 0.007 or (ii) The normalised
spectrum between the minimum and maximum value changes by
more than 0.005 for at least 25% of the pixels. While the first case
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Figure 10. Examples of masks applied to unreliable pixels for the spectrum fitting, which is done by theminimisation of residuals (red) between observation (black) and synthesis
(blue). Panel (a) shows a strong synthetic line, where no line is observed in the data. Panel (b) shows an observed linewithout any line being synthesised. Panel (c) shows significant
disagreement between the two observed lines and the synthesis.

is constructed for atomic lines, such as Li I 6 708 Å, the second
case addresses in particular molecular lines like the C_2 and CN
lines. The pipeline can handle missing arms, for example in the
case of readout issues of a CCD, and will fix abundances to the
scaled-Solar values for elements with absorption features solely in
the missing arm, for example N, O, K, and Rb for CCD4.

Initial tests of the pipeline have revealed that in cases where the
initial parameter estimates deviate significantly from the final val-
ues, several elemental abundance estimates were shifted towards
their boundaries, leading to a masking of their elemental abun-
dance lines by themaskingmodule (Section 4.3.2) at the beginning
of each optimisation loop. To minimise this effect, we there-
fore shift the interim abundance values towards the narrow label
boundaries. In practice, we limit the initial and interim abun-
dances to 1.05.3.26 for A(Li), [X/Fe]= −0.5..1.0 for C, N, O,
Y, Ba, La, Ce, and Nd, and [X/Fe]= −0.5..0.5 for all other ele-
ments before optimising them again. For warm and hot stars
(Teff > 6 000 K), this effect was seen to affect multiple abundances,
such that we needed to implement a reset of all abundances
except Li to their initial values for stars above 6 000 K, which
would on average be expected to be young and have a Solar-like
composition.

4.3.2. Masking of unreliable wavelength regions

Not all pixels of the observed or synthetic spectra might prove use-
ful for estimating reliable stellar labels. Observations can include
bad pixels/patterns and incorrect corrections (for example of tel-
luric or sky lines). Flux predictions of synthetic spectra are only as
good as the input physics (limited for example for specific lines via
uncertain oscillator strengths).

To minimise the influence of inaccurate synthetic pixel pre-
dictions, we have compared a 2dF-HERMES observation of
the asteroid 4 Vesta and a high-quality Solar spectrum from
Hinkle et al. (2000) with the flux that would be predicted
by our pipeline for a star with Solar labels (Teff = 5 772 K,
log g = 4.438 dex, [Fe/H]= 0.00 dex, vmic = 1.06 km s−1, v sin i=
1.6 km s−1, vmac = 4.2 km s−1 Prša et al. 2016; Jofré et al. 2017,
and [X/Fe]= 0.00 dex for the default Solar abundance pattern for
MARCS by Grevesse, Asplund, & Sauval 2007).

We have identified all lines that showed differences of the
normalised flux of more than 0.1, lines where either a synthetic
line or an observed one was completely missing, or lines that

were significantly misaligned. Examples of masksg are shown in
Fig. 10. To avoid the influence of bad spectrum regions with an
observational origin, we mask pixels where the synthetic and re-
normalised observed spectra differ by more than 5σ or a flux of
0.3 (0.4 before the initial optimisation). To avoid the masking of
lines that are vital for our spectroscopic analysis, we have created
a listh with segments of such lines that is mainly based on the pre-
vious element masks from GALAH DR3 (Buder et al. 2021). The
final mask of pixels to use for the optimisation then includes all
vital line regions, as well as those wavelengths that do not show
a too strong disagreement between observation and synthesis and
are not deemed unreliable in their synthesis.

In addition to this default masking, we exclude pixels for each
major iteration, for which the flux of observation and synthesis
differ by more than 5σ and 30% of the normalised flux and by
more than 100% of the normalised flux for the vital line regions.

We further indirectly take into account the currently less con-
strained molecular data for cool stars in optical spectra, in partic-
ular towards the blue (e.g. Rains et al. 2021; Rains et al. 2024). For
presumably cool stars (with initial Teff < 4 100 K), we therefore
double the observational uncertainty of the blue arm.

5. Single star analysis (ALLSTAR)

After the allspec module (Section 4) has been used to estimate
spectroscopic labels for all spectra, we use the allstar module to
co-add spectra and analyse one spectrum per star while taking into
account photometric and astrometric information to constrain
the surface gravities.i The optimisation of stellar spectroscopic
parameters with the help of non-spectroscopic information was
successfully applied for GALAH DR3 (Buder et al. 2021), using
Gaia DR2 distances (Bailer-Jones et al. 2018) to overcome spec-
troscopic degeneracies. For the co-adding, we test whether the
radial velocity estimates of individual exposures agree within 2σ .
Below this threshold, we apply no radial velocity correction and fit
a global radial velocity. Above this threshold (which is useful for
single-lined spectroscopic binaries as shown in Fig. 11), we apply
a radial velocity correction before co-adding.

gExample masks can be found in the GALAH DR4 repository here.
hThe list is available in the GALAH DR4 repository here.
iIn line with Nissen (2015), Nissen et al. (2020), we refer to these non-spectroscopically

constrained surface gravities as photometric ones.
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Figure 11. Example of radial velocity evolution over modified Julian Date (vertical
lines show the beginning of 2016, 2019, and 2022) for a single-lined spectroscopic
binary (SB1).

To speed up computation, we use the mean results of the
allspec analyses as initial stellar labels for the allstar analy-
sis. All other methodology of the comparison of synthetic spectra
to observations (Section 4.2) and label optimisation (Section 4.3)
apply also to this module, with the exception of the optimisation of
log g. Contrary to the allspec approach, we do not fit log g in this
module, but estimate the logarithmic surface gravity log g using a
combination of its definition (g ∝ M

R2 ) and the Stefan-Boltzmann
law relative to the Solar values:

log g = log g
 + log
M
M


+ 4 log
Teff

Teff,

− log

Lbol
Lbol,


(8)

While we can use our spectroscopically determined Teff in
Equation (8), the other values have to be estimated through
models or non-spectroscopic information. The logarithmic
bolometric luminosity, Lbol, can be estimated from the bolometric
magnitude Mbol, such that log Lbol

Lbol,
 = −0.4 · (Mbol −Mbol,

)
. The

bolometric magnitude can be estimated from any given apparent
magnitude, if we correct the latter for the distance modulus,
bolometric correction, and extinction. Because essentially all stars
in GALAH DR4 have high-quality infrared magnitudes available
that suffer less from (uncertain) extinction corrections, we use
KS as the magnitude to estimate our bolometric magnitudes and
luminosities via

Mbol =KS − 5 · log D�

10
+ BC(KS)−A(KS). (9)

While the values for KS, curated distances D� (rather than raw
parallaxes � ), and A(KS) are readily available (see Section 2.3),
we need to estimate the bolometric correction from tabulated
values using the routines provided by Casagrande & VandenBerg
(2018):

BC(KS)= f (Teff, log g, [Fe/H]) (10)

We choose to assume an extinction value of E(B−V)= 0 mag
for this particular interpolation and post-correct the value by
A(KS) based on the actual extinctions. The reason for this is that
the latter values can exceed the maximum tabulated values of
E(B−V)= 0.72 mag of Casagrande & VandenBerg (2018).

Because of the appearance of log g in Equation (10), we iterate
the calculation of BC(KS) and subsequently log g up to four times
or until the latter value changes less than 0.02 dex between itera-
tions. Similarly, we need to estimate the stellar masses (and ages as
a byproduct) from tabulated values, that is,

M, τ = f (Teff, log g, [Fe/H], Lbol,
) (11)

For this on-the-fly estimate of masses and ages we use a likelihood-
weighted estimate with default uncertainties of 100 K, 0.25 dex,
0.2 dex, respectively, and an average uncertainty of Lbol,
 from
propagated uncertainties of Equation (9). We weigh the ages
and masses via their likelihood of all isochrone grid points
within these uncertainties of the PARSEC+COLIBRI isochrones
(Bressan et al. 2012; Marigo et al. 2017), which cover the log-
arithmic ages of log (τ/Gyr)= 8.00..(0.01)..10.18 by default and
metallicities [M/H]= −2.75..(0.25)..− 0.75 as well as [M/H]=
−0.6..(0.1)..0.7. We exclude hot stars above 10 000 K as well as
extremely evolved white dwarf and extremely luminous giant
stars (log g > 6 dex or J −KS > 2 mag) as they fall far outside
our spectroscopic pipeline range. We convert between the the-
oretical [M/H] and our measured [Fe/H] as well as an assumed
[/Fe] enhancementj via the correlation of Salaris & Cassisi
(2006), [M/H]= [Fe/H]+ log

(
10[α/Fe] · 0.694+ 0.306

)
. For open

clusters with age estimates below 1 Gyr as well as unevolved
stars that are more luminous than expected from the oldest
cool main-sequence isochrone with matching [M/H], we sample
log (τ/Gyr)= 6.19..(0.01)..10.18. For globular cluster stars identi-
fied in the crossmatch with Baumgardt & Vasiliev (2021), we limit
the isochrones to a minimum age of 4.5 Gyr.

6. Post-processing

After the allspec and allstar modules have been run for a
night’s data (see Sections 4 and 5, respectively), a post-processing
routine is used to estimate additional parameters from the resid-
uals of the spectra (Section 6.1), estimate and validate accuracy
and precision uncertainties (Section 6.2), and perform quality
assurance tests on a global scale (flag_sp, see Section 6.3) as
well as for the individual abundances of elements X (flag_X_fe,
see Section 6.4).

6.1. Analysis of spectral residuals

6.1.1. Binary signatures

The residual spectrum of our best-fitting single star analysis can
help us to identify a second flux contributor to the observed spec-
trum. In our case, there are two points in the analysis where we
can identify such an influence. Firstly, the residuals are visible
in the χ 2 distribution as a function of radial velocity shifts (see
Fig. 9). While a single star would only show one peak (saved
as rv_comp_1), a binary system like 2MASS J06084657-7815235
shows a second peak (−70 km s−1 in addition to 74 km s−1) that
is saved as rv_comp_2. Secondly, we perform an automatic search
for reoccuring residuals as a function of radial velocity for a few
selected lines. We chose the combination of strong lines in the
spectra (Balmer lines, Fe lines at 4 890 and 4 891 Å, Ni at 6 644 Å)
as well as those with the largest expected wavelength shift in the
infrared detector (O triplet at 7 772–7 775 Å as well as Mg at 7 692
Å). If we find several peaks with a reasonably similar radial veloc-
ity, the likely X ∈ 16, 50, 84th percentiles of this radial velocity are
saved in sb2_rv_X.

Because radial velocities from the Gaia radial velocity spec-
trometer (Katz et al. 2023) are reported in Gaia DR3 for 94% (774
914) of the stars observed for GALAH DR4, we can also com-
pare against those radial velocity estimates. For 6% (50 577) of

jWe assume [α/Fe]= 0.4 for [Fe/H]< − 1, [α/Fe]= 0.0 for [Fe/H]> 0 and linearly
interpolate between these points for −1≤ [Fe/H]≤ 0.
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Figure 12. Comparison of spectroscopic andphotometric log g estimates in theallspec analysis. Panel (a) shows the distribution of spectroscopic log g and Teff from theallspec
module. Panel (b) shows the distribution of the same Teff and photometric log g. Panel (c) shows the difference of photometric log g and spectroscopic log g as a function of
photometric log g. Red error bars indicate the 1σ percentiles of this difference in 0.5 dex bins.

our stars, we find a difference with respect to Gaia DR3 larger
than 10 km s−1. For these stars, we often noticed unrealistically
high vmic and v sin i or negative velocities in our allspec analy-
sis. We note that the allspec analysis was run without boundary
conditions for global parameters and thus also resulted in nega-
tive velocities, which are later flagged and might indicate binarity
(Section 6.3). allstar, however, was run with vmic and v sin i
forced to be above 0 km s−1.

6.1.2. Post-correction of logg for allspec results

While we estimate logarithmic surface gravities log g solely from
spectra in the allspec results, we also perform a post-processing
estimate where we employ the methodology of Section 5 while
fixing all other stellar parameters. The approach of only using
spectroscopic information confirmed the previous conclusions
of GALAH DR1-DR3 that the spectroscopic information in
HERMES spectra to estimate log g is not sufficient for the majority
of the parameter space for the given SNR. We show the spec-
troscopic log g in Fig. 12a and the photometric log g and their
difference in Fig. 12b and c, respectively.

We see an overall good agreement of both log g estimates for
stars between 4 250< Teff < 6 500 K. Hotter stars show a strong
dispersion of spectroscopic log g due to limited information from
fewer and shallower lines. Cooler stars show a significant trend
towards much lower log g for main-sequence stars and much
higher log g for cool evolved stars up to an order of 
 log g of
1 dex. This trend was previously seen in GALAH DR2 (Buder
et al. 2018) and is believed to be caused by the onset of molecular
absorption features which suppress the continuum for almost the
entire HERMES wavelength range (see for example Fig. 8), thus
introducing several degeneracies. In addition, we can notice a sig-
nificantly lower precision of the spectroscopic log g in comparison
to the excellent precision of photometric log g, for example in the
red clump stars.

On closer inspection, we notice several trends in Fig. 12a.
Most notably, we see noding patterns along the Teff and log g
grids where the allspec module switches between different neu-
ral network models. Our investigation of these noding effects is
addressed in Section 8. In comparison to Fig. 12b, where a clear
equal-mass binary sequence is visible just above the cool main-
sequence, we do not see such a sequence in Fig. 12a. The difference

between spectroscopic and photometric log g will therefore be use-
ful to identify photometric binaries with high quality spectra with
log g precisions below the single to binary system offset of up to

 log g = 0.3 dex, as discussed in Section 6.3. We caution, how-
ever, that the use of stellar structure models for the estimation of
surface gravities can introduce systematic trends, as we discuss in
Section 8.4.

6.1.3. Interstellar absorption

Because we can create synthetic stellar spectra for the full wave-
length range, we can now also trace interstellar absorption in the
residuals of observed spectra. By default, we try to calculate the
equivalent width via Gaussian fits to the three strongest diffuse
interstellar bands (DIBs; 5 780.59, 5 797.19, 6 613.66 Å) with
central wavelengths identified by Vogrinčič et al. (2023) as well
as for interstellar K (7 698.9643 Å), see Fig. 13. We report the
equivalent widths eq_x, standard deviations sigma_x and radial
velocities rv_xk for x in k_is for interstellar K and x in DIB_5780,
DIB_5797, and DIB_6613 for the DIBs. The coverage of inter-
stellar material, estimated from DIB_5780, within D� < 5 kpc is
shown in an all-sky map in Fig. 14, with the GSPhot extinction by
Andrae et al. (2023) in the background.

6.1.4. Emission estimates for the Balmer lines

The shape of the Balmer absorption lines holds valuable informa-
tion on active stars as well as masses for evolved stars (Bergemann
et al. 2016) and possibly even information on unresolved binary
systems (Sayeed et al. 2024). Although the cores of these lines suf-
fer from inaccuracies in the synthesis, the residuals of synthetic
and observed lines can be used in relative analyses. We therefore
perform a trapezoidal integration around the Balmer lines of each
normalised spectrum at 4 861.3230 and 6 562.7970 Å whose values
we report in ew_h_beta and ew_h_alpha. By default we integrate
in a window of ±0.75 and 1.25 Å for Hβ and Hα, respectively, and
increase this window to 5 Å if the average observed, normalised
flux within ±0.5 Å of the Balmer line core exceeds 1. An exam-
ple of such a star is shown in Fig. 15, for which we measure a
residual EW of −1.09 Å. Most emission line stars in the GALAH
sample are found in the region of pre-main-sequence and hot stars

kIn v240705, rv_comp_1 has to be added to rv_k_is due to a bug.
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Figure 13. Example of three diffuse interstellar bands (DIBs) and interstellar K absorption for 2MASS J06453479-0102137 with an E(B− V)= 0.84 mag value from Schlegel et al.
(1998). Shown are the observation (black) and stellar fit (blue) as well as a Gaussian fit (red) to the residual (orange), resulting in an estimate of the equivalent width (EW) as well
as radial velocity.

Figure 14. All-skymap (l,b) of GALAH DR4 equivalent widthmeasurements of the diffuse interstellar band around 5 780 Å, with the GSPhot extinction by Andrae et al. (2023) in the
background.

Figure 15. Example of a flagged emission star with clear emission in the Balmer lines
(here Hα).

(see Fig. AC6a). We conservatively only flag stars with a median
normalised flux above 1 in Hβ or Hα as emission line stars.

6.2. Uncertainty estimation and validation

The uncertainties that we report for our spectroscopic data anal-
ysis are based on the comparison to literature measurements
(see also Beeson et al. 2024) to estimate accuracy uncertainties
and a combined precision uncertainty estimate from adjusted

covariance estimates from the fitting process and the scatter of
repeat observations. Formally, we estimate the total variance of
measurements as a combination of the accuracy and precision
variance

σ 2
total = σ 2

accuracy + σ 2
precision (12)

Representative values of accuracy and precision for our stellar
parameters are listed in Table 4. We lay out how we estimate and
validate accuracy and precision uncertainties in Sections 6.2.1 and
6.2.2, respectively.

6.2.1. Accuracy estimation and validation

Estimating the accuracy of spectroscopic measurements has
always been a complicated endeavour, because there are no uni-
versal benchmark sets for all parameters across all stellar types.
Subsequently, we describe the numerous comparisons that we
have performed for both stellar parameters (Teff, log g, [Fe/H],
vmic, v sin i, and vrad) as well as the elemental abundance mea-
surements. Consistent with GALAH DR3 (Buder et al. 2021), and
caused by the limited coverage of benchmark literature, we con-
tinue to use a single accuracy estimate for each stellar parameter
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Table 4.List of accuracy and representative precision
uncertainties for stellar parameters in GALAH DR4.
Accuracy values are estimated from comparisons with lit-
erature references (see Section 6.2.1), whereas precision
estimates are estimated from covariance uncertainties
and repeat observations (Section 6.2.2). Here, we list the
median precision uncertainties for stars with SNR= 50±
10 on CCD2 (see Fig. 20).

Parameter/Unit Accuracy Precision (SNR= 50)

Teff/K 66 23± 5

log (g/cm s−2) 0.042 –

[Fe/H]/dex 0.051 0.025± 0.004

vmic/km s−1 0.28 0.05± 0.03

v sin i/km s−1 1.4 0.5± 0.2

vrad/km s−1 0.15 0.17± 0.02

and ignore the possibly large accuracy uncertainties for the indi-
vidual elemental abundances. In all cases, we estimate an overall
bias with respect to literature values and then combine these
estimates to a globally applied zero-point correction. Where not
explicitly stated otherwise, we assume that the spread of stellar
parameters residuals is indicative of the accuracy of either method
and estimate our accuracy by dividing the parameter spread by√
2. The applied shifts are listed in Table C1.We estimate the accu-

racy and bias correction for stellar parameters (including the iron
abundance as a global parameter) and abundances separately.

Our primary reference source for parameter accuracy remains
the Gaia FGK benchmark stars (Jofré et al. 2014; Jofré et al. 2015;
Jofré et al. 2018; Heiter et al. 2015). Additionally, we use asteroseis-
mic estimates from the K2 and TESS photometry (Zinn et al. 2020;
Hon et al. 2021) to compare our surface gravities and perform a
validation to higher quality observations of globular cluster stars
with typically lower metallicities (Carretta et al. 2009a; Carretta
et al. 2009b; Johnson & Pilachowski 2010). Because the overlap
with APOGEE DR17 (Abdurro’uf et al. 2022) has increased from
41 941 stars in GALAH DR3 to 60 046 stars with 92 368 repeat
observation matches in GALAH DR4, we also can assess system-
atic trends for a larger parameter space. For clarity, we discuss the
stellar parameters separately, but show most accuracy estimates in
a combined Fig. 16.

Teff: The effective temperature estimates from GALAH DR4
show good agreement with the Gaia FGK benchmark stars
(Fig. 16a). Specifically, we find a mean difference of 
Teff = 21±
92 K, indicating no significant bias between our temperatures and
the benchmark values. Comparisons with APOGEE DR17 show
an equally robust agreement, with 
Teff = −8± 78 K. This small
offset and uncertainty suggest that the GALAHDR4 Teff estimates
are highly reliable across a wide range of at least G- and K-, but
possibly also F- and M-type stars. Here, we use 1/

√
2 of the resid-

ual spread with respect to Gaia benchmark stars as our accuracy
estimate.

log g: For surface gravity, we compared our log g estimates to
both the Gaia FGK benchmark stars, asteroseismic measurements
from Zinn et al. (2020) and Hon et al. (2021), and APOGEEDR17.
The asteroseismic log g values are derived from νmax measure-
ments for giant stars, and they show excellent agreement with
our results, with a mean difference of 
 log g = 0.026± 0.078.
Both the asteroseismic comparison as well as the Gaia benchmark
star comparison (
 log g = −0.011± 0.059) and APOGEE DR17

(
 log g = 0.00± 0.10) agree well and show no trends across the
log g range. For the low metallicity regime, we compare GALAH
log g values with asteroseismically derived values from Howell
et al. (2022) for the globular cluster M 4 (NGC 6121). Stars from
this cluster were observed as part of a dedicated survey (PI M.
Howell) aimed at spectroscopically characterising their sample
of stars observed by the K2 mission (Howell et al. 2014). Across
the 75 overlapping targets, we find a 
 log g = 0.056± 0.128. The
comparison between independently derived light element abun-
dance variations and asteroseismic masses will be presented in
an upcoming paper (Howell et al., in preparation.). This is a
significant improvement over GALAH DR3, where significant
deviations were found for luminous giant stars – whose parameter
estimates in GALAHDR3 suffered from less precise and systemat-
ically biased distance and thus log g estimates. We find significant
outliers, however, particularly for primary red clump stars, which
were mistaken as secondary red clump stars, leading to larger
deviations. We discuss this issue later in Section 8.4. Because this
single group is driving the scatter in our disagreement with the
asteroseismic estimates, we revert to the Gaia benchmark stars to
estimate the accuracy.

[Fe/H]: The comparison of GALAH DR4 metallicities to the
Gaia FGK benchmark stars initially showed the similar bias of
GALAH towards more metal-poor values at the 0.049 dex level.
The application of a zero-point correction (see Table C1) yields
an excellent agreement, with 
[Fe/H]= 0.004± 0.067 for the
benchmark stars and 
[Fe/H]= −0.022± 0.061 for APOGEE
DR17, confirming the reliability of the GALAH DR4 metallicity
estimates across a large range of metallicities. For the metal-poor
regime, benchmark estimates are still rare. Luckily, a dedicated
observing program – whose results are included in this data
release – was performed and an overview of globular cluster Kiel
diagrams is appended in Fig. AC5. We therefore only perform a
comparison with globular cluster stars – often measured in 1D
LTE – to get a quantitative impression of the agreement. We
restrict ourselves to a few studies, namely those by Carretta et al.
(2009a,b) for NGC 104, 6121, 288, 6397, and 7099 as well as
Johnson & Pilachowski (2010) for NGC 5139. In all cases, we find
a good agreement of the metallicity distribution function for over-
lapping stars within the uncertainties (see Fig. 17). While this does
not necessarily confirm our accuracy, it shows consistency within
this uncertain parameter regime. We note however, a specific
region in NGC 104, where the metallicity of the most luminous
giants (Teff < 3 750 K and log g < 0.5) is incorrectly estimated near
the Solar value. We discuss this problem in detail as a caveat in
Section 8.7, since we have not been able to systematically flag these
stars. More generally, we note that the strong and unexpected
abundance trends with Teff or log g in globular clusters from
GALAH DR3 have decreased for most elements. However, we still
urge users to take caution when using globular cluster abundances,
and we discuss this further in Section 8.6. A custom, by hand
analysis of globular cluster abundances beyond [Fe/H] will be per-
formed in a separate study (McKenzie et al., in preparation), as
these observations have been part of a dedicated observing pro-
gram (PIs M. McKenzie and M. Howell). Similarly, a dedicated
verification of open cluster observations (PIs J. Kos and G. De
Silva) will be performed in a separate study (Kos et al. 2025).

vmic: Microturbulence velocities show a more complex pattern
when compared to APOGEE DR17. We find a mean difference
of 
vmic = 0.23± 0.39 km s−1. However, the comparison reveals
a linear mismatch: APOGEE DR17 tends to measure lower vmic
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Figure 16. Accuracy of the main stellar parameters Teff , log g, [Fe/H], vmic, v sin i, and vrad for GALAH DR4. Each panel shows the comparison to literature (DR4 – literature) with
median values as lines and contours between 16th and 84th percentiles. Comparisons are performed for the Gaia FGK Benchmark stars (red), APOGEE DR17 (blue), log g inferred
from asteroseismic measurements (orange) and Gaia DR3 radial velocities (purple).

Figure 17. Comparison of iron abundances (16th, 50th and 84th percentiles) and
overview of spectroscopic and photometric properties of globular cluster stars in
GALAH DR4. Left panels show histograms of iron abundances from GALAH DR4 (blue)
as well as literature estimates for the globular clusters from Giraffe (orange) and UVES
(red) observations by Carretta et al. (2009a, b) as well as observations from Johnson &
Pilachowski (2010). Middle panels show the spectroscopic Teff-log g diagrams coloured
by iron abundance [Fe/H]. Right panels show the trend of GALAH DR4 [Fe/H] along the
different log g values.

values for stars with low microturbulence and larger vmic values
for stars with higher microturbulence compared to GALAH DR4.
This systematic trend suggests that the vmic calibration between
the two surveys may differ slightly, particularly at the extremes
of the parameter range. We note, however, that the surveys agree
much better than for GALAH DR3, where a fixed quadratic rela-
tion was used that did not allow for deviations, for example for
red clump stars. Adding vmic as free parameter returned a simi-
lar pattern as the empirical relation by Dutra-Ferreira et al. (2016)
and shows a significantly different behaviour of vmic for the hottest,
coolest, and red clump stars (see Fig. AA1). This mismatch of vmic
could have indeed driven the metallicity mismatch of metal-rich
red clump stars in GALAHDR2 andDR3 (Buder et al. 2018, 2021),
since their metallicities are in agreement with other estimates now
(e.g. APOGEE DR17).

v sin i: The rotational velocity estimates agree well with
APOGEE DR17, with a mean difference of 
v sin i= 1.6±
2.0 km s−1. However, at higher rotational velocities (above approx-
imately 24 km s−1), our neural networks start to extrapolate, lead-
ing to an upper limit in the estimates and returning significantly
lower v sin i values compared to APOGEE DR17. This issue high-
lights the limitations of the GALAH DR4 v sin i estimates for
rapidly rotating stars.

vrad: For radial velocity we compared our results to both
APOGEE DR17 and Gaia DR3. The comparison with APOGEE
DR17 yields a small offset of 
vrad = −0.09± 0.39 km s−1, indi-
cating excellent agreement between the two surveys. Accounting
for the much lower SNR for faint Gaia targets and unidentified
binaries, we fit two Gaussian distributions to the overall difference
of GALAH and Gaia radial velocities (see Fig. 18). The com-
parison with Gaia DR3 shows a slightly larger offset of 
vrad =
0.15± 0.44± 1.54 km s−1, which is expected due to the lower pre-
cision of the Gaia DR3 radial velocities (Katz et al. 2023). We use
themedian residual of 0.15 km s−1 with respect toGaiaDR3 rather
than the spread as our accuracy estimate.
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Figure 18. Comparison of radial velocities between GALAH DR4 allspec and Gaia DR3. Panel (a) shows the difference of radial velocities as function of Gaia Gmagnitude. Panel
(b) shows a histogram of the difference with two Gaussian distributions (with samemean) fitted to them to estimate amore robust, binary independent, radial velocity difference.
Panel (c) shows the difference of radial velocities as function of radial velocity, showing the systematic scatter introduced by binaries.

Figure 19. Chemical abundances [X/Fe] of Solar twin stars as a function of ages that were estimated as part of the mass and age estimation of the allstar spectrum analysis.
We overplot linear fits to our age-abundance relations for Solar twins in orange and literature values from Bedell et al. (2018) in red. Panels also indicate themedian and standard
deviation with respect to Bedell et al. (2018) when assuming a correct age.

Elemental abundances [X/Fe]: While there is no model-
independent benchmark for absolute abundance accuracy, we
continually perform comparisons with literature values to assess
the consistency of our results with other studies. In GALAH DR4,
we evaluate the abundance zero-points using up to five different
reference estimates (see Fig. AC1): (1) the spectroscopic analysis of
a Solar-composition spectrum of the asteroid Vesta (sobject_id
210115002201239), (2) abundance estimates for Solar twins cor-
responding to a Solar age of 4.5 Gyr (see Fig. 19), (3) abun-
dances of Gaia FGK benchmark stars (Jofré et al. 2015, 2018), (4)
stars with Solar-likemetallicity−0.1< [Fe/H]< 0.1 within 500 pc
of the Sun (a method introduced by Jönsson et al. 2020), and
(5) differences in abundance estimates for stars overlapping with
the high-resolution, large-scale spectroscopic APOGEEDR17 sur-
vey (Abdurro’uf et al. 2022).

It is important to note that our abundance corrections, and
consequently the Solar abundances presented in Table AC1, are

determined within the framework of 1D LTE or 1D NLTE models
and are not intended to represent the most accurate Solar abun-
dances. Instead, they reflect our best effort to minimise discrep-
ancies across different comparison cases. Given the differences in
line modelling, such as those between Grevesse et al. (2007) (who
used 3D atmospheres) and our 1Dmodels, and possible deviations
in the reference abundance from our Vesta spectrum, we refer to
these adjusted values as zero-points. For certain scientific applica-
tions, adjusting these abundance zero-points might be necessary
to ensure consistency with other datasets.

While we are not able to include all of our validation plots, we
refer the interested reader to the publicly available code in our
code repository.l Generally speaking, we have found that a large
number of systematic trends of abundances with temperature and

lhttps://github.com/svenbuder/GALAH_DR4/tree/main/validation.
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Figure 20. Precisionmonitoring (with a median line and standard deviation shading) of stellar parameters as a function of SNR for the green CCD2 across GALAH DR4. Each panel
shows the behaviour for bins of width 10 for the scatter of repeat observations of the allspec runs (blue), covariance uncertainties of allspec (orange) and allstar (red) setups
as well as scatter of photometric log g from repeat observations (purple).

surface gravity has decreased with respect to GALAH DR3, as can
be appreciated from dedicated validation plots (online here) – with
a similar appearance as the right hand panels of Fig. 17.

6.2.2. Precision estimation and validation

In addition to the accuracy uncertainty, we estimate the
total uncertainty through the additional precision uncertainty
(Equation 12). For this purpose, we mainly rely on the fitting
uncertainties of the curve_fit function, which we rescale based
on repeat observations.

While we report the raw fitting covariancematrix for each spec-
trum and module (see Fig. AB2 for the covariance matrices of
Vesta and Arcturus), their entries are not validated for reliability
and have not been adjusted to incorporate a rescaling towards the
final uncertainties. For the purposes of reporting stellar parameter
and abundance fitting uncertainties, we restrict ourselves to the
standard deviations of each feature, that is, the square root values
of the diagonal covariance matrix entries.

Similar to GALAH DR3, we apply a precision adjustment of
the fitting uncertainty towards consistency with the scatter of
repeat observations only as a function of SNR of CCD2. Contrary
to GALAH DR3, we have extended this rescaling function to be
fitted in bins of SNR with both a constant, linear, and exponen-
tial term with snr_px_ccd2 as the independent variable, that is,
c1 + c2 · SNR+ c3 · exp (c4 · SNR). We report the fitted constants
for both allspec and allstar in the online repositorym for each
stellar parameter and abundance.

In Figs. 20 and AC2, we then confirm that the overall trends of
fitting uncertainties for allspec and allstar are consistent with
the repeat observation scatter of the allspec. The latter has to

m∗precision_correction_factors∗ in https://github.com/svenbuder/GALAH_
DR4/tree/main/catalogs.

be used as reference, because the allstar module uses co-added
spectra of repeat observations rather than the repeat observations
themselves. While this might actually overestimate the precision
uncertainty of stellar parameters, we do not expect a too strong
overprediction for abundances.

While the precision levels of stellar parameters have on average
actually remained similar to the estimates of GALAH DR3, we see
notable improvement of the precision for multiple elements, such
as C, Mg, V, Cr, Co, Ni, La, Ce, Nd, and Sm. The precision of Eu,
however, seems to have decreased.

Separately from this work, we performed an extensive anal-
ysis of the precision and accuracy of spectroscopic parameters
from the observation of star clusters, 43 open clusters of all
ages and 10 globular clusters (Kos et al. 2025). In this work,
we compare Teff, log g, and stellar ages with the values obtained
from cluster isochrone fitting. Ages show typical uncertainties of
10 to 50%, depending on the stellar type. Teff and log g match
well for stars hotter than 4 000 K with a bias of 
Teff = −68 K
(GALAH – Isochrones), and 
 log g = −0.03. For stars cooler
than stars 4 000 K, GALAH DR4 temperatures are overestimated
by up to 250 K at Teff = 3 000 K and we find a complicated pattern
in 
 log g, with log g being sometimes severly overestimated for
the coolest dwarf stars.

Most interesting is the analysis of elemental abundances.
Assuming that stellar clusters are chemically homogeneous, we
can study the precision of the reported abundances over a large
range of temperatures.We find that cold stars show consistent sys-
tematic trends, that can reach values of 0.5 dex for some elements.
Dwarf stars are most affected at temperatures Teff < 4 600 K, while
giants show much smaller systematics with strong trends only
at Teff < 4 000 K. The results of this cluster validation (Kos et al.
2025), including a detrended set of elemental abundances, will be
published as value-added-catalogues in DR4.
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Figure 21. Comparison of stars with available measurements in GALAH DR4 and APOGEE DR17 for [C/Fe] and [N/Fe].

Figure 22. Comparison of stars with available measurements in GALAH DR3 (left), GALAH DR4 (middle) as well as APOGEE DR17 (right) for [Mg/Fe] (top row) and [Ni/Fe]
(bottom row).

6.2.3. Uncertainties in light of GALAH DR3 and APOGEE DR17

To get a better idea of the actual improvement of accuracy and pre-
cision, we have performed more elaborate comparisons than those
in Fig. 16 and only showcase a few in this manuscript with refer-
ence to the online repository. We have found the comparison of
GALAH DR4 with both GALAH DR3 and APOGEE DR17 highly
informative.

Because GALAH DR3 did not include N measurements and
only a limited amount of C measurements, our first compari-
son concerns the abundances of C and N between GALAH DR4
and APOGEE DR17 in Fig. 21. We attach the comparisons for
the other overlapping elements O, Na, Al, Si, K, Ca, Ti, V, Cr,
Mn, Co, and Ce in Figs. AC3 and AC4. While we see a gener-
ally good agreement of the shapes, we notice biases of −0.03 dex
and 0.10 dex for C and N, respectively. These can be, however,
explained by the lower precision of GALAH and might, in part,
be driven by the slightly different trends of C and N towards lower
metallicities. In particular, [C/Fe] decreases to sub-Solar level in
APOGEE DR17 for metal-poor stars, whereas it is Solar or even
enhanced in GALAHDR4. Enhanced levels would be expected for
metal-poor disk stars, whereas sub-Solar levels are expected for
accreted stars (Amarsi, Nissen, & Skúladóttir 2019b), warranting a
future population analysis to test the accuracy of either survey.

In addition to these novel abundances, we also showcase two
previously measured abundances, namely [Mg/Fe] and [Ni/Fe]
in Fig. 22. The α-process element Mg has significant value for
Galactic studies because it is predominantly produced by core-
collapse supernovae (Kobayashi, Karakas, & Lugaro 2020). In
GALAH DR3, only the Mg I 5 711 Å line was used, whereas we
now use a combination of several lines. This has led to a sig-
nificant improvement in precision, as can be appreciated from
the comparison of Fig. 22a and b. Even more positive, we see
an improved agreement of the [Fe/H] vs. [Mg/Fe] measurements
between GALAH DR4 (Fig. 22b) and APOGEE DR17 (Fig. 22c),
with no abundance bias. One of the elements with the most sig-
nificant precision improvement is Ni. For this element, our move
to fitting the full wavelength range has increased the number of
lines from two very reliable lines to several dozen lines. Albeit less
reliable in their line data and possibly blended, the sheer increase
in flux information used has improved the precision almost to
the level of APOGEE DR17 – with no bias and a standard devi-
ation of only 0.05 dex between APOGEE DR17 and GALAH DR4
(see Fig. 22c–f).

In addition to these instructive comparisons, we also return
to the precision of Solar twins from Fig. 19. Here we specifically
highlight the significant improvement of precision from GALAH
DR3 to GALAH DR4 with respect to the linear estimate from
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Table 5.List of major quality flag flag_sp listing the bit, description and how
often the flag was raised for the allstar and allspec routines. Notes: Multiple
bits can be raised for each of the 1 085 520 spectra of 917 588 stars.

Raised Bit Flag Description allspec allstar

0 No flag 700 125 663 075

0 1 Emission 9 568 7 646

1 2 CCDmissing 70 078 44 344

2 4 Spectr. Binary 1 0 25 538

3 8 Spectr. Binary 2 34 833 32 566

4 16 χ2 > 3σ 66 859 20 544

5 32 v sin i warning 138 317 95 990

6 64 vmic warning 99 692 78 686

7 128 Triple Binary warning 0 0

8 256 Teff warning 0 0

9 512 log gwarning 19 863 10 900

10 1024 [Fe/H] warning 0 0

11 2048 S/N low 123 736 71 154

12 4096 Not converged 32 986 0

13 8192 Model extrapolated 69 613 5 953

14 16384 No Results 7 400 10 899

Bedell et al. (2018) for C (from 0.09 to 0.045), Si (from 0.04 to
0.023), Ca (0.07 to 0.049), Ti (0.05 to 0.031), V (0.13 to 0.050),
Cr (0.06 to 0.024), Ni (0.07 to 0.033), and Y (0.12 to 0.080). This
improvement of sometimes a factor of 2 is remarkable and most
of our comparisons indicate that these values are representative
of a precision improvement beyond the Solar twins, as shown for
example for Ni in Fig. 22.

6.3. Stellar parameter flags flag_sp

We have implemented a series of post-processing routines to
assess the quality of the stellar parameter determinations. These
routines check for a variety of potential issues with the spectra and
stellar label fitting, with each flag corresponding to a specific qual-
ity check. If any of these checks are not passed, the respective bit
in the quality flag flag_sp is raised. The description of the imple-
mented bits/flags for flag_sp and how often they were raised is
listed in Table 5 and distributions in the Kiel diagram (Teff and
log g) are shown for each raised bit in Fig. AC6 for the allstar
catalogue. For examples of stars with raised flags, we refer back to
the emission line star (flag_sp = 1) of Fig. 15 (Section 6.1.4) and
the clearly double-lined binary of Fig. 11.

Because quality cuts should be applied based on the specific sci-
ence case at hand, we do not make a strict recommendation for
which upper limit of flag_sp should be applied. We note, how-
ever, that we have tried to implement flags that increase in concert.
The first 8 bit masks (with values up to 29 − 1= 511) are therefore
less problematic than those of 9 or higher (flag_sp≤ 512).

While not intended to identify binaries, we believe that both
the v sin i and vmic flags are informative for binaries below
Teff < 6 000 K (see their elevated position in Fig. AC6f and g). We
have trained the stars of this region with a lower maximum v sin i
range that would be reached for a spectrum that is broadened due
to binarity. This region certainly overlaps with the one of identified
single-lined and double-lined binaries with flag_sp = 4 and 8,
respectively (see Fig. AC6c and d). For the latter, we notice that
especially cool giants are picked up by the automatic algorithm

as well. This might be either due to strong extinction biasing our
analysis or due to lines in the spectrum not being modelled prop-
erly and thus showing up as residual signal. While these stars are
possibly flagged false-positively, we also find a remarkable amount
of true binaries (> 41% in orange area of Fig. 23b), for which the
Gaia DR3 radial velocity is likely the systemic radial velocity, as
it is close to the mean radial velocity of both components identi-
fied in GALAH DR4. In Fig. 23, we visualise how one could use
the radial velocities from GALAH DR4 and Gaia DR3 to further
assess the reliability of this flag. To check if a particular bitmask
flag (e.g. 23 = 8) is raised, one can perform the check in PYTHON
via

flag_8_raised = (dr4[’flag_sp’] & 8) != 0

6.4. Elemental abundance flags flag_X_fe

The quality of elemental abundance measurements is also cap-
tured through flags. When an element is reliably detected in the
spectrum, no flag is raised. However, if the abundance of an ele-
ment is estimated as an upper limit, often due to weak spectral
lines or low SNR, an upper limit flag is triggered. If no measure-
ment of the element is possible, a flag is raised to indicate that
the relevant spectral features were too weak or the SNR too low
to allow for an estimate. The list of bits and flags for elemental
abundances, flag_X_fe, is shown in Table 6.

By default, we recommend to only use significant detections
(flag_x_fe= 0) for an element. Because of a bug in the flagging
of the [Fe/H] detection (see discussion in Section 8.8), we do not
recommend to consider flag_fe_h for quality cuts.

6.5. Abundance detection or upper limit

To assess whether the abundance estimates are a true detection
or an upper limit for each element X, we compare a synthetic
spectrum with the best-fitting parameters to a synthetic spectrum
with the same parameters, except for element X, for which we use
the lower limit abundance of the neural network. The residuals in
units of σ between the best-fitting spectrum and the spectrumwith
the lowest possible [X/Fe] or lowered [Fe/H] then allow us to iden-
tify a detection (with maximum differences beyond 3 σ ) or upper
limits, for which we raise the flag flag_x_fe by 1. Our initial test
of overall detectability (Section 4.3.1) allowed us to raise the flag
flag_x_fe by 2 for elements for which not even an upper limit
was expected.

We further raise a flag for allspec abundances, if the ele-
ment was fit above (3) or below (4) the neural network training
set range. For CNO, we have identified specific regions, in partic-
ular dwarfs, for which could not verify abundances and therefore
caution their use (flag 5). We have further tried to identify abun-
dances, for which the optimisation may have failed and flagged
these with flag 6 (see Section 8.7).

7. Data release products

GALAH DR4 encompasses a diverse range of data products. We
describe the most important main catalogues in Section 7.1 and
value-added catalogues in Section 7.2. We further explain the data
products for each spectrum and star, that is, the reduced spectra
(Section 7.3.1), allspec products (Section 7.3.2), and allstar
products (Section 7.3.3).

The data products are provided directly on the AAO
DataCentral website at https://cloud.datacentral.org.au/teamdata/
GALAH/public/GALAH_DR4/. We further provide multiple
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Figure 23. Comparison of radial velocity estimates of GALAH DR4 and Gaia DR3. Panel (a) shows the difference of GALAH’s primary component radial velocity with the mean Gaia
DR3. Panels (b) and (c) show stars for which two components were detected in GALAHDR4 and shows the difference between each component andGaiaDR3 against the difference
of mean (roughly systemic) radial velocities. The panels also include regions where actual binaries and false positive detections are expected.

ways to interact with the data release products, which are
described in Section 7.4.

7.1. Main data release catalogues

1. galah_dr4_allspec_240705.fits: analysis for each
spectrum (including radial velocity estimation for each
spectrum) based on a single spectrum.

2. galah_dr4_allstar_240705.fits: analysis for each
star based on co-added spectra of each star and using
non-spectroscopic information to constrain log g.

We present the main catalogue table schema in Table A1
(see also Fig. 24), but refer the reader to the FITS headers of each
catalogue for more detailed information.

One of our greatest achievements as part of this data release is
the extraction of C and N abundances for giant stars from molec-
ular absorption features. In Fig. 25, we show how stellar mass and
[C/N] ratios are correlated in GALAH DR4, as is expected based
on the pioneering work by Masseron & Gilmore (2015), Martig
et al. (2016), and Ness et al. (2016). Our measurements demon-
strate the potential of [C/N] abundances to better separate the
core-helium burning from the red giant phase (around the blue
areas of Fig. 25b and c) or at least better constrain stellar masses.

7.2. Value-Added Catalogues (VAC)

We provide several value-added catalogues, namely a crossmatch
catalogue to all entries of the Gaia DR3 main source catalogue
and the most important entries from the 2MASS and WISE cat-
alogues, a catalogue of stellar dynamics properties, a catalogue of
3D NLTE measurements of Li, and a catalogue with ages inferred
via isochrone interpolation in a Bayesian framework.

7.2.1. VAC of crossmatches with Gaia DR3, 2MASS andWISE

The value-added catalogue of the crossmatchn with the GaiaDR3,
2MASS, and WISE catalogues as well as the distance catalogue of
Bailer-Jones et al. (2021) was calculated by performing an OUTER
JOIN ADQL-query in the Gaia archive.

ngalah_dr4_vac_wise_tmass_gaiadr3.

The query first performed an INNER JOIN with the 2MASS
near-infrared photometry catalogueo via its designation and
linked this match to the Gaia DR3 catalogue via the best neigh-
bourp and joinedq catalogues of 2MASS to Gaia DR3 (Torra et al.
2021). When cross-matching between Gaia DR3 and 2MASS, less
than 1% of stars were associated with multiple possible matches.
To ensure the best match, the data were sorted from brightest to
faintest G-band magnitude, and only the brightest match for each
sobject_id was retained.

The crossmatch to the WISE far-infrared photometry cata-
loguer (Cutri et al. 2014) was performed via the Gaia DR3’s best
neighbour catalogues (Torra et al. 2021). The match to the dis-
tance cataloguet of Bailer-Jones et al. (2021) via the Gaia DR3
source_id.

The catalogue also includes uncertainties in the Gaia DR3
photometric magnitudes (G, GBP, GRP) that were recalculated fol-
lowing the recommendations from the Gaia Early Data Release 3
(EDR3) documentation (Riello et al. 2021). The total uncertain-
ties were computed by combining the photon flux error with an
additional systematic term.

We further corrected the Gaia DR3 parallaxes for systematic
zero-point errors by applying the correction model provided by
Lindegren et al. (2021a). This correction depends on several fac-
tors, including theG-band magnitude, effective wavenumber (νeff)
used in astrometry, pseudocolour, latitude, and the astrometric
solution type. The parallax zero-points and original parallaxes are
reported as plx_zpt_corr and parallax_raw, respectively.

Beyond the crossmatch with the Gaia DR3 gaia_source
catalogue, multiple other crossmatches can easily be performed
via the gaiadr3_source_id column. We have for exam-
ple crossmatched the sources from GALAH DR4 with those
from Gaia DR3’s variability catalogues (Rimoldini et al. 2023).
We find 47 493 stars in GALAH DR4 that overlap with the
gaiadr3.vari_classifier_result catalogue. In particular, we find 17
256 SOLAR_LIKE variables, 14 477 stars in the δScuti, γ Doradus,

ogaiadr1.tmass_original_valid.
pgaiadr3.tmass_psc_xsc_best_neighbour.
qgaiadr3.tmass_psc_xsc_join.
rgaiadr1.allwise_original_valid.
sgaiadr3.allwise_best_neighbour.
texternal.gaiaedr3_distance.
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Table 6.List of elemental abundance quality
flags flag_fe_h for [Fe/H] or flag_X_fe for
element X.

Raised Bit Flag Description

0 Detection

0 1 Upper limit

1 2 Nomeasurement available

2 4 No convergence

3 8 Measurement above limit

4 16 Measurement below limit

5 32 Measurement issue of CNO

6 64 Optimisation may have failed

or SXPhoenicis category (DSCT/GDOR/SXPHE), 6 247 LPV
(long-period variables), 4 074 ECL (eclipsing binaries), 3 355 RS
(RS Canum Venaticorum variables), 1 096 YSO (young stellar
objects), 401 RR (RR Lyrae types), and a large variety of other vari-
ables, including the white dwarf 2MASS J05005185-0930549 that
was already found in GALAH data by Kawka et al. (2020).

7.2.2. VAC of stellar dynamics

The value-added catalogue for stellar dynamicsu includes the kine-
matic and dynamical properties for stars in the GALAH DR4
survey. The catalogue is created with a publicly available scriptv
as part of GALAH DR4. We define the position of the Sun in
our Galactic reference frame as RGC = 8.21 kpc (McMillan 2017),
ϕGC = 0 rad, and zGC = 25 pc (Bland-Hawthorn & Gerhard 2016).
We then combine the total velocity in V of the Sun at RGC based
on the proper motion measurement of 6.379± 0.024 mas yr−1 by
(Reid & Brunthaler 2004), that is, V
 = 248.27 km s−1 with the
circular velocity of Vcirc = 233.10 km s−1 from McMillan (2017)
to estimate a peculiar velocity of the Sun with respect to the
local standard of rest of 15.17 km s−1. For the other two com-
ponents, we use the estimate by Schönrich, Binney, & Dehnen
(2010), leading to a peculiar velocity of the Sun of (U,V ,W)=
(11.1, 15.17, 7.25) km s−1.

Starting from the crossmatch of GALAH DR4 with the
Gaia DR3 (see Section 7.2.1), we use the GALPY.ORBIT mod-
ule by Bovy (2015) to estimate heliocentric Cartesian coordinates
(X,Y ,Z) and velocities (U,V ,W) as well as Galactocentric cylindri-
cal coordinates (R, ϕ, Z) and velocities (vR, vϕ , vZ). We approxi-
mate the orbit actions JR, Jϕ = LZ , JZ and frequencies ωi with the
GALPY.ACTIONANGLE.ACTIONANGLESTAECKEL function with a
focal length of the confocal coordinate system delta= 0.45 in the
Milky Way potential by McMillan (2017). We further use the
Staeckel approximation (Binney 2012) to calculate eccentricity,
maximum orbit Galactocentric height, and apocentre/pericentre
radii with GALPY’s ECCZMAXRPERIRAP (Mackereth & Bovy
2018). Our assumption of a time-invariant, axisymmetric potential
further allows us to extract the orbit energy via GALPY. ORBIT.E.

In particular the dedicated observing programs of GALAH
towards low angular momentum stars (PI S. Buder) and globular
clusters (PI M. McKenzie and PI M. Howell) have increased the
number of spectroscopic observations for stars on halo-like orbits.

ugalah_dr4_vac_dynamics.
vAccessible in the GALAH DR4 repository here.

This is showcased by both the action-action diagram of angu-
lar momentum LZ versus radial action

√
JR (Fig. 26) and angular

momentum LZ versus orbit energy E (Fig. 27) and visualises the
potential of GALAH DR4 observations to complement Galactic
dynamics studies and enable Galactic chemodynamic studies.

7.2.3. VAC of 3D NLTE lithium abundances

In this value-added catalogue,w we use spectrum fitting to infer
3D non-local thermodynamic equilibrium (NLTE) lithium abun-
dances. For each spectrum, the Li line is modelled with a 3DNLTE
BREIDABLIK line profile (Wang et al. 2021). In cases where the Li
line is blended with nearby lines such as Fe and CN, we model
blending lines as Gaussian absorption profiles. From this model,
we measure the equivalent width (EW) and errors in EW of the
Li line using ULTRANEST (Buchner 2021), a Monte Carlo nested
sampling algorithm. The Li abundance, A(Li), is then inferred
from the measured EW using BREIDABLIK and the stellar param-
eters from GALAH DR4’s allstar. See Wang et al. (2024a) for a
detailed description of the methodology.

Wang et al. (2024a) measured a local line width for the Li
region and fit the width of the Li line separately from other lines.
For this work, we use the GALAH instrumental profile convolved
with the rotational velocity as the width of our blending lines and
set the width of the Li line based on this convolved kernel, better
constraining the line widths. Whilst we still measure a local radial
velocity due to a lack of ThXe arc lines for CCD3 (see Section 8.1),
we apply the GALAH radial velocity for poorly constrained Li
depleted stars where we cannot measure the local radial velocity.
In addition, the sampled EW posterior is now modelled using a
first order boundary corrected kernel density estimator fromLewis
(2019), which has better convergence than histograms. Lastly,
GALAH DR4 analyses stars down to 3 000 K, but the STAGGER
model atmospheres only reach 4 000 K, therefore, we provide an
additional column of 1D NLTEx A(Li) inferred through our mea-
sured EWs using a new interpolator. Similar to the existing EW
interpolators in BREIDABLIK (Wang et al. 2021), we train a feed-
forward neural network onNLTE Li abundances synthesised using
the 1D MARCS model atmospheres. We use a 2-layer architecture
with the ReLU activation function and find best hyperparameters:
i= 900 neurons, and α = 0.1 L2 penalty. This model is included in
the BREIDABLIK package. Using the updated methodology it takes
∼2 min per star in comparison to 0.5–2 h per star reported in
Wang et al. (2024a), with the main speed up coming from fixing
the Li line width.

EWs are measured for 892 223 stars (97% of GALAH DR4),
with 3D NLTE A(Li) detections reported for 417 825 stars (46%)
and upper limits for 474 398 stars (52%). Fig. 28 shows the mean
EW over Teff and log g. The Li-dip can be seen on the main-
sequence turn-off at Teff≈ 6 500 K and log g≈ 4.2 and extends up
the subgiant branch. There is a Li enhanced population of stars
at log g≈ 2.5 in the red clump whilst the horizontal branch is
depleted in Li. Although the secondary red clump appears to be
depleted in Li, these stars have an overestimated log g driven by
incorrectly inferred masses (see Section 8.4), and should be pri-
mary red clump stars. The increase of mean Li EW up the giant
branch is due to a large proportion of stars with EW≈ 100 mÅ.
Features of this figure will be studied in follow-up papers.

wgalah_dr4_vac_3dnlte_a_li.
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Figure 24. Overview of stellar parameters and elemental abundances for the allstar estimates of GALAH DR4. The top left panel shows the density distribution of stars in the
Kiel diagram of Teff and log g. All other panels show the logarithmic elemental abundances (for elements indicated in the top left of the panel) as a function of the logarithmic
iron abundances [Fe/H]. Elements are coloured by different nucleosynthetic channels (black for big bang nucleosynthesis, blue for core-collapse supernovae, red for supernovae
Type Ia, green for asymptotic giant branch star contributions and pink for the rapid neutron capture process with contributions frommerging neutron stars) following the colour
schema from Kobayashi et al. (2020). Percentages indicate the fraction of detections of stars for each element.

Figure 25. The ratio of [C/N] and isochrone masses in comparison panel (a), and as a function of Teff and log g in panels (b) and (c), respectively.
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Figure 26. Distribution of the dynamical properties of angular momentum LZ and radial action JR of stars in GALAH DR4 (black), with globular cluster members highlighted in
colour. Cluster members were selected as those with more than 70 percent membership probability according to Vasiliev & Baumgardt (2021). The Sun is indicated with a red

symbol.

Figure 27. Distribution of the dynamical properties of angular momentum LZ and orbital energy E of stars in GALAH DR4 (black), with globular cluster members highlighted in
colour. Cluster members were selected as those with more than 70 percent membership probability according to Vasiliev & Baumgardt (2021). The Sun is indicated with a red

symbol.

A quality flag (flag_ALi) is raised by 1 for upper limits, 2
or more to indicate other quality issues, such as stellar parame-
ters falling outside of the model atmosphere grid (see Wang et al.
2024a) for more details on the bitmask flag). We recommend
flag_ALi < 2when using the 3DNLTEA(Li), and flag_ALi < 4
when using Li EWs. A similar quality flag flag_ALi_1D is
provided corresponding to the 1D NLTE A(Li) included in
the VAC.

xNote that these 1DNLTE Li abundances are different from the 1DNLTE Li abundances
published in allstar.

For convenience, we have included the most important
columns of this catalogue in the allstar catalogue (see Table A1),
as we recommend to use them instead of the less accurate 1D
NLTE abundances estimated with an imperfect neural network
interpolation, which we indicate with nn_li∗.

7.2.4. Ages

A value-added-catalogue for stellar ages and masses from BSTEP
(Sharma et al. 2018) is currently in preparation. In the mean-
time, users can rely on the on-the-fly age and mass estimates
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Figure 28. Mean EWbinned in Teff and log g. The Li-dip can be seen at Teff≈ 6 500 K and
log g≈ 4.2. At log g≈ 2.5, red clump stars have a higher mean Li EW whilst horizontal
branch stars have a lower mean Li EW compared to surrounding stars. Themean Li EW
increases going up the red giant branch.

already provided in the allstar and allspec catalogues from
the pipeline.

7.3. Data products for each spectrum and star

We provide individual data products in an orderly fashion that
allow users to create links to these products based solely on the
sobject_id. To download data products for individual stars we
recommend creating a url string and using WGET or similar com-
mands. For bulk downloads of the advanced data products of this
section, we recommend contacting the GALAH collaboration or
using the bulk download interfaces of AAO DataCentral.

7.3.1. Reduced spectra

The reduced spectra of each night are provided in the observa-
tions directoryy and sorted into directories with four spectra –
one for each of the four CCDs. These spectra are produced by
the reduction pipeline (see Section 2.2) and include several exten-
sions as outlined in Table 2, with wavelength information stored
in the fits headers with starting wavelength CRVAL1 in Å and lin-
ear pixel scale CDELT1 in Å/px, and the number of pixels NAXIS1.
The reduced spectra are only provided per exposure and not in a
co-added manner, since the co-adding was performed as part of
the allstar module (see Section 7.3.3 for co-added spectra). We
note that not all files might be available for a given exposure due
to the rare failure of CCD readouts.

7.3.2. Additional products of the allspecmodule

The allspec analysis product directoryz provides the files that
were produced by the allspec module. These include the on-the-
fly assessment of the radial velocity fit ∗rv.png (similar to Fig. 9),
the raw fitting results ∗results.fits and their covariance
matrices ∗covariances.npz (similar to the entries used to pro-
duce Fig. AB2). We also provide a combined ∗spectrum.fits

yobservations/YYMMDD/spectra/com/sobject_id∗.fits.
zanalysis_products_single/YYMMDD/sobject_id/.

file (concatenated over the four bands) that includes the wave-
length, flux, and flux uncertainty of the velocity-corrected and
re-normalised observed spectrum as well as the best-fitting model
spectrum interpolated onto the same wavelength. Finally, we pro-
vide a ∗comparison.pdf (similar to Fig. AB1) which displays the
fit results, comparison of observed and model spectrum, masked
wavelength regions, and wavelengths of the most important ele-
ment lines. If the module did not run to completion, for example
because the SNR of the spectra was below the threshold of SNR=
10 for any CCD to even attempt a fit, not all products are available
for a spectrum.

7.3.3. Additional products of the allstarmodule

The allstar analysis product directoryaa also includes the
radial velocity monitoring ∗rv.png, results files ∗results.fits,
combined spectra ∗spectrum.fits and ∗comparison.pdf
overview, similar to the ones described in Section 7.3.2. In
addition, each directory also includes a ∗sobject_ids.txt file
that lists all individual spectra that were co-added to create the
observed spectrum and its uncertainty in ∗spectrum.fits.

7.4. Interactive access via AAO DataCentral

In collaboration with the AAO Data Central, a number of
interactive ways are provided to explore the data of this
release. Data Central provides both Simple Spectral Access and
Single Object Viewer services. In addition, we recommend to
download files or easily crossmatch user catalogues with the
TAP server https://datacentral.org.au/vo/tap in TOPCAT (Taylor
2005). https://apps.datacentral.org.au/galah/spectra also provides
an interactive plotting application to show normalised or un-
normalised spectra of different repeat observations. As these tools
are under active development, we refer to the latest documen-
tation on both the DataCentral and the main Survey website
https://www.galah-survey.org.

8. Caveats and future improvements

In this section, we attempt a detailed discussion of caveats at
different steps of our analysis, while also giving suggestions for
future improvements – both for GALAH and other surveys.
We first discuss caveats of the spectrum reduction (Section 8.1),
before extensively discussing the spectrum synthesis (Section 8.2)
and spectrum interpolation (Section 8.3). We discuss possi-
ble problems arising from the use of photometric informa-
tion (Section 8.4), in particular for stars that could be binaries
(Section 8.5). We elaborate on caveats regarding globular clus-
ters in Section 8.6 and the fitting iteslf in Section 8.7. Finally, we
point out caveats regarding the flags in Section 8.8 as well as a
bug and its correction in the reported radial velocity of interstel-
lar K in Section 8.9. We summarise the most important caveats in
Section 8.10.

8.1. Spectrum reduction

Although a significant amount of work was spent on improving
the spectrum reduction, several persistent issues remain, which are
summarised below.

aaanalysis_products_allstar/YYMMDD/sobject_id/.
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8.1.1. Wavelength solutions

For each CCD, the reduction pipeline estimates the most suitable
wavelength solution, linking pixels with actual wavelengths based
on the ThXe arc lines. In GALAHDR3 (Buder et al. 2021) we iden-
tified several issues for spectra where not enough ThXe lines could
be used to constrain the wavelength solution. Improvements have
been made for the new reduction version to improve the num-
ber of useful ThXe lines and restrict the flexibility of wavelength
solutions to move them closer to previous results. This has helped
us to decrease the number of problematic wavelength solutions
towards the red end of CCD3 which includes the used absorption
features of Li and Eu.We have decreased bad wavelength solutions
for this CCD from initially 7.9% of the spectra to roughly 1% bad
solutions, that is, similar to the other CCDs.

8.1.2. Holistic spectrum extraction

Althoughmuchwork has been spent on improving telluric and sky
lines in the reduction step, most reduction steps are currently run
sequentially rather than in parallel. Using the information of stellar
spectra when modelling the wavelength solution would certainly
help to overcome the limited information in ThXe calibration
spectra in the absence of laser combs (Kos et al. 2018). Multiple
steps in this direction have been taken (Saydjari et al. 2023) and
should be rolled out in future spectrum analysis. This would espe-
cially help to mitigate imperfect telluric and sky line removal while
simultaneously improving the wavelength solution – amongmany
other effects.

8.2. Imperfect spectrum synthesis

8.2.1. Spectrum synthesis

The GALAH survey’s success relies heavily on the ability to accu-
rately model stellar spectra to infer accurate stellar properties. The
survey has seen significant improvements in moving from the
approximation of 1D LTE towards 1DNLTE (Amarsi et al. 2020b).
This includes the use of 1D NLTE synthesis for atomic lines using
the 3D NLTE code BALDER (Amarsi et al. 2018b), a custom ver-
sion of Multi3D (Botnen & Carlsson 1999; Leenaarts & Carlsson
2009). The code employs model atoms for H (Amarsi et al. 2018b),
Li (Lind, Asplund, & Barklem 2009a; Wang et al. 2021), C (Amarsi
et al. 2019a), N (Amarsi et al. 2020a), O (Amarsi et al. 2018a), Na
(Lind et al. 2011), Mg (Osorio et al. 2015), Al (Nordlander & Lind
2017), Si (Amarsi & Asplund 2017), K (Reggiani et al. 2019), Ca
(Osorio et al. 2019), Mn (Bergemann et al. 2019), Fe (Amarsi et al.
2018b; Amarsi et al. 2022), and Ba (Gallagher et al. 2020) over the
MARCS model atmosphere grid. The work by Wang et al. (2024a)
also enables us to present measurements of Li in 3D NLTE as part
of this release.

All of these advances contrast with the lack of a proper way
of modelling molecular features appropriately. This could explain
the significant mismatch of oxygen abundances between the opti-
cal and infrared (compare e.g. Bensby, Feltzing, & Oey 2014;
Abdurro’uf et al. 2022). It can, however, also lead to mismatches in
the GALAH wavelength range, where atomic features, such as C I,
can be modelled in 1D NLTE, whereas much stronger molecular
features of C2 and CN have to be modelled in 1D LTE and linelists
of molecules, such as TiO,might be incomplete (Hoeijmakers et al.
2015; McKemmish et al. 2019).

For our synthesis, we have employed version 580 of the IDL-
based code Spectroscopy Made Easy (Valenti & Piskunov 1996;

Piskunov & Valenti 2017). As part of the continuing improvement
of this code, several bugs have been identified and fixed. We also
note that a Python-based version of SME, PYSME (Wehrhahn et al.
2023), has become available. In addition, the spectrum synthe-
sis code KORG (Wheeler et al. 2023; Wheeler, Casey, & Abruzzo
2024) has been published in Julia with a Python interface. It offers
a faster alternative to SME once 1D NLTE synthesis is imple-
mented, which is essential for applying to many NLTE-sensitive
lines, such as O and K, in the GALAH wavelength range. KORG
already internally adjusts the metallicity that is used to interpolate
atmospheres based on the overall chemical abundances, whereas
this would need to be adjusted in SME by hand, since atmospheres
are interpolated with the SME.FEH entry that is independent of
the chemical composition SME.ABUND. Because we have not per-
formed said adjustment, we note that the spectrum synthesis for
chemical compositions far from scaled-Solar may have used an
mismatched atmosphere in the synthesis in SME for GALAHDR4.

8.2.2. Mismatch of atmosphere and spectrum chemistry

For several of our synthetic spectra, the chosen chemical com-
position deviates significantly from the scaled-Solar pattern of
the MARCS model atmospheres, particularly for α-process ele-
ments such as O and Mg, as well as C and N. These elements
can substantially affect opacity and energy transport, and there-
fore, their abundances must be adjusted to match observed spectra
more accurately. For instance, α-enhancements in stars with non-
Solar abundance patterns can shift line strengths and depths
significantly (Asplund 2005; VandenBerg et al. 2012). Likewise,
variations in C and N abundances, particularly in cooler stars,
can impact molecular equilibrium, altering CO and CN molec-
ular line strengths significantly (Tsuji 1976; Smith et al. 2013).
Dedicated MARCS atmospheres with modified α and C abun-
dances (Mészáros et al. 2012; Jönsson et al. 2020), such as those
used in modelling APOGEE spectra (Abdurro’uf et al. 2022), or
more flexible interpolation schemes byWestendorp Plaza, Asensio
Ramos, & Allende Prieto (2023), address this mismatch. However,
the NLTE grids would also need to be expanded to cover all grid
points of the extended MARCS models to ensure consistency.

8.3. Spectrum interpolation with neural networks

8.3.1. Training set selection

Before the neural networks are computed, it should actually be
tested what the abundance zero-points are. In the case of sev-
eral elements like Na and Al they are significant, on the order of
0.2 dex. When this occurs, stars with actual high abundances of
0.7− 0.8 dex, for example in old stars and especially in globular
clusters (see e.g. Carretta et al. 2009b), are not sufficiently covered.

One of the primary challenges in creating an optimal training
set for spectrum interpolation lies in the choice of parameter sam-
pling. A common caveat is the use of randomised, uncorrelated
parameter sampling, which can lead to unrealistic combinations
of elemental abundances. Elements that share a similar nucleosyn-
thesis channel often exhibit correlated behaviour, for instance,
stars with high abundances of Mg are typically also enhanced
in Si, Ca, and Ti, while Na and Al tend to be elevated together.
Similarly, neutron-capture elements like Y and Ba often follow
similar trends (e.g. Ting et al. 2012; Kobayashi et al. 2020; Buder
et al. 2021). To better capture this behaviour in the training set, the
use of scaled linear functions or normalising flows could be advan-
tageous. These approaches would help minimise the occurrence of
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unlikely parameter combinations and yield a more representative
sample.

For stars of the thin disk population, one could for exam-
ple consider sampling from a noisy age-[X/Fe] relation to model
chemical evolution (see Fig. 19, Nissen 2015; Spina et al. 2016;
Bedell et al. 2018). This approach becomes more complicated
when considering the thick disk, halo, and peculiar stars, where
distinct nucleosynthesis histories introduce greater variability in
elemental abundance trends.

8.3.2. Masking of spectra

Because the correlation between spectral features, stellar param-
eters, and abundances is often complex, degeneracies can arise
when two stellar properties influence similar pixels of a spectrum
(e.g. C and N for CN, or Teff and [Fe/H] for cool dwarfs) or two
stellar properties tend to act in lockstep in actual stars (e.g. Mg, Si,
and Ti as α-process elements). In GALAHDR2 (Buder et al. 2018),
we attempted to overcome these issues by specifically masking the
coefficients of spectrum interpolation, that is, effectively restrict-
ing the interpolation to only change smaller parts of the spectrum
for a given stellar property.

In GALAH DR4, we have relaxed this restriction again, since
we have trained on random abundance combinations in the hope
of being able to break correlation degeneracies. We note, however,
that too little information in spectra can again cause by-chance
correlations (e.g. if neutron-capture lines are always very weak and
the training set is not sufficiently large). We believe that this is
the cause of the decrease in precision for Eu measurements from
GALAH DR3 to GALAH DR4. The Eu abundance was mainly
measured only from the weak Eu 6 645 Å line in DR3, whereas the
neural networks of DR4 are not restricted to this region.

8.3.3. Flexibility of neural networks in general

The decision to use a large set of neural networks, each covering
a restricted region in the Teff, log g, and [Fe/H] space, was moti-
vated by the goal of reducing the complexity required of any single
model. By dividing the parameter space into smaller subsets, each
neural network can be specialised and therefore less flexible, which
allows for more precise modelling within its specific region. This
approach avoids the trade-off faced by a single, monolithic neural
network, which would either lack sufficient flexibility across the
entire parameter space or be computationally more expensive to
train and evaluate. For this data release, we have fixed the cho-
sen network architecture of a 2-layer perceptron with 300 neurons
and specific learning rate. While we have tested other activation
functions than leaky rectified linear units, namely sigmoid, tanh
and exponential linear unit functions, we found the lowest root
mean square errors for our chosen activation function. Given the
found issues withmodel fluxes above 1, we also would recommend
to test a sigmoid as last activation layer of the neural network to
ensure that the neural network always predicts fluxes between 0
and 1, as is expected from modelled stellar spectra. We have fur-
ther tested a larger number of neurons, but found the root mean
square errors to stabilise around 300 neurons for our test cases.
It has to be acknowledged that due to the limit of human power
to properly train and test the neural networks, we have not been
able to properly test all neural networks and explore more flexible
architectures. For this data release, we have decided not to rerun
these steps, but make the current results available to the commu-
nity. In the future, the restriction to one or only a few network
models is recommended. The latter could cover regions of cool

dwarfs, main-sequence turn-off stars, hot stars, and giant stars
with individual models – and possibly explore the split in metal-
poor and solar-like regimes. This would also decrease overhead,
in particular for training and loading different models as well as
possible noding effects between different models.

8.3.4. Flexibility of neural networks for extreme abundances

While this approach has proved to be powerful for all elements
across their abundance ranges, we have noticed sinusoidal shapes
for weak Li lines (see alsoWang et al. 2021). This is likely caused by
the large dynamical range of 0<A(Li)< 4 that has to be covered
by the neural network. For Li, the more sophisticated approach
is to fit Gaussian lines to multiple components in the wavelength
range around 6 708 Å, measure EW(Li), which are then used to
infer 3D-NLTE based A(Li) abundances. This inference is prefer-
able to our 1D-NLTE based neural network estimates, as it is
independent of the network flexibility and superior to our less
accurate spectrum synthesis in 1D.

While several studies have identified that the abundances of
stars in the Galactic disk are often very similar (e.g. Ness et al.
2019), the Galactic halo offers a more diverse picture. An exam-
ple is 2MASS J22353100-6658174 (140707003601047), a turn-off
star with extremely high s-process abundances and actually visible
lines of La and Nd in addition to the usually visible Y and Ba. In
this case, the fits to the La and Nd lines are significantly weaker
than the observations. GALAHDR3 actually produced reasonable
fits to this star with high abundances in [Y/Fe]=1.2, [Ba/Fe]=1.5,
[La/Fe]=1.5, [Ce/Fe]=1.1, [Nd/Fe]=1.9, and [Sm/Fe]=1.2. A
neural network that is not trained on such high abundances is
likely to improperly extrapolate stellar spectra.

While we have tried to extract abundances of chemically pecu-
liar stars, such as carbon-enhanced metal-poor stars, the signif-
icant effect of their molecular features onto the whole stellar
spectrum is not to be underestimated and can in-itself pose a
problem to the flexibility of neural networks.

8.3.5. Over- and underdensities at neural network edges

While the use of one neural network to interpolate the high-
dimensional spectrum space is preferable, in practice, different
science cases may drive the decision to use several networks. If
the science case is to reach maximum precision, one neural net-
work that is trained on the typical spectrum could be used at the
expense of properly modelling peculiar spectra. If the science case
is to reach maximum accuracy, only the regions with reliable line
data and spectrum synthesis might be preferable. If the science
case is to find peculiar stars, a larger coverage is needed to avoid
the inaccurate extrapolation of stars with extreme abundances. In
practice, large collaborations likely unite all of these goals, and a
compromise has to be struck among the different approaches. For
future analyses, a possible solution could therefore be to follow
a two-step approach of first running one generic neural network
for all spectra and then using optimised neural networks – or full
spectrum synthesis – on smaller target samples of specific science
cases.

8.3.6. Quantitative performance of neural networks

Throughout the training of our neural networks, we optimised
model parameters using a mean absolute error (MAE) loss func-
tion across the spectrum pixels. The MAE remains consistently
below 0.01 for all neural networks, indicating high accuracy in

https://doi.org/10.1017/pasa.2025.26 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.26


28 S. Buder et al.

Figure 29. Neural network performance shown as a function of Teff vs. log gwith each panel showing a different range of [Fe/H]. Colours indicate the mean absolute errors of the
training (large circles) and validation (small circles) for the neural networks.

Figure 30. Histogram of themean absolute errors for the neural networks. These were
used as loss function during the training (blue) and validation (red) on seen and unseen
spectra, respectively.

model predictions, particularly for turn-off and most metal-poor
stars where errors are typically below 0.001 (see Figs. 29 and 30).

Despite these low average error rates, the performance of
neural networks can vary significantly across different spectral
regions. Errors are minimal in continuum areas but tend to
increase around strong or strongly changing absorption features,
such as those of lithium, which are discussed in Section 8.3.4.
The neural network architecture does not track uncertainty for
each weight and bias, limiting our ability to generate perturbed
models for assessing the impact of interpolation uncertainties on
derived parameters and abundances. Additionally, retraining net-
works with varied initial conditions to evaluate prediction stability
is computationally intensive.

To gauge the practical impact of these uncertainties, we com-
pared the MAE against the noise levels in the GALAH spectra.
Errors significantly lower than the noise levels for stars above
Teff > 5 000 K suggest that the interpolation inaccuracies mini-
mally impact our analysis. However, for cooler stars with MAE
around 0.01, interpolation inaccuracies could potentially influence
precise chemical abundance studies more substantially.

Despite the high degree of accuracy achieved, the limitations
outlined necessitate careful interpretation of derived parameters,
especially in regions with significant absorption features (see
Figs. 29 and 30).

8.4. Mismatch of spectroscopic and photometric information

8.4.1. Incorrect masses driving incorrect stellar parameters

We estimate masses and ages through isochrone matching, where
stellar parameters (validated against photometric estimates) are
known for not being fully consistent with spectroscopic values.
We believe this leads to significant mismatches especially for stars
close to the red clump. In this region, a small change in spec-
troscopic and photometric information can imply a significant
change in inferred mass (e.g. from primary to secondary red
clump, with the latter being 2 or more solar masses and thus sig-
nificantly more than the usual ∼ 1 solar mass). This issue has only
become noticeable after the production runs and we have there-
fore decided not to rerun this particular region of the parameter
space for this data release. We have extensively tested the possi-
ble reasons and identified the mismatch of isochrones and actual
stellar spectroscopic parameters as the cause. We have not been
able to fully resolve this issue by either including a prior based on
the initial mass function to weigh against massive stars (see e.g.
Sharma et al. 2018) and move from likelihood-weighted to poste-
rior mass estimates. Similarly, we have not been able to resolve
these effects by artificially upscaling the spectroscopic uncer-
tainties when calculating the likelihood-weighted masses. More
work needs to be done to mitigate the current inconsistencies of
theoretical isochrones and spectroscopic estimates.

Another solution for this particular region of the parameter
space could be the use of chemical stellar evolution through the
correlation of core and thus total mass with the ratio of [C/N] after
the first dredge-up (Masseron & Gilmore 2015; Martig et al. 2016),
given that GALAH spectra also contain information on both ele-
ments. This could thus be used to better constrain high masses
and counteract the information from isochrone-inferred masses.
For this data release, the [C/N] information could at least serve as
an indicator of how trustworthy high masses for giant stars are.
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Figure 31. Example spectrum for a double-lined spectroscopic binary star (SB2) that
is better fitted with our binary fitting algorithm.

8.4.2. To use or not to use non-spectroscopic information?

The implementation of non-spectroscopic information, as done in
our allstar module, has the advantage of overcoming spectro-
scopic degeneracies (as proven for the limited information on log g
in the HERMES wavelength range) as well as improving accuracy
and precision also for the lowest quality spectra (because log g is
no longer solely dependent on the spectrum information).

However, this approach is only useful if the non-spectroscopic
information is not biased (as it would be for astrometric and pho-
tometric information in the case of unresolved binarity). While
the astrometric information for almost all GALAH targets is
exquisite, this may not be the case for other surveys. The sig-
nificant improvement from GALAH DR3 to GALAH DR4 has
most definitely benefited from the improved astrometric infor-
mation of Gaia EDR3 (Gaia Collaboration et al. 2021a; Lindegren
et al. 2021b) and Gaia DR3 (Gaia Collaboration et al. 2023) with
respect to Gaia DR2 (Gaia Collaboration et al. 2018; Lindegren
et al. 2018). Further improvement could be expected when also
taking Gaia’s photometric information into account, in addition
to our use of 2MASS photometry.

8.5. Binaries

Although not part of this release, we have created an analysis
module for spectroscopic binaries. The module will be presented
in a separate work (Lach et al., in preparation) with a catalogue
becoming a value-added catalogue of this release. The module is
motivated by the extensive study of GALAH binary star spectra by
Traven et al. (2020) and our ability to model the full spectrum via
neural networks. We show a first analysis result of the module in
Fig. 31, where the module was applied to a spectroscopic binary
type 2 and resulted in a significantly better fit than the single star
analysis.

8.6. Globular clusters

Globular clusters are well known for their light element anti-
correlations (i.e. the Na-O or Mg-Al anti-correlations), though
the underlying cause remains a subject of debate (for recent
reviews see Bastian & Lardo 2018; Gratton et al. 2019; Milone
& Marino 2022). It is widely accepted that one population is
enhanced in elements including He, N, Na and Al, and depleted
in O and C. Previous GALAH data releases have encountered
issues in removing trends between abundances and stellar param-
eters (as discussed in Section 6.2.1), and DR4 represents a marked
decrease of scatter within the Kiel diagrams of the globular clus-
ters (see Appendix C). Despite these improvements, light element

abundance anti-correlations are still not well reproduced for DR4.
We attribute this to two key factors: abundance zero points
(Section 6.2.1) and the masking of spectra (Section 8.3.2).

Table C1 illustrates that both Na and Al have some of the largest
zero-point shifts (−0.171 and −0.185), meaning that for some
clusters the full extent of the anti-correlations is not realised (par-
ticularly for the light element enhanced populations). Secondly,
when inspecting the optimal synthesis for particular lines (e.g. the
Na lines at 5 682.6 and 5 688.2 Å, or the O triplet around 7 770 Å),
the fits are poorly constrained, leading to a more significant scatter
in these critical elements than what has previously been reported
in the literature. We expect this is related to the relaxed restric-
tions on the neural network. Based on the abundances in their
current form, we do not recommend using these light element
abundances to distinguish between the multiple populations in
globular clusters.

However, the 3D NLTE Li abundances discussed in
Section 7.2.3 have effectively mitigated the above issues by
adopting the GALAH stellar parameters and focusing exclusively
on fitting the Li line. When analysing this Li data for the globular
clusters, we can effectively reproduce the Li depletion patterns
reported by Lind et al. (2009b) The large sample of clusters allows
for a homogeneous study of Li depletion around the RGB bump,
which will be detailed in McKenzie et al. (in preparation).

Dedicated observing programs have increased the average SNR
for some clusters and expanded the sample to include additional
clusters, such as M 22 (PI: M. McKenzie) andM 4 (PI: M. Howell).
As discussed in Section 6.2.1, M 4 will be used to spectroscopically
confirm whether the stars with lower asteroseismic masses belong
to the light-element-enhanced population. This confirmation will
be achieved through the re-analysis of Na, O, Mg, and Al lines, fol-
lowing the approach used for Li, since we advise against relying on
these current light element abundances for globular cluster stars.

The cluster M 22, renowned for its bimodal s-process popula-
tion (Marino et al. 2011;McKenzie et al. 2022, 2024), was observed
as a crucial test case to evaluate the GALAH pipeline’s ability
to detect s-process abundance variations. While the pipeline suc-
cessfully recovers the bimodal distribution, the scatter is larger
than reported in previous studies. Additionally, as noted in
Section 6.2.2, the precision of Eu measurements appears to have
decreased between DR3 and DR4, particularly within globular
cluster populations. Therefore, we recommend against using Eu
from DR4 in future globular cluster publications.

Due to their low metallicity, globular clusters are particularly
susceptible to the bug in the flag_fe_h discussed in Section 8.8.1.
If this condition is relaxed, we recommend that all spectra and
corresponding fits be manually inspected for quality before being
included in any publications. Again, we reiterate that a boutique,
custom reanalysis aiming to address these caveats in the globular
cluster data will be the focus of upcoming work from McKenzie
et al. (in preparation).

8.7. Fit optimisation

As described in Section 4, we are using the CURVE_FIT function of
scipy.optimize (Virtanen et al. 2020) to fit synthetic spectra to
observed spectra, whose optimisation can get stuck in local min-
ima. We have tried to automatically identify regions of the param-
eter space where the SCIPY.OPTIMIZE.CURVE_FIT function has
become stuck. In particular for some red clump stars as well as cool
giant stars with Teff < 3 750 K and log g < 0.5 (see Section 6.2.1),
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we have been able to recover a pattern of abundances that are stuck
around their initial value. However, this pattern is not consistent
enough to flag stars without a significant amount of false-positives.
Because of the zero point corrections, these are shifted away from
the usual initial guess of 0 dex depending on the element (see
zero-points in Table C1).

Such a fitting failure would also be expected when applying The
Payne (Ting et al. 2019) with its similar default setup that adopts
parameter bounds for the fitting parameters and thus employs the
curve_fit function with the trust region reflective (trf) method.
Given the common use of curve_fit, future pipelines should test
a range of approaches to avoid this issue. Firstly, instead of using
trf, the Dogbox (dogbox) method, could be used. The method is
potentially slower but more reliable for complex parameter spaces.
It could be used to randomly check the convergence of the trf
method or be applied only to regions where multiple local minima
are expected.

Moving away from the curve_fit function, the LEASTSQ,ab
MINIMIZE or the DIFFERENTIAL_EVOLUTION function of
scipy’s optimize module could be used to test options of a more
expensive but more extensive optimisation. Finally, multiple ran-
domised initial starting guesses could be applied for curve_fit,
but would multiply the computing costs linearly by the number of
initial guesses.

The fitting optimisation and uncertainty estimation should be
performed in a more sophisticated Bayesian framework that folds
in photometric, astrometric, and asteroseismic information and
their uncertainties. We have indeed implemented such a frame-
work with a likelihood estimate from spectroscopic information
and prior information based on photometric, astrometric, and
asteroseismic estimates for test purposes. When implementing the
resulting posterior into the Markov-Chain Monte-Carlo machin-
ery of EMCEE (Foreman-Mackey et al. 2013), we have not been
able to limit the computational time (when fitting all labels) to
a competitive level with curve_fit and thus not implemented
this approach for the analysis of a million spectra. We note,
however, that a future analysis should implement this approach
– either with EMCEE or Monte Carlo nested sampling algo-
rithms like ULTRANEST (Buchner 2021). Furthermore, we suggest
to either separate the likelihood and posterior estimation steps
(see e.g. Gent et al. 2022) or limit the optimisation to only a few
major stellar labels (see e.g. Traven et al. 2020).

8.8. Reliability of flags

We have tried to develop a quality assurance pipeline that auto-
matically flags results and stars that may not be adequately
analysed with our assumptions.

8.8.1. Bug in flag_fe_h">Bug in flag_fe_h

The quality flag for iron abundance, flag_fe_h, was computed
similarly to the elemental abundances, that is, by comparing the
best-fitting spectrum with a spectrum with the lowest grid value of
the neural network subgrids. In the case of [Fe/H], however, this
is not the appropriate reference value. For example, for a star with
[Fe/H]= −0.74 dex, the spectrumwill be compared to a reference
with [Fe/H]= −0.75 dex, which will appear essentially identical
within the spectrum uncertainties, and the code concludes there
are no spectral features that are significantly different. This has
affected up to 34% of stars – most with detectable iron lines – and

abLEASTSQ is used for example by The Cannon version by Casey et al. (2016).

we therefore do not recommend the use of this flag at all. In the
future, such a test should be performed with respect to an actually
low (undetectable) amount of iron, such as [Fe/H]= −4 dex.

8.8.2. Fitting machinery stuck in local minimum

As laid out in Section 8.7, we have not been able to automatically
flag all estimates for which our fitting machinery has become stuck
in local minima, most notably at the initial value.

8.8.3. Binary or fast rotating star?

With the increasing number of turn-off stars as part of ongo-
ing GALAH observations, we have tried to implement a more
sensitive approach to identify binaries in this region. This may,
however, mean that we have also introduced more false-positive
detections of stars that are only fast rotating with higher v sin i,
rather than being a binary system. We therefore suggest carefully
considering using or neglecting the accompanying flag in GALAH
DR4 (see Table 5).

8.9. Bug of interstellar K velocity

As mentioned in Section 6.1.3, rv_k_is in v240705 is reported
relative to the stellar radial velocity. To compute the barycentric
radial velocity of the measured interstellar K, rv_comp_1 has to
be added to rv_k_is.

8.10. Summary of caveats

In summary, the most important caveats are:

• Noding in Teff, log g, and [Fe/H] around edges between
neural networks: Our tests when switching between neu-
ral networks indicate that this effect for Teff, log g, and
[Fe/H] should stay within the precision uncertainties. A
more problematic effect might be that some elements
could be fitted as part of one neural network based on the
detectability tests that were performed at the grid centres
of each neural network.

• Mismatches of photometry and spectroscopy: Both imper-
fect isochrone and spectrum models can drive a mismatch
in the estimation of spectroscopic parameters. This is most
notable around the secondary red clump region and also
expected for highly extincted regions.

• Imperfect synthesis leading to trends in cool stars: The
unreliable line data in cool stars causes increasingly inac-
curate models and inferred stellar properties towards the
coolest stars (see Kos et al. 2025). The coolest giant stars
(Teff < 3 750 K and log g < 0.5) still have unreliable param-
eters.

• Lower precision for Eu due to missing masking of neural
networks.

• The radial velocity of interstellar K has to be cor-
rected from the stellar to barycentric frame by adding
rv_comp_1.

These caveats are a by-product of our ambitious goal to
enhance the accuracy and precision of stellar parameters and ele-
mental abundances, while vastly expanding the number of stars for
which we report measurements. Each region of the Hertzsprung–
Russell diagram brings its own set of challenges, whether in the
complex physics of evolved stars or the fine-tuned data analysis
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required for main-sequence stars. Yet, these efforts have culmi-
nated in the remarkable success of GALAH DR4, providing an
incredibly rich and robust dataset for researchers. As we con-
tinue to explore the Galaxy, this data enables new discoveries
and insights, but it is essential to take measurements and pecu-
liar findings with a grain of salt—they may sometimes reflect the
complexity of data analysis rather than intrinsic stellar properties.
Despite these challenges, GALAH DR4 marks a significant leap
forward, opening up exciting opportunities for the community to
unravel the mysteries of our Galaxy.

9. Conclusions

TheGALAH survey celebrates its 10th anniversary with the release
of GALAH DR4, marking a decade of transformative contribu-
tions to our understanding of the Milky Way and the elemental
composition of its stars. Over the years, GALAH has been piv-
otal in measuring and cataloguing the chemical fingerprints of
stars, which serve as cosmic barcodes that reveal their formation
histories, migration patterns, and the evolutionary processes that
shaped our Galaxy.

With GALAH DR4, we have achieved notable advancements
in the precision and accuracy of stellar parameters and elemental
abundances for nearly a million stars. This release benefits from
a decade of continuous development in spectroscopic techniques,
calibration processes, and the adoption of cutting-edgemodels like
1D NLTE and even 3D NLTE synthesis for lithium abundances.
The inclusion of photometric and astrometric information from
Gaia DR3 has enhanced the reliability of stellar parameters, par-
ticularly for surface gravities, helping to resolve degeneracies of
spectroscopic data. The unique value of GALAH lies in its detailed
mapping of elements crucial to the studies of exoplanets and life as
we know it. By tracking the abundances of carbon, nitrogen, and
oxygen (CNO), rock-forming elements (e.g. Mg, Si, and Fe), as
well as rare heavy elements used inmodern electronics (e.g. Ce, La,
and Nd), GALAH has provided key insights into how the building
blocks of planets, life, and technology were forged in the interiors
of stars and distributed throughout the MilkyWay over billions of
years.

In the last decade, 321 research outputs (176 of them refereed)
have mentioned GALAH in their abstract.ac GALAH DR3 (Buder
et al. 2021), the predecessor of this data release, was by far themost
cited paper of the Monthly Notices of the Royal Astronomical
Society in 2021 at the time when this manuscript was published.
GALAH DR3 has made significant contributions across several
major research fields. In stellar physics and evolution, GALAH
has expanded our understanding of stellar structures, nucleosyn-
thesis (Sanders, Belokurov, & Man 2021; Griffith et al. 2022),
and lithium enrichment (Martell et al. 2021; Simpson et al. 2021;
Bouma et al. 2021; Sayeed et al. 2024; Wang et al. 2024a). In galac-
tic astronomy and archaeology, GALAH has mapped the Milky
Way’s chemical and kinematic properties (e.g. Bland-Hawthorn
et al. 2019; Sharma et al. 2021; Sharma et al. 2022), shedding light
on its formation, dynamics, and past mergers (Buder et al. 2022).
The survey has also influenced planetary formation by examin-
ing the chemical environments of exoplanet host stars (Clark et al.
2021; Soares-Furtado et al. 2021; Spaargaren et al. 2023; Wang
et al. 2024b), while deepening our knowledge of the Galaxy’s
chemical evolution and complexity (Kos et al. 2021), especially

acA total of 1 539 astronomical research outputs mentions (1 193 refereed) mentioned
GALAH throughout their manuscript.

regarding neutron-capture and r-process elements (Matsuno et al.
2021; Aguado et al. 2021; Horta et al. 2022; Manea et al. 2024).
Additionally, GALAH has provided insights into open clusters
and star formation across the Galactic disc (e.g. Spina et al. 2021),
with broader applications in extragalactic astronomy through a
refined understanding of surviving structures of galaxy merg-
ers and streams (Myeong et al. 2022; Buder et al. 2022; Manea,
Hawkins, & Maas 2022) through its innovative chemical tagging
techniques (Buder et al. 2022; Buder, Mijnarends, & Buck 2024).
In addition to its scientific discoveries, GALAH’s influence has
always been mutually beneficial with both photometric (Huang
et al. 2021), asteroseismic (Zinn et al. 2022), and spectroscopic
analyses (Nandakumar et al. 2022; Tsantaki et al. 2022; Soubiran,
Brouillet, & Casamiquela 2022). GALAH information has aided
the calibration and validation of surveys (Casagrande et al. 2021;
Katz et al. 2023; Frémat et al. 2023) as well as the improvement of
stellar ages by exploring chemical abundances (Hayden et al. 2022;
Ratcliffe et al. 2024) and combining spectroscopic and other data
(Hayden et al. 2022; Sahlholdt, Feltzing, & Feuillet 2022; Queiroz
et al. 2023). GALAH’s extensive observations also covered a range
of rare or peculiar objects, such as variable stars (Jayasinghe et al.
2021) or metal-poor stars (Da Costa et al. 2023).

The next decade holds tremendous potential for further break-
throughs as GALAH continues its mission to observe and analyse
stars across the Milky Way. With a clear goal of surpassing the
1 million star milestone, GALAH not only refines its data reduc-
tion and spectral analysis techniques but also paves the way for
other ambitious surveys, such as SDSS-V (Kollmeier et al. 2017),
4MOST (de Jong et al. 2019), and WEAVE (Dalton et al. 2014) at
similar spectral resolution or MSE (The MSE Science Team et al.
2019) and HRMOS (Magrini et al. 2023) at higher spectral resolu-
tion. As a trailblazer in the field of stellar spectroscopy, GALAH’s
approach has set the standard for these upcoming surveys, and its
legacy will be cemented by the release of one final data set that
will address the caveats and challenges discussed in this fourth
data release. GALAH will undoubtedly continue to influence not
only planetary, stellar and galactic astronomy but also broaden our
understanding of the cosmos and the elements that shape modern
life.
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Vogrincčicč, R., et al. 2023, MNRAS, 521, 3727
Walt, S. v. d., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
Wang, E. X., et al. 2021, MNRAS, 500, 2159
Wang, E. X., et al. 2024a, MNRAS, 528, 5394
Wang, H. S., Quanz, S. P., Mahadevan, S., & Deal, M. 2024b, A&A, 688, A225
Wehrhahn, A., Piskunov, N., & Ryabchikova, T. 2023, A&A, 671, A171
Westendorp Plaza, C., Asensio Ramos, A., & Allende Prieto, C. 2023, A&A,

675, A191
Wheeler, A. J., Abruzzo, M. W., Casey, A. R., & Ness, M. K. 2023, AJ, 165, 68
Wheeler, A. J., Casey, A. R., & Abruzzo, M. W. 2024, AJ, 167, 83
Wickliffe, M. E., Salih, S., & Lawler, J. E. 1994, J. Quant. Spec. Radiat. Transf.,

51, 545, (WSL)
Wood, M. P., Lawler, J. E., Sneden, C., & Cowan, J. J. 2013, ApJS, 208, 27
Wood, M. P., Lawler, J. E., Sneden, C., & Cowan, J. J. 2014, ApJS, 211, 20
Xiang, M., et al. 2019, ApJS, 245, 34
Xiang, M., et al. 2022, A&A, 662, A66
Yan, Z.-C., Tambasco, M., & Drake, G. W. F. 1998, Phys. Rev. A, 57, 1652
Yong, D., et al. 2013, MNRAS, 434, 3542
Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P., & Deng, L.-C. 2012, RAA,

12, 723
Zinn, J. C., et al. 2020, ApJS, 251, 23
Zinn, J. C., et al. 2022, ApJ, 926, 191

https://doi.org/10.1017/pasa.2025.26 Published online by Cambridge University Press

https://doi.org/10.3847/1538-4357/ad58d9
https://ui.adsabs.harvard.edu/abs/2024ApJ...972...69M
https://doi.org/10.1088/0004-637X/753/1/90
https://ui.adsabs.harvard.edu/abs/2012ApJ...753...90M
https://doi.org/10.3847/1538-4357/835/1/77
http://adsabs.harvard.edu/abs/2017ApJ...835...77M
https://doi.org/10.1051/0004-6361/201116546
http://adsabs.harvard.edu/abs/2011A%26A...532A...8M
https://doi.org/10.1093/mnras/stw2835
http://adsabs.harvard.edu/abs/2017MNRAS.465.3203M
https://doi.org/10.1093/mnras/stab1356
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.5340M
https://doi.org/10.1093/mnras/stv2830
http://adsabs.harvard.edu/abs/2016MNRAS.456.3655M
https://doi.org/10.1093/mnras/stv1731
http://adsabs.harvard.edu/abs/2015MNRAS.453.1855M
https://doi.org/10.1051/0004-6361/202040227
https://ui.adsabs.harvard.edu/abs/2021A&A...650A.110M
http://cdsads.u-strasbg.fr/abs/1974A%26AS...18..405M
https://doi.org/10.1093/mnras/stz1818
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.2836M
https://doi.org/10.1093/mnras/stac2254
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.3515M
https://doi.org/10.1093/mnras/stad2999
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.7940M
https://doi.org/10.1093/mnras/stw2759
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465...76M
https://doi.org/10.1051/0004-6361/200811508
https://ui.adsabs.harvard.edu/abs/2009A&A...497..611M
https://doi.org/10.1088/0004-6256/144/4/120
https://ui.adsabs.harvard.edu/abs/2012AJ....144..120M
https://doi.org/10.3390/universe8070359
https://ui.adsabs.harvard.edu/abs/2022Univ....8..359M
https://doi.org/10.1111/j.1365-2966.2006.10777.x
http://adsabs.harvard.edu/abs/2006MNRAS.371.1537M
https://doi.org/10.1093/mnras/stac3040
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518..965M
https://doi.org/10.3847/1538-4357/ac8d68
https://ui.adsabs.harvard.edu/abs/2022ApJ...938...21M
https://doi.org/10.1088/0031-8949/48/3/008
http://adsabs.harvard.edu/abs/1993PhyS...48..297N
https://doi.org/10.1093/mnras/stac873
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513..232N
https://doi.org/10.1088/0004-637X/808/1/16
http://adsabs.harvard.edu/abs/2015ApJ...808...16N
https://doi.org/10.3847/0004-637X/823/2/114
http://adsabs.harvard.edu/abs/2016ApJ...823..114N
https://doi.org/10.3847/1538-4357/ab3e3c
https://ui.adsabs.harvard.edu/abs/2019ApJ...883..177N
https://doi.org/10.1051/0004-6361/201526269
http://adsabs.harvard.edu/abs/2015A%26A...579A..52N
https://doi.org/10.1051/0004-6361/202038300
https://ui.adsabs.harvard.edu/abs/2020A&A...640A..81N
https://doi.org/10.1007/s00159-018-0111-3
http://adsabs.harvard.edu/abs/2018A%26ARv..26....6N
https://doi.org/10.1086/313223
https://ui.adsabs.harvard.edu/abs/1999ApJS..122..557N
https://doi.org/10.1086/313112
https://doi.org/10.1051/0004-6361/201730427
http://adsabs.harvard.edu/abs/2017A%26A...607A..75N
https://doi.org/10.1103/PhysRevA.44.7134
http://adsabs.harvard.edu/abs/1991PhRvA..44.7134O
https://doi.org/10.1051/aas:2000169
https://ui.adsabs.harvard.edu/abs/2000A&AS..143...23O
https://doi.org/10.1051/0004-6361/201525846
http://adsabs.harvard.edu/abs/2015A%26A...579A..53O
https://doi.org/10.1051/0004-6361/201834680
http://adsabs.harvard.edu/abs/2019A%26A...623A.103O
https://doi.org/10.1093/mnras/stx1619
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471..532P
https://doi.org/10.1238/Physica.Regular.061a00323
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1051/0004-6361/201629124
http://adsabs.harvard.edu/abs/2017A%26A...597A..16P
https://doi.org/10.3847/0004-6256/152/2/41
https://ui.adsabs.harvard.edu/abs/2016AJ....152...41P
https://doi.org/10.1051/0004-6361/202245399
https://ui.adsabs.harvard.edu/abs/2023A&A...673A.155Q
https://doi.org/10.1086/323407
http://adsabs.harvard.edu/abs/1998A%26A...340..300R
https://doi.org/10.1093/mnras/stab1167
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.5788R
https://doi.org/10.1093/mnras/stae560
https://ui.adsabs.harvard.edu/abs/2024MNRAS.529.3171R
https://doi.org/10.1093/mnras/stae226
https://ui.adsabs.harvard.edu/abs/2024MNRAS.528.3464R
https://doi.org/10.1051/0004-6361/202243750
https://ui.adsabs.harvard.edu/abs/2023A&A...674A..29R
https://doi.org/10.1051/0004-6361/201935156
https://ui.adsabs.harvard.edu/abs/2019A&A...627A.177R
https://doi.org/10.1086/424960
https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R
https://doi.org/10.1117/1.JATIS.1.1.014003
http://adsabs.harvard.edu/abs/2015JATIS...1a4003R
https://doi.org/10.1051/0004-6361/202039587
https://ui.adsabs.harvard.edu/abs/2021A&A...649A...3R
https://doi.org/10.1051/0004-6361/202245591
https://ui.adsabs.harvard.edu/abs/2023A&A...674A..14R
https://doi.org/10.3847/2041-8205/826/2/L25
http://adsabs.harvard.edu/abs/2016ApJ...826L..25R
https://doi.org/10.1093/mnras/stu780
http://adsabs.harvard.edu/abs/2014MNRAS.441.3127R
https://doi.org/10.1093/mnras/stab3681
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.4669S
https://doi.org/10.1093/mnras/stab1951
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.4321S
https://doi.org/10.3847/1538-4357/acd454
https://ui.adsabs.harvard.edu/abs/2023ApJ...954..141S
https://doi.org/10.3847/1538-4357/ad1936
https://ui.adsabs.harvard.edu/abs/2024ApJ...964...42S
https://doi.org/10.1086/305772
http://adsabs.harvard.edu/abs/1998ApJ...500..525S
https://doi.org/10.1111/j.1365-2966.2010.16253.x
http://adsabs.harvard.edu/abs/2010MNRAS.403.1829S
https://doi.org/10.1093/mnras/stx2582
http://adsabs.harvard.edu/abs/2018MNRAS.473.2004S
https://doi.org/10.1093/mnras/stz2861
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5335S
https://doi.org/10.1093/mnras/stab1086
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.1761S
https://doi.org/10.1093/mnras/stab3341
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510..734S
https://doi.org/10.1117/1.JATIS.1.3.035002
http://adsabs.harvard.edu/abs/2015JATIS...1c5002S
https://doi.org/10.1093/mnras/stab2012
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507...43S
https://doi.org/10.1086/498708
https://doi.org/10.1088/0953-4075/21/16/008
https://doi.org/10.1088/0022-3700/14/21/016
https://doi.org/10.1088/0004-637X/765/1/16
https://ui.adsabs.harvard.edu/abs/2013ApJ...765...16S
https://doi.org/10.3847/1538-3881/ac273c
https://ui.adsabs.harvard.edu/abs/2021AJ....162..273S
https://doi.org/10.1086/519987
https://doi.org/10.1051/0004-6361/202142409
https://ui.adsabs.harvard.edu/abs/2022A&A...663A...4S
https://doi.org/10.3847/1538-4357/acac7d
https://ui.adsabs.harvard.edu/abs/2023ApJ...948...53S
https://doi.org/10.1051/0004-6361/201628557
http://adsabs.harvard.edu/abs/2016A%26A...593A.125S
https://doi.org/10.1093/mnras/stab471
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.3279S
https://doi.org/10.3847/1538-3881/ab9ab9
https://ui.adsabs.harvard.edu/abs/2020AJ....160...82S
https://doi.org/10.1088/2041-8205/809/1/L3
http://adsabs.harvard.edu/abs/2015ApJ...809L...3S
http://adsabs.harvard.edu/abs/2005ASPC..347...29T
https://doi.org/10.48550/arXiv.1904.04907
https://ui.adsabs.harvard.edu/abs/2019arXiv190404907T
https://doi.org/10.3847/0004-637X/826/1/83
http://adsabs.harvard.edu/abs/2016ApJ...826...83T
https://doi.org/10.3847/1538-4357/aac6c9
http://adsabs.harvard.edu/abs/2018ApJ...860..159T
https://doi.org/10.3847/1538-4357/ab2331
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...69T
https://doi.org/10.1111/j.1365-2966.2011.20387.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.1231T
https://doi.org/10.1051/0004-6361/202039637
https://ui.adsabs.harvard.edu/abs/2021A&A...649A..10T
https://doi.org/10.1051/0004-6361/202037484
https://ui.adsabs.harvard.edu/abs/2020A&A...638A.145T
https://doi.org/10.1103/PhysRevA.95.052507
https://ui.adsabs.harvard.edu/abs/2017PhRvA..95e2507T
https://doi.org/10.1051/0004-6361/202141702
https://ui.adsabs.harvard.edu/abs/2022A&A...659A..95T
https://ui.adsabs.harvard.edu/abs/1976PASJ...28..543T
https://doi.org/10.1103/PhysRevA.38.2830
http://adsabs.harvard.edu/abs/1988PhRvA..38.2830V
http://adsabs.harvard.edu/abs/1996A%26AS..118..595V
https://doi.org/10.1051/0004-6361:20078357
http://adsabs.harvard.edu/abs/2007A%26A...474..653V
https://doi.org/10.1088/0004-637X/755/1/15
https://ui.adsabs.harvard.edu/abs/2012ApJ...755...15V
https://doi.org/10.1093/mnras/stab1475
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.5978V
https://doi.org/10.1038/s41592-019-0686-2
https://rdcu.be/b08Wh
https://doi.org/10.1093/mnras/stad678
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.3727V
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1093/mnras/staa3381
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.2159W
https://doi.org/10.1093/mnras/stae385
https://ui.adsabs.harvard.edu/abs/2024MNRAS.528.5394W
https://doi.org/10.1051/0004-6361/202449467
https://ui.adsabs.harvard.edu/abs/2024A&A...688A.225W
https://doi.org/10.1051/0004-6361/202244482
https://ui.adsabs.harvard.edu/abs/2023A&A...671A.171W
https://doi.org/10.1051/0004-6361/202346372
https://ui.adsabs.harvard.edu/abs/2023A&A...675A.191W
https://doi.org/10.3847/1538-3881/acaaad
https://ui.adsabs.harvard.edu/abs/2023AJ....165...68W
https://doi.org/10.3847/1538-3881/ad19cc
https://ui.adsabs.harvard.edu/abs/2024AJ....167...83W
https://doi.org/10.1016/0022-4073(94)90108-2
http://adsabs.harvard.edu/abs/1994JQSRT..51..545W
https://doi.org/10.1088/0067-0049/208/2/27
http://adsabs.harvard.edu/abs/2013ApJS..208...27W
https://doi.org/10.1088/0067-0049/211/2/20
http://adsabs.harvard.edu/abs/2014ApJS..211...20W
https://doi.org/10.3847/1538-4365/ab5364
https://ui.adsabs.harvard.edu/abs/2019ApJS..245...34X
https://doi.org/10.1051/0004-6361/202141570
https://ui.adsabs.harvard.edu/abs/2022A&A...662A..66X
https://doi.org/10.1103/PhysRevA.57.1652
http://adsabs.harvard.edu/abs/1998PhRvA..57.1652Y
https://doi.org/10.1093/mnras/stt1276
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.3542Y
https://doi.org/10.1088/1674-4527/12/7/002
https://ui.adsabs.harvard.edu/abs/2012RAA....12..723Z
https://doi.org/10.3847/1538-4365/abbee3
https://ui.adsabs.harvard.edu/abs/2020ApJS..251...23Z
https://doi.org/10.3847/1538-4357/ac2c83
https://ui.adsabs.harvard.edu/abs/2022ApJ...926..191Z
https://doi.org/10.1017/pasa.2025.26


Publications of the Astronomical Society of Australia 35

Appendix A. Initial Parameters

We append the overview of the initial and final stellar parameters
of GALAH DR4 in Fig. A1. We show the density distribution of
log g, [Fe/H], vmic, and v sin i in each row as a function of Teff.

Figure A1. Comparison of final GALAH DR4 stellar parameters (first column) against the initial parameters used in the allstar analysis (second column), estimates from the GALAH
DR4 reduction pipeline (third column), Gaia DR3 (fourth column with vmic based on the adjusted formula from Dutra-Ferreira et al. 2016), and GALAH DR3 (fifth column).
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Appendix B. Data Products

We append examples of data products of GALAH DR4 that were
not already shown in the main manuscript. Table B1 shows a
shortened table schema of the allstar and allspec catalogues.

Fig. B1 shows the automatically created fit comparison of the
allstar module for Vesta (210115002201239). Fig. B2 shows
examples of the covariance matrices for Vesta and Arcturus, as
representative examples for main-sequence and giant stars.

Table B1.Table schema of the GALAH DR4 main catalogues. Columns that are part of allspec, but not allstar are listed below the middle line. For compactness,
we have combined repetitive columns (for example with integers N). Detailed table schemas are available in the FITS headers of each catalogue file.

Column Description Column Description

sobject_id GALAH identifier tmass_id 2MASS identifier

gaiadr3_source_id Gaia DR3 source_id survey_name 2dF-HERMES Program

field_id GALAH Field ID setup allspec/allstar

mjd Modified Julian Date ra propagated from Gaia DR3

dec propagated from Gaia DR3 flag_sp Major spectroscopic quality bitmask flag

flag_sp_fit Major fitting quality flag opt_loop Nr of optimisation loops used for fitting

flag_red Quality bitmask flag of reduction pipeline snr_px_ccdN Average SNR for CCD N

chi2_sp Chi2 value of spectroscopic fitting px_used_perc Percentage of spectrum used for fit

model_name Used neural network for synthesis closest_model Closest neural network for synthesis

comp_time Computation time spent on spectrum fit_global_rv RV fitted or fixed after co-adding?

rv_comp_1 Radial velocity of primary source e_rv_comp_1 Uncertainty of rv_comp_1

rv_comp_2 Radial velocity of potential secondary source e_rv_comp_2 Uncertainty of rv_comp_1

rv_gaia_dr3 Radial velocity in Gaia DR3 e_rv_gaia_dr3 Uncertainty of rv_gaia_dr3

v_bary_eff Barycentric velocity correction teff Spectr. effective temperature

e_teff Uncertainty teff logg Photometric surface gravity

e_logg Uncertainty logg_plx fe_h Abundance of Fe as pseudo-metallicity

e_fe_h Uncertainty fe_h flag_fe_h Quality flag fe_h

vmic Microturbulence velocity (fitted) e_vmic Uncertainty vmic

vsini Broadening velocity e_vsini Uncertainty of vsini

nn_li_fe Elemental abundance for [Li/Fe] nn_e_li_fe Uncertainty nn_li_fe

nn_flag_li_fe Quality bitmask flag of Li_fe x_fe Elemental abundance for [X/Fe]

e_x_fe Uncertainty of elemental abundance [X/Fe] flag_x_fe Quality bitmask flag of [X/Fe]

mass Mass used for calculating log g (plx) age Age estimated when calculating mass

bc_ks Bolometric Correction of KS band a_ks Attenuation in KS-band A(KS)

lbol Bolometric Luminosity r_med Median Distance

r_lo Lower Limit Distance r_hi Higher Limit Distance

sb2_rv_N Nth perc. of RV residual signal ew_h_beta Equivalent Width of observed Hbeta core

ew_h_alpha Equivalent Width of observed Halpha core res_h_beta Residual EW in Hbeta core

res_h_alpha Residual EW in Halpha core ew_k_is EW of K7699 Interstellar Line

sigma_k_is Gaussian sigma of K7699 Interstellar Line rv_k_is RV of K7699 Interstellar Line

ew_dib5780 Equivalent width of DIB NNNN sigma_dib5780 Gaussian sigma of DIB NNNN

rv_dib5780 RV of DIB NNNN ebv Extinction E(B− V)

phot_g_mean_mag Mean Gaia DR3 G-band apparent magnitude bp_rp Color of BP− RP bands

j_m 2MASS J-bandmagnitude j_msigcom Uncertainty of j_m

h_m 2MASS H-bandmagnitude h_msigcom Uncertainty of h_m

ks_m 2MASS KS-bandmagnitude ks_msigcom Uncertainty of ks_m

W2mag AllWISE W2-bandmagnitude e_W2mag uncertainty of W2mag

ruwe RUWE reported by Gaia DR3 parallax Astrometric parallax used for GALAH DR4

parallax_error Uncertainty of astrometric parallax ew_li Eqiuvalent width of Lithium 6708 LiI line

e_ew_li_low Lower uncertainty ew_li e_ew_li_upp Upper uncertainty ew_li

a_li Absolute 3D NLTE Li abundance a_li_upp_lim Upper limit of absolute 3D NLTE A(Li)

e_a_li_low Lower uncertainty of a_li e_a_li_upp Upper uncertainty of a_li

e_a_li_teff Uncertainty of A(Li) due to temperature flag_a_li Flag for a_li measurement

rv_comp_nr Nr RV cross-correlation function peaks rv_comp_1_p Prominence of rv_comp_1 in CCF

rv_comp_2_h Height of rv_comp_1 in CCF rv_comp_2_p Prominence of rv_comp_1 in CCF

logg_spec Spectroscopic surface gravity estimate e_logg_spec Uncertainty logg_spec
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Figure B1. Example output of the allstar analysis for Vesta (210115002201239). The observed flux (black) is comparedwith the fittedmodel flux (red), and the residuals (purple)
show the difference between the observed and modelled spectra. Important spectral lines are annotated with their corresponding elements, with element groups colour-coded
for clarity. Blue-shaded regions represent the 5% of the spectrum that was masked and excluded from the fit to avoid contamination from outliers or poorly modelled lines.
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Figure B2. Covariance matrices for labels for Vesta (panel a) and Arcturus (panel b).

Appendix C. Stellar Parameter and Abundance Validation

Stellar parameter and abundance zero-points of the allstar
module are listed in Table C1. A complete table, including the
zero-points for the allspec module can be found as FITS file in
the online repository. A compromise between the different accu-
racy abundance indicators is shown in Fig. C1 for the allstar
module. Fig. C2 shows the precision of individual abundances.
Figs. C3 and C4 show the remaining comparisons with APOGEE
DR17 in addition to Figs. 21 and 22. Although many of the
observed globular clusters are expected to show an abundance
spread, including for iron, we show a collage of globular clus-
ters with ascending iron abundance in Fig. C5, with each panel
indicating the median iron abundance per cluster as well as the
spread (scatter) of the iron abundance distribution and the average
measurement uncertainty. A more comprehensive analysis of the
globular clusters will be presented in upcoming work (McKenzie
et al., in preparation). Finally, Fig. C6 shows the distribution of
flagged stars in the Kiel diagram.

Table C1.Zero point estimates and corrections applied to the allstar mea-
surements. We used Prša et al. (2016) as reference for Solar parameters and
Grevesse et al. (2007), consistent with the MARCS model atmosphere composi-
tion (Gustafsson et al. 2008), as reference for Solar abundances. For reference,
we also show the combined rotational and macroturbulence as well as micro-
turbulence velocities from Jofré et al. (2014). Values for Vesta indicate our
uncorrected measurements for the Vesta spectrum.

Reference Zeropoint Shift Vesta 
Vesta

Property R Z Z− R V V − R

Teff 5 772.0 5 772.0 0.0 5 752.261 −19.739
log g 4.438 4.438 0.0 4.429 −0.009

0.0 0.049 0.049 −0.019 −0.068
A(Fe) 7.45 7.499 0.049 7.431 −0.068
vmic 1.06 1.06 0.0 1.0 −0.06
v sin i 4.5 4.5 0.0 5.552 1.052

A(Li) 1.05 1.05 0.0 1.108 0.058

A(C) 8.39 8.393 0.003 8.348 −0.045
A(N) 7.78 7.705 −0.075 8.368 0.663

A(O) 8.66 8.659 −0.001 8.784 0.125

A(Na) 6.17 5.999 −0.171 6.35 0.351

A(Mg) 7.53 7.445 −0.085 7.687 0.242

A(Al) 6.37 6.185 −0.185 6.552 0.367

A(Si) 7.51 7.486 −0.024 7.515 0.029

A(K) 5.08 5.029 −0.051 5.108 0.079

A(Ca) 6.31 6.287 −0.023 6.361 0.074

A(Sc) 3.17 3.167 −0.003 3.12 −0.047
A(Ti) 4.9 4.876 −0.024 4.882 0.006

A(V) 4.0 4.124 0.124 3.849 −0.275
A(Cr) 5.64 5.64 0.0 5.61 −0.03
A(Mn) 5.39 5.289 −0.101 5.494 0.205

A(Co) 4.92 5.05 0.13 4.771 −0.279
A(Ni) 6.23 6.228 −0.002 6.236 0.008

A(Cu) 4.21 4.418 0.208 4.002 −0.416
A(Zn) 4.6 4.651 0.051 4.53 −0.121
A(Rb) 2.6 2.6 0.0 – –

A(Sr) 2.92 2.92 0.0 – –

A(Y) 2.21 2.204 −0.006 2.152 −0.052
A(Zr) 2.58 2.58 0.0 2.122 −0.458
A(Mo) 1.92 1.92 0.0 – –

A(Ru) 1.84 1.84 0.0 – –

A(Ba) 2.17 2.108 −0.062 2.113 0.005

A(La) 1.13 1.19 0.06 0.986 −0.204
A(Ce) 1.7 1.77 0.07 1.447 −0.323
A(Nd) 1.45 1.328 −0.122 1.276 −0.052
A(Sm) 1.0 1.0 0.0 – –

A(Eu) 0.52 0.52 0.0 – –
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Figure C1. zero-point estimates of elemental abundances for GALAH DR4. Each panel shows the comparison to literature (DR4 – literature) for Vesta (blue), Gaia FKG Benchmark
Stars (orange), Stars with |[Fe/H]| ≤ 0.1 closer than D� < 0.5 kpc (red), as well as stars that were also observed by APOGEE DR17 (purple).

Figure C2. Precision monitoring (with a median line and standard deviation shading) of elemental abundances as a function of SNR for the green CCD2 across for GALAH DR4.
Each panel shows the behaviour for bins of width 10 for the scatter of repeat observations of the allspec runs (blue) as well as covariance uncertainties of allspec (orange) and
allstar (red) setups.
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Figure C3. Comparison of stars with available measurements in GALAH DR3 (left column), GALAH DR4 (middle column) and APOGEE DR17 (right) for O, Na, Al, Si, K, and Ca.
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Figure C4. Continuation of Fig. C3 for Ti, V, Cr, Mn, Co, and Ce.
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Figure C5. Collage of globular clusters in the Teff-log g space, coloured by stellar metallicity [Fe/H]. There are only minor trends between [Fe/H] and Teff , even for the horizontal
branch stars in NGC 288, NGC 6656 (M22), and NGC 6121 (M4). NGC 5139 (ωCen) shows a significant range in [Fe/H]. RMS scatter and median metallicity uncertainties for each
cluster are given in the lower right of each panel.

Figure C6. Parameter overview of stars with raised major quality flag flag_sp for allstar. Each panel shows the logarithmic density distribution of stars in the Teff and log g
plane with blue colourmaps. A PARSEC isochrone with [M/H]= 0 and τ = 4.5 Gyr is overplotted in orange and the same mass binary main-sequence (shifted from the single star
one by
 log g= −0.3 dex) is shown in red. Panel heads denote the bit mask and its description as well as how many times the flag was raised. We neglect distributions with no
flag (0), for flags which have not been raised (8,9,11), and for which no results were available (15).
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