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ABSTRACT

We present an interpretable, machine learning-based surrogate model for the eigenvalue solver in QuaLiKiz, a model that simulates turbulent
transport in fusion plasmas. The aim is to exploit prediction transparency to gain insight into the anticipated behavior of QuaLiKiz-based
surrogates and the underlying eigenvalue solver, a task that is more challenging when using black-box surrogate models. Specifically, we focus
on predicting the growth rate of turbulence driving ion temperature gradient instabilities computed by QuaLiKiz for the normalized poloidal
wavenumber khqs ¼ 0:325. We split the task into a classification task, to determine whether the growth rate is positive (unstable mode) or
not, and a growth rate prediction task, knowing the mode is unstable. The dataset used is a QuaLiKiz dataset based on JET pulses. The
method used is the NeuralBranch method, a neural network-based method that reveals how the inputs of the models, in this case plasma
parameters, impact the output. Results show that NeuralBranch models outperform linear models and match dense neural networks (tradi-
tional black-box models) in accuracy while being interpretable. By analyzing the NeuralBranch models, we identify parameter dependencies
that cannot be captured by linear models. For instance, the models indicate that the stabilizing effect of ExB shear on the growth rate is sup-
pressed at low magnetic shear, which can be attributed to how ExB shear influences the eigenfunction width in QuaLiKiz. In summary, this
work demonstrates how interpretable methods can shed light on the behavior of surrogates and their underlying counterpart, thus enhancing
both model credibility and understanding.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0261456

I. INTRODUCTION

Numerical simulations have been key in advancing magnetic con-
finement fusion research and are utilized in design of reactors and
reactor components,1–3 experimental campaigns,4–7 and improving
our understanding of physical processes in plasmas.8,9 Such simula-
tions often involve several coupled physical models as a consequence
of extreme temporal, spatial, and temperature ranges defining pro-
cesses in fusion reactors. For example, a multiphysics simulation of
tokamak plasma core typically involves models for auxiliary heating
(Ohmic, radio frequency, neutral-beam injection), for magnetohydro-
dynamics (MHD) equilibrium, and for plasma transport (neoclassical
and turbulent).10–15 However, as many of the commonly used

first-principles-based models involve a set of equations that need to be
solved numerically, simulations often require significant computa-
tional effort. Even reduced first-principles-based models typically used
in integrated modeling amount to significant computational costs
when called repeatedly during simulations of plasma evolution.

In recent years, effort has been made to alleviate this problem
through the development of machine learning-based surrogate mod-
els.16–20 These surrogates are trained on datasets generated by compu-
tationally demanding models, such that once a surrogate is trained, it
mimics the behavior of the original model at a fraction of the numeri-
cal cost. This efficiency is achieved because a forward pass through a
relatively simple machine learning model is much faster than solving
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the original model numerically. For instance, Ref. 21 presents a surro-
gate model that is approximately 104 times faster than the original
model it mimics. Additionally, an advantage of surrogate models is the
automatic differentiation capability, enabling sensitivity analysis and
gradient-based resolution of non-linearities.22,23

However, one drawback of most present-day surrogate models
is that they are black boxes. In other words, they are often built
using machine learning architectures that do not provide a straight-
forward way to extract the learned relationships between the inputs
and the output of the model in an easily interpretable form.
Fortunately, as this is a common challenge in the field of artificial
intelligence and machine learning, development has been made in
the field of explainable and interpretable AI.24–29 While interpret-
able models have primarily been shown to provide insights into
empirical data, there are several reasons why enabling interpretabil-
ity would also benefit surrogate models:

• While the system of equations defining a specific model is
known, the exact analytic solution remains unknown, which is
why numerical methods are used. An interpretable surrogate
model trained to replicate the original model could offer a trans-
parent view of how the solution depends on the inputs. In other
words, interpretability can enhance the understanding of the
behavior of the surrogate model and the original model.

• Even when there is a general understanding of the behavior of a
model, interpretability remains important for validating that the
surrogate behaves as expected. This is important for building
trust in machine learning-based surrogates.

• If an interpretable surrogate makes an outlier prediction, it is sig-
nificantly easier to backtrack and investigate the cause compared
to the black-box case.

Motivated by these benefits, this work aims to develop an inter-
pretable surrogate model for the eigenvalue solver of the quasi-linear
model QuaLiKiz.30,31 Specifically, the aim is to predict the growth rates
of turbulent transport driving instability modes, which is a key output
of the QuaLiKiz eigenvalue solver. A previous study has demonstrated
the feasibility of creating accurate surrogates for QuaLiKiz and its
eigenvalue solver,32 both for classifying whether the growth rate is pos-
itive (indicating an unstable mode) and for calculating the actual
growth rate when the mode is unstable. However, as these surrogates
have been black-box models, we here build on these prior efforts by
developing interpretable surrogates for both the stable/unstable classi-
fication sub-task and the growth rate prediction sub-task. The dataset
we use is a priorly created QuaLiKiz dataset based on experimental val-
ues from JET pulses.21 Moreover, we focus on the growth rate of the
ion temperature gradient (ITG)-mode instability at a specific normal-
ized poloidal wavenumber, khqs ¼ 0:325, with qs ¼ cs=Xc, where cs is
the ion sound speed and Xc is the ion cyclotron frequency. This is the
wavenumber where the ITG-mode, which is the primary contributor
to turbulent transport in the core,33,34 often has its maximum growth
rate in the dataset. The interpretable machine learning method we
employ is the NeuralBranch method,35 which is a recently developed
neural network based method that enables global interpretability.

The goals of our work can be summarized as follows:

• To demonstrate how an interpretable surrogate model can be cre-
ated as an alternative to opaque black-box surrogate models.

• To analyze our models, which is enabled by interpretability, to
shed light on how the ITG growth rate depends on the inputs of
the QuaLiKiz eigenvalue solver. This analysis is intended to
inform users of QuaLiKiz-based surrogates about the model
behavior they may anticipate, particularly in the context of the
ITG mode.

• As a secondary goal, we discuss similarities/differences between
the behavior of our models and established theory in the context
of the ITG mode.

Additionally, in Appendix B, we include a brief analysis involving
an alternative output: the ratio of the growth rate to the associated real
frequency, as this ratio plays a role in determining whether turbulence
is classified as strong or weak.36

II. QUALIKIZ DATASET

In this work, we use a priorly created dataset21 generated with
the model QuaLiKiz,30 where the input parameters in the data are
based on experimental values from JET pulses. As mentioned,
QuaLiKiz is a quasi-linear model, meaning that it first solves a linear
dispersion relation to obtain the eigenvalues of instabilities that lead
to turbulent transport. The solution to this eigenvalue problem is the
growth rates, c, and associated real frequencies, xr (i.e., the imagi-
nary and real part of the eigenvalue) for the two fastest growing
instabilities at 18 different wavenumbers. After the eigenvalue prob-
lem is solved numerically, the linear eigenvalues are connected to
saturated quantities, such as the electrostatic potential, to obtain the
properties of the turbulent transport. In this work, we are focusing
on the part of QuaLiKiz that is responsible for calculating the eigen-
values of the instabilities, and as mentioned, we specifically target
the growth rate at a specific normalized poloidal wavenumber,
khqs ¼ 0:325. In this work, we regard this wavenumber as a reason-
able representative of the ITG-wavenumber spectrum for the pur-
pose of investigating input-to-output dependencies, given that the
growth rate curve in the database generally follows a negative qua-
dratic trend. This arises as for low khqs, the diamagnetic drift fre-
quency is proportional to the wavenumber, and the growth rate is in
turn proportional to the diamagnetic drift. For the higher wavenum-
bers, in the ion-scales, the growth rate is reduced by finite Larmor
radius effect, which as seen in Ref. 37 scales as ðkhqsÞ2.

A. Characteristics of QuaLiKiz

QuaLiKiz is based on electrostatic assumption, using a bal-
looning representation and s� a geometry.38 The instabilities cap-
tured by QuaLiKiz are the ion temperature gradient (ITG) mode,
trapped electron mode (TEM), and electron temperature gradient
(ETG) mode. As QuaLiKiz is electrostatic, electromagnetic insta-
bilities such as the kinetic ballooning and micro tearing modes are
not captured. This simplifies the process of distinguishing ITG
modes in the dataset. Specifically, a negative real frequency repre-
sents motion in the ion drift direction, usually associated with the
ITG mode, and a positive real frequency represents motion in the
electron drift direction, usually associated with the TEM and ETG
mode. Hence, it is possible to exclude all instabilities except the
ITG mode in the dataset by only checking the sign of the real fre-
quency. However, a caveat to this is that during special circum-
stances the ITG mode is known to move in the electron drift
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direction. These occasions were however deemed too few to moti-
vate an attempt to identify and include such special cases. In other
words, our study only concerns ITG modes that move in the ion
drift direction.

B. Input parameters

The input parameters of QuaLiKiz consist of plasma parameters
that are normalized and dimensionless. For the simulations performed
to generate the dataset, light impurities with a charge of less than 10jej,
where e is the elementary charge, were coalesced into one “light impu-
rity species.” Similarly, impurities with a higher charge than 10jej were
coalesced into one “heavy impurity species.” Hence, the simulations
were performed with four species, one main ion species, two impurity
species and electrons which makes a total of 33 input parameters.
However, by using constraints such as quasi-neutrality and certain
assumptions due to the availability of data for the JET pulses, the num-
ber of input parameters can be reduced to 15. The assumptions used
are as follows:

• The effective charge, Zeff , is radially constant throughout the
plasma, i.e., rZeff ¼ 0.

• Ti ¼ Timp, as the widely available diagnostics measure the tem-
perature of impurity ion species, implying R=LTi ¼ R=LTimp .

• The main ion is deuterium, with Zi ¼ 1 and Ai ¼ 2.

Here, Ti is the main ion temperature, Timp is the impurity tem-
perature, R is the tokamak major radius, and LX is the gradient length,
LX :¼ �ð @

@qtor
lnXÞ�1, where X is a plasma profile such as the densities

and temperatures. qtor is a flux label defined as

qtor :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtorðrÞ
wtorðaÞ

s
; (1)

where wtor is the toroidal magnetic flux and a is the minor radius. The
full set of the 15 input parameters in the dataset is presented in Table I.
Here, s ¼ Ti=Te, where Te is the electron temperature.

C. Data specifications and selection

The original dataset was based on 2135 JET pulses, both from
quasi-steady-state and transient scenarios, and a total of 12328 time
windows were selected. In certain cases, all necessary data were not
available and assumptions were applied.

• The Zeff contribution of the light impurity did not exceed 0.2 if
insufficient impurity information is provided.

• Mtor ¼ R=Lutor ¼ cE ¼ 0 if no plasma rotation measurements are
available.

• Ti ¼ Timp ¼ Te if no ion temperature measurements are
available.

• Zeff ¼ 1:25 if no line-integrated effective charge measurements
are available.

The extracted experimental data were used to populate the dataset at
nine equidistant radial positions between qtor ¼ 0:1 and 0.9. Note that the
experimental data were only used for the input parameters, as the output
growth rate for all cases is computed by QuaLiKiz. Furthermore, the dataset
was expanded beyond the experimental values in the parameters
fR=Lne ; R=LTe ; R=LTi ; ŝ; ceg. This means that additional entries were
generated by varying these five parameters while keeping the other inputs
coherent with the experimental values. Additionally, if a data entry had rota-
tion data available, an identic data entry was created but with zero rotation.

All these procedures resulted in a total number of data entries in
the original dataset being roughly 3:7� 107. However, in this work, we
have selected, from the original dataset, a random sample of 30000
entries for the training set, and a random sample of 30 000 entries for the
test set used for evaluation. Here, a check was made to ensure that data
entries with extreme values (outliers) were excluded. Additionally, to
ensure an unbiased evaluation, it was made sure that no entry was
included in both the training set and the test set. The decision to use
only a fraction of the full dataset was driven by the need to enhance the
efficiency of the investigation process, which required numerous training
iterations. That being said, we did not observe a significant drop in pre-
diction accuracy when using the smaller dataset for training compared

TABLE I. The full set of input parameters in the QuaLiKiz dataset used in this work.

Dimensionless parameter Associated physical parameter Dataset min Dataset max Description

qtor r 0.10 0.93 Flux label
q q 0.79 3.99 Safety factor
ŝ rq �0.48 3.99 Magnetic shear
R=LTe rTe �4.97 24.99 Normalized electron temperature gradient
Zeff Zeff 1.00 3.97 Effective charge
log10ð��Þ ne �1.499 0.49 Collisionality
R=Lne rne �4.97 9.98 Normalized electron density gradient
s Timp 0.500 1.75 Ion and electron temperature ratio
R=LTi rTimp �4.99 19.98 Normalized ion temperature gradient
R=Lnimp;light rnimp;light �5.02 10.03 Normalized light impurity density gradient
Nimp;light nimp;light 0.0002 0.049 Light impurity density
a B0 �0.047 1.499 Normalized pressure gradient
Mtor Xtor �0.048 0.99 Rotation Mach number
R=Lutor rXtor �0.99 4.98 Normalized rotation gradient
cE r2ðniTiÞ �1.49 0.49 ExB shearing rate
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to when using a large dataset consisting of 3 � 106 entries, and the
parameter distributions were comparable in both cases.

In both the training set and the test set, approximately 45% of the
entries are accompanied by a positive growth rate (unstable mode) at
the specific wavenumber we are considering. Consequently, since only
unstable entries were considered for the growth rate prediction,
approximately 13 500 entries were included for this sub-task.

D. Correlations among the inputs

While most of the input parameters presented in Table I are rela-
tively disentangled, they are not fully independent. In some cases, there
are natural connections between parameters. For instance, the mag-
netic shear ŝ is the normalized gradient of the safety factor q, and the
light impurity density Nimp;light affects the effective charge Zeff .

For a more comprehensive overview, Fig. 1 shows the Pearson cor-
relation matrix of the training set for all input parameters, which, for
instance, suggests that magnetic shear ŝ and the radial position, qtor ,
have the strongest correlation (0.81). This is natural because of the usual
monotonically increasing safety factors in JET plasmas. Specifically, we
expect to have a flat safety factor profile and therefore magnetic shear
close to 0 near the center of the plasma. Moreover, we observe non-
negligible correlations between qtor and normalized gradients since these
are larger toward the edge of the plasma, i.e., higher qtor .

However, except for qtor , which is not even a plasma parameter
but rather a representative of the radial position, the parameters

generally do not exhibit correlations at levels that raise concern. This is
an important consideration for the analysis of the parameter relation-
ships of the models presented in this work. As will be seen, qtor is not a
parameter that we include in our models as it is shown to not be criti-
cal for the predictions, which further alleviates potential concerns
related to the correlations where qtor is involved.

III. ION TEMPERATURE GRADIENT MODE

The ITG mode has been studied extensively the past decades,
both analytically and numerically.37,39–41 Therefore, it has several
known characteristics, which we describe in this section to establish a
foundation for comparing them with the findings from the models we
train in this work.

The ITG mode is destabilized by a high background ion tempera-
ture gradient which drives the instability, and it exists as slab- and
toroidal-like versions. The slab-like mode exists due to the background
temperature causing a change in the temperature perturbation that
moves in phase with the perturbed ExB drift. The toroidal-like mode
arises due to the rB and curvature drifts, connecting to the back-
ground temperature gradients on the bad curvature side, i.e., the low-
field side of the tokamak. These two versions of the ITG mode are sep-
arated by the shear length scale, Ls, with gradient scale lengths that
play a key role theoretically. The limits can be described as ŝ=q � 1
for the slab limit and ŝ=q � 1 for the toroidal limit. To date, the toroi-
dal mode has been the cause of the higher turbulent transport in
experiments.34

FIG. 1. Pearson correlation matrix for all 15 input parameters in the QuaLiKiz dataset used in this work.
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A. Ion temperature gradient mode threshold

An important feature of ITG mode is the existence of an instabil-
ity threshold. Specifically, under a certain critical normalized ion tem-
perature gradient R=LTi jcrit , the mode is stable. Analytical expressions
have been derived for the threshold, here by Jenko et al.,42

R=LTi jcrit ¼ max ð1þ sÞ 4
3
þ 1:91̂s=q

� �
; 0:8R=Ln

� �
: (2)

Note that in Ref. 42, the analysis was performed with only one ion spe-
cies, and therefore, the electron and ion normalized density were
always the same. In our dataset, we use the electron normalized density
gradient R=Lne as an input, which varies slightly from the ion normal-
ized gradient because of the low impurity content. However, in the
argumentation regarding Eq. (2), we will assume the density gradient
being roughly the same as the normalized electron density gradient.

The first argument of the max statement was derived by combin-
ing the formulas for slab-like ITG mode by Romanelli40 with the 4

3
term, and the toroidal-like mode by Hahm and Tang43 (the
1:91̂s=q-term). These were derived in the flat density profile limit,
a=Ln ! 0. In this limit, the threshold is determined by kinetic effects
associated with the magnetic drift frequency.43,44

Based on Eq. (2), we can anticipate beforehand how the models
we train in this work should behave. First, a higher normalized ion
temperature gradient R=LTi should yield a higher probability of an
unstable mode as it drives the ITG mode. Second, the parameters s,
ŝ=q, and R=Ln ought to have an important role deciding the stable/
unstable regions. All of these three parameters increase the threshold
according to (2), meaning that higher values of these parameters
should lead to a higher chance of predicting a stable mode.

B. Ion temperature gradient mode growth rate

We now continue with theoretical descriptions regarding the
actual growth rate of the ITG mode given the scenario that the mode is
unstable. First, gradients far beyond the critical gradient threshold are
expected to result in a larger growth rate. Therefore, we can anticipate
that the parameters discussed in Sec. III A will also play a significant
role in training the growth rate prediction model. To understand these
parameters in more detail, and to understand which other parameters
might be important, we analyze two analytical expressions derived in
Ref. 45 in the fluid limit. The expression for the slab limit is

c2slab ¼
s
Zeff

nx�
pekhdeff ceff
2Ls

; (3)

and the interchange limit

c2interchange ¼
ft þ s

Zeff

� �
n2x�

pexde

fp
; (4)

where cslab and cinterchange are the growth rates for the two limits, n

being the toroidal wavenumber, xde ¼ � khTe
eB ðcos hþ ŝh sin hÞ being

the vertical drift frequency, x�
pe ¼ � khTe

eB
1
Lp
being the diamagnetic fre-

quency associated with the pressure gradient, ceff ¼ Te=mp, mp is the

proton mass, deff ¼ fp
ft
Te
ne

P
i
niZ2

i
Ti

di þ 4Temp

e2B2 , ft;p being the trapped and

passing particles fractions, d being the banana width, h being the poloi-
dal angle, and B being the magnetic field.

While we observe that more parameters influence the growth rate
than the critical threshold, we choose to emphasize those parameters
that appear in both the critical threshold (2) and the growth rate
expressions (3) and (4). For instance, the magnetic shear dependency
in the slab limit (3) comes from the shear length scale, as Ls ¼ Rq=̂s.
For the interchange limit (4), it enters through xde. Thus, we have the
dependencies, c2slab � ŝ, and c2interchange � ðcos hþ ŝh sin hÞ. The ion

and electron temperature ratio s dependency is explicit in the equa-
tions, c2slab � s, and c2interchange � ðft þ s=ZÞ. The normalized density

and ion temperature gradients enter through x�
pe and the pressure

length scale for both expressions for the growth rate. Hence, the
growth rates increase with the normalized gradients. In total, we note
that only one out of the four parameters in the critical gradient expres-
sion (2) has the same sign of the dependency in the growth rate cases,
namely, the normalized ion temperature gradient with its destabilizing
effect (increasing the growth rate). This is not surprising as it is the
drive of the instability. The other three parameters ŝ, s, and a=Ln are
destabilizing (increasing the growth rate) rather than stabilizing like in
the case for the critical threshold. This is an indication of increased
stiffness for higher values of these parameters.

The theoretical concepts discussed in this section are revisited at
the end of the results section for each prediction sub-task to connect
the findings of our machine-learning based models to the theory.

IV. METHOD
A. NeuralBranch framework

In this work, we use the NeuralBranch method35 to enable inter-
pretability when creating surrogate models for the two sub-tasks. This
approach splits dense neural networks into separate sub-networks of
dense layers, each handling only two input parameters and one output
parameter. In the rest of this work, we refer to these sub-networks as
neural branches. By limiting each neural branch to two inputs, the out-
put can be visualized as a function of the two inputs in a plot, for
example, with the inputs on the x and y axes and the output repre-
sented by color. This visualization enables a qualitative interpretation
of the relationship between the inputs and outputs of each neural
branch. In practice, this is achieved by first training the model, and
then by parsing the inputs of the full test set through the model, which
gives arrays of all inputs and outputs of the neural branches. Note also
that since we only need the two inputs and the output of each neural
branch to plot the parameter relationships, there is no need to analyze
the internal weights of the hidden nodes when using this approach.

A complete NeuralBranch model includes multiple neural
branches arranged such that the output of a neural branch either is
connected to the input of another neural branch, or set as the final out-
put of the model. This is illustrated in Fig. 2. In this example, the out-
put ŷ is predicted from three input parameters: x1, x2, and x3. The first
neural branch takes x1 and x2 as inputs and produces an intermediate
parameter z. The second neural branch takes z and x3 as inputs and
outputs the final prediction ŷ . By visualizing how z depends on x1 and
x2, and subsequently how ŷ depends on z and x3, the dependencies of
ŷ on x1, x2, and x3 can be fully interpreted. As each neural branch con-
tains dense layers of neural network nodes, they allow for the learning
of complex mappings. Furthermore, all neural branches are trained
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together as a single model, eliminating the need for prior assumptions
about the intermediate parameter z.

An important aspect of the NeuralBranch method is the selection
of which input parameters that should be allocated to which neural
branch. For instance, without prior knowledge, we cannot be certain
that x1 and x2 in this example is the appropriate choice of parameters
to be passed to neural branch 1. Consequently, all possible pairings of
inputs must be explored, and the configuration that minimizes predic-
tion error is selected as it best reflects the data. The process for select-
ing neural branch configurations and handling cases with more than
three input parameters is detailed in Ref. 35. In the results sections, we
provide the final NeuralBranch architecture and visualizations for the
most accurate configuration. We refer to Appendix A for more details
on training specifications, such as hyperparameters used in this work.

We also want to acknowledge that the NeuralBranch method is
inspired by Neural Additive Models (NAMs),24 which also enable
interpretability by splitting the neural network into sub-networks that
process at most two input parameters each, and by visualizing the
learned mappings. However, in NAMs, the sub-networks operate in
parallel, and the complete model output is the sum of the outputs
from the individual sub-networks. While this simplifies interpretation
by removing dependencies between sub-networks, it also introduces
limitations. For example, the NeuralBranch model in Fig. 2 allows for
complex interactions among all three input parameters: x1 and x2
may interact in neural branch 1, and x3 may interact with z, repre-
senting the contribution from x1 and x2, in neural branch 2. Such
interactions involving three or more parameters would not be possible
in a NAM with two sub-networks. Additionally, the output of the
NeuralBranch model is not restricted to being the sum of neural
branch outputs. Nevertheless, NAMs may still be advantageous in sce-
narios where the data patterns align with their constraints, particularly
in cases with a large number of important input parameters. This is
because the sub-networks in NAMs are independent on one another,
making the complete model easier to interpret when many sub-
networks are included.

B. Evaluation metrics

To evaluate the performance of all classifier models and growth
rate prediction models presented in this work, the balanced F-score F1
and the coefficient of determination R2 are used, respectively.

The balanced F-score is defined by

F1 ¼ 2
precision � recall
precisionþ recall

; (5)

where precision is the ratio between the number of correctly predicted
positive results and the number of all samples predicted to be positive
(including false positives), and recall is the ratio of the number of cor-
rectly predicted positive results and the number of all samples with
positive ground truth value. The closer the F1 score of a model is to 1
(the maximum attainable value), the more accurate the model is.

The coefficient of determination is defined as

R2 ¼ 1�
PNtest

i¼1
ðyi � ŷ iÞ2

PNtest

i¼1
ðyi � �yÞ2

; (6)

where Ntest is the size of a test dataset, yi are the ground truth values, ŷ i
are the corresponding model predictions, and �y is the mean of the
ground truth values. As in the case of F1, the closer the R2 score of a
model is to 1 (the maximum attainable value), the more accurate the
model is. The R2-metric suits cases where the output is continuous,
which is the case for the prediction of the growth rate on the unstable
entries in the dataset.

C. Selecting input parameters

While the QuaLiKiz dataset used in this work includes 15 input
parameters, they are not all equally important for achieving high pre-
diction accuracy. This is demonstrated in this section with a test where
the goal is to find which inputs need to be included to achieve high
prediction accuracy, and consequently which can be excluded without
reducing the accuracy. Excluding input parameters that do not
improve prediction accuracy is important for two main reasons in our
work. First, a machine learning model is not encouraged to learn rela-
tionships related to input parameters that do not reduce the loss func-
tion. Second, using fewer input parameters results in fewer neural
branches in a NeuralBranch model, which simplifies the interpretation
process.

To perform the input selection test, we employ a sequential for-
ward selection (SFS) approach,46 which can be summarized in the fol-
lowing steps:

1. A dense neural network is used to predict the given output when
all inputs are included. This provides a benchmark value for the
prediction accuracy.

2. Another neural network is trained to predict the output, but now
only one input parameter is allowed. The goal here is to find, out
of all inputs, which one provides the highest prediction accuracy
when used alone. This input is then fixed as the first input
parameter.

3. Gradually introduce one additional input parameter at a time.
The parameter that produces the highest accuracy, when com-
bined with the already fixed parameters, is selected as the next
input to be fixed. Note that a new neural network is trained from
scratch each time a new input parameter is added.

4. Repeat step 3 until the prediction accuracy is considered close
enough to the benchmark score.

By incrementally fixing one input parameter at a time, we con-
serve computational resources, as this approach significantly reduces
the number of parameter combinations compared to testing all possi-
ble configurations (120 vs 32 767). Moreover, the reason for using

FIG. 2. An illustrative example of a NeuralBranch model architecture. Each neural
branch, which are illustrated with boxes, includes dense neural network layers. For
cases with more than three input parameters, more branches are required.
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dense neural networks for the SFS approach, rather than simpler mod-
els, is to avoid the results being impacted by insufficient expressive
capacity.

To demonstrate the input selection method using SFS in practice,
we here apply it to the classification sub-task, and the result is pre-
sented in Fig. 3. We observe that the input parameter R=LTi produces
the highest accuracy when only one input is allowed. Specifically,
R=LTi alone yields F1 ¼ 0:82 when predicting whether the mode is sta-
ble or not. This is not surprising considering that ITG modes are, as
mentioned, driven by ion temperature gradients. As additional param-
eters are introduced incrementally, we see that ŝ followed by s and
R=Lne lead to a prediction accuracy which is approximately the same
as the benchmark value when all 15 inputs are included (F1 	 0:89).
Therefore, for the classification model in our work, we use these four
most important inputs. However, it is important to note that the input
selection test presented here does not imply that the other parameters
are universally unimportant in all scenarios. Instead, the results indi-
cate that, on average, only the four input parameters shown in Fig. 3
are important for the stable/unstable classification applied to the spe-
cific dataset used.

Since we are initially focusing on the classification sub-task, the
input selection test and all other results for the growth rate prediction
sub-task are presented later in Sec. VI.

V. STABLE/UNSTABLE CLASSIFICATION: RESULTS

In this section, we present the remaining results related to the sta-
ble/unstable classification sub-task. At the end of this section, we dis-
cuss the results in relation to the ITG stability theory.

A. Linear classification model

Before using the neural network-based NeuralBranch model, we
first train a linear classification model. The goal is to create a simple
model that can be compared with the NeuralBranch model. Since the
output is binary in classification tasks, a sigmoid function r is applied
to a linear combination of the inputs. The coefficients in this linear

model are found through the minimization of the binary cross-
entropy when exposing the model to the training dataset, and the
result is

output ¼ rð0:96R=LTi � 1:85̂s � 3:68sþ 0:20R=Lne � 1:20Þ; (7)

where r is the sigmoid function. Here, an output that is larger than 0.5
means that the mode is predicted as unstable, which means that the
inputs with positive coefficients in (7) have a destabilizing effect on the
mode when increased. Additionally, this linear model yields F1 ¼ 0:84
when evaluated on the test set, which is a competitive result consider-
ing that the neural network used in the input selection test yields
F1 ¼ 0:89. There is however a non-negligible discrepancy in the
F1-values, which motivates the use of the NeuralBranch model to
investigate what is causing this difference. Nevertheless, by analyzing
the coefficients in (7), we note that increased R=LTi and R=Lne overall
have a destabilizing effect on the mode and that increased ŝ and s over-
all have a stabilizing effect on the mode.

B. NeuralBranch model for the classification

We now turn to the main classification model in our work, which
is the NeuralBranch model for this sub-task. Figure 4 shows the final
architecture and the visualizations of this model. In the visualizations,
the output of the neural branches is indicated by the color, and contour
lines are used to highlight constant values of the output. This
NeuralBranch model yields F1 ¼ 0:89, which matches the neural net-
work used in the input selection test and exceeds the linear classifica-
tion model (F1 ¼ 0:84). We have summarized conclusions of our
interpretation of the NeuralBranch model in Table II. As seen in the
table, the model reveals patterns and interactions that linear models
cannot fully capture, which explains the higher accuracy in the
NeuralBranch model. In Sec. VC, details regarding how we performed
the interpretation are described.

C. Details on the interpretation process of the
NeuralBranch classifier

When interpreting the visualizations of the NeuralBranch classi-
fier (Fig. 4), we analyze how the output of the neural branches depends
on their inputs, and also how the intermediate values z1 and z2 propa-
gate through the model. For instance, we can see that higher s
increases z2 in neural branch 2, and that higher z2 in turn increases the
stability threshold in neural branch 3. This reasoning applies for how
we conclude on how each input affects the output. Moreover, the
approximately straight equidistant lines in neural branch 2 tells us that
there is an additive (non-interactive) behavior between s and z1, which
represents the contribution from ŝ and R=Lne . In contrast, neural
branch 1 reveals an interactive pattern as higher R=Lne appears to shift
the impact that ŝ has on z1.

D. Discussion of classifier results in relation to theory

We now use the theory outlined in Sec. III as a starting point to
be compared with the behavior of the presented classifiers (and
QuaLiKiz as this is the model our models attempt to mimic).

First, we observe that the four input parameters that turned out
to be important for achieving high prediction accuracy, see Fig. 3, are
the ones in Eq. (2) for the critical threshold. Second, for the simple lin-
ear model, see Eq. (7), we can notice that the dependencies of the

FIG. 3. Result of the SFS method used to find the most important inputs for the sta-
ble/unstable classifier. The leftmost bar shows which parameter achieves the high-
est F1-score when only one input is allowed, and the subsequent bars show which
parameters that are the highest scoring as additional parameters are allowed incre-
mentally. The dashed line indicates the score when all 15 inputs are used.
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normalized ion temperature gradient R=LTi , magnetic shear ŝ, and the
ion and electron temperature ratio s are qualitatively the same as in
Eq. (2). An increase in R=LTi gives an unstable mode, and increases in
ŝ and s gives a stable mode. However, the normalized gradient R=Lne
has the opposite dependency compared to the critical threshold equa-
tion. Specifically, for the linear model fit on the data, it is destabilizing
but for the theoretical critical threshold equation it is stabilizing.

Turning to the results of the NeuralBranch model, see Table II, ŝ
and s increase the critical threshold, which is in accordance with the
analytical critical threshold. The more interesting part is the interplay
between R=Lne and ŝ displayed in Fig. 4(b). Specifically, according to the
analytical expression the normalized density gradient ought to increase
the critical threshold, however as we noticed this is only true for low
magnetic shear according to the NeuralBranch model. Additionally,
according to the analytical expression in Eq. (2), the importance of the
normalized density gradient should increase when the magnetic shear is
low, due to the max-statement in the equation. However, this is not an
obvious trait of neural branch 2 displayed in Fig. 4(b).

The mentioned discrepancies, and the positive scaling for the
density gradient for the linear model, see Eq. (7), might be due to the
influence of the TEM. Specifically, while all unstable data entries used

in this work are associated with ITG-modes, some are likely coupled to
the TEM. Since the TEM is driven by the density gradient,47 an
increase in the density gradient would destabilize the ITG-TEM cou-
pled cases, thus explaining the positive scaling observed in Eq. (7).

VI. GROWTH RATE PREDICTION: RESULTS

We now move on from the classification of stable/unstable modes
to the growth rate prediction sub-task. Here, all models are only trained
and evaluated on the unstable entries in the dataset, and the output,
which is the actual growth rate of the instability, is a continuous param-
eter. Therefore, all models now have a linear output node and are evalu-
ated using the R2-metric instead of the F1-metric. We first present the
input parameter selection test, and then a linear growth rate prediction
model, followed by the final NeuralBranch model for this sub-task. The
section ends with a discussion of the results in relation to the theory
regarding ITG growth rates outlined in Sec. III.

A. Input parameter selection for growth rates

Figure 5 shows the result of the SFS method used to find the most
important input parameters for the growth rate prediction. Much like

FIG. 4. The architecture (a) and visualizations (b)–(d) of the NeuralBranch model for the classification task. In the visualizations, we have plotted the output of each neural
branch in color. The contour lines in (b) and (c) indicate where the output of the neural branches are constant. The scatter points in the visualizations are obtained through pars-
ing the full test set through the model post-training.
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in the classification task, R=LTi is the highest scoring parameter when
only one input is allowed, and it is followed by a similar succession of
parameters: ŝ, cE , R=Lne , and s. Note that the exception, namely, cE
which was unimportant for the classification task, now appears before
R=Lne and s for the growth rate prediction task. Another difference
compared to the classification is that these first few parameters are not
fully sufficient to reach the same prediction accuracy compared to
when all 15 input parameters are used. For instance, including the five
most important parameters yields R2 ¼ 0:85 while including all 15
inputs yields R2 ¼ 0:93. This is an indication that while all parameters
in the dataset are not necessarily important for the classification, they
are more important when considering the finer nuances in the growth
rate prediction. However, we choose to focus the analysis on the five
most important parameters and examine their impact on the output
growth rate, namely, R=LTi , ŝ, cE , R=Lne , and s. This selection is partly
motivated by the fact that, with the exception of cE , these are the same
parameters used in the classification model. Additionally, while we
acknowledge that the following observation is somewhat subjective,
the relative increase in R2 per parameter in Fig. 5 appears to be weaker
after the fifth parameter compared to prior parameters. That said, in a

surrogate model where maximizing prediction accuracy is the top pri-
ority, we recommend including all 15 input parameters from the data-
set. The following analysis is simply intended to inform on how the
five most important inputs, that are responsible for 91% of the predic-
tion accuracy, impact the output growth rate.

B. Linear growth rate prediction model

In this sub-task, no sigmoid function is needed to be applied to
the linear function since the output now is continuous. Moreover, here
the fitting coefficients are found by minimizing the mean squared error
(mse) of the model rather than the binary cross-entropy. This gives the
result

growth rate ¼ 0:051R=LTi � 0:081̂s � 0:003cE
þ 0:014R=Lne � 0:102s� 0:062; (8)

which yields R2 ¼ 0:72. This is a noticeable drop compared to the
neural network used in the input selection test (R2 ¼ 0:85), which
motivates the use of the NeuralBranch model to investigate the more
complicated parameter relationships that are causing this difference.

FIG. 5. Result of the SFS method used to find the most important inputs for the growth rate prediction sub-task. The blue bar indicates which parameters we decided to include
in the final analysis. Note that Nimp;light and R=Lnimp;light are written as Nimp and R=Lnimp to make them small enough to fit in the bars.

TABLE II. Summary of input-to-output behavior of the NeuralBranch model for the classification sub-task, based on interpretation of Fig. 4.

Input parameter Impact on classification Interactions with other parameters

R=LTi Higher R=LTi leads to unstable output. The other inputs affect the critical value of R=LTi

where the output becomes unstable.
ŝ Higher ŝ leads to stable output as it increases the

R=LTi threshold. However, the impact of ŝ is not linear
as it has a minimum destabilizing effect at 0 < ŝ < 1.

The most destabilizing ŝ gradually goes from ŝ 	 0
to ŝ 	 1 as R=Lne increases.

s Higher s leads to stable output as it increases the
R=LTi threshold.

No interactions with remaining inputs
(̂s and R=Lne ).

R=Lne Higher R=Lne generally leads to unstable output as it
lowers the R=LTi threshold.

At the very lowest ŝ values, we observe a deviation
from the general trend as here higher R=Lne

stabilizes the output.
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For instance, we can conclude that the linear model likely fails to accu-
rately capture the way cE contributes to the growth rate. This is
because in the input selection test, where neural networks are used, it
is shown to be the third most important parameter, but in (8), the
growth rate is almost independent of cE considering the small

accompanied coefficient and the data range of cE . Nevertheless, by
analyzing the other coefficients in (8), we find that higher R=LTi and
R=Lne overall lead to a higher growth rate, and that higher ŝ and s
(and cE although the coefficient is small in relation to the parameter
range) overall lead to a lower growth rate.

FIG. 6. The architecture (a) and visualizations (b)–(f) of the NeuralBranch model for the growth rate prediction task. In the visualizations, we have represented the output of
each neural branch in color. The contour lines indicate where the output of each neural branch is constant. The scatter points in the visualizations are obtained through parsing
the full test set through the model post-training.
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C. NeuralBranch model for growth rate predictions

Figure 6 shows the final architecture and the visualizations of the
NeuralBranch model that predicts the growth rate, which yields
R2 ¼ 0:84. This model almost matches the corresponding neural net-
work used in the input selection test (R2 ¼ 0:85) and exceeds the linear
classification model (R2 ¼ 0:72). We have summarized conclusions of
our interpretation of the model in Table III. As in the classification case,
we are able to identify several non-linear and interactive patterns, which
explains why the NeuralBranch model outperforms the corresponding
linear model. In Sec. VID, we describe certain details regarding how we
performed the interpretation for this sub-task.

D. Details on the interpretation process of the
NeuralBranch growth rate prediction

As in the classification case, our interpretation is based on how the
output of each neural branch depends on its two inputs, and on how the
intermediate z-values propagate through the model. For instance, both
neural branch 4 and neural branch 5 indicate straight equidistant con-
tour lines of approximately the same inclination angle, which means
that both these neural branches can be thought of as weighted addition
operators. Therefore, in this case, it is straightforward to analyze how
the output from prior neural branches propagate through the rest of the
model. We also note that ŝ needs to be present in two neural branches
in order to achieve high prediction accuracy, as ŝ interacts with different
parameters in different ways. One of these interactions is indicated in
neural branch 3, where we observe a similar interaction that was
observed in the classification model, namely, that higher R=Lne shifts the
impact that ŝ has on z3. The other strong interaction effect is observed
in neural branch 1, where low ŝ completely suppresses the impact that
cE has on z1. We also observe an interaction in neural branch 2, where
the contour lines have a steeper inclination angle as R=LTi increases.
This is an indication of a slight interaction effect between R=LTi and z1,
where z1 represents the contribution from ŝ and cE .

E. Predicted vs dataset values

In addition to the previously mentioned prediction accuracy of the
NeuralBranch model R2 ¼ 0:84, Fig. 7 presents the predicted vs actual
growth rate values in the test set, providing a more comprehensive

overview. It can be observed that while most predictions are accurate,
some exhibit significant errors. This is not surprising, as 10 out of the 15
input parameters are excluded in this model. Speculatively, although
these parameters are less important on average across the dataset, they
may hold significance for specific instances. That said, as was seen in the
input selection test, the choice of excluding some of the input parameters
is not the only reason for why the model is imperfect. Specifically, the R2

value still deviates from 1 when all inputs are included (0.93), which is
also the case in a previous study where a growth rate surrogate model
for QuaLiKiz is created.32

F. Discussion of growth rate prediction results in
relation to theory

We now discuss and compare the results of the growth rate pre-
diction models with the corresponding analytical expressions in Sec.
III. We limit the discussion to the five parameters that were most

TABLE III. Summary of the input-to-output behavior of the NeuralBranch model for the growth rate prediction sub-task, based on interpretation of Fig. 6.

Input parameter Impact on growth rate Interactions with other parameters

R=LTi Higher R=LTi increases the growth rate. Higher jcEj weakens the impact of R=LTi on the growth
rate, but only when ŝ is large enough (̂s� 0:5).

ŝ Higher ŝ generally decreases the growth rate. However, as in
the classification sub-task, the impact of ŝ is not linear as its

impact reaches a minimum at 0 < ŝ < 1.

As in the classification case, the value of ŝ that mini-
mizes its impact on the output shifts from ŝ 	 0 to ŝ 	 1
as R=Lne increases. ŝ also interacts with cE as discussed

below.
cE Higher jcEj decreases the growth rate. However, this only

occurs at specific conditions as described in the interaction
column.

The impact of cE is completely suppressed at low ŝ
(�0:5). Moreover, the impact of cE is slightly weaker at

lower R=LTi , even when ŝ is sufficiently large.
R=Lne Higher R=Lne increases the growth rate. The impact of R=Lne on the growth rate is weakened at

low ŝ.
s Higher s decreases the growth rate. No interactions with other inputs.

FIG. 7. The predicted vs dataset growth rate values for the NeuralBranch model
that predicts the growth rate given that the mode is unstable. The brightness of the
points indicate how many points there are in each pixel in the scatterplot. The
dashed line represents the perfect prediction line.
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important for the predictions, and therefore included in the models,
namely, R=LTi , ŝ, cE , R=Lne , and s.

As mentioned in Sec. III, since the deviation from the critical gra-
dient affects the growth rate, it is not surprising that the parameters
important for stable/unstable classification also were important for the
growth rate prediction (all five except cE were important for the
classification).

When analyzing the linear fit for growth rate predictions (8), we
observe the same signs for the coefficients of the parameters compared
to the classification case (7). This is partly in contradiction to the ana-
lytical expression for the growth rates in Eqs. (3) and (4). Specifically,
both higher s and higher ŝ reduces the growth rate in the linear fit
(and also in the NeuralBranch model), but this is not the case in the
analytical expressions. A possible explanation is that the unstable
entries in the dataset might be close to the critical threshold, which is
likely due to the dataset being based on experimental data from JET
pulses. In more detail, turbulent transport in tokamaks is stiff, meaning
that, above the critical threshold, a small increase in the normalized
gradients leads to a large increase in the fluxes. Hence, it is difficult to
raise the gradients of the profiles far above the critical threshold.
However, this is only a partial explanation for the observed coeffi-
cients, as the dataset also includes expansions in the gradient parame-
ters beyond their critical values.

By more closely analyzing the coefficients in the linear models,
we observe that s is not as destabilizing in the growth rate prediction
case compared to the classification (critical threshold) case.
Specifically, the coefficient for s is significantly stronger in relation to
all other parameters in the classification case. This is an indication that
the dependency that our models find in relation to s might be a mix-
ture of the analytical expression for the critical threshold and the ana-
lytical expressions in the limit far from the threshold.

We now continue to a discussion about the NeuralBranch model
for the growth rate, which, as demonstrated, have identified parame-
ters patterns that are too complicated for a linear model to capture.
For instance, the model shows that the stabilization effect of ExB-
shearing cE is absent at low magnetic shear ŝ. This can be explained by
how QuaLiKiz handles the related eigenfunction. Specifically, as seen
in Ref. 31, the eigenfunction in QuaLiKiz is a shifted Gaussian

~/ � /0 exp � x � x0
2w2

� �
; (9)

where / is the electrostatic potential, w is the width, x is the distance
from the mode surface, and x0 is the shift. The ExB-shearing enters
primarily through its impact on x0, which can be seen in the deriva-
tions for w and x0 in Ref. 31. Additionally, through investigating
expressions for w, we can see that the magnetic shear dependency for
the width is w � 1=̂s. Hence, the eigenfunction is wider for lower
shear, and therefore the shift x0 (and consequently ExB shearing) is
less impactful. The wider eigenfunction at low magnetic shear is
expected as the ITG instability is created at the low field side and car-
ried to the high field side along the magnetic field lines. Specifically, for
high magnetic shear the structure of the instability is torn apart and
therefore rather localized on the low field side. For a low magnetic
shear the instability survives and get extended. This is not compatible
with QuaLiKiz strong ballooning assumption,48 which requires the
mode to be localized. Hence, the low magnetic shear domain is more
difficult to accurately represent with QuaLiKiz. A study for low

magnetic shear has been performed and it was found that QuaLiKiz is
valid down to magnetic shear 0.1.45 Note that this study was per-
formed with a different expression for the width of the eigenfunctions.

The other main pattern indicated by the NeuralBranch model,
that is too complicated for the linear model to capture, is the interplay
between a=Lne and ŝ in Fig. 6(d). This is effectively the same pattern
that was found in the classifier in Fig. 4(b), which again might be due
to the influence of the TEM as previously discussed. Another possible
explanation for the behavior at low shear that we also see in the classi-
fier could also be, as discussed, related to how low shear impacts the
eigenfunction.

VII. SUMMARY, CONCLUSION, AND FUTURE WORK

In this work, we used the NeuralBranch framework, an interpret-
able neural network framework, to create surrogate models for the
growth rates from the QuaLiKiz eigenvalue solver. Our initial focus
was on developing an interpretable surrogate model to classify whether
the growth rate is positive (unstable mode) or not. Then, we developed
an interpretable surrogate model to predict the actual growth rate
given that the mode is unstable. The goal was to take advantage of the
interpretability of these models to investigate how the classification
and growth rate depend on the most significant input parameters,
thereby providing insight into the model behavior users may anticipate
when employing QuaLiKiz-based surrogates. Moreover, since our
models were trained on QuaLiKiz data, they not only provide insight
into the likely behavior of QuaLiKiz-based surrogates, but also, to
some extent, into the behavior of the QuaLiKiz eigenvalue solver itself,
something that was not feasible with previous black-box surrogate
models. We limited the study to include only the ITG-mode growth
rate at a specific normalized poloidal wavenumber, namely,
khqs ¼ 0:325. As a secondary objective, we compared the patterns
found in our models with analytical expressions from theory.

As a preparatory step, we investigated which input parameters
were most important for each sub-task. For the classification, using
only R=LTi , ŝ, s, and R=Lne provided the same accuracy as when all 15
inputs were included, hence we limited the analysis to these four
parameters. However, in the growth rate sub-task, no input could be
removed without slightly reducing the accuracy. Nevertheless, we
chose to focus the analysis of this sub-task on the five most important
input parameters, namely, R=LTi , ŝ, cE , R=Lne , and s, which together
accounted for 91% of the prediction accuracy.

When proceeding to the NeuralBranch models, we observed that
they outperformed linear models and matched black-box neural net-
works in accuracy, while simultaneously revealing how the most
important input parameters affect both classification and growth rate
predictions. For the growth rate prediction sub-task, we want to
emphasize that the NeuralBranch model matched a black-box neural
network that used only the same five inputs, and not a black-box neu-
ral network using all 15 available inputs.

The parameter dependencies indicated by the NeuralBranch
models were summarized in Table II for the classification and in Table
III for the growth rate prediction. In general, the models indicated sev-
eral intricate parameter dependencies, one example being how the sta-
bilizing effect of cE on the growth rate is completely suppressed at low
ŝ, possibly due to the widening of the eigenfunction in QuaLiKiz when
the magnetic shear is low.

While the main goal of providing a transparent overview of the
most essential parameter relationships has been achieved, we
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acknowledge that these findings may not be universally applicable.
Specifically, the results presented here are valid only for the dataset
used, which is based on JET pulses, and may also be somewhat influ-
enced by correlations among the input parameters. Additionally, as
this analysis focused on the growth rate at only one wavenumber,
slight quantitative differences should be expected when considering
other wavenumbers at the ion scale. That said, when doing further test-
ing in predicting for a few other wavenumbers across the ion scale, we
found the same qualitative patterns. Furthermore, while the
NeuralBranch models presented are generally accurate, there are
instances where they exhibit significant prediction errors. As such, the
findings presented in this work should be interpreted as general trends
rather than a perfect representation of the true behavior of the
QuaLiKiz eigenvalue solver.

Future work could involve analyses similar to those presented in
this study, but applied to data based on experimental values from other
tokamaks or to data for other instability types, such as the ETG mode
or the TEM. In a broader context, future research may also explore the
application of interpretable machine learning methodologies to other
models subject to surrogate modeling. This could be relevant even for
computationally inexpensive models. While surrogate models offer
less advantage in terms of computational speed for such cases, their
interpretability could still provide deeper insights into the underlying
behavior of these models.

In summary, as demonstrated, methods that enable interpretabil-
ity can assist in providing deeper insights into the behavior of models
like the QuaLiKiz eigenvalue solver and assist in making machine
learning-based surrogate models more transparent and, therefore,
more trustworthy.
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APPENDIX A: TRAINING SPECIFICATIONS

We here present the machine learning details, including hyper-
parameters used when training the NeuralBranch models in this
work.

• Activation function in all hidden nodes: ReLU.
• Activation function in output node of classification models:
sigmoid.

• Activation function in output node of growth rate prediction
models: linear.

• Number of hidden layers in each branch: 3.
• Number of nodes in each hidden layer: 64.
• Optimizer: Adam, with a learning rate of 0.001.
• Loss function for classifier: binary cross-entropy.
• Loss function for growth rate prediction model: mean squared
error (mse).

• Batch size: 256.
• Epochs: 100, although this is not always reached as we implement
early stopping when the loss function on a temporary validation
set stops to decrease, with a patience of 10 epochs.

• Data normalization method: MinMax scaling, range [0,1], applied
to the inputs, and also the output in the growth rate prediction
sub-task.

These hyperparameters were chosen based on early-stage
hyperparameter searches conducted during this work, as well as on
those used in previous studies related to QuaLiKiz surrogate model-
ing.21,32 Additionally, the dense neural networks used in this
work to provide benchmark values for model performance and
identify the most important input parameters share the same
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hyperparameters as the NeuralBranch models. There is however a
difference, namely, that since the NeuralBranch models consists of
several branches of dense layers, these get more nodes in total com-
pared to the dense neural networks. This might seem unfair when
comparing the accuracy of NeuralBranch models and dense neural
networks, but through testing we observe that additional nodes and
layers do not lead to an improved performance for the dense neural
networks. The number of nodes in the NeuralBranch models was
not reduced to match the total number of nodes in the dense neural
networks because we wanted to avoid making prior assumptions
about the complexity of the functions each neural branch needs to
learn. However, while the large total number of nodes might typi-
cally raise concerns about overfitting, the interpretability of the
NeuralBranch models allows for straightforward detection of irregu-
lar or overly complex patterns, which are indicative of overfitting.51

As demonstrated, the NeuralBranch models in this work learn pat-
terns that are regular and not overly complex, leading us to con-
clude that overfitting is not a significant concern. That said, some of
the branches presented, especially those that indicate simple learned
patterns, could likely have been reduced further in terms of the
number of nodes without sacrificing accuracy.

An additional note about the training process is that each
model configuration was trained from scratch five times, and the
best score among the five iterations is selected as the evaluation
score for that configuration. This applies both to the NeuralBranch
models when searching for the most accurate configuration and for
neural networks that are used to find the most important input
parameters. This strategy ensures that no configuration is over-
looked due to rare instances where the trainable weights of the mod-
els converge to a local optimum,51 resulting in a lower score.

APPENDIX B: WEAK VS STRONG TURBULENCE

In this work, we have focused on disentangling the dependen-
cies of machine-learning-based surrogate models for the growth
rate from the eigenvalue solver in QuaLiKiz. However, there are
also metrics other than the growth rate that can be insightful
regarding the impact on the turbulence; the ratio of the growth rate
over the associated real frequency may determine if we have strong
or weak turbulence,36 and the comparison of the ratio of the growth
rate over the poloidal wavenumber between ion and electron scales
has been used to determine the impact of the electron temperature
gradient mode.52 In this section, we address one of these additional
metrics, namely, the ratio of the growth rate over the real frequency.

There are two different states of turbulence which can be clas-
sified as weak turbulence (WT) and strong turbulence (ST).53 An
important difference between them is that the fluxes for WT scales
with the electrostatic potential squared, Q / j/j2, and the fluxes for
the ST scale as the electrostatic potential, Q / j/j. Therefore, it is of
interest to investigate which parameters that change the turbulence
from one state to the other.

As mentioned, it has been shown that the ratio of the growth rate
over the real frequency, c=jxrj, can indicate which state the turbulence
is in, small values indicate WT and large values indicate ST. Hence, we
have performed an additional input parameter selection for regression
models predicting c=jxr j using SFS, similar to the analysis in Sec. VIA.
The five most prominent input parameters are presented in Fig. 8, and

these are the same parameters as for the regression model for the
growth rate. However, the normalized ion temperature gradient R=LTi

is no longer the parameter which gives the highest accuracy when only
one input parameter is allowed. This indicates that the real frequency
has a positive dependency on R=LTi , since if both the growth rate and
real frequency scale positively with R=LTi , it follows that R=LTi

becomes less impactful on the ratio c=jxr j compared to the case where
we only predict the growth rate.

The relationship between the real frequency and R=LTi is linear in
the large R=LTi limit. This can be derived by solving for the real fre-
quency to the first-order perturbations in the equations from Ref. 45
(the cited article only displays result for the zeroth order). This is also
in accordance with Ref. 37. Specifically, the linear dependency is found
in a finite Larmor radius effects term. As previously shown in Sec. III B,
the growth rate, both in the slab and interchange limits, is proportional
to the square root of the normalized ion temperature gradient in the
limit far from the critical threshold. Hence, c=jxrj � 1=

ffiffiffiffiffiffiffiffiffiffiffi
R=LTi

p
in

this limit. However, close to the critical threshold the growth rate has a
very strong dependency on the normalized ion temperature gradient.

When fitting a simple linear regression model to predict
c=jxr j, we find poor performance (R2 ¼ 0:41). Because of the low
score, we find this model too unreliable to analyze its fitting coeffi-
cients. However, we also used the NeuralBranch framework to pre-
dict c=jxrj. This model achieved R2 ¼ 0:79, which matched a black-
box neural network. The architecture of the model was exactly the
same as for the NeuralBranch model predicting the growth rate pre-
sented in the Fig. 6. Moreover, except that R=LTi had a weaker
impact on the output, the impact of the other parameters, namely,
R=Lne , ŝ, s, and cE , were qualitatively the same as in the growth rate
NeuralBranch model, see Table III. In this case, where R=LTi has
less influence on the output compared to the growth rate prediction
scenario, it is reasonable that the higher-capacity models signifi-
cantly outperform the linear model. This is because the linear model
can no longer rely as heavily on capturing a relatively simple rela-
tionship between the output and R=LTi . In other words, capturing
the more complicated patterns that are related to the other parame-
ters becomes more important when predicting c=jxr j.

FIG. 8. Result of the SFS method used to find the most important inputs when pre-
dicting the ratio of the growth rate over the real frequency c=jxr j.
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In summary, this additional investigation suggests that similar
parameter patterns that are present when predicting the growth rate
alone also are important for predicting c=jxrj, which in turn sug-
gests that these patterns have influence on the weak/strong turbu-
lence limit.
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