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Two-particle interferometry is an important tool for extracting the exchange statistics of quantum particles.
We theoretically investigate the prospects of such interferometry to probe the statistics of pointlike anyonic
excitations injected in a Hong-Ou-Mandel (HOM) setup based on a quantum point contact device in the fractional
quantum Hall regime. We compute the standard HOM ratio, i.e., the ratio of tunneling noises for two- and
one-particle injections, and find that for pointlike anyons it only depends on the temperature and the anyon
scaling dimension. Importantly, the latter is not necessarily related to the exchange phase. In fact, we establish
that the HOM ratio does not reveal the exchange phase of the injected anyons: For injection-time delays that
are small compared to the thermal timescale, we find that the exchange phase accumulated due to time-domain
braiding between injected and thermally activated anyons is erased due to two mutually canceling subprocesses.
In contrast, for time delays large compared to the thermal time, only a single subprocess contributes to the
braiding, but the accumulated phase is canceled in the HOM ratio. These findings suggest caution when
interpreting HOM interferometry experiments with anyons, and approaches beyond the standard HOM ratio
are thus necessary to extract anyonic statistics with two-particle interferometry experiments.

DOI: 10.1103/PhysRevB.111.L201407

Introduction. Quantum exchange statistics is a tenet
of modern physics, underpinning phenomena from Bose-
Einstein condensation to the periodic table of elements to
the formation of stars. In ordinary, three-dimensional space,
quantum mechanics predicts [1] that elementary particles be-
long to one of two fundamental types: bosons and fermions.
These types correspond to the many-body wave function of
indistinguishable particles acquiring upon particle exchange
a phase factor eiϑ , with ϑ = 0 and ϑ = π for bosons and
fermions, respectively. Two-dimensional systems, however,
permit particles beyond this dichotomy [2,3]. There, particle
exchange can generate any phase angle ϑ and the particles are
then referred to as (Abelian) anyons [4].

In this work, we investigate the prospects of detecting
anyons with two-particle interferometry in the fractional
quantum Hall (FQH) effect [5,6]. While the charges of FQH
quasiparticles were established decades ago [7,8] to be frac-
tions of the electron charge, it was only in 2020 that the FQH
quasiparticles were experimentally established to be anyons
[9,10]: In Ref. [10] an anyonic phase angle ϑ = π/3 was
observed in the FQH state at filling ν = 1/3 in a Fabry-
Pérot interferometer in the form of abrupt and reproducible
phase jumps in the measured Aharonov-Bohm conductance
patterns. This approach was later extended to other fillings
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in Refs. [11,12], and has recently been implemented also in
graphene-based devices [13,14]. A complementary approach
was taken in Ref. [9], which reported the impact of ϑ on the
noise signal of a two-particle interferometer, in the so-called
collider geometry. In that work, based on an earlier theoretical
proposal [15], ϑ was proposed to affect the current correla-
tions generated when two dilute beams of anyons carried by
chiral edge states impinge on a beam splitter realized with a
quantum point contact (QPC). This observation was later con-
firmed in additional, independent experiments [16–18], and
has subsequently spurred several theoretical works [19–26].
The dominating interpretation of the collider experiments re-
lies on the so-called “time-domain braiding” picture [27,28],
where an exchange process involving impinging anyons and
those spontaneously excited at the QPC provides a dominant,
braiding contribution to the noise.

The anyon collider setup is similar to two-particle inter-
ferometry of Hong-Ou-Mandel (HOM) type, but with one
important difference: In the anyon collider setup, the injected
beams of particles are the result of random Poisson processes.
In contrast, a HOM interferometer typically uses two con-
trolled, time-delayed injections of particles onto the beam
splitter. This setup was originally implemented for photons
(bosons) [29], and was later extended to electrons (fermions)
using QH edge states [30–39], for which interedge mode
interactions [40–44] and channel mixing [45–48] can play a
relevant role. A time-controlled anyonic HOM interferometer
was only very recently reported [49], relying on simulating
the injected anyonic states with voltage pulses, as proposed in
Ref. [23].

In HOM interferometry, the quantum statistics of bosons
and fermions is manifest as a peak and a dip, respectively, in
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FIG. 1. Hong-Ou-Mandel interferometer realized in a fractional
quantum Hall device setup. Pointlike anyonic states depicted by
brown balls are injected at positions xu, xl in the upper (u) and lower
(l) edges at times tu and tl, respectively. Drain terminals are used to
detect the excess electronic noise S due to anyon interference at the
collider quantum point contact at x = xQPC. The distances du and dl

are for convenience both taken as d .

the so-called HOM ratio [see Eq. (14) below]. This quantity is
given by the excess tunneling noise produced by two-particle
injection, divided by the excess noise from single-particle
injections, and quantifies the correlations of emitted particles
in the two output channels of the interferometer. For bosons,
the noise correlations are peaked around vanishing delay, as
the Bose statistics produces a vanishing amplitude for output
in two different channels when the particles simultaneously
arrive at the beam splitter. By contrast, fermions produce a
dip around vanishing delay, since the Pauli principle pre-
vents two fermions from exiting in the same output state
[33,50]. As (Abelian) anyons are in some sense intermedi-
ate between fermions and bosons, it is an interesting, open
question how anyonic statistics might manifest in a HOM
interferometer setup: a natural expectation is that HOM inter-
ferometry of anyons produces features intermediate between
those observed for bosons and fermions, like a reduced dip
in the HOM ratio. Indeed, a heuristic estimate of the proba-
bility of two anyons exiting a two-particle interferometer in
different channels, due to different possible windings of the
anyons around each other, can be associated with a statisti-
cal factor (1 − cos ϑ )/2 [51], which is intermediate between
the bosonic (ϑ = 0) and fermionic (ϑ = π ) scenarios. This
factor, however, is based on braiding of anyons in real space,
which does not occur in the simple pointlike QPC geometry
usually considered in anyon colliders.

Here, we establish in detail that the expectation that the
anyonic HOM ratio, realized with FQH edge modes in a
standard QPC geometry, has “intermediate” features between
bosons and fermions, is in fact incorrect. To this end, we
consider the setup in Fig. 1, describing the injection of time-
delayed, pointlike (i.e., with negligible time width) anyonic
excitations in a QPC device in the FQH regime at filling ν =
1/m (with m an odd, positive integer). Such states have been
shown to be experimentally relevant, as they can be simulated
with ultrashort voltage pulses [23,49]. Our main finding is
that for pointlike anyons the HOM ratio does not contain any
information about the exchange phase of the injected anyons
due to two effects: For small time delay, the total accumu-
lated exchange phase, acquired from time-domain braiding

between injected and thermally excited anyons at the QPC,
is erased due to two competing subprocesses. For large time
delay, the injected anyons braid instead independently with
the thermally activated anyons, but this contribution cancels
in the HOM ratio.

Setup and model. We consider the unperturbed, bosonized
Hamiltonian [52] (we set h̄ = 1)

H0 = vF

4πν

∫
dx[[∂xφu(x)]2 + [∂xφl (x)]2], (1)

where φu and φl are bosonic modes propagating to the left and
to the right on the upper (u) and lower (l) edges (see Fig. 1),
respectively. Both modes propagate with the velocity vF and
obey the commutation relations

[φ j (x), φk (y)] = ∓iπνδ jksgn(x − y), j, k = u, l, (2)

where δ jk is the Kroenecker delta and sgn(x) is the sign
function. Fractionalized quasiparticle excitations on the edges
j = u, l are described by the vertex operators

ψqp, j (x) = Fj√
2πα

e−iφ j (x), (3)

where α is a short-distance cutoff and Fj are the so-called
Klein-factors, obeying the algebra FjF

†
j = F †

j Fj = 1 and

FiF
†
j = −F †

j Fi for i �= j. In this work, however, Klein factors
always appear in such a way that their product evaluates to
unity and we thus ignore them in the following.

The charge densities propagating on the edges are given by

ρ j (x) ≡ ∓q
∂xφ j (x)

2π
, (4)

with − for j = l and + for j = u and where q is the electron
charge. Equations (2)–(4) imply the following commutation
relation between charge density and vertex operators:

[ρ j (x), ψ†
qp, j (y)] = qνδ(x − y)ψ†

qp, j (y). (5)

Furthermore, combining Eqs. (2) and (3), one finds that
exchanging the vertex operators ψqp, j at different spatial co-
ordinates results in an exchange phase factor according to

ψqp, j (x)ψqp, j (y) = ψqp, j (y)ψqp, j (x)e±iϑsgn(x−y), (6)

with +(−) for j = u (l). Moreover, vertex operators (3) with
different j anticommute. We thus see that the operators (3) de-
scribe anyonic excitations with fractional charge qν and, upon
the identification ϑ = πν, fractional statistics. These features
stand in contrast to the electron excitations, i.e., excitations
with charge q, which can be written in an analogous way to
the fractional excitations of Eq. (3), namely

ψel, j (x) = Fj√
2πα

e−iφ j (x)/ν . (7)

These operators can be checked to have the appropriate
fermionic exchange phase ϑ = π .

Next, to describe tunneling of quasiparticles at the quantum
point contact (QPC) at x = xQPC, see Fig. 1, we add to H0 the
tunneling Hamiltonian

Htun = �A + �∗A†,

A = ψ†
qp,u(xQPC)ψqp,l (xQPC). (8)
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Here, |�| � 1 is the weak tunneling amplitude, assumed to be
energy independent, and A is a tunneling operator transferring
quasiparticles between the two edges. Importantly, A can be
interpreted as creating a quasiparticle-quasihole pair at the
QPC. At finite temperature, these pairs are associated with
thermal fluctuations; at zero temperature, they are associated
with quantum fluctuations. A fundamental ingredient of the
two-particle interferometer setup is a tunable injection of sin-
gle anyonic excitations. In this work, we consider pointlike
anyon injections, defined in terms of the state

|ϕ〉 ≡ ψ†
qp,u(xu, tu)ψ†

qp,l (xl, tl ) |0〉 , (9)

with ψ
†
qp, j (x) given in Eq. (3) and where |0〉 ≡ |0〉u ⊗ |0〉l is

the joint unperturbed, equilibrium ground state of the edges.
The state (9) describes the injection of two point-like anyons
(3) at the upper and lower edge locations xu and xl, at times tu
and tl, respectively.

It was recently pointed out in Ref. [23] that the expres-
sions for the tunneling currents and noise produced in the
QPC by pointlike anyon injections are fully equivalent to
the combined application of two specially tailored voltage
pulses Vj (t ) = 2π

q δ(t − t j ). As long as the edge states have a
linear dispersion, the injected voltage profiles do not disperse.
In this way, the pointlike injection considered in this work
can be experimentally simulated with voltage pulse injec-
tions, as previously studied in the context of QH edge states
[34,53–58].

HOM noise and ratio. To analyze noise correlations and
exchange statistics of anyons in the HOM setup, we next use
the Hamiltonian H0 + Htun and perturbatively compute the
tunneling current and noise.

To leading order in |�|, the tunneling current operator is
given as [59]

Itun = iqν[�A(t ) − �∗A†(t )], (10)

where A(t ) is the time evolution in the interaction picture.
In this work, operator expectation values are evaluated with
respect to the auxiliary state (9), and will be denoted by 〈•〉ϕ .
As will be clear below, however, such expectation values can
be related to those with respect to the equilibrium state, 〈•〉0.
We have

〈A(t )A†(t ′)〉0 = 〈A†(t )A(t ′)〉0

= 1

(2πα)2

[
πkBT α/vF

i sinh(πkBT (t − t ′ − iα/vF ))

]4δ

= 1

(2πα)2

[
πkBT α/vF

sinh(πkBT |t −t ′|)
]4δ

e−i2πδsgn(t−t ′ ).

(11)

Here, T is the temperature, kB is the Boltzmann constant, and
in the second line we used that the short distance cutoff α � 1.
The exponent δ is the so-called scaling dimension of the
quasiparticle vertex operators (3), defined from the expression

〈ψ†
qp, j (0, t )ψqp, j (0, 0)〉

0
∼ t−2δ. (12)

The scaling dimension thus governs the slow, characteristi-
cally power-law decay of the temporal correlations between
quasiparticle-quasihole pairs at the QPC. Generically, δ is a

nonuniversal parameter susceptible to a broad range of edge
effects, e.g., interactions, disorder, neutral modes, and 1/ f
noise [60–67]. It is only in the ideal case with no such effects
that δ is directly related to the FQH filling factor as ν = 2δ,
as would be found from evaluating correlations functions of
the operators (3) with respect to H0. Since for ideal Laughlin
states one universally has that ϑ = πν, the absence of nonuni-
versal effects further implies that also the scaling dimension
and the statistical exchange phase are directly related as ϑ =
2πδ. However, this relation cannot be expected to hold true
in realistic devices, and discerning the nonuniversal effects of
2πδ from ϑ is an essential experimental issue in detecting
anyonic statistics. Throughout this work, we will therefore
carefully distinguish the parameters δ and ϑ , and treat them
as two independent variables.

The key quantity of interest in this work is the low-
frequency noise [50,68] due to tunneling at the QPC in the
FQH device. This noise is obtained from the correlation func-
tion of tunneling current operators (10) according to [59,69]

S =
∫ +∞

−∞
dt

∫ ∞

−∞
dt ′〈{Itun(t ), Itun(t ′)}〉ϕ

= (qν|�|)2
∫ +∞

−∞
dt

∫ ∞

−∞
dt ′〈{A(t ), A†(t ′)} + H.c.〉ϕ (13)

where {X,Y } = XY + Y X is the anticommutator.
In the following, we are interested in the impact that simul-

taneous or close-to-simultaneous injections of quasiparticle
excitations onto the QPC have on the noise. This effect is
encoded in the so-called HOM noise, SHOM, which is mea-
sured when anyons are injected on both edges. To isolate the
tunneling noise from the background (thermal) noise, it is
customary to subtract from SHOM the background fluctuations
Seq, which are found from Eq. (13) by taking 〈•〉ϕ → 〈•〉0.
This subtraction defines the experimentally relevant excess
HOM noise 
SHOM = SHOM − Seq. Furthermore, to quantify
the effect of two injections, the excess HOM noise is normal-
ized with the corresponding excess Hanbury Brown–Twiss
(HBT) noise, 
SHBT, j ≡ SHBT, j − Seq, for j = u, l, which is
obtained when anyons are injected on only one edge. The
above procedures are jointly captured with the HOM-noise
ratio [34,37,40]

R(τd ) ≡ 
SHOM


SHBT,u + 
SHBT,l
, (14)

which is a function of the time delay τd ≡ tl − tu between the
two anyon injections. The HOM-noise ratio (14) is the key
quantity of interest in this work.

HOM interferometry with pointlike anyons. We now com-
pute the tunneling noise (13) and then evaluate the HOM
ratio (14). For the auxiliary state injection (9), the expressions
for the tunneling noise involve nonequilibrium correlation
functions of the form 〈ϕ|A(t )A†(t ′)|ϕ〉. To compute these
functions, we use the fact that the state injection (9) is fully
equivalent to shifting the vertex operators (3) with an addi-
tional creation of solitons in the bosonic modes φ j . In other
words, we perform the shifts [15,24]

φu/l (x, tu/l ) → φu/l (x, tu/l ) + 2ϑ�[∓x − vF (t − tu/l ) ± xu/l ],
(15)
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with �(•) the Heaviside function. The very same phase shifts
arise from the voltage pulses discussed above [23]. At x =
xQPC, the symmetric setup in Fig. 1 produces a constant offset
|xQPC − xu,l| = du,l ≡ d , which we absorb into the injection
times tu,l. We then express the chiral evolution of the bosonic
modes as

φu,l (tu,l ) → φu,l (tu,l ) + 2ϑ�(tu,l − t ). (16)

By construction, the anyons injected into the upper and lower
edges thus reach the QPC at the times t = tu,l, respectively.
The shift (16) produces a phase factor in the non-equilibrium
correlation function (11) and we find

〈A(t )A†(t ′)〉ϕ = 〈A(t )A†(t ′)〉0ei2ϑ�(t,t ′ ), (17)

with the time-dependent phase component

�(t, t ′) ≡ �(tu − t ) − �(tl − t ) + �(tl − t ′) − �(tu − t ′).
(18)

We thus see that the phase factor in Eq. (17) manifests a
fractional exchange phase 2ϑ = 2πν which can be interpreted
as braiding (i.e., a double exchange) between injected anyons
and quasiparticle-quasihole pairs generated at the QPC.

By inserting the correlation function (17) into the tunneling
noise (13), we obtain the excess HOM noise [70]


SHOM = 4(2qν|�|)2

(2πα)2
(2πkBT )4δ−1

(
α

vF

)4δ

cos (2πδ)

× [cos (2ϑ ) − 1]
∫ |τd |

0
dt B(e−2πt/β ; 2δ, γ ). (19)

In Eq. (19), B(x; a, b) is the incomplete Beta function, β−1 ≡
kBT , γ = 1 − 4δ, and τd ≡ tl − tu is the time delay. We see
from Eq. (19) that the excess noise vanishes for zero time
delay τd = 0. This feature follows from Eq. (17) since (ne-
glecting the energy dependence in the tunneling amplitude �

and screening effects [71–74]), the device is in equilibrium at
zero delay: 〈A(t )A†(t ′)〉ϕ = 〈A(t )A†(t ′)〉0. Moving on to the
HOM ratio (14), we find that it can be written in compact form
as [70]

R(τd ) = 1 −
∫ ∞

0 dt B(e−2π (t+|τd |)/β ; 2δ, γ )∫ ∞
0 dt B(e−2πt/β ; 2δ, γ )

. (20)

Crucially, we see that the anyon exchange phase ϑ is fully
absent in the HOM ratio when point-like anyons are injected.
Instead, the HOM ratio strongly depends on the scaling di-
mension δ of the quasiparticle-quasihole pairs excited at the
QPC. This feature is shown in Fig. 2, where we plot R(τd )
for different values of δ. Besides the strong dependence on δ,
the anyonic HOM ratio has another distinct feature not shared
with noninteracting electrons, namely its temperature depen-
dence. It was shown in Ref. [23] that the width of the HOM
curves increases with decreasing temperature, in contrast to
the free-electron case, where the width is set only by the tem-
poral extension of the injected states, without any temperature
dependence [32,38,70]. At small time delays τd � β, Eq. (20)
simplifies to [23]

R(τd ) ≈ 1 − e−|τd |/τth , (21)

where the parameter τth ≡ β/(4πδ) defines a characteristic
thermal timescale for anyon correlations, governing the QPC

FIG. 2. Dimensionless HOM ratio R [Eq. (14)] as a function of
the injection time delay τd ≡ tl − tu (in units of inverse temperature
β), for several scaling dimensions δ.

quasiparticle-quasihole pair time correlations. Importantly,
we see that this timescale does not involve ϑ but only δ.
It follows that unlike for electrons and bosons, the standard
HOM ratio (14) does not probe the exchange statistics angle
ϑ of pointlike, injected anyons. We now elucidate why this is
the case.

Exchange-phase erasure. The absence of the exchange
phase ϑ in the standard HOM ratio (20) can be understood
within the anyon time-domain braiding picture [28]. To illus-
trate this, we first rearrange the correlation function (17) as

〈A(t )A†(t ′)〉ϕ
= 〈A(t )A†(t ′)〉0ei2ϑ[�(tu−t )−�(tu−t ′ )] ei2ϑ[�(tl−t ′ )−�(tl−t )].

(22)

We also rewrite the tunneling noise (13) as

S ∝
∫ ∞

−∞
dt

(∫ ∞

t
+

∫ t

−∞

)
dt ′ ∑

k=±
k〈t, τd |t ′, τd〉k + H.c.

(23)

Here, |•, τd〉− ≡ A(•) |ϕ〉 denotes the state with a quasiparti-
cle created on the upper edge and a quasihole on the lower
edge. Likewise, |•, τd〉+ ≡ A†(•) |ϕ〉 has a quasihole on the
upper edge and a quasiparticle on the lower edge. We now
begin by examining the contribution to the integral (23) for
t ′ > t . In this range, the states |t, τd〉− and |t ′, τd〉− describe
quasiparticle-quasihole excitations created before [Fig. 3(a)]
and after [Fig. 3(b)] the arrival of the injected anyons at the
QPC, respectively. Furthermore, the conjugated states −〈t, τd |
and −〈t ′, τd | can be visually represented by rewinding the
quasiparticle paths as shown in Figs. 4(a) and 4(b). In this
way, the inner products of these states can be interpreted
as time-domain interference loops where the injected anyons
can braid with the QPC quasiparticle-quasihole excitations
depending on the time delay τd .

Crucially, the time-domain braiding processes discussed
above occur when at least one of the injection times tu, tl
falls within the window (t, t ′). Of all possible intervals
(t, t ′), the most relevant ones are those for which t ′ − t �
β, the contributions from others being suppressed by the
decay of the correlation function. There are therefore three
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FIG. 3. Depiction of a tunneling subprocess that contributes to
the noise in Eq. (23), here with k = − and for t ′ > tu, tl > t . Injected
anyons are depicted as brown balls with solid purple trajectories.
Anyonic quasiparticle and quasiholes excited at the QPC are depicted
by green peaks with dashed red trajectories and white peaks with
dashed violet trajectories, respectively. (a) A quasiparticle-quasihole
pair is excited at the QPC before the arrival of two injected anyons.
(b) A quasiparticle-quasihole pair is excited after after the arrival of
the injected anyons.

scenarios, as shown in Fig. 4(c): If the injection-time separa-
tion τd � β, both tu and tl can fall in the window (t, t ′) and
both injected anyons braid with the locally excited ones. How-
ever, the two anyons accumulate opposite braiding phases,
resulting in a cancellation. If instead τd � β, only one of
the injected anyons can fall within the “braiding window,”

FIG. 4. Time-domain braiding amplitudes for the processes de-
picted in Fig. 3. (a) The amplitude is composed of Fig. 3(a) with
the time reverse of Fig. 3(b). (b) The amplitude is composed of
Fig. 3(b) with the time reverse of Fig. 3(a). The blue solid and
dashed lines thus depict time-reversed paths of injected anyons and
QPC quasiparticle-quasihole excitation, respectively. Trajectories at
later times cross above trajectories at earlier times. (c) The braiding
links to the left correspond to the two processes in (a) and (b).
Exchange-phase effects in these processes for τd � β are erased
from the HOM noise through counterbraiding in the time domain.
The middle and right braiding links are formed when τd � β for
single anyon injection, and are thus HBT contributions.

contributing to the noise with a term proportional to cos(2ϑ ).
Only such processes contribute to the appearance of ϑ in
SHOM [75]. Moreover, at large time delays τd � β, there
are independent anyon injections on the two edges, which
then corresponds to the HBT configuration. The same phase
information is therefore contained in the numerator and de-
nominator of the HOM ratio R(τd ), leading to the absence
of ϑ in the HOM ratio, and resulting in Eq. (20). A per-
fectly analogous analysis holds for the second contribution
in Eq. (23), namely, the time integral with t ′ < t . Figure 4(c)
depicts the time-domain braiding subprocesses at the QPC for
k = −. The analogous processes for k = + are not drawn, but
they are readily obtained by reversing the charge of the excited
quasiparticles at the QPC.

According to the above analysis, we conclude that the
counterbalancing braiding subprocesses, promoted by the
anyonic long-time correlations, do not allow direct observa-
tion of the exchange statistics based on the standard HOM
ratio. This is the main result of this work. We further remark
that our derivation of the HOM ratio is not straightforward
to adapt to noninteracting electrons by setting ν = 1 and δ =
1/2. As pointed out in Ref. [24], a bosonic shift (16) for ν = 1
is equivalent to no shift at all. To obtain the HOM ratio in this
case, one can use a bosonic shift with a small but nonvanishing
temporal width [70]. In this way, the braiding becomes trivial
(2ϑ = 2π ) and one recovers that R gives the wavefunction
overlap of the two injected single-electron states [32].

Summary and outlook. We studied two-particle interfer-
ometry of pointlike anyons in a fractional quantum Hall
realization of the Hong-Ou-Mandel (HOM) interferometer
setup. We found that, in contrast to bosons [29] and fermions
[33], the characteristic HOM ratio R(τd ) [see Eq. (14)], with
τd the injection-time delay, is void of the anyonic exchange
phase ϑ . This result is essentially due to the peculiar nature
of the FQH interferometer, that, to leading order in the
tunneling amplitude, probes the time-domain braiding of
the injected anyons with those excited at the QPC, rather
then direct “collisions” of the incoming anyons [28]. More
specifically, our detailed analysis showed that the origins of
this absence lie in two complementary effects: When τd is
small in comparison to the thermal timescale, the exchange
phase accumulated from time-domain braiding between
injected anyons and QPC quasiparticle-quasihole pairs is
erased due to two subprocesses, whose phase contributions
cancel exactly. Instead, for τd large compared to the thermal
timescale, there are processes retaining the exchange phase,
but their contributions are canceled in the HOM ratio
R(τd ). This feature shows a clear difference between
anyonic HOM interferometers and their fermionic/bosonic
counterparts. Hence, extracting the anyonic phase from HOM
interferometry requires going beyond the standard HOM ratio
and implement more sophisticated measurement protocols.
One such approach was recently investigated in Ref. [49],
where estimates of both scaling dimension and the anyonic
exchange phase were provided from combined measurements
of the tunneling conductance and noise.

As a natural followup of our work, it would be interesting
to investigate whether a full exchange-phase cancellation in
the HOM ratio persists for finite-width anyon states [24–26].
Additionally, it remains an open question whether a wave-
function description of anyonic levitons [76] can be related
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to the weak backscattering HOM noise considered in this
work. Another natural direction is to investigate whether there
are possibilities to extract the statistics of anyons on more
complex edges, e.g., at fillings ν = 2/5 or ν = 2/3, whose
description requires taking into account non-topological edge
effects, e.g., interactions, disorder, and equilibration [77–81].

Note added. Some of the results in this paper have been
reported in the Master’s thesis in Ref. [82].
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