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Abstract
Security must be considered in almost every software system. Unfortunately, selecting and
implementing security features remains a challenge due to the wide variety of security threats
and possible countermeasures.While security standards are intended to help developers, they
are usually too abstract and vague to help implementing security features, or they merely
help configuring such. A resource that describes security features at an abstraction level
that lies between high-level (i.e., rather too general) and low-level (i.e., rather too specific)
security standards could facilitate secure systems development. This resource should support
the selection of appropriate security features to achieve high-level security goals, allow easy
retrieval of relevant low-level details, and provide pointers to suitableways to realize the secu-
rity features. To realize security features, developers typically use external security libraries
or frameworks, to minimize implementation mistakes. Even when using libraries, developers
still make mistakes when writing code to integrate them, often resulting in security vulner-
abilities. When security incidents occur or the system needs to be audited or maintained, it
is essential to know what security features have been implemented and, more importantly,
where they are located. This task, commonly referred to as feature location, is often tedious
and error-prone. While dedicated feature location techniques exist, they require significant
manual effort or adherence to strict development processes, preventing their use. Therefore,
we have to support long-term tracking of implemented security features. We present a study
of security features presented in the literature and their coverage in popular security frame-
works. We contribute (1) a taxonomy of 68 functional implementation-level security features
including a mapping to widely used security standards, (2) an examination of 21 popular
security frameworks concerning which of these security features they provide, and (3) a
discussion on the representation of security features in source code. Our taxonomy aims to
aid developers in selecting appropriate security features and security frameworks, as well as
relating them to security standards when they need to choose and implement security features
for a software system.
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1 Introduction

Considering security when developing software is crucial. Software vulnerabilities pose a
major threat to the operation of software systems (Bau et al. 2012; Egele et al. 2013; Lazar
et al. 2014; Nadi et al. 2016; Fahl et al. 2013; Krombholz et al. 2017; Roth et al. 2021). For
example, in 2020, an entire hospital had to be shut down due to a successful attack on its IT
systems, preventing access to patient data (BBC 2020). Unfortunately, considering the wide
variety of threats and implementing appropriate countermeasures to create a secure design
for a software system requires special expertise (Oyetoyan et al. 2016, 2019).

Security standards were created to help selecting appropriate security measures to protect
software systems from threats. Unfortunately, their support for realizing security features—
the concrete implementations of security measures in code—is limited.

Such standards are often too abstract and rather focus on the development process, on
non-functional security requirements (e.g., the criticality of data), or on low-level details,
such as specific implementation aspects of cryptography. While security design patterns
exist to help implementing non-functional security features (e.g., secure logging pattern),
developers lack guidance in selecting and implementing functional security features (e.g.,
authentication or encryption) to achieve security goals. Specifically, a functional security
feature is a functionality of a software systems that aims to mitigate an attack, the impact of
one, or to protect an asset.

Engineering functional security features is challenging. First, developers lack an
overview of functional security features. Such an overview should facilitate selecting secu-
rity features from both the high-level security goals considered by many security standards
and from the many low-level details of how to implement specific features securely. Second,
after selecting suitable functional security features, developers need to implement them,
typically by incorporating them from a security library or framework (Hermann et al. 2025).
Unfortunately, a systematic overview of what security features are offered by which library
or framework is missing. Developers, therefore, often fall back on the ones they already
know. However, depending on the project, choosing a different security framework would
allow using libraries that might provide better-suited implementations of security features.
Even when using security libraries, security issues often arise in the manually implemented
parts of applications, e.g., due to the insecure use of libraries (Acar et al. 2017) or bad
usability (Patnaik et al. 2019). Fixing new vulnerabilities requires developers to review and
fix them quickly once they are discovered (Russo et al. 2019; Peldszus et al. 2021). Third,
it is important to know what security features are implemented in a system at hand,
and where they are located. Many security standards, such as the Common Criteria (CC)
(ISO/IEC JTC 1/SC 27 2009) or the ISO/SAE 21434 for road vehicles (ISO/TC 22/SC 32
2021), require maintaining and tracing security features. Unfortunately, today’s traceability
techniques require significant manual effort, even when using tools, such as DOORS (IBM
2023b). Others depend on strict development processes and impose high overhead (Peldszus
2022). When features are not recorded or maintained properly, recovering them is laborious
and error-prone (Biggerstaff et al. 1994; Dit et al. 2013; Krueger et al. 2019; Rubin and
Chechik 2013). Recording features during development, when the feature is still fresh in the
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mind of the developer (Seiler and Paech 2017; Ji et al. 2015; Martinson et al. 2021; Bergel
et al. 2021; Schwarz et al. 2020; Entekhabi et al. 2019; Andam et al. 2017; Mukelabai et al.
2023), is rarely done in practice. While automated feature location techniques exist, they are
difficult to use and produce too many false positives (Rubin and Chechik 2013; ben Oth-
mane et al. 2015; Cornell 2012; Hewett and Kijsanayothin 2009; ben Othmane et al. 2017;
Abukwaik et al. 2018) to be relevant in practice. Improving our empirical understanding of
how security features are represented in security frameworks, using what mechanisms (e.g.,
configuration options, code annotations, or APIs), would help to build better methods and
tools to locate security features in code.

In summary, supporting the development of secure software systems requires effective
methods and tools for selecting, implementing, and locating security features in code bases.
The different granularities at which security features can be considered is still an open chal-
lenge (Peldszus 2022), as well as their scattering over the code base and cross-cutting nature.
While high-level security features are often hard to locate, as they are implemented across
the codebase, locating fine-grained security features requires intricate knowledge that many
developers lack. It is unclear yet, at which level of granularity security features manifest
in implementations, preventing the development of lightweight support. Even security stan-
dards do not provide an adequate level of abstraction to be effectively used by developers
for selecting which security features must be implemented to reach desired security goals.
What is missing is a systematic representation of what functional security features exist,
accompanied by a description suitable for developers, and a mapping to relevant security
standards. We aim to improve the understanding of implementation-level security features
and explore the following research questions:

RQ1: What functional implementation-level security features are considered in the litera-
ture?

RQ2: What functional implementation-level security features are provided by security
frameworks in practice?

RQ3: Which functional implementation-level security features can be located by leveraging
information from security frameworks?

We addressed these research questions as follows. First, we established a taxonomy of
functional implementation-level security features by reviewing literature that systematically
describes security features. Second, we mapped the taxonomy to four generally recognized
and well-established security standards: the ISO/IEC 27000 series, the Common Criteria
(CC), the NIST SP800-53, and the NIST Cybersecurity Framework. Third, we investigated
state-of-the-art security frameworks as discussed by developers on platforms such as Stack
Overflow and Reddit. Finally, we explored the mechanisms used by the frameworks for pro-
viding security features to developers and how these can be used for locating security features
within applications. We demonstrate that our taxonomy can be related to all functional secu-
rity features from popular security standards. Further, we demonstrate that security features
from security frameworks target all security aspects covered in our taxonomy but do not cap-
ture the more detailed concepts considered in the literature. Finally, we show that security
frameworks offer an entry point for locating security features through their API, configu-
ration file and annotations, but still require considering additional code, that is required to
integrate them.
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2 Background and related work

We now discuss the notion of security features to motivate our work and introduce the
necessary background.

2.1 Running example

As a motivating example for this work, we consider a simplified electronic health record
system (EHRS) for a hospital.

In hospitals, many different groups of people are involved in treating a patient. Treatment
requires data from a variety of sources, such as a diagnosis from a physician, health measure-
ments collected by nurses, or data from specialists such as radiologists. An EHRS enables the
capture and analysis of medical data, but often includes additional supporting functionality
such as appointment management, medical data analysis, and administrative support such as
billing. As illustrated in Fig. 1, our EHRS assumes several groups of users, which interact
differently with the system: Patients, Doctors, Nurses, Administrative Hospital Staff, and
many more. A doctor can store a diagnosis or an examination report for a patient within the
EHRS. Similarly, nurses store measurements such as data about body temperature or blood
pressure within the system. While doctors and nurses can store data for a patient, only a
designated doctor, chosen by the patient, can retrieve the data to e.g., plan further treatment.
Administrative hospital staff can store and retrieve data related to billing within and from the
system.

Fig. 1 Use case diagram illustrating how different users store and retrieve data from our simplified exemplary
EHRS
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Since an EHRSmanages sensitive data such as patient data, hospital data, or diagnosis data
that is used to decide about the treatment of patients, the system must preserve data integrity
and confidentiality at all times. Also, availability must be ensured to allow the hospital to
operate—in 2020 a hospital was shut down due to an attack, and new emergency patients
had to be relocated to other hospitals further away (BBC 2020).

In summary, our simplified exemplary EHRS allows doctors to plan the treatment of
patients by storing all related data in a central data storage. Due to the sensitivity of this
data, it must be securely stored, and access must be controlled to ensure that only authorized
personnel is allowed to view sensitive data of patients. This requires considering a wide range
of security features to be implemented into the system.

2.2 Security features

A feature is a distinct label representing the capabilities or behaviors of software systems
(Berger et al. 2015). A feature can be seen as “a logical unit of behavior specified by a set
of functional and non-functional requirements" (Bosch 2000). For example, every use case
in Fig. 1 can be seen as a required feature of the EHRS. A feature can also be defined as
a characteristic, that distinguishes a system from other systems within a family of related
systems (Batory et al. 2004). Other definitions describe a feature as a user-visible aspect of a
system (Chen et al. 2005; Kang et al. 1990) or an aspect that increases value for a customer
(Riebisch 2003).

In this work, we use the notion of security features, which provide functionalities that
address security issues by preventing a security attack or realizing a security requirement
(McGraw 2004). A typical example of a security feature is the authentication of the differ-
ent users of the outlined EHRS. Security features must be carefully planned, even at the
architecture level, since missing security features can lead to severe weaknesses in software
systems (Santos et al. 2017, 2019).While security features could realize, e.g., non-functional
requirements (Potter and McGraw 2004), we focus on functional security features, which
are security measures that manifest in the code base and address a functional requirement
of a software system. On the other hand, an example of a non-functional security feature
that is not in the scope of our work is the secure design pattern of distrustful decomposition
(Dougherty et al. 2009).

2.3 Security feature taxonomies and ontologies

There are several works that organize software security-related concepts into constructs
including taxonomies and ontologies to show how they are interrelated. For instance, a work
by Tsipenyuk et al. 2005 presents a taxonomy of coding errors and configuration issues
that lead to security vulnerabilities. The main aspects covered in this taxonomy include input
validation and representation, API abuse, security features, time and state, errors, code qual-
ity, encapsulation, and environment. Even though this taxonomy has a dedicated section for
security features, it only covers 9 features, 5 of which are related to passwordmanagement. A
taxonomy for cloud systems security (Habiba et al. 2014) organized the security features into
categories such as authentication, authorization, identity federation, privacy, user-centricity,
logging, and editing that are essential for cloud-based identity management systems. Secu-
rity aspects of the Internet of Things (IoT) domain are also discussed in the literature such
as by Khanam et al. (2020), who presented a taxonomy of IoT security attacks in physical,
network, and application layers along with their corresponding countermeasures. Another
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work (Blythe et al. 2019) analyzed the user manuals and support pages of IoT devices to
collect security features such as two-factor authentication, product lock, and local commu-
nication encryption provided by consumer IoT products. Similarly, there are also several
other works that organizes security aspects related to cloud security (Hendre and Joshi 2015;
Bhatia and Verma 2017), web services (Denker et al. 2003; Kim et al. 2007; Busch and
Wirsing 2015), information security (Venter and Eloff 2003; Herzog et al. 2007; Vorobiev
and Bekmamedova 2010), and IoT (Abbas et al. 2005; Herzog et al. 2007) into taxonomies
and ontologies.

Although these studies provide valuable insights into security across various fields, they
are often domain-specific and largely focus on attacks and vulnerabilities, offering limited
comprehensive lists of security features for developers to reference during software develop-
ment. Therefore, extracting and consolidating the security features discussed in these works
into a single, accessible resource would benefit developers by providing a centralized refer-
ence during software development.

2.4 Feature location

To maintain and evolve features, developers need to know their location in the code base at
hand (Ji et al. 2015). Feature location is the process of identifying the code that implements
a particular feature (Revelle et al. 2005). As such, it is one of the most common activities
of developers. Unfortunately, feature location is laborious and error-prone, especially for
long-living software systems with many developers and features that are scattered over the
code base. Documenting features would help, but requires upfront effort and is often avoided,
requiring recovery of features and their locations (Rubin and Chechik 2013).

Feature location classifies into eager and lazy strategies (Ji et al. 2015). The eager strat-
egy refers to recording information on feature locations during their development, either
directly within the software assets or in external trace databases. Different methods exist,
such as using embedded code annotations for recording features, together with tools for
browsing/visualizing features (Seiler and Paech 2017; Martinson et al. 2021; Andam et al.
2017; Bergel et al. 2021; Entekhabi et al. 2019), as well as feature traceability databases, such
as FEAT (Robillard and Murphy 2007). In contrast, the lazy strategy recovers feature loca-
tions when needed. Both, manual (Krueger et al. 2019) and automated (Rubin and Chechik
2013) techniques have been explored in research. However, manual recovery is laborious
and error-prone, and automated techniques (often relying on natural-language processing
or machine-learning methods) yield too many false positives to be usable in practice. As
such, our long-term goal is to establish methods and tools to record security features eagerly.
However, to construct effective techniques, we need to improve our empirical understanding
of what security features are and how they manifest in source code. In other words, devel-
opers need to know what security features are traceworthy and on which level of abstraction
they should be captured—the goal of our study. In addition, shedding light on what secu-
rity features can be located easily in the implementation can also help improve manual and
automated feature-location methods that try to retroactively recover features from software
assets.

2.5 Security feature tracing

The interrelation of features and their implementation in code throughout the development
process is called tracing. It is often required by security standards such as theCommonCriteria
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(ISO/IEC JTC 1/SC 27 2009). To this end, previous work proposes techniques to enable
the traceability of security features. The technique SecSTAR by Fang et al. (2012) traces a
software system’s security structure and properties and generates diagrams to support security
analysis. Enterprise Architect (Sparxsystems 2023) provides commercial tool support for
strictly coupling UMLmodels to code to facilitate the synchronization between them, which
could also be used for UML models describing security features. SecReq (Houmb et al.
2010) is a methodology for eliciting security requirements as well as the early detection and
refinement of security issues with traceability support for UML design models. Islam et al.
(2011) propose a framework for obtaining security requirements from laws and regulations
and tracing them to security requirements throughout the whole development life cycle to
enable checking compliancewith laws and regulations. TheGRaViTY (Peldszus 2020, 2022)
framework maintains traceability between different artifacts, such as UML models, Java
source code, and program models. It uses trace links to propagate security requirements into
the implementation. Strong coupling between the source code and the models is required
to enable the traceability of security features using these approaches. In summary, these
approaches do not yet provide enough flexibility for a vast practical application.

2.6 Security standards and guidelines

Security standards and guidelines provide developers with security features that need to
be realized to secure a software system. Many product requirements in the industry are
formulated around security standards, for example, a system should adhere to all certification
requirements of a specific standard. In fact, standards compliance is mandatory for systems
like the EHRS (European Parliament and Council of the European Union 2007; United States
Congress 1996). An organization’s information security management system or a single
software system can be certified according to a certain security standard if it can be proven
that the required security controls are implemented. Such proofs are usually in the form of
documentation of carried-out activities, e.g., the identification of security threats and the
specification and realization of mitigating security features. Due to the procedural nature of
the standards, the requirements, for the most part, describe actions that have to be performed
or high-level security functionality that has to be achieved. The few implementation-level
security features that arementioned aremostly in terms of specific technologies that are given
as examples of how to realize some security control and are often lost in a huge body of text.

For illustration, Figure 2 shows an excerpt from the NIST SP 800-53 standard which pro-
vides security and privacy controls for information systems and organizations. The excerpt
focuses on security controls for contingency planning, such as system backup and presents
associated control enhancements that add functionality or specificity to this base control.
It can be seen that the functional-level security features such as cryptographic protection
are hidden among several other security-related information such as testing for reliability
and integrity, test restoration using sampling and so on. The figure also shows multiple
cross-references (e.g., SC-12, SC-13, SC-28) meant to provide additional details on the con-
trol obscuring specific functional-level security features in an extensive and interconnected
array of information. Additionally, the descriptions for such security features such as “imple-
ment cryptographic mechanisms to prevent unauthorized disclosure,” as in the figure, are
often broad and abstract providing little concrete guidance for its practical implementation.
Therefore, we see the need for a comprehensive overview of implementation-level functional
security features. A taxonomy of such features, together with a mapping to the standards and
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Fig. 2 Excerpt of the NIST SP 800-53 standard for security and privacy controls for information systems and
organizations

guidelines, could assist developers by giving actionable advice for how to realize required
security controls.

3 Methodology

We conducted a systematic review (Ralph et al. 2021) of literature and security frameworks to
elicit functional security features and how they are provided in security frameworks. Figure 3
shows our research methodology. To identify implementation-level security features, we
reviewed the literature that presents structured collections of security features (RQ1). To
ensure the applicability of the taxonomy in practice and to validate it, we created a mapping
between our taxonomy and security features described in widely used security standards and
potentially adapted the taxonomy. Additionally, we collected and inspected existing security
frameworks discussed by developers to understand which functional implementation-level
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Fig. 3 Overview of the applied research methodology

security features are provided to developers (RQ2) and investigated their representation in
source code through different mechanisms (e.g., code annotations) (RQ3).

All steps in the creation of the taxonomy, the mapping to the security standards, and
the analysis of the security frameworks followed the same general process, considering the
recommendations by McDonald et al. (2019). In each case, two authors first conducted
an exploratory analysis of the relevant artifacts (literature, standards, and frameworks) to
establish a basis for an open discussion process. Then, in group meetings with the first five
authors, the relevant elements (e.g., security features in the literature or standards) were
identified based on the different views of the two authors who initially analyzed them, and
their definitions were derived. To streamline this process, the two authors who analyzed the
raw artifacts prepared proposals for elements and their definitions in caseswhere they deemed
their observations to be closely related or complementary. However, all extracted content,
including these proposals, underwent the same discussion process in the larger group. Inmore
than 30 meetings lasting about one hour each, we further regularly discussed the resulting
taxonomy until we reached full agreement, i.e., each decision was discussed until all involved
authors agreed on the solution. Since we reached full agreement after our discussion rounds
and reaching the agreement is the main purpose of the process but not its sole outcome, as
the iterative discussions also served to refine perspectives and surface meaningful themes,
we did not calculate an inter-coder agreement (McDonald et al. 2019).

3.1 Systematic literature review

To establish an empirical understanding of functional implementation-level security features,
we reviewed structured collections of such in the literature.

3.1.1 Paper selection

We conducted a manual two-step screening process to select relevant papers, as shown in
Fig. 4. We searched for relevant publications on Google Scholar using the tool Publish or
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Fig. 4 Paper selection process of the SLR with sequential application of exclusion criteria

Perish (Harzing 2007). Google Scholar covers the typical major data sources for literature
reviews such as IEEExplore or the ACM Digital Library. In a study by Valente et al. (2022),
the authors observed that Google Scholar provides the most comprehensive search results for
literature reviews in the computer science domain. By using a single data source, we could
directly apply a saturation criterion without having to merge search rankings of different
sources. To this end, five authors collected keywords to tailor the search in a group meeting:
(1) terms related to the considered implementation level, (2) synonyms of “security,” and (3)
terms describing a systematic representation of aspects. Thus, we ended upwith the following
compound search term:

(implementation OR code OR program) AND
(security OR secure) AND (ontology OR taxonomy OR "body of

knowledge" OR
"system of knowledge" OR "conceptual model")

Weperformed a querywith this search term and examined each result in their ranked order in a
two-step screening process. In the first step, we read the title and abstract of the paper to verify
that it includes a structured collection of security features. Whenever the title and abstract
were not enough to make this decision, we read other parts of the paper. We considered 107
papers for further review in the next step. When a paper passed the first step, we read the full
paper in the second step. We filtered the papers according to five criteria, that we chose to
fit our scope of functional security features and applied all of them one after another to each
resulting paper. Furthermore,we excluded papers that are only applicable in specific domains,
as our goal is to provide an overview of security features in general software systems.

Through the investigation of the literature, we mostly encountered ontologies and
taxonomies for structuring such collections. While a taxonomy represents a “general cat-
egorization based on a class/subclass relationships,” an ontology is “the formal specification
of domain concepts and their relationships” (Hakeem and Shah 2004). Additionally, a number
of security standards describe security requirements, which indicate security features needed
to fulfill the requirements.

Exclusion criteria:

EC1 : the paper is not published in a conference, or journal
EC2 : the collection of security features is not made available
EC3 : the scope of the paper is limited to a specific application domain, e.g., only CAN bus

security
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EC4 : only threats, vulnerabilities, risks, and so on are considered without presenting coun-
termeasures

EC5 : the paper is not associated with functional security features considered in software
engineering

For data analysis, we followed a process considering the recommendations by McDonald
et al. (2019). Two authors initially performed the selection and repeatedly compared their
results to check whether the saturation criterion was fulfilled. Then, the results including all
possible conflicts and ambiguities were discussed in regular group meetings with the first
five authors. We reached saturation at the mark of 731 search results, as we observed no
new papers that passed the screening process within over 100 search results before that point.
Table 1 lists the 18 papers that passed all exclusion criteria and were considered for extracting
security features. As shown in Fig. 4, we excluded most papers (37) in the second screening
step based on EC5. Note that we report only the first applicable exclusion criterion per paper,
as we did not check the additional criteria after exclusion.

3.1.2 Extraction of security features

After shortlisting the papers through the two-step screening process, we collected all secu-
rity features they present to facilitate a subsequent group discussion about the features. The
search term and the exclusion criteria used in our SLR targeted papers presenting structured
collections of security features. (see Section 3.1.1). Consequently, all selected papers con-
tained a systematized presentation of security features. The process of extracting them thus
consisted of identifying this collection of security features in each paper. Security features
were represented either as a graph or a table in the papers’ Results section (or comparable
but differently named sections). Their identification was a straightforward process, but was
performed by two researchers independently nevertheless to mitigate possible human errors.
No deviations between the two researchers’ identification of the security feature collections
in the papers were observed. The extracted features were then discussed by the first five
authors in recurring meetings. In the discussions, we removed any features that were not
functional implementation-level security features related to software engineering. Addition-
ally, we excluded security features that are only limited to specific application domains of
software systems such as automotive systems to keep the resulting set of security features
as widely applicable as possible. In particular, we removed all terms meeting any of the
following properties:

– Specific to hardware (e.g., ID card or credit card)
– Limited to a single platform, such as operating systems, libraries, or other technologies

(e.g., µC/OS)
– Not related to security (e.g., supplier or memory)
– Associated with security attacks or vulnerabilities (e.g., DoS attack, sniffing attack or

P2P attack)
– Restricted to a single application domain (e.g., the automotive domain)

We created a taxonomy containing all the collected security features. With a graph editor,
we compared the presented security concepts and identified overlaps, i.e., security features
contained in multiple of the analyzed papers. We merged the individual sets of terms of
each of the selected papers, starting from one paper and iteratively adding the others by
identifying security features included in themerged set and the newly added paper and adding
all connected features at this place. Finally, we classified and grouped the security features
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Table 1 Shortlisted papers presenting security features

ID Authors Title Year

P1 Venter et al. A taxonomy for information security technolo-
gies (Venter and Eloff 2003)

2003

P2 Denker et al. Security for DAML web services: annotation and
matchmaking (Denker et al. 2003)

2003

P3 Abbas et al. A state of the art security taxonomy of internet secu-
rity: threats and countermeasures (Abbas et al. 2005)

2005

P4 Herzog et al. An Ontology of Information Security (Herzog et al.
2007)

2007

P5 Kim et al. Security Ontology to FacilitateWeb Service Descrip-
tion and Discovery (Kim et al. 2007)

2007

P6 Vorobiev et al. An Ontology-Driven Approach Applied to Informa-
tion Security (Vorobiev and Bekmamedova 2010P

2010

P7 Kang et al. A Security Ontology with MDA for Software Devel-
opment (Kang and Liang 2013)

2013

P8 Habiba et al. Cloud identity management security issues & solu-
tions: a taxonomy (Habiba et al. 2014)

2014

P9 Hendre et al. A semantic approach to cloud security and compli-
ance (Hendre and Joshi 2015)

2015

P10 Busch et al. An ontology for secure web application (Busch and
Wirsing 2015)

2015

P11 Talooki et al. Security concerns and countermeasures in net-
work coding based communication systems: A sur-
vey (Talooki et al. 2015)

2015

P12 Kaur et al. Security of software-defined networks: Taxonomic
modeling, key components and open research
area (Kaur et al. 2016)

2016

P13 Bhatia et al. Data security in mobile cloud computing paradigm:
a survey, taxonomy, and open research issues (Bhatia
and Verma 2017)

2017

P14 Adat et al. Security in Internet of Things: issues, challenges, tax-
onomy, and architecture (Adat and Gupta 2018)

2018

P15 Harbi et al. A review of security in internet of things (Harbi et al.
2019)

2019

P16 Kumar et al. On cloud security requirements, threats, vulnerabil-
ities, and countermeasures: A survey (Kumar and
Goyal 2019)

2019

P17 Khanam et al. A survey of security challenges, attacks taxonomy
and advanced countermeasures in the internet of
things (Khanam et al. 2020)

2020

P18 Mahapatra et al. A Survey on Secure Transmission in Internet of
Things: Taxonomy, Recent Techniques, Research
Requirements, and Challenges (Mahapatra et al.
2020)

2020

to give them a coherent structure, following the classification and hierarchy rules from the
originating papers. Five authors discussed the taxonomy’s terms to agree on a structure. The
resulting taxonomy contains all implementation-level security features identified in the final
set of papers of our SLR.
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3.1.3 Mapping to security standards

Security standards are generally regarded as highly reliable sources of information for secur-
ing software systems because they undergo rigorous review processes before publication.
Despite the lack of implementation details, official standards and guidelines issued by large,
reputable organizations are a common source of information about software security. Thus,
creating a mapping of our taxonomy to established security standards increases its relevance
for application in the industry. Furthermore, a successful mapping allows reasoning about
the validity of the derived taxonomy.

We expect that each functional security feature in the standards can be mapped to one
or more security features in the taxonomy. Therefore, the mapping allowed us to validate
the completeness of the taxonomy we derived from the literature. As relevant standards
for the mapping, we analyzed the ISO/IEC 27000 family, the Common Criteria (CC), the
NIST SP800-53, and the NIST Cybersecurity Framework, which are widely recognized in
the industry as the most important security standards and guidelines.

To create themappings, two authors independently analyzed each section of the standards,
identifying functional security features and matching them to the corresponding proposed
security features from the taxonomy based on the description provided in the standards. In
addition, for identified security features that were not yet part of the taxonomy, they also
proposed adaptations to the taxonomy to support all functional security features from the
standards. Then, together with three further authors, each part was discussed, and a decision
for the mapping was taken collaboratively. To this end, for the security features that could
not be immediately mapped to the taxonomy, the first five authors of this work discussed
whether, where, and how to adapt the taxonomy to include the features. This validation and
adaptation process was performed for each standard, starting with the CC.

We report in Section 4.2 for each standard how well it could be mapped to the taxonomy,
and what minor and major changes to the existing taxonomy were required to allow the
mapping of all security features. In this way, we provide guidance to developers who can
use the taxonomy as an abstraction of the standards. The granularity of security features in
our taxonomy lies between the high-level descriptions of security mechanisms found in most
standards and the detailed requirements for specific technologies found in others.

3.2 Identification of security frameworks

We systematically identified popular security frameworks discussed on the popular devel-
oper platform Stack Overflow and the programming community of Reddit to compare the
state-of-practices of functional security features with our derived taxonomy. We chose Stack
Overflow since it is one of the largest and also most popular platforms for content related
to software development amongst developers (Xia et al. 2017). On Stack Overflow, devel-
opers mainly discuss problems or seek recommendations when facing problems during their
development tasks. As a second data source, we chose Reddit’s largest developer commu-
nity “r/programming”, which, from its origins, is the most popular place on the platform for
exchanging programming related content. In contrast to Stack Overflow, developers do not
discuss the usage of security frameworks, but present them to other developers by sharing
articles or repositories, allowing us to capture a different type of discussion. We investigated
which implementation-level security features are provided by frameworks used in practice
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and their relation to the literature captured in our taxonomy. Further, we investigated the
mechanisms used to provide security features and how these could be leveraged for locating
security features. We refer to security frameworks when they focus on providing security
mechanisms and related functionality.

3.2.1 Identifying security frameworks from stack overflow and reddit

To identify relevant security frameworks discussed in practice, we searched for “security
framework” on the widely used developer discussion platform stackoverflow.com. We used
the Stack Exchange API v2.3 (Stack Exchange 2022) to download threads, ensuring that
they remained unaltered throughout the entire analysis period when we reviewed the results.
Two authors sorted the threads by relevance and investigated the results by independently
reading the questions, answers, and comments of each thread. In the threads, we manually
searched for mentions of security frameworks or security modules of general frameworks.
We continued the search until no new frameworks were mentioned in the last 20 threads. We
reached this data saturation (Glaser 1978) at 250 threads.

For the search on Reddit, we employed a similar approach as we did for the search on
StackOverflow. Searching for “security framework” resulted in 249 threads. On Reddit,
threads contain comments and either a user created discussion, or a link to an article. As an
initial filtering step, two authors exhaustively and independently read the titles of each thread,
including all threads discussing security or securing applications for further investigation.
They then merged their sets of included threads, resulting in 68 threads. Afterwards, they
read all threads, including linked articles and comments, to extract all mentioned security
frameworks. Finally, we merged the results with our Stack Overflow search.

3.2.2 Extracting security features from security frameworks

To derive a final list of relevant frameworks, we selected all security frameworks that were
mentioned in at least two threads during the identifications of security frameworks in the
merged results. We examined the selected frameworks in depth to capture the provided
security features. To this end, two authors used three different sources of information for each
framework (unless not provided for a specific framework), the related homepage, a reference
guide, and the official documentation. Each author independently recorded security features
described in each source. The framework’s homepage usually provided a general overview of
the security features included in the framework, while in the reference guide, a more detailed
look at the security featureswas often given.Using the official documentation,we investigated
the low-level components and encountered an in-depth description of the framework and
its methods. In cases where the three sources used different terminology to describe the
same security feature, the two authors compared the terminology and descriptions across the
sources in joint sessions, and chose the term used by at least two, or the best-fitting one if all
three used different terms. Furthermore, in these discussions we categorized some specific
terms, such as username and password, into broader security features such as credentials.
We considered any security feature that offers a reusable functionality at the implementation
level that addresses a security requirement or security issue (McGraw 2004).

The same two authors organized the features into a hierarchy based on the structure in
the frameworks’ documentation. Discrepancies were discussed and resolved through collab-
orative sessions, ensuring that the resulting hierarchy accurately reflected the frameworks’
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intended structure.While investigating the security features, we documented in parallel infor-
mation on using the individual security features offered by the selected frameworks in source
code. Based on the mechanism described in the documentation, we grouped the security
features into the three realization methods annotations, APIs, and configuration files. Any
disagreements were addressed by re-examining the documentation together to reach a con-
sensus.Whenever a security feature was mentioned in combination with an API artifact, such
as a method, interface, variable, or class, we grouped the security feature to a realization with
an API. Likewise, if a configuration file, such as a .xml, .properties, or .conf file
was mentioned along the security feature, we mapped the realization to a configuration file.
Finally, we applied the same procedure for annotation mechanisms, such as Java annotations
or attributes in C#. We collected this information for each security feature and framework to
reason about their traceability (RQ3).

4 Taxonomy of implementation-level security features (RQ1)

In our SLR, we identified papers that present ontologies and taxonomies of software security
features from which we extracted functional code-level security features. Thereafter, we
constructed a taxonomy out of these and mapped it to four security standards to further
validate and refine it. In the following, we describe the results of our analysis.

Table 1 presents the 18 papers (referred to as P1 - P18 in this work) identified in our SLR
for instantiating our taxonomy of functional security features. Our taxonomy consists of 68
implementation-level security features shown in Fig. 5. Note that security features are not
necessarily mutually exclusive from each other. As such, they may be combined to achieve a
higher security goal or property (e.g., a systemmight realize both credentials and multifactor
authentication to protect the confidentiality of data). Security features with a similar goal or
security property that they achieve were grouped under top-level security features, which we
identified from the hierarchies of the reviewed ontologies and taxonomies. We additionally
added annotations to the corresponding security features to indicate the frameworks and
standards in which they were identified (see Fig. 6, and Fig. 8 to Fig. 11).

4.1 Taxonomy of functional security features

We identifiedfive top-level security features, as shown in Fig. 5: access control, cryptography,
security monitoring, secure data handling and system state protection. Table 2 shows the
occurrences of these security features in the papers. Four papers included all top-level features,
however, our taxonomy contained more security features beyond the top-level ones for each
of the papers. The top-level feature access control is included in all 18 papers. Only one paper
does not include cryptography. This shows the importance of these two groups of features.
The detailed taxonomy of these security features is presented in Fig. 5. We now describe
each of them in detail.

4.1.1 Access control

Access control covers security features that are concerned with regulating access to protected
resources and granting them only to authorized subjects. For example, in the EHRS from our
example, doctors should only be allowed to read sensitive data of a patient they are designated
to, while other doctors are only allowed to write to it. However, doctors have the permission
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Fig. 5 Taxonomy of implementation-level security features

to view anonymized statistics, such as past treatment of patients for different diagnoses.
This requires the control of all accesses to the system. All papers include security features
for access control in their ontologies. The top-level feature comprises two major blocks
of features, one grouped under the sub-feature authentication and one under authorization
(Fig. 6).
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Fig. 6 Sub-features of the top-level security feature access control

Authentication is presented in the papers both, as a security notion, objective, or a means
to achieve data confidentiality, and as a security feature that implements these. The user must
be identified, i.e., whether it is a doctor or not, before they gain access to it. P2, P5, P12,
P13, and P14 describe authentication as the identification and verification of a party sending
a request to a network or application, where the associated security features support the
realization of this. Here, authentication is a security feature that often entails multiple other
security features because of its complexity or manifests at multiple places in the code base.
According to P7, authentication is used to achieve data confidentiality, while the remaining
papers define authentication in terms of user, data, and message integrity/authenticity. In our
taxonomy, authentication classifies into more specific security features (see Fig. 6). When
authentication is performed using Credentials, data objects such as usernames or passwords
are used to verify the identity of a user. In the EHRS from our example, each hospital staff
member could receive a set of credentials from an administrator, allowing them to log into
the system from an arbitrary device within the hospital. One-time-password is a method
where authentication is performed with randomly generated temporary passwords (Habiba
et al. 2014). Certificate authentication refers to authentication using certificates such as
X.509 (Denker et al. 2003). Multifactor authentication requires the user to provide more
than one way of authentication (Bhatia and Verma 2017). Single sign-on allows users to
securely log in to multiple systems using only one set of credentials.
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Table 2 Security feature occurrence in the 18 shortlisted papers

Authorization is also described by most papers as a security objective, requirement, or
goal, and as a security feature that realizes these. Further, it is defined as a means to achieve
access control, with an access source, access target, and actions that are permitted to be
executed (Busch and Wirsing 2015). In our example’s EHRS, after a user has authenticated
their identity, authorization determines what actions this user can perform in the system, i.e.,
viewing or writing medical records. Access quota limitation refers to limiting the usage of
resources so that high-priority actions that could be security sensitive are not delayed by
other relatively low-priority tasks.

Several schemes can be implemented to assign permissions to users for different purposes.
In attribute-based access control (ABAC), the access is determined based on attributes such
as requested operation, request parameters, or environmental attributes (Chung et al. 2019). In
the EHRS from our example, an attribute decides whether a doctor is designated to a patient.
Discretionary access control (DAC) is where the resources are restricted based on the identity
of the users. DAC has complete trust in the users (IBM 2023a). On the contrary, mandatory
access control (MAC) grants access to resources based on clearance of users, or a predefined
hierarchy (IBM2023c).Lattice-based access control determines access to the resources based
on a hierarchical lattice structure that represents possible interaction between the resources
and the users. This lattice structure is created based on the security levels of the resources
and the users (Denning 1976). Location-based access control, as the name indicates controls
the access based on the location of the user (Ardagna et al. 2009). Role-based access control
restricts access based on the roles assigned to the users (Ferraiolo and Kuhn 2009), such as
doctors or hospital staff. Rule-based access control is established based on a predefined set of
access rules. Timed access control enforces permission or access to resources based on time
parameters such as schedule or duration of access. State-based access control introducesmore
fine-grained access decisions than a simple “allow” or “deny” (Kamra and Bertino 2010).
For example, “request suspension” is a decision that requires a further negotiation process
before deciding whether to grant access (Bertino et al. 2011). Application mode-based access
control is a special case of state-based access control (Bosch 2000). In summary, all different
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Fig. 7 Simplified role hierarchy in the exemplary EHRS

access control schemes are implemented such that some property of the access source and/or
access target is checked against specific requirements. The EHRS from our example uses a
simplified role- and attribute-based access control scheme – a common combination in the
literature (Jin et al. 2012; Ahmadian et al. 2017). Since multiple roles share permissions, a
role hierarchy is implemented in which permissions for a role are inherited from a parent role
(see Fig. 7). For example, a doctor should have the same permissions as the medical staff.
Therefore, in the role hierarchy, the role doctor should inherit all permissions from the role
medical staff, i.e., writing medical records, and extend it with additional permissions such as
writing diagnoses. Since a patient can choose a doctor to be a designated doctor, an attribute
denotes whether they have elevated rights over the access to the patient’s data.

4.1.2 Cryptography

The featureCryptography aims to ensure secure communication in the presence of adversaries
(Rivest 1990). The goal is to prevent unauthorized entities from reading amessage by binding
a key to the message. A key is a secret consisting of a string of symbols that is used by an
algorithm to encrypt or decrypt a message.

Except forP12, all investigated papers list cryptography as a security feature,which should
be considered when implementing software systems. In our taxonomy, we separated cryp-
tography into five sub-categories that focus on different aspects of cryptography: encryption,
cryptographic hashing, key management, signature, and steganography (see Fig. 8).

Encryption focuses on features for encoding messages in a way that only authorized entity
access is able to access its content and protects it from unauthorizedmodification. Algorithms
used for encryption and decryption purposes are called ciphers and can be divided into groups
of stream ciphers (Jiao et al. 2020) and block ciphers (Robshaw 1995). Rivest Cipher 4 (RC4)
is one of the most widely used stream ciphers included in various protocols such as TLS.
In contrast, block ciphers encrypt a group of plaintext symbols as one ciphertext block. The
Data Encryption Standard (DES), triple DES (3DES), and theAdvanced Encryption Standard
(AES) are well-known block ciphers, which are used in modern software systems.

In an EHRS such as the one from our example, patient data must be encrypted before it
is stored within the system using any of the described ciphers, in case a third party is able
to intercept data transmitted to or within the system. Any cipher must define a key that is
shared among the multiple parties involved in an encrypted communication. In symmetric
key cryptography (Bokhari and Shallal 2016), a single key is used for both encryption and
decryption, while asymmetric key cryptography defines a public key, which is used to encrypt
a message, and a private key, which is exchanged between the communication parties and
used to decrypt the received message (Yassein et al. 2017). A hybrid cryptosystem combines
the two approaches by using asymmetric key cryptography to encrypt a key from symmetric
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Fig. 8 Sub-features of the top-level security feature cryptography

key cryptography (Dent 2004). While a symmetric key algorithm can either use a block
cipher or a stream cipher to handle encryption or decryption, asymmetric cryptosystems rely
on specific algorithms such as the Rivest Shamir Adleman (RSA) or the Diffie-Hellman
exchange method to securely negotiate keys over a public transmission channel (Bhanot and
Hans 2015).

Cryptographic hashing focuses on ensuring that data has not beenmodified, e.g., amessage
exchanged between a sender and a receiver, without comparing the entire data. To this end,
cryptographic hashing functions irreversibly transform data of arbitrary length into a fixed-
length output of enciphered text (Busch andWirsing 2015). Using cryptographic hashing for
medical records in the EHRS from our example, ensures that malicious modifications to them
can be detected. For the same input, the enciphered output is always identical and, therefore,
allows a comparison of the calculated value before and after transmission of a message,
while also ensuring the confidentiality of the data by making it unreadable for an attacker.
In our exemplary EHRS, passwords in plain text are a major risk to the confidentiality of
user data in the system. Therefore, passwords for each user are stored in the database after
state-of-the-art cryptographic hashing is applied. In case of an incident in which passwords
are stolen by an attacker, they are unable to gain access to the stored user accounts, since
they can not decipher the hash.

Key management is essential since cryptographic operations rely on secure and confidential
keys (Rana et al. 2023). First, key generation must be performed in a secure way, which
requires the usage of securely generated random numbers. Second, to be able to encrypt and
decrypt messages, the communicating parties must exchange a key via a key distribution
scheme (with group key management as a special form of key distribution). Once a key has
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been negotiated, only authorized users should be allowed access to it, which can be ensured
by using a key storage method. Finally, key revocation is used to invalidate a key once it is
not required anymore, e.g., after a certain timeframe has passed or a criterion has been met.

Signature is used to verify the authenticity of a message by binding the identity of the
sender to the sent message (Katz 2010). In this process, message signing is used to create
and bind a signature to a message by associating it with the private key of the sender. For
instance, medical records are signed with a key of a doctor to establish authenticity of the
message in our exemplary EHRS. Similarly, a certification can be realized by a third party
to show that a key can be trusted. Thereafter, the receiver can use message authentication to
verify the origin and that the received message has not been tampered with in transit. Here,
the corresponding public key is then used to verify the private key bound to the message.
Digital watermarking is a method to attach a non-removable signature to data to ensure its
origin cannot be tampered with by a third party.

Steganography can be used to hide amessagewithin another, potentially without the use of
an encryption algorithm (Kour and Verma 2014). While there is a chance for an unauthorized
entity to access the message, the idea is that unknowing entities are not able to notice that
secret information is hidden within the message. One such method hides a message within
an image in a way that it cannot be perceived by humans.

4.1.3 Security monitoring

The top-level feature security monitoring (Fig. 9) describes features formonitoring properties
of software systems that can indicate the state of security or possible security issues. For
example, monitoring network traffic can be used to detect intrusions or other issues (Ghafir
et al. 2016). In general, monitoring a software system can reveal attempted attacks and help
prevent their success (McGraw 2004). The feature contains automated response, history
maintenance, and logging as sub-features. It is covered by ten of the ontologies (see Table 2).

Automated response refers to responding to incidents that happen in a software system
that can lead to potential security violations. If automated responses independent of human
interaction are implemented, the response time to security incidents can be reduced.

Logging, while not used as a feature to prevent attacks, can identify and trace back anoma-
lies, such as attacks, within a system. Whenever a user such as a doctor writes or saves data
to the EHRS from our example, the event is logged to a log file, containing the user, time, and
action that was performed. This assures the accountability of certain actions, and helps in
reasoning about incidents that may occur. Additionally, several considerations regarding the
security of the content of the logs must be taken. As such, the secure logging pattern intends
to prevent an attacker from gathering sensitive data about a system from its logs (Dougherty

Fig. 9 Sub-features of the top-level security feature security monitoring
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et al. 2009). In our exemplary EHRS, all logs are encrypted and access to them is restricted
to specific users. Past work presents logging as a mechanism for providing non-repudiation
and ensuring system and data integrity (P4, P8, P9, P13, P16, P17), incident management
(P1, P16), and intrusion detection and prevention (P10, P14).

History maintenance preserves the user/system activity logs, enabling the lookup and
identification of wrongdoers or unwanted incidents in cases of a security breach. The storing
of relevant informationhas to be implemented in software systems to allowsuch investigations
after an issue has been detected. In the EHRS example, changes resulting from system
interactions are retained so that, for instance, previous versions of physician reports can be
restored.

4.1.4 Secure data handling

This top-level feature is mentioned in 8 out of the 18 papers that we examined. The feature
Secure data handling covers security features that deal with validation, sanitization, control,
and secure storage of the data that is handled in a software system (see Fig. 10). Since data
management is a core feature within any EHRS, secure data handling plays a crucial role.

Data validation is characterized by two sub-features, input validation and output valida-
tion. For example, input validation ensures that entered data complies with a valid data format
and does not contain malicious data, such as scripts. To this end, blacklisting or whitelisting
can additionally be used to restrict or trust sources from which data can be introduced into
the system.

Download verification of data that is obtained from external sources can assert that—in
addition to not containing any malicious scripts or similar—has not been tampered with and
contains the expected content.

Data sanitization, which involves input and output sanitization (e.g., escaping the user-
provided inputs before using them in any kind of database query in the EHRS from our
example), and parameterized prepared statements (e.g., pre-compiling an SQL statement
before patient data is accessed) form another branch of secure data handling. These features
need to be implemented to ensure that nomalicious inputs of a potential attacker are permitted
and that no sensitive data such as passwords are leaked, i.e., they can mitigate attacks such
as SQL injections (Shar and Tan 2013).

Retention control is another feature under secure data handling that deals with the secure
management of data that is no longer needed for any operations but is still maintained in

Fig. 10 Sub-features of the security feature Secure Data handling
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the system. For instance, personal patient data related to billing will be deleted from our
exemplary EHRS after a certain timeframe has passed. Specifically, it deals with the duration
or other indicator for when unused data should be deleted or under which circumstances this
should not be the case. The underlying principle is to reduce the attack surface of a system
by minimizing the amount of sensitive data that could be accessed by an unauthorized user
or system component if compromised.

Secure storage describes storing user and other data in a way that keeps it from being
accessed by unauthorized users or software components, preserving the confidentiality and
integrity of the stored data (Löhr et al. 2010). In the EHRS from our example, cryptographic
keys formedical records are not stored in the samedatabase as themedical records themselves.
For instance, P11 introduces an encrypted storage feature to securely store data.

Trusted sources involve the secure generation of timestamps (time source) and random
numbers (randomness). A trusted source of time ensures, e.g., that logs can be trusted and
used for investigations after a security incident, also between distributed systems that share
a trusted source of time. A trusted source of randomness is vital for many cryptographic
operations, e.g., as seeds for encryption protocols or for key generation (Schindler 2009).

4.1.5 System state protection

The top-level security feature system state protection (Fig. 11) describes security features
that ensure that the system’s operational state is not compromised and that it conforms to
defined requirements. It is mentioned in six of the analyzed ontologies. In our exemplary
EHRS, system state protection is implemented by requiring a doctor to read a patient’s data
file before they are allowed to prescribe medication via the system to avoid mistreatment.

Resource management refers to implementing control mechanisms for the allocation and
access of resources based on a priority level to ensure availability. As such, resources must
be managed to warrant that no attacker can take down a software system by reserving large
amounts of resources, e.g., via DDoS attacks (Mirkovic and Reiher 2004), as occurred in the
incident at the hospital (BBC 2020) described in Section 2.1.

System state validation can ensure that the system is in a secure state, i.e., that it has
not been compromised and that its operational state is correct and secure according to pre-
determined rules. This feature is especially important after events such as the boot-up of the
system or recovery after an incident.

Session management describes security features mainly to prevent attacks onweb applica-
tions. Four security features to mitigate attacks related to sessions are presented here, replay
attack prevention, session fixation protection (Johns et al. 2011), session takeover prevention
(Baitha and Vinod 2018), and session timeout. Session management plays a critical role in
our exemplary EHRS by utilizing session timeouts, which closes a session after a period of
inactivity, preventing other users in the hospital to gain access to the session.

Fig. 11 Sub-features of the top-level security feature system state protection
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Fig. 12 Partial excerpt of the mapping from high-level security standards such as the ISO/IEC 27000 series
(left) and from the detailed Common Criteria (CC) (right) to implementation-level security features in our
taxonomy (middle). The taxonomy presents security features that can provide the security requirements spec-
ified by the high-level standards and generalizes specific low-level details in the CC to actionable advice for
developers

State synchronization ensures that the states in a system are consistent and synchronized
between distributed functions. This prevents attacks that exploit differences in states between
system components.

4.2 Relation to security standards

Following the methodology described in Section 3.1.3, we mapped our taxonomy to security
standards, thereby also validating and adapting it. The mapping and the presented descrip-
tions of the security features can guide developers in adhering to the security requirements of
the high-level standards. In particular, starting from the high-level security standards, devel-
opers can use the mappings to select suitable functional security features to realize from our
taxonomy. For the concrete realization, they can then follow the mappings into the relevant
detailed aspects of the CC. In particular, Part 2 of the CC1 contains detailed descriptions
of implementation-level security features that fit the scope of our taxonomy, but the other
standards also contain functional security features for which mappings are expected.

4.2.1 Example mapping

As an illustrative example for the mapping, Figure 12 shows the mapping of the top-level
security feature cryptography and its sub-features to the security standards and guidelines
used as comparators. For brevity, we focus on this one feature to illustrate the mapping
between our taxonomy and the standards and guidelines. The complete mapping is made
publicly available in our online Replication Package (2025). As shown on the left-hand side

1 https://commoncriteriaportal.org/files/ccfiles/CC2022PART2R1.pdf
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in Fig. 12, multiple parts of the ISO/IEC 27000 series, as well as the NIST Cybersecurity
Framework and the NIST SP 800-53, relate to security features in our taxonomy. On the
right-hand side of Fig. 12, the parts of the CC are shown that relate to security features in our
taxonomy. Here, the descriptions in the CC are specific descriptions of certain technologies
or techniques to realize the security features they are mapped to. To this end, the taxonomy
provides a more general description of the content of the CC.

4.2.2 Mapping and refining of the taxonomy

In this section, we present the analyzed security standards and describe the process of map-
ping our taxonomy to the standards and our changes to the taxonomy. Slight adjustments
were made, e.g., to render the taxonomy more generally applicable when we found that the
standards described certain security features in a broader scope than their representation in
our taxonomy. Other changes were the addition of further security features that were not
contained in the literature and some adjustments to the structure of the taxonomy. These
changes are already considered in the description of the taxonomy presented in Section 4.1,
i.e., the following describes the last refinement steps we had undertaken to reach the final
taxonomy presented above. Table 3 shows the overlap between the final taxonomy and the
security standards. Overall, nine security features were identified across the standards that
were not contained in the taxonomy prior to this analysis. We have adjusted our final taxon-
omy accordingly. Out of the 68 security features in the taxonomy, 45 were identified in at
least one of the standards, whereas 23 are not mentioned in any of them. The biggest overlap
between an individual standard and the taxonomy was observed for the SP 800-53, with 26
security features identified in it that are in the taxonomy. The ISO 27002 showed the smallest
overlap with only 12 security features from the taxonomy identified in it. The overlaps and
performed changes are described in detail in the following.

CommonCriteria (CC) TheCCpresents details on low-level security features. It offers a basis
for certifying the security of IT products by listing security properties that need to be fulfilled
or for which assurance needs to be provided. In contrast to the high-level descriptions that are
found in many standards, the content of the CC is largely on the implementation level. Often,
specific technologies for achieving a certain security functionality are presented, lacking
generality.

The analysis of the CC revealed that 55 of its chapters describe implementation-level
security features. Of these, 39 (71%) directly mention one or more of 16 security features

Table 3 Overlap between security features of standards and taxonomy, showing how many are covered by the
taxonomy and how many are missing in the taxonomy and standards

Security Features
Standard in Standard not in Taxonomy not in Standard

CC 25 (16∗) 0 (9∗) 43

27001 13 0 55

27002 12 0 56

SP800-53 26 0 42

CSF 14 0 54

Overall 45 (36∗) 0 (9∗) 23

∗ Prior to adjusting the taxonomy based on the CC
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already contained in the taxonomy. A mapping between two further chapters and the tax-
onomy could be achieved by rephrasing the previous feature escaping user-supplied input
found in the literature to the more general input sanitization and output sanitization, and
rephrasing log monitoring to the more general security monitoring. After these changes, we
checked the ontologies from the literature that were used to create the taxonomy again and
verified that these less specific feature names still fit the descriptions in the literature, which
was the case.

The remaining 14 chapters from the CC required the addition of new security features
to our taxonomy because they described security features that were too dissimilar to the
features already contained in our taxonomy.Consequently,we added the nine security features
trusted sources of time and randomness, secure storage, replay attack prevention, resource
management, retention control, system state protection, system state validation, and state
synchronization to the taxonomy (note that multiple chapters in the CC can relate to the
same security feature, therefore the disparity between 14 previously un-mapped chapters
and the addition of only nine features). To validate the updated taxonomy’s accordance
with the literature, we looked for descriptions of the newly added security features in the
ontologies that were the initial sources. We identified references to all nine of them. In
the ontologies, the descriptions were less concrete than in the CC (for example, paper P10
presents system availability in combinationwithDDoS prevention, which indicates the newly
added security feature resource management), which is why we did not initially include them
in the taxonomy.

The addition of further security features made some adjustments to the structure of the
taxonomy necessary to achieve a more coherent grouping. The new structure better reflects
the level of granularity, meaning that now, when comparing two security features in the
taxonomy, the lower-level one (i.e., the one more to the right in Fig. 12) generally addresses
a more specific security issue or requirement than the higher-level one (i.e., the one more
to the left in Fig. 12). One of two changes to the structure concerned the feature secure
data handling. Previously, the feature data validation had been a top-level feature, which we
changed to secure data handling being the top-level feature. These changes do not contradict
the ontologieswe used as initial sources from the literature, since they have no strict hierarchy.

A second adjustment to the structure of the taxonomy was prompted by the addition of
the feature system state protection. Previously, the feature session management had been a
top-level feature. System state protection is an important security feature on a similar level
of granularity as the top-level features in our taxonomy. Even though it is presented as a
security feature in the CC, it is not mentioned in any of the ontologies we examined, which
shows a gap in the literature. We decided that the most coherent structure would be to add it
as a top-level feature and organize the features connected to it into the final form shown in
Fig. 11.

In summary, the functional security features described in the CC could be mapped very
well to the taxonomy derived from the literature. The majority could be mapped directly.
For the others,weperformed slight adjustments to the taxonomybyadding further security
features, rephrasing existing ones, and changing the structure.
The taxonomy was improved by these changes and in its final form (shown in Fig. 5) not
only represents the literature but also the CC.

ISO/IEC 27000 family (27001 and 27002) This group contains multiple standards that apply
to software security in general or to software security of specific domains. Two standards are
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specifically related to our work, the ISO/IEC 27001 and the ISO/IEC 27002, which are the
two major standards in the family. ISO/IEC 27001 describes requirements for establishing,
maintaining, and improving an Information SecurityManagement System (ISMS). It presents
controls and objectives that organizations might adopt, based on their unique risk landscape.
This standard covers organizational, people, physical, and technological controls. It primarily
offers high-level policies and requirements, making it challenging to identify specific security
features that should be implemented. ISO/IEC 27002 provides guidance and reference for
implementing security features to manage information security risks in an ISMS based on
ISO/IEC 27001. It is more explicit than the ISO/IEC 27001 on implementation details of
security features. However, most of the standard still consists of high-level descriptions
rather than actionable guidance for developers. In addition, the sheer volume and depth of
ISO/IEC 27002 makes identifying implementation-specific features a tedious task, further
emphasizing the utility of the taxonomy derived in this paper.

Analyzing the technological controls presented in the standards revealed that many of
their high-level descriptions can be mapped to the implementation-level security features in
our taxonomy. Here, the security features are a way of realizing the technological controls in
the standards. Out of the 34 technological controls that are presented in ISO/IEC 27001 and
specified further in ISO/IEC 27002, 14 (41%; 13 from ISO/IEC 27001 and 12 from ISO/IEC
27002) can be mapped in this way to 15 of the security features in our taxonomy. The remain-
ing 20 technological controls can not be realized with implementation-level security features
but instead, describe organizational and procedural requirements. For example, technolog-
ical controls require that the organization implements hardware redundancy (control 8.14),
secure coding principles (control 8.28), or change management processes (control 8.32). We
mapped the 14 technological controls that can be mapped to the taxonomy to the 15 security
features access control, authentication, data validation, encryption, input validation, log-
ging, certification, resource management, retention control, secure storage, cryptography,
data sanitization, security monitoring, trusted source of time, and output validation. For
some mappings, the security features are given as examples of how a technological control
can be realized, while others are not explicitly named but the technological controls fit the
security features’ descriptions (for example, the technological control Information stored in
information systems, devices or in any other storage media shall be deleted when no longer
required is mapped to the security feature retention control).

Overall, no changes to the taxonomy were required to map all implementation-level
security features found in the ISO/IEC 27000 family of standards to our taxonomy.

NIST SP 800-53 This standard presents a wide variety of security (and privacy) requirements
and related controls. The descriptions refer to organizational and procedural actions for the
most part, only occasionally mentioning implementation-level security features. In general,
the standard calls for an “organization-wide process to manage risk”, hence not focusing on
technical controls alone. The description of the faced threats and attacks as “hostile attacks,
human errors, natural disasters, structural failures, foreign intelligence entities, and privacy
risks” further shows the scope of the document and the reason why implementation-level
security features are scarce.

Nevertheless, similarly to the ISO/IEC 27000 family, large parts of the NIST SP 800-53
could be mapped to our taxonomy. Out of the 78 technical controls that the standard presents,
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40 (51%) are related to one or more security feature(s) in our taxonomy, meaning that the
security features allow the realization of the technical controls. The remaining 38 technical
controls donot require implementation-level security features. Instead, theydescribe common
software security practices (e.g., principle of least privilege (technical control AC-6) or
separation of duties (technical control AC-5)), user-oriented features (e.g., the display of
privacy and security notices (technical control AC-8) or display of information about the last
logon (technical control AC-9)), or other information that is non-functional, too specific, or
not on the implementation-level.

All the 40 technical controls presented in the NIST SP 800-53 that describe implemen-
tation-level security features could be mapped to 26 features in our taxonomy without
changes.

NIST Cybersecurity Framework 2.0 (CSF) This resource offers high-level guidelines for orga-
nizations to pinpoint risks and threats, along with recommended processes to address them. It
emphasizes the importance of implementing security features as protective measures against
potential threats. However, due to its broad scope (for instance, the detection of and recovery
from attacks are also covered), the document generally lacks in-depth details on specific
implementation-level security features.

In total, the document is structured into 23 categories that describe measures to protect
software systems. Out of these, 14 categories (61%) could be mapped to 14 security features
in our taxonomy. The other nine categories are non-functional or beyond the scope of our
taxonomy for other reasons (e.g., PR.AT-01 and PR.AT-02 are concerned with awareness and
training of users, PR.PS-02 and PR.PS-03 ask for the consideration of risks in software and
hardware maintenance, replacement, and removal, and PR.IR-02 relates to environmental
threats).

All 14 implementation-level security features identified in theNISTCybersecurity Frame-
work 2.0 could be mapped to our taxonomy without any changes.

Figure 13 visualizes the overlap between the standards and our (initial and final) taxonomy
in terms of the number of security features (see Table 3). As shown, the initial taxonomy
covered all 32 security features mentioned in the four analyzed standards (summarized as
Other standards) and extended this set with 27 further features found in the academic liter-
ature. The overlap between the initial taxonomy and the CC was 16 security features, 12 of
which are also contained in the Other standards. The CC contained 9 additional features that
were not part of the initial taxonomy. After extending the taxonomy with the 9 features from
the CC, the final taxonomy contains 68 functional security features. It covers all 32 features
found in the four analyzed standards and all 25 features identified in the CC. Additionally,
the final taxonomy contains 23 features that resulted from our review of the literature and that
are not present in any of the standards or the CC. Based on this presentation and the above
descriptions of the mappings between the security standards and guidelines to our taxonomy,
we can answer RQ1 as follows.

RQ1: We collected 68 implementation-level security features from the literature and
security standards. We identified five of them as top-level security features to provide the
structure for the taxonomy: access control, cryptography, secure data handling, security
monitoring, and system state protection. The taxonomy presented in Fig. 5 provides all
security features.
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Fig. 13 Venn-diagram presenting the overlap between the analyzed standards and the (initial and final) tax-
onomy concerning security features identified in them

5 Security features provided by security frameworks (RQ2)

We now present our investigation of the security features supported by security frameworks.
We discuss the differences between the security features presented in the literature, as docu-
mented in our security feature taxonomy (i.e., Section 4), and those provided to developers
by commonly discussed security frameworks.

5.1 Identified security frameworks

We selected 21 security frameworks via our search on Stack Overflow and Reddit. Table 4
shows the selected frameworks, sorted by the number of threads on Stack Overflow and Red-
dit in which each framework was mentioned. Some frameworks in the table are positioned
based on the total number of threadswithin their parent frameworks, such asASP.NET,which
is a component of the larger .NET framework. While some framework may be considered
outdated when it has not received any updates since 2020, they may still be used by devel-
opers, e.g., JGuard was discussed four years after the release of its last stable version, the
Java Security Manager is deprecated but still part of maintained JDK versions, and some
frameworks still show downloads at the time of writing.

In total, we identified 44 security features offered to developers by the selected security
frameworks. Terms found in the respective reference guides and documentationwere grouped
according to our methodology in Section 3.2.2. The grouping in Table 5 is based on the
structure of our taxonomy which denotes security features present in each framework. Some
of the frameworks can also be used for different purposes than utilizing themwithin a software
system, such as using them as a standalone application for encrypting a file. However, we
only consider the security features offered by security frameworks in a scenario in which
developers implement software systems by embedding them at the code-level. Many security
frameworks are offered for different programming languages or focus on specific security
features, which makes it difficult to compare them. However, they may offer similar security
features, which may differ in their specific implementation.
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Table 4 List of selected security frameworks. # = Number of threads. SO = Stack Overflow. M = Maintained

ID Security frame-
work

URL # SO # Reddit M

01 Spring Security spring.io/projects/spring-security 91 2 Yes

02 Apple Security
Framework

developer.apple.com/documentation/security 37 0 Yes

03 Apache Shiro shiro.apache.org 25 0 Yes

04 JAAS docs.oracle.com/javase/8/docs 12 0 Yes

05 Java EE oracle.com/java/technologies/java-ee-glance.html 2 0 Yes

06 Java Security
Manager

docs.oracle.com/javase/tutorial 2 0 No

07 OpenSSL openssl.org 11 2 Yes

08 Windows Identity
Foundation

microsoft.com/en-us/download/details.aspx?id=17331 2 0 Yes

09 ASP.Net Member-
ship Provider

learn.microsoft.com 6 0 Yes

10 ASP.Net Role
Provider

learn.microsoft.com 3 0 Yes

11 OWASP ESAPI owasp.org/www-project-enterprise-security-api 5 0 Yes

12 JBoss Seam Secu-
rity

docs.jboss.org/seam/3/security 4 0 No

13 Passport passportjs.org 3 0 Yes

14 Play Framework
Secure Module

playframework.com/documentation/1.2.5/secure 2 1 Yes

15 OACC oaccframework.org 2 0 No

16 JGuard jguard.xwiki.com 2 0 No

17 Bouncy Castle bouncycastle.org 2 0 Yes

18 Endpoint Security
Framework

developer.apple.com/documentation/endpointsecurity 2 0 Yes

19 EveryAuth github.com/bnoguchi/everyauth 2 0 No

20 PicketBox picketbox.jboss.org 2 0 No

21 Sureness usthe.com/sureness 2 0 Yes

In what follows, we summarize the investigated security frameworks, highlighting their
coverage in different areas of security.We found that the security frameworks can be grouped
into two categories that target access control and cryptography. Besides, some security frame-
works offer awide range of security features, and can, therefore, be classified asmulti-purpose
frameworks.

Access Control Frameworks Based on their offered security features, 15 of the selected
security frameworks can be mainly used to implement and manage authentication and
authorization. Among them, we identified two authentication and authorization middlewares
(Passport and EveryAuth) for node.js. Three modules of the Java standard library implement
authentication and authorization (JAAS), enterprise software utilities (Java EE), and secu-
rity policy enforcement (Java Security Manager). The Windows .Net Identity Foundation
is a security framework for facilitating user authentication in software systems. JGuard is a
security framework based on JAAS for solving access control problems for web applications.
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Table 5 List of security features provided by security frameworks
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access control

authentication 76.2%

authorization 85.7%

cryptography

cryptographic hashing 47.6%

encryption 38.1%

key management 19.0%

signature 19.0%

steganography 0.0%

security monitoring

automated response 4.8%

history maintenance 0.0%

logging 28.6%

system state protection

resource management 0.0%

system state validation 0.0%

session management 38.1%

state synchronization 0.0%

secure data handling

data validation 4.8%

data sanitization 4.8%

retention control 0.0%

secure storage 9.5%

trusted sources 19.0%

Similarly, JBoss Seam Security and OACC are access control frameworks aiming to provide
general functionalities to manage and enforce access control policies. While the Play Frame-
work Secure Module handles authentication and authorization, in ASP.NET, these features
are split amongMembership Provider and Role Provider. The Endpoint Security Framework
offered by Apple can be used to monitor and authorize system events. Finally, the framework
Sureness focuses on securing REST APIs.

Cryptography Frameworks OpenSSL and Bouncy Castle offer a large range of encryp-
tion, key management, hashing, and signature features. While Bouncy Castle is purely a
cryptographic library, OpenSSL uses the cryptographic library libcrypto for implementing
cryptographic features. Cryptographic features are offered by 9 other frameworks as well
(Spring Security, Security Framework, Apache Shiro, Java EE, ASP.NET, OWASP ESAPI,
JBoss Seam Security, OACC, JGuard).

Multi-Purpose Frameworks Spring Security, Apple Security Framework, Apache Shiro, and
OWASP ESAPI offer a large range of security features from our taxonomy, covering both,
access control and cryptography features, as well as additional ones such as session manage-
ment. Notably, OWASP ESAPI additionally provides most features for data handling, such
as data validation, data sanitization, and trusted sources.
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5.2 Provided security features and relation to the security taxonomy

To investigate the relationship between the functional security features captured in the taxon-
omy and those provided to developers, we mapped the frameworks’ features to the taxonomy
(recall, that we marked them with “F” in Figs. 6, 8, 9, 10, and 11).

5.2.1 Provided security features

In the following, we present the identified security features in the order of the taxonomy’s
top-level security features, as shown in Fig. 5.

Access Control. As shown in Table 5, all frameworks except OpenSSL provide features
to realize some kind of access control. Sixteen of the 21 frameworks offer features to realize
authentication. However, from the security features in Fig. 6,multifactor authentication is not
provided by any framework. All frameworks use credentials for authentication but also offer
authentication via certificates (Spring Security). Additionally, Spring Security and Passport
provide authentication features via single sign-on. The feature one-time-password is only
provided by PicketBox.
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In our running example, the authentication of users may be realized using JAAS. Listing 1
shows a possible implementation of this security feature. Our exemplary EHRS would be
implemented using Java Server Pages (JSP). Whenever a user clicks the login button on the
login page, the Servlet shown in Listing 1 is called. In this case, the doGetmethod is called
and handed over an HTTP request containing the data entered into a user name and password
field on the login page. This information is retrieved from the request (lines 5 and 6), and
then, the JAAS login is instantiated in lines 9–20. JAAS automatically loads an authentication
mechanism registered with JAAS when instantiating LoginContext. The user name and
password are handed over via callbacks, which in this case are provided with the values
retrieved from the HTTP request in lines 13–18. Besides setting login information in code,
JAAS supports various callbacks to provide data, e.g., callbacks that show pop-ups to users in
a desktop application. After instantiating the login context, the provided login information is
validated in line 23 by calling login(). All of the Java security frameworks examined are
compliant with JAAS and extend it by, for example, registering authentication mechanisms
or providing easier-to-use wrappers for specific usage scenarios such as web applications.

After a user has been authenticated, it is usually decided whether the user is allowed to
perform specific activities. Even though authorization is one of the most prevalent security
features realized in 18 of the 21 frameworks, only attribute-based and role-based access
control are offered. Figure 6 emphasizes that frameworks are missing most sub-level features
of the authorization feature. Listing 2 shows an example of enforcing access control in our
exemplary EHRS using Spring Security. To implement the access control scheme of the
EHRS, a combination of role-based and attribute-based access controlwould be implemented.
First, patient information from the endpoint /patient-info can only be accessed by
users with the role ROLE_DOCTOR. (see lines 7 and 13). However, to be able to read the
patient information (getPatientInfo()), this doctor must also be a designated doctor
for the patient, which is expressed as an attribute that is implemented using the ‘designated’
permission for the corresponding patient (see line 7).
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Cryptography. In addition to the cryptography libraries OpenSSL and Bouncy Castle, the
framework Spring Security and the Apple Security Framework offer the most cryptogra-
phy features. In total, eleven frameworks offer security features for cryptography. Excluding
Bouncy Castle and OpenSSL, half of the frameworks offer cryptographic hashing which
is designed explicitly for access control or password encryption (Spring Security, Security
Framework, Apache Shiro, OWASP ESAPI, JBoss Seam Security, OACC, JGuard). Eight
frameworks provide support for encryption, offering a diverse selection of cryptographic algo-
rithms. These algorithms span across symmetric cryptography, including block and stream
ciphers, and asymmetric cryptography. In addition to enabling the generation and verification
of signatures, the frameworks Spring Security, Apple’s Security Framework, OpenSSL, and
Bouncy Castle (19.0%), offer capabilities for key management.

An example of how the encryption in EHRS can be implemented using Spring Security is
shown in Listing 3a,while the same encryption usingBouncyCastle is shown in Listing 3b for
comparison. While Spring Security abstracts most of the configuration details from the user,

123



Empirical Software Engineering           (2025) 30:117 Page 35 of 57   117 

therefore allowing limited configuration, Bouncy Castle allows for detailed configuration but
is more complicated to use. Both require credentials and a seed for encryption. While Spring
Security comes with a utility function to generate the seed (line 4 in Listing 3a), the seed
for Bouncy Castle must be generated in handwritten code. In both frameworks, a secret key
is generated from a password and salt, but in Spring Security this is hidden from the user.
Spring Security provides some standard configurations via the classEncryptors, of which
we initialize the stronger variant in line 8 of Listing 3a. In lines 9 to 15 of Listing 3b, we
configure Bouncy Castle in the same way as the selected configuration. First, we generate a
secret key in lines 9 to 11, and then we initialize the cipher used for encryption in lines 14 and
15, in both cases using the predefined configuration parameters of Spring Security. Finally,
in both Spring Security and Bouncy Castle, the data is encrypted (line 10 in Listing 3a and
line 18 in Listing 3b).

The features steganography, group key management, and digital watermarking are not
provided by any of the security frameworks considered (see Fig. 8).

Security Monitoring.Seven frameworks offer logging features (Table 5).Although logging
is not inherently designed as a proactive defense against attacks, it plays a crucial role in iden-
tifying anomalies within a system and retroactively tracing back problems of a system. Most
frameworks offer some support for integrating external logging frameworks. Finally, Java
Security Manager is the only security framework that offers the configuration of automated
responses to security incidents.

System State Protection. Session management and three of its sub-features are the only
system state protection features offered by eight of the security frameworks. As such, many of
the system state protection features rely on the manual implementation of developers rather
than the usage of security frameworks. Listing 4a shows an example of how session timeouts
can be implemented in the EHRS using Spring Security, which relies on the implementation
of a SessionListener provided by the Java Standard Library. In contrast, implementing
session timeouts in Apache Shiro relies on configuring a session manager provided by the
security framework itself as shown in Listing 4b.
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Secure Data Handling. Only OWASP ESAPI offers security features for data validation
and data sanitization, including some of its low-level security features (see Fig. 10). Although
OWASP ESAPI provides a set of methods for data validation, the capabilities of the offered
validations are limited to basic validations and, therefore, require developers to extend these
with validation rules tailored to specific security requirements of their applications. Only the
AppleSecurityFramework andOACCoffermeans to realize secure storage.The former offers
a secure storage solution named keychain which assists developers in implementing secure
storage, with an example of adding data to it shown in Listing 5. The latter, OACC offers
a comparable solution by providing a fully implemented database specifically designed to
manage security-related information. This is achieved through the execution of setup scripts
tailored to different databases. Four frameworks provide features to create trusted sources,
such as random number generators and timestamps. The latter is a foundational security
feature that can be used with other features, such as retention control or session takeover
prevention. Note that some security features (e.g., parameterized prepared statement) are
provided by standard libraries of programming languages, such as Java.

5.2.2 Relation to the taxonomy

While the security frameworks support all top-level features from the taxonomy, we observed
somenoticeable differences to the literature. The selected security frameworks offer only 64%
of the security features from our taxonomy. While nearly all features of cryptography are
provided. The frameworks mainly lack sub-features concerning the three of the five top-level
features, authorization, secure data handling and system state protection as visible in Figs. 6,
10 and 11.

It seems that many access control features might not be used in practice or did not reach
practice, yet. The literature considers 11 access control features for authorization (see Fig. 6),
but the security frameworks only offer 2 of these. In some cases, the selected frameworks
might be able to realize security features such as discretionary access control or rule-based
access control by utilizing other offered features. However, this was not mentioned in any of
the documentation. Consequently, we did not label these security features in the taxonomy
in Fig. 6 as being provided by the frameworks. In the case of secure data handling, 10 out
of the 15 security features are provided by the frameworks, as shown in Fig. 10. For system
state protection, the security frameworks offer 4 out of 8 security features we collected in
the literature, as depicted in Fig. 11.

Additionally, our research suggests that security frameworks sometimes promote the appli-
cation of various features as novel features,whichmay not alignwith our definition of security
features according to literature. For example, Apache Shiro, Java EE, JBoss, and Seam Secu-
rity offer a security feature called remember-me that they advertise as an authentication
feature signifying an entity as "remembered from a successful authentication during a previ-
ous session" (The Apache Software Foundation 2010). Concerning our taxonomy in Fig. 8,
this is not considered a security feature but implies a specific usage of session management
features to keep a session open when an application is reopened. This suggests, that security
frameworks have different views on what level of security features should be considered.
Note that while some frameworks are not considered security frameworks, they may offer
features that support the implementation of security features, or may even directly provide
security features, even though these frameworks are not included in our list.
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Finally, we found that many security features rely on manual implementation and are
not offered by security frameworks. Most features for access control, some of secure data
handling, and system state protection from our taxonomy have to be manually implemented
without the use of a framework. Securitymonitoring features are offered by a few frameworks
but might not be tailored to the needs of every project.

RQ2: We collected 44 security features from a set of 21 security frameworks identified
in discussions on Stack Overflow and Reddit. The features overlap with the taxonomy
obtained via the literature review. The most significant overlap occurs within the domains
of access control and cryptography. Conversely, the least overlap is found in the domain
of security monitoring. The relation of frameworks to the taxonomy is indicated in Figs. 6,
8, 9, 10 and 11 (features marked with F).

6 Manifestation of functional security features in source code (RQ3)

Since the goal of our work is to provide guidance in locating security features in source code,
we need to understand how they manifest in codebases as this information can be utilized
for creating traceability. To this end, we captured how each security feature in the analyzed
security framework is provided to developers.

6.1 Security feature manifestation

As indicated in Table 6, we found that the security frameworks provide security features
based on three mechanisms:

– APIs provide security features directly. A framework can define API classes, methods, or
fields to invoke or configure security features. Listing 3 contains examples of the usage
of APIs for encryption. As such, their usage is clearly visible within the codebase, which
makes them easy to locate. This property can be leveraged to establish traceability, since
APIs can serve as an entry point for the location of security features.

– Configuration files can be used to enable security features, potentially in addition to
APIs, to provide configurations of used security features. Examples of such are given in
Listings 4b and 7a. Developers can change values within a configuration file to modify
specific values used by a framework. While they are clearly separated from the source
code, they are still interacted with by the code base to fetch data that is relevant for
security measures. Therefore, there is a need to connect the configuration file to the
corresponding security features along with the API.

– Annotations are used by many programming languages, such as Java to extend function-
alities of methods or classes within the implementation. A developer simply prepends
a keyword with a corresponding marker, such as @, to the program element. Listing 2
shows examples of such annotations in lines 7 and 13. Security annotations can be used to
either clearly define a context in which a method or class should be used, e.g., a security
level (Peldszus et al. 2024), or to provide additional functionalities to methods or classes.
Like APIs, they are clearly visible within the source code and can be used for tracing
security features to locate their implementation.
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Table 6 Security features provided by security frameworks via APIs (a), configuration files (c), and annota-
tions (n)
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access control

authentication a/c a/c a/n a a/c a a a a a/c a a

authorization a/c/n

a a/c

a a/c/n a/c a a a/c a a a/n a a/n a a/c a a

a/c/n a

a/c/n c/n

cryptography

cryptographic hashing a a a a a a/c a a/c a

encryption a a a a a a/c a a

key management a a a a

signature a a a a

steganography

security monitoring

automated response a

history maintenance

logging a/c/n a a/c a/n a a a

system state protection

resource management

system state validation

session management a/c a a/c a/c/n a/c a a a a a

state synchronization

secure data handling

data validation a/c

data sanitization a

retention control

secure storage a a

trusted sources a a a a a

For each top-level security feature, Figure 14 shows how often each mechanism is utilized
by the security frameworks to provide it. A security framework can provide the same security
feature using multiple mechanisms.

All frameworks provide APIs for each security feature they offer. While many core func-
tionalities of security features are implemented by using their APIs, configuration files are
additionally used by less than half of the frameworks for each feature. Configurable values

Fig. 14 Mechanisms used by security frameworks for providing security features for use in software systems
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within these files are used by the security frameworks to allow simple modification of general
parameters such as timeouts or used encryption algorithms. Finally, annotations are used for
access control, security monitoring and system state protection features. Typically, classes
or methods need to be annotated to extend the functionality of implemented authentication
mechanisms or to enforce authorization rules.

6.1.1 Access control

All frameworks offer APIs for access control. As an example, user credentials can be gen-
erated in Apache Shiro by instantiating the class UsernamePasswordToken with a
username and password. Then, the method hasRole() can be used to perform a role
check.

40% of access control features include configuration files, which are often used to specify
properties of authentication and authorization mechanisms. Picketbox uses configuration
files to select login modules provided by the framework or to define roles that are then
specified using Picketbox’s API. In the configuration files provided by JGuard, the developer
can select authentication schemes and define scopes. Spring Security also provides several
configuration options through configuration files, such as the definition of a role hierarchy,
which allows the inheritance of permissions between roles as illustrated in Listing 6.

In addition, annotations are typically used to restrict access to methods to a specific group
of users. 7 of the selected security frameworks (Spring Security, Apache Shiro, Java EE,
Secure Module, JBoss Seam Security, PicketBox, Sureness) make use of Java annotations to
handle access control on the method level. For example, Spring Security allows developers
to annotate methods with the annotation @PreAuthorize to restrict method invocations
to a specified role given as a parameter, as we have shown in Listing 2 for different types of
roles.

We also found that some features build up on a combination of an API and a configuration
file. For example, OWASP ESAPI provides an API to handle login requests as a part of
authentication. In a configuration file, the developer must set additional properties, such
as maximum login attempts or timeout duration. In Apache Shiro, access control can be
handled in multiple ways. For once, as explained before, an API and annotations can be
used to perform role checks. Additionally, Apache Shiro offers a configuration file in which
resources and authorization requirements, such as roles, can be defined.

Additionally, our example of the EHRS uses a combination of an API and a configuration
file to realize access control in Spring Security. First, a role hierarchy is defined in a con-
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figuration file, as shown in Listing 6. Then, methods are annotated using Spring Security’s
defined annotations such as in line 7 and 13 of Listing 2, thereby, referring to these roles.

In summary, APIs are mainly used to implement the main structure for authentication and
authorization mechanisms. Annotations can be used to limit access for methods within
the implementation and to decorate authentication mechanisms. Configuration files are
used to provide additional configuration parameters, such as authentication schemes or
properties.

6.1.2 Cryptography

Cryptography features are mainly realized by the usage of APIs. Several cryptographic meth-
ods are offered in Apple’s Security Framework (iOS and OSX). The developer can, for
example, use the method SecKeyCreateEncryptedData() to encrypt blocks of data
using a public key and a given algorithm. In Listing 3a, we demonstrated how the EHRS
from our example uses an API provided by Spring Security for encrypting data. There, we
identified that even though it provides classes and methods for encrypting data, developers
still need to write an implementation for some parts of the process, such as the generation of
a salt in line 4. As the comparison between Spring Security and Bouncy Castle in Listing 3
shows, the extent of needed code can vary among different frameworks. APIs are used to sign
and verify digital signatures in OpenSSL as well. A signature can be created by using the
method EVP_DigestSign and verified using themethod EVP_DigestVerify. Several
key management features, such as the generation of random keys of a fixed length, are also
realized through API usages in Spring Security. The class BytesKeyGenerator provides
several methods for key generation, such as generateKey() or secureRandom().

OWASP ESAPI and JGuard are the only security frameworks that provide configuration
files for encryption and cryptographic hashing features. In theOWASPESAPIs configuration
file, it is possible to choose a cryptography algorithm used to encrypt or hash data. For
example, a default hashing algorithm for passwords can be definedwithin a configuration file,
while the method cryptPassword() can be used to hash passwords using the specified
algorithm. In the same manner, the method encrypt() is used to encrypt plain text using
the algorithm specified in the configuration file.

In general, cryptography features are provided viaAPIs to allow the encryption and signing
of data. Configuration files can be used to set default algorithms for encryption, hashing,
and more, as an alternative to setting them each time using method parameters. In total,
18% of identified cryptographic features can include configuration files, but these are only
used for configuring low-level details of the feature usages.

6.1.3 Security monitoring

Logging is the securitymonitoring feature that is realized themost by the security frameworks.
Logging is typically handled through the usage of an API. As an example for logging,
EveryAuth offers a Boolean variable called debug to turn on and off logging. Similarly,
PicketBox uses the class PicketBoxLogger to log certain predefined events. To define
an automated response, the Java Security Manager throws a SecurityException once
a security violation has been detected, which can then be used to specify response actions.

In OWASP ESAPI and Spring Security configuration files can be used for configuring a
security event logger that is used over an API. Configuration parameters comprise secure
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encoding of logged HTML messages and the definition of an upper bound of log file size.
For example, in Spring Security, a configuration parameter must be set to enable the logging
of authentication attempts.

Spring Security and JBoss Seam Security are the only security framework employing an
annotation for security monitoring purposes. For Seam security, the documentation describes
that the @Logger annotation can be used to inject a shared instance of a logger, avoiding
configuring the logger in every class. This logger could also potentially be a secure logger
that has been configured by the developer or follows a security pattern (Dougherty et al.
2009). However, no further information is given in the documentation.

To conclude, APIs are used to actively log events and define responses to security viola-
tions. Additionally, configurations are used to specify properties to modify and customize
logs for specific purposes. Annotations only play a minor role in a few frameworks for
security monitoring.

6.1.4 System state protection

Only session management features are offered by the selected security frameworks for the
system state protection category. API calls are usually used to actively handle functionalities
for persisting sessions, such as through the use of cookies. OWASP ESAPI, for example,
offers the method getCookie() to receive a session cookie.

While the general functionality of session management features is realized through the
use of APIs, 40% of the selected security frameworks offer configuration files to configure
security features. As in the case of Apache Shiro and OWASP ESAPI, properties of session
management features such as the duration until a session timeout, are often specified in a
configuration file, as we have shown in Listing 4b. The actual sessions are implemented in
other web frameworks such as the Jakarta XML Web Services (JAX-WS) of Java EE. The
security frameworks target to secure the sessions of such web frameworks.

Java EE is the only security framework using annotations for persisting sessions by using
the @RememberMe annotation. After annotating an implemented authentication mechanism
class, the login is remembered by the system to keep the session persistent.

In summary, while APIs provide ways to manage sessions actively, configuration files are
used to configure specific properties. Annotations can be used in addition to authentication
mechanisms to keep a session open between actions.

6.1.5 Secure data handling

Along with cryptography, secure data handling features mainly rely on APIs for their real-
ization. However, OWASP ESAPI is the only framework making use of configuration files
for secure data handling to define rules for validation using regular expressions.

Apple’s Security Framework provides the secure storage of data that is shared among
applications over its keychain service. As shown in Listing 5, the class SecKeychain is
used to store passwords, cryptographic keys, certificates, and notes.
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Additionally, APIs are used to generate timestamps and provide a source of random-
ness, which are used by other security features, e.g., for logging or cryptographic purposes.
Apache Shiro offers the method getStartTimestamp() for receiving the starting time
of an opened session and a class SecureRandomNumberGenerator to generate secure
random numbers.

APIs can also be used to set rules for regular expressions for validation features. For
example, OWASP ESAPI explicitly offers a ValidationRule interface for specifying
rules for data from an untrusted source. A corresponding configuration file is used to register
these rules with the security framework.

In summary, secure data handling features, such as secure storage, generating data from
trusted sources, and data validation and sanitation are mainly provided via APIs. Configu-
ration files are only used in OWASP ESAPI for specifying validation rules through regular
expressions.

6.2 Locating security features

The mechanisms used for integrating security features into a system are essential for locating
the features. We observed that a majority of the implementations of security features are
via API classes, methods, or fields. However, we still found a large number of additional
functionalities of security frameworks that moved parts of the implementation, e.g., session
management parameters and authorization policies, into configuration files and annotations.
To estimate how well the different security features can be located, we investigated how their
mechanisms can be used to map them to specific security features.

6.2.1 Source code APIs

Every security feature that we identified within the security frameworks is provided through
an API. Since APIs are explicitly used in the implementation, their usages can be located
by searching the source code. As cryptographic features, such as encryption and hashing
mostly use APIs, their usages are easy to locate in principle. However, as also observed
in existing works (Tuma et al. 2022), in some cases, APIs use the same method call for
the realization of different security features. For instance, Bouncy Castle provides engine
classes to realize different ciphers based on the method init() with a mode parameter
for switching between encryption and decryption. This process is illustrated in Listing 3b,
line 15, in which ENCRYPT_MODE denotes that a message should be encrypted. Similarly,
messages can be decrypted by using DECRYPT_MODE as a parameter. The same API call
realizes different features, and it becomes difficult to distinguish between them when no
additional information is provided. Furthermore, the usage of API methods can only serve as
an entry point for feature location techniques, since the security-critical code for using them
also needs to be identified. Listing 3 shows that the amount of relevant code can range from
a few code statements to complex configuration code as for Bouncy Castle. In summary,
to facilitate the location of security features such as access control, cryptography, etc. from
security frameworks, traceability can be established through the security frameworks’ API
calls.
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6.2.2 Configuration files

As described above, configuration files are mainly used for access control and system state
protection features within the security frameworks. In principle, configuration files can be
related to security features based on knowledge of the security frameworks. Some values in
configuration files are only used for configuring security features that are provided through
explicit APIs, whose location we discussed above. In such cases, no further configuration
file-specific tracing is required. The challenge lies in locating the custom-implemented source
code locations that interact with parts of the configuration file since configuration files typi-
cally do not require explicit interaction by the developer to provide some kind of functionality.
Often, configuration files affect features simply by including them. For example, while the
security-related parts of the Java EE API allow realizing session management, some lower-
level features, such as session timeouts, can be set centrally in a configuration file of a security
framework.

Configuration files can also contain references to relevant places in the code. For example,
configuration files can apply features on namespaces or locations within the implementation,
which can be used for tracing. OWASP ESAPI includes a structured configuration file listing
configurable properties of features, which can be related to the implementation. As it is
structured in different categories, it is possible to directly relate some of the categories
to a specific feature. For example, the category ESAPI Encryption can be trivially
mapped to the security feature encryption, since it contains different parameters for encryption
features. Difficulties arise for developers when mapping lower-level security features to the
configuration, as substantial security knowledge is required. Furthermore, as in the case of
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source code APIs, some configuration options can be related to different security features
as well. As shown in Listing 7a, the option Encryptor.CipherTransformation in
the OWASP ESAPI configuration file defines what encryption should be used by default and
could potentially point towards both a stream cipher or a block cipher, as the concrete cipher
is specified by implementing the interface Encryptor, which aggravates the relation to the
concrete security feature. When used in different parts of the system, the cipher to be used
is not provided as a parameter, and the function call does not reveal the concrete low-level
security feature in this case, as shown in Listing 7b. Therefore, source code APIs need to be
considered as well in correctly identifying the concrete low-level security feature.

A significant challenge in identifying security features using configuration files arises
when they need to be parsed. While APIs and annotations can be identified by parsing the
code and traversing the abstract syntax tree using one of the many available parsers for
each programming language, configuration files often use custom file formats and follow
an individual structure. Therefore, configuration files require additional information and
reasoning to map specific parts of them to security features.

6.2.3 Annotations

As described in Section 6.1.1, annotations can be used to apply security features to classes
or methods. Mainly authorization on the method level, such as in Spring Security, shown in
line 7 and 13 of Listing 2, and parts of authentication features can be identified by extracting
annotations from the implementation. Logging and session management are other security
features that can be realized by providing annotations. Traceability between source code and
features can be achieved by annotating code with identifiers for features (Martinson et al.
2021;Bergel et al. 2021;Entekhabi et al. 2019;Andamet al. 2017).However, annotating every
security-relevant line or block of code can be an exhaustive and tedious task, which creates a
lot of overhead during development. As annotations of frameworks have unique names and
correspond to specific security features, they can be seen as information-wise equivalent to
feature annotations of tracing frameworks. These security features could then be traced by
locating every occurrence of their respective annotations. As there is also no further code for
using the security features, no further steps are required to provide a link between them. In the
example of Spring Security shown in Listing 2, extracting the @PreAuthorize annotation
for a method can clearly reveal which method is accessible by which role, thus providing a
simple mapping between access control and the annotation.

RQ3: When security frameworks are used to integrate security features into a system,
the extracted knowledge of how the frameworks provide security features can be used
to locate features for all 5 top-level security features we identified. This knowledge
encapsulates annotations, code APIs, and configuration files, as well as which interfaces
provide which security features, in particular, the methods belonging to the APIs that
provide a framework’s cryptographic security features. However, embedding security
features into the system requires writing code that actually uses the provided security
features. This code may involve not only just calling the API, but also changing data
formats or configuring security features such as supported authentication schemes or
key lengths. Therefore, feature location techniques must also locate source code that is
required to use the security frameworks, e.g., through information flow analysis of the
data handed over to an API.

123



Empirical Software Engineering           (2025) 30:117 Page 45 of 57   117 

7 Application example

To demonstrate the utility of our taxonomy, we consider our exemplary EHRS. As we dis-
cussed throughout this work, the system utilizes a wide range of security features to handle
the access and protection of patient data in a hospital. Recall that in the scope of the system,
there are multiple roles that have access to the system. Among them are patient, doctor, and
hospital staff. Through this system, a designated doctor is able to view patient data for which
they have been granted permission by the patient. Other doctors should not be able to view
the full extent of the patient’s data. Only hospital staff is allowed to read andwrite data related
to billing.

Selecting security features When starting the development of the EHRS, developers have to
select the security features required to secure the system. The taxonomy of functional security
features supports the reasoning of required security features by providing an overview of the
types of security features that could be implemented. For example, based on the division of
permissions illustrated in Fig. 1 and the covered features shown in Fig. 6, a combination of
role-based access control and attribute-based access control is a suitable choice.

Due to the criticality of the system, it must be developed in compliance with relevant
standards (United States Congress 1996; European Parliament and Council of the European
Union 2007). For the US, for example, such a system would have to be developed in com-
pliance with standards such as the NIST SP 800-53. The concrete standards to be followed
depend on the concrete system and the target market. For illustration, we discuss how the
mapping between the NIST SP 800-53, which only implicitly considers functional security
features, and the security features in the taxonomy supports developers in selecting concrete
security features that are required to address the high-level aspects considered in the standard.
For example, the segment of the standard on system backups shown in Fig. 2 is mapped to
the cryptographic security features of the taxonomy (Fig. 8). By following this mapping, the
developers discuss possible functional security features and end up with deciding to encrypt
backups using a block cipher.

The taxonomy and the mapping to high-level security standards provide a basis to devel-
opers for systematic reasoning about and selection of appropriate security features for
developing a secure software system.

Realization of security features. To avoid insecure implementation of security features,
developers can follow the best practice of using frameworks that provide ready to use imple-
mentations of the planned security features. To get an overview of possible frameworks, they
could follow the mapping between the selected security features from the taxonomy and
the security frameworks that provide those features. For example, they could look up which
frameworks provide authentication features by following the mapping between the taxon-
omy and the frameworks. Based on this, they can see that the security feature is covered by
several security frameworks and could decide to use Spring Security to realize role-based
access control using an API, configuration file, and annotations.

The permission system have to be implemented by a developer, who must make a lot of
considerations regarding the correct distribution of permissions to the users. One mistake in
assigning permissions to users can have a significant impact, allowing unauthorized users
to gain access to sensitive data. Still, developers have to write code to integrate the security
framework into the system, which can be prone to errors. For example, to restrict access of a
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method to specific roles, they must annotate the method with the correct roles. Additionally,
they may define a role hierarchy in a configuration file, which allows the inheritance of
permissions between roles by granting a child role the same permissions as a parent role.

The mapping between security features in the taxonomy and which of those are provided
by popular security frameworks helps developers in selecting appropriate frameworks for
realizing the planned security features.

Certification of a software system Many critical systems must be compliant with the Com-
mon Criteria,2 a requirement that is likely applicable to the EHRS as well. Among others,
the CC requires the implementation of access control policies and functions, and provides
details on how those security features must be realized. However, the huge size of the stan-
dard makes it challenging to identify those aspects that are relevant for the developed system.
To systematically identify those aspects, developers can take the list of security features
from the taxonomy that have been selected above and systematically look up the relevant
locations in the standard using the mapping between the two. This way, they can effectively
review whether all security features are implemented compliant with the CC, continuously
throughout the software development life cycle. External auditors can then use the list of the
implemented security features to identify the software components relevant for the security
audit of the system.

Using the mapping between the taxonomy and low-level security standards, developers
can systematically assess all implementation details needed for a certification of a software
system.

Locating security features in case of an incident Assuming an incident occurred, in which
a nurse was able to access billing data related to the treatment of a patient, developers have to
quickly react and recover all locations of the security features. A developer, who might (not)
be familiar with the system, is tasked with resolving the cause of the incident. To support the
investigation, the developer could leverage the taxonomy, which describes security features
in a hierarchical order, helping them to reason about security features that might play a
role in the incident. Based on the assumption of an authorization issue as a root cause of
the incident, the developer could leverage feature location techniques which function as a
search mechanism for identifying security features. Without requiring knowledge of these
techniques, the developer can query for security features related to authorization, allowing
the technique to automatically retrieve relevant locations of the usages of the authorization
feature. In combination with these usage locations, they could investigate the source code
providing the functionality that the nursewas able to execute.The analysiswould show that the
methodgetBillingData() is annotatedwith@PreAuthorize{ROLE_HOSPITAL-
STAFF}, which allows users with the role hospital staff to access billing information. Since
the method appears to be correctly annotated, there may be an issue with the role hierarchy.

Consequently, they additionally need to investigate the corresponding xml file, which
configures the role hierarchy. Here, it becomes evident that according to the role hierarchy,
the role nurse inherits all permissions from the role hospital staff. According to the use-case
diagram shown in Fig. 1, only hospital staff should have access to billing data, not nurses.
Due to the inheritance relation in the configuration, the nurse gained the permissions to read

2 https://www.commoncriteriaportal.org/products/index.cfm
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andwrite billing data. Therefore, the developer would need to fix the error by introducing two
roles, medical staff and administration staff, which splits the granted access permissions to
measurements and billing accordingly, and correct the role hierarchy as shown in Listing 8,
as well as the annotation. This change would lead to the correct role hierarchy as shown in
Listing 6. The differences in the distributed permissions are shown in Table 7.

As discussed in Sec. 6, security features manifest in a system via the usages of APIs
and annoations in source code as well as configuration files, which can be automatically
detected using feature location techniques to help developers locate relevant security fea-
tures. These techniques allow developers to retrieve feature locations without requiring
knowledge of their internal workings.

Reasoning about related security features After the role hierarchy has been changed
to fix the vulnerability discussed above, it is unclear what other parts of the system are
impacted by this change. Here, developers may also need to investigate other related security
features. For instance, while attribute-based access control and role-based access control may
now be correctly implemented, developers should still check what other security features
related to storing or retrieving data, such as secure storage, might be affected. Another
entry point for further investigation could be the parent feature Authorization, which may be
implemented either through custom code or other frameworks, which should all be checked.
Recovering this code requires feature location techniques which must take into account API
code, configurations, and annotations that security frameworks use to realize these security
features.

The taxonomy provides developers with an concise overview of functional security fea-
tures, which helps in reasoning about security features related with each other, i.e., since
multiple variants of access control are combined.

8 Discussion and implications

The results of our study suggest the following implications for practitioners and research
directions.
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Table 7 Role-based access
control policy for our EHRS. r =
read, w = write, (r) = read if
attribute is accepted; Bold
permissions are explicitly
specified and italic ones inherited

1 Inherited permissions, 2 Abstract roles

8.1 Practitioners

Practitioners can use our results to better understand security features, their coverage by
security frameworks as well as their relation to security standards. Because the taxonomy
provides an overview of security features, concise explanations, and references to more
detailed literature, it is also a good starting point for developers new to IT security. Our derived
taxonomy indicated that for each functional security feature, there are many different sub-
features relevant to practitioners, which need to be selected appropriately for each software
system. The taxonomy offers a selection of needed security features on a high abstraction
level,which are linked tomultiple security standards. This facilitates security feature selection
when working with security standards. Thereafter, as the taxonomy shows for which security
feature a security framework exists, it is possible to choose an appropriate security framework
based on the selection. For almost all of these security features, libraries and frameworks
should be used to minimize risks for security issues through custom implementations.

Functional security features provided by libraries and frameworks can also be used as an
entry point when performing code reviews. Our results show that configuration files are used
by many security frameworks and play an essential role when realizing certain functional
security features. Therefore, they should be reviewed as well. Aside from security features
based on annotations, the use of security frameworks and APIs still requires a substantial
amount of security-critical code, which is prone to insecurity and requires careful scrutiny.
By identifying relevant code locations and configuration files, either on the entire project
or when corresponding locations are changed, reviewers can be immediately pointed toward
those locations. Thereby, identified code locations can be automatically related to the security
features that are realized there instead of only low-level code statements that must be put into
context manually.

Some of the security features from the taxonomy, e.g., multi-factor authentication, must
be realized by developers by combining other security features. Here, the academic litera-
ture describes multiple helpful implementation-level security features by which frameworks
should be extended to providemore straightforward use and reduce the probability of insecure
implementations.

8.2 Researchers

As our results reveal that multiple security features are not offered by security frameworks,
our taxonomy implies several research directions. In our SLR, we captured five kinds of
functional implementation-level security features. While most features are provided by secu-
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rity frameworks, despite best practices that advise otherwise (Jakobsen and Orlandi 2016),
developers are likely to implement some of them on their own. Based on what the security
frameworks provide, we assume logging and data validation features to be most likely not
used as provided by security frameworks but to be mainly based on custom code. Addition-
ally, we foundmultiple security features, such as retention control and resource management,
to not be offered by any of the security frameworks. As such, it is essential to consider the
tendency toward custom implementation of such security features in research on security
compliance checks.

The reasons onwhy some security features are not included in security frameworks demand
further investigation in future work. As security frameworks, such as Bouncy Castle or
OpenSSL, are usually tailored towards specific use cases, some security frameworks imple-
ment some subfeatures of our taxonomy, but not all of them. Researchers should therefore
investigate, whether security framework developers are not aware of these security features,
or if there are other reasons for their exclusion.

Further, while our investigation provides a structured overview of security features avail-
able within security frameworks, future research should delve deeper into understanding
their actual implementation and usage in practice. Specifically, this could involve conduct-
ing developer studies to understand how practitioners implement and adapt these features in
practice or mining public repositories, such as GitHub, to identify security features in code-
bases. Our taxonomy provides a foundation for such investigations, enabling researchers to
analyze security features in actual implementations.

The use of established security frameworks not only lowers the risk of security issues in a
software system by avoiding custom insecure implementations of security features but also
provides easy-to-locate entry points for feature location techniques. To improve the location
of security-critical code, additional annotations for labeling source code can help identify
relevant code portions. Still, developers should not be overwhelmed by too many additional
annotations. Instead, information relevant to feature location can be gathered from security
frameworks, as discussed in Section 6.

In the context of security audits or security compliance checks, the location of the source
code portions corresponding to security features is essential. Our findings showed that con-
crete implementation-level security features might be relatively simple to locate. However,
when looking at the literature on design-time security requirements (Jürjens 2005; Peldszus
2022), we notice a divergence in abstraction between the security requirements, e.g., declara-
tion of what is sensitive information, and the concrete security features identified that will be
used for implementing such security requirements. Following security by design techniques,
security features are usually planned very abstractly but must be implemented taking a num-
ber of aspects into account to ensure that they are used securely and cannot be bypassed.
This gap in abstraction is comparable to the differences observed above between high-level
and low-level security standards and is a significant obstacle to checking the implementation
for compliance with its security design (Peldszus et al. 2019, 2024; Tuma et al. 2022). Since
our taxonomy of functional security features resides in between those two abstractions and
effectively maps between them, our findings can be used as a basis for novel security feature
traceability methods.

9 Threats to validity

We now discuss threats to validity.
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9.1 Internal validity

Internal validitymight be threatened by author bias. For once, the keywords that were used for
the systematic literature research were chosen by the authors. This might additionally have
an impact on the selection of the security standards, which were chosen based on the expert
knowledge of the authors. To minimize the bias, we employed several authors from different
research areas, such as the software engineering, security, and human factors domains, who
held frequent discussions. Through this process, the paper selection revealed a large sample
of security features considered in the literature. Therefore, relating the selected standards to
our taxonomy still revealed a strong overlap while also providing more general terms for
some categories within our taxonomy, confirming the representativeness of the sample. The
same bias could also threaten the validity of the mapping between the standards and our
taxonomy. To ensure the validity of the mapping, five authors held discussions on matches
and discrepancies. Discrepancies that lead to changes were resolved by the same authors as
well. Due to the open nature of the underlying discussions and achieving agreement being
the process and not its outcome, we did not provide inter-rater agreements. This may limit
the estimations of the challenges involved and the repeatability of this process.

A bias in selecting the security frameworks might be introduced by the Stack Overflow
and Reddit security framework selection. Security frameworks discussed on these platforms
may not accurately represent those widely used in industry, introducing a potential bias in
our selection. These discussions may highlight frameworks with greater usability challenges
or ones associated with popular programming languages. Additionally, thread recency could
skew the results, favoring frameworkswith active recent discussionswhile potentially exclud-
ing those still relevant but less frequently discussed. To address these potential biases, we
expandedour search to includemultiple developer communities, usingReddit alongsideStack
Overflow to confirm that selected frameworks are relevant across different communities. Fur-
ther, we might have wrongly excluded security frameworks based on our interpretation of the
discussion in the threads. Similarly, the investigation of the homepage, reference guide, and
the API documentation of the security frameworks for the framework security feature extrac-
tion could bias the resulting security features, as some security features might not have been
considered as security features in the analysis process. To minimize the threat of wrongly
excluding a security framework or security feature, two authors independently participated
in the framework selection process, extracted the security features from the security frame-
works, and held frequent discussions on the inclusion and exclusion of extracted features of
the security frameworks.

A final threat to the correctness and completeness might be imposed by the sources used
for the security feature search. The security features that can be extracted from the homepage,
reference guide, and the API documentation of the corresponding security frameworks may
not reveal a complete set of security features of each framework, as it might offer security
features that are not well documented. Therefore, there may be a few security features offered
by the security frameworks that we did not consider in this work. Still, with the selected
security frameworks and sources, we were able to provide a rich comparison of their features
to our taxonomy. Additionally, we were able to thoroughly reason about the realization of
security features within commonly discussed security frameworks.
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9.2 External validity

Multiple external factors threaten the generalizability of our results. The systematic literature
research and security framework search might not allow us to capture a representative sample
of the literature and security frameworks. Still, the chosen general keywords provide an
extensive collection of literature and security frameworks, emphasized by the strong overlap
between the taxonomy and security features from the security frameworks, as well as the
security standards.

Generalizability might also be threatened by the content of the selected papers we inves-
tigated. A large overlap between the investigated security standards and the literature in the
validation of the taxonomy revealed that this concern is not significant to our work. We
can, therefore, conclude that our taxonomy covers a wide range of security features to be
considered when implementing software systems.

Another threat to the generalizability of our results is introduced by utilizing Stack Over-
flow and Reddit as sources for the security framework investigation. The selection criteria
for security frameworks (being mentioned in two or more threads on Stack Overflow and
Reddit) might not reveal all popular frameworks. Since developers on Stack Overflow and
Reddit mainly discuss frameworks available to everyone, we could have missed frameworks
that are closed for public usage. Nonetheless, the investigated security frameworks contained
a large number of security features, which are included in our taxonomy.

10 Conclusion

In this paper, we present a taxonomy of functional implementation-level security features
based on an SLR of the literature, their mapping to widely used security standards, and
their relation to popular security frameworks. Following an empirical approach, we aim
to improve the understanding of the requirements for light-weight security feature location
support.Our taxonomycontains 68 security featureswith the top-level featuresaccess control,
cryptography, security monitoring, system state protection, and secure data handling. To
examine which security features are contained in security frameworks commonly discussed
on Stack Overflow and Reddit, we investigated existing security frameworks and related
the provided security features to our taxonomy. While most functional security features
considered in the literature are provided by security frameworks, there are still many that
need substantial implementation effort by developers.

Finally, as a first step towards light-weight security feature tracing approaches, we inves-
tigated how security frameworks provide security features to developers and discussed
strategies for locating security features to reduce the manual location effort to a minimum.
We found, that security features provided by security frameworks mostly manifest in forms
such as API calls, which are easy to identify in the codebase. As such, traceability techniques
are able to leverage this information to enable the quick location of security features.

The practical implications show how developers can use our taxonomy to choose secu-
rity features required to adhere to popular security standards and select appropriate security
frameworks. We focused on the literature and security frameworks as reliable sources, con-
stituting a self-contained study, still, follow-up work should investigate more data sources. A
logical next step is an empirical investigation of the security features presented in the taxon-
omywith practitioners to identify challenges and best practices in implementing them. Future
work should examine how these security features are applied in real software systems, either
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through developer studies or by mining public repositories such as GitHub. Our taxonomy
serves as a basis for this investigation, allowing researchers to assess the practical usage of
both framework-provided and custom-implemented security features. An affirmation of its
quality and usability would further support the claim of the practical implications.

Finally, we call for action to improve the location of security features while lowering
additional development-time effort. Our findings build a foundation for this objective by pro-
viding a deeper understanding of implementation-level security features andwhich indicators
could be used as entry points for their location. We hope that other researchers complement
our taxonomy. Based on that foundation, we aim to develop methods that can be used to
establish traceability between security feature models and their implementation in code.
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