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Abstract 

In the paper, pressure-dilatation and velocity-pressure-gradient terms in transport equations for 

subfilter turbulent kinetic energy are a priori explored by analyzing three-dimensional Direct 

Numerical Simulation (DNS) data obtained earlier from a moderately lean (the equivalence 

ratio Φ = 0.81) complex-chemistry hydrogen-air flame propagating in a box. The DNS 

conditions are associated with moderately intense (Kolmogorov time scale is shorter than flame 

time scale by a factor of above two), small-scale (Kolmogorov length scale is smaller than 

thermal laminar flame thickness by a factor of about 20) turbulence. The studied terms are 

computed by filtering out the DNS fields of velocity, density, pressure, and fuel mass fraction 

and adopting Gaussian or top hat filters of different widths, which are smaller or comparable 

with laminar flame thickness. Moreover, gradient models of the second order generalized 

central moments (joint cumulants), which are mainly applied to subfiter turbulent stresses and 

scalar fluxes in various flows, are extended to close the explored pressure-containing terms. 

Obtained results give priority to using the velocity-pressure-gradient term when compared to 

the pressure-dilatation term. Specifically, first, the former term is weakly sensitive to filter 

shape, whereas the latter term evaluated adopting the Gaussian filter is significantly larger than 

the same term yielded by the top-hat filter of the same width. Second, spatial variations of time- 

and transverse averaged velocity-pressure-gradient term within mean flame brush are well 

predicted by the newly introduced gradient model in all studied cases. While the sole model 

constant tuned to get the best prediction increases gradually with filter width, the constant 

remains of unity order in all cases. These results encourage further assessment of gradient 

models as a promising tool for large eddy simulation of premixed turbulent combustion. 

 

Introduction 

Since pioneering studies by Karlovitz et al. [1] and by Scurlock and Grover [2] the influence of 

combustion-induced thermal expansion on turbulence was addressed in numerous papers 

reviewed elsewhere [3-6]. The most common approach to allowing for such effects in numerical 

simulations of premixed combustion consists in using a transport equation for turbulent kinetic 

energy, which can be written in different forms, e.g., 
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Here, for an arbitrary quantity, 𝑞̅ designates either its ensemble-averaged value within 

Reynolds-Averaged Navier-Stokes (RANS) framework or its spatially filtered value within 

Large Eddy Simulation (LES) framework; 𝑞̃ = 𝜌𝑞̅̅̅̅ 𝜌̅⁄  refers to Favre-averaged or Favre-filtered 

quantity; 𝑡 and 𝑥𝑖 are time and Cartesian coordinates, respectively; 𝑘̃ = 0.5(𝑢𝑖𝑢𝑖̃ − 𝑢̃𝑗
2) and 

𝜏̃𝑖𝑗 = 𝑢𝑖𝑢𝑗̃ − 𝑢̃𝑖𝑢̃𝑗  are turbulent kinetic energy and Reynolds stress tensor, respectively, within 

RANS framework or subfilter-scale kinetic energy and stress tensor, respectively, within LES 

framework; 𝜌 and 𝑝 are density and pressure, respectively; 𝑢𝑖 are components of the velocity 

vector 𝐮; 𝜏𝜇,𝑖𝑗 is viscous stress tensor, with 𝜇 referring to dynamic viscosity; and the summation 

convention applies to repeated indexes. The sole difference between Eqs. (1) and (2) consists 

of either splitting terms that involve the stress tensor 𝜎𝑖𝑗 = 𝜏𝜇,𝑖𝑗 − 𝑝𝛿𝑖𝑗 into a transport term 

and a source/sink term, i.e., 𝜕(𝑢𝑗𝜎𝑖𝑗) 𝜕𝑥𝑖⁄  and 𝜎𝑖𝑗 𝜕𝑢𝑗 𝜕𝑥𝑖⁄  in the left and right hand sides of 

Eq. (1), respectively (lhs and rhs, respectively), or using the single term 𝑢𝑗 𝜕𝜎𝑖𝑗 𝜕𝑥𝑖⁄  on the rhs 

of Eq. (2). Here, 𝛿𝑖𝑗 is Kronecker delta. In combustion literature the former and latter 

approaches were used, e.g., in Refs. [6-8] and [8-12], respectively. 

Since   
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Eqs. (1) and (2) are mathematically identical. However, differences between the stress terms 

written in these two different forms could be significant in numerical simulations of turbulent 

combustion. The point is that contrary to low-Mach-number flows without heat release, where 

both local and mean dilatations are very small, magnitudes of terms 𝑝Θ̅̅̅̅  and 𝑝̅Θ̅ can be much 

larger than magnitudes of other terms in Eq. (1) in flames where significant (i.e., comparable 

with other velocity derivatives even after averaging) dilatation Θ = ∇ ∙ 𝐮 is multiplied with a 

very large pressure O(105) N/m2. Therefore, variations in the difference in 𝑝Θ̅̅̅̅  and 𝑝̅Θ̅ on the 

rhs of Eq. (1), e.g., due to the use of different filters within LES framework, can be significant 

when compared to other terms in Eq. (1). On the contrary, such a problem does not arise for the 

substantially smaller terms 𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅  and  𝐮̅ ∙ ∇𝑝̅. 

Accordingly, one goal of the present work is to perform a priori comparison of utility of 

the two discussed forms of presentation of the filtered pressure terms in Eqs. (1) and (2) for 

LES of premixed turbulent combustion. For these purposes, Direct Numerical Simulation 

(DNS) data created by Dave et al. [13,14] are analyzed. Another goal of the study consists in 

assessing gradient models of these pressure terms by processing the same DNS data.  

Such gradient models are introduced in the next section. In the third section, the DNS 

attributes are briefly reported, followed by presentation and discussion of computed results in 

the fourth section. Conclusions are drawn in the fifth section.   

 

Gradient Models 

Gradient models of the second order generalized central moments (joint cumulants) [15,16] of 

two fields 𝑓(𝐱, 𝑡) and 𝑔(𝐱, 𝑡), i.e., 

 

 𝜏̅(𝑓, 𝑔) ≡ 𝑓𝑔̅̅̅̅ − 𝑓𝑔̅̅          or            𝜏̃(𝑓, 𝑔) ≡ 𝑓𝑔̃ − 𝑓𝑔̃, (4) 

 



were pioneered by Leonard [17] and by Clark et al. [18]. In LES studies of premixed turbulent 

flames, such models were successfully applied to 𝜏̃(𝑢𝑖 , 𝑢𝑗), 𝜏̃(𝑢𝑖 , 𝑐), and 𝜏̃(𝑐, 𝑐) [6,19-23]. To 

the best of our knowledge, gradient models have not yet been applied to 𝜏̅(𝑝, Θ) or 

𝜏̅(𝑢𝑖, 𝜕𝑝 𝜕𝑥𝑖⁄ ), at least in combustion literature,  

Following Refs. [24-26], let’s derive gradient model equations by (i) applying Taylor 

expansion to a similarity model by Bardina et al. [27], which was proposed for incompressible 

flows, and (ii) considering the lowest-order terms.  

The similarity model reads 
 

    𝜏̅(𝑓, 𝑔) ≈ 𝜏̅(𝑓,̅ 𝑔̅) = 𝑓𝑔̅̅̅̅ ̅̅ − 𝑓̅𝑔̅̅̅.              (5) 

 

As shown by Cimarelli et al. [25], Eq. (5) can be rewritten in the following form 
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using Eq. (1) and the following identities: 

 

∬ 𝐺(𝐱, 𝛈)𝐺(𝐱, 𝛏)𝑓(̅𝛏, 𝑡)𝑔̅(𝛈, 𝑡)𝑑3𝛏𝑑3𝛈 = 𝑓̅𝑔̅̅̅,   (7) 

 

∬ 𝐺(𝐱, 𝛈)𝐺(𝐱, 𝛏)𝑓(̅𝛏, 𝑡)𝑔̅(𝛏, 𝑡)𝑑3𝛏𝑑3𝛈 = 𝑓𝑔̅̅̅̅ ̅̅ .   (8) 

 

Here, 𝐺(𝐱, 𝛏) is a generic filter kernel in space and 

 

    ∫ 𝐺(𝐱, 𝛏)𝑑3𝛏 = 1.     (9) 

 

Application of the first-order Taylor expansion to the differences inside the integral in Eq. 

(6) results in  
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for a regular Cartesian control volume and a top-hat filter of width ∆, i.e.,  
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where H is Heaviside function. Equation (11) constitutes the gradient model for the fields 𝑓 and 

𝑔. Specifically, Eq. (11) reads  
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Equations (13) and (14) are assessed in the rest of the paper. 

 

DNS Attributes and Diagnostic Methods 

Since DNS database was discussed by Dave et al. [13,14] and by the present authors in previous 

articles [28-35], only a summary of the DNS attributes is given below. The reader interested in 

further details is referred to the cited papers. 

A statistically planar and one-dimensional, lean H2-air turbulent flame propagating in a 

cuboid (19.18 × 4.8 × 4.8 mm) was simulated by adopting the Pencil code [36] to numerically 

solve unsteady and three-dimensional continuity, compressible Navier-Stokes, species and 

energy transport equations supplemented with the mixture-averaged molecular transfer model 

and a detailed chemical mechanism (9 species and 21 reactions) by Li et al. [37]. The cuboid 

was meshed with a uniform grid of 960 × 240 × 240 cells. At the transverse sides, boundary 

conditions were periodic. At the inlet and outlet, Navier-Stokes Characteristic Boundary 

Conditions (NSCBC) [38] were set.  

To pre-generate homogeneous isotropic turbulence in another cube with the fully periodic 

boundary conditions, large-scale forcing was adopted [13]. The turbulence was allowed to 

evolve until a statistically stationary state was reached. At this final stage, the rms velocity 𝑢′ =
6.7 m/s; an integral length scale 𝐿 = 3.1 mm; the integral time scale 𝜏𝑡 = 𝐿 𝑢′⁄ = 0.46 ms; the 

turbulent Reynolds number 𝑅𝑒𝑡 = 𝑢′𝐿 𝜈⁄ = 950; the Kolmogorov time scale 𝜏𝜂 =

(𝜈 〈𝜀〉⁄ )1 2⁄ = 0.015 ms; and the Kolmogorov length scale 𝜂 = (𝜈3 〈𝜀〉⁄ )1 4⁄ = 0.018 mm. 

Here, 𝜈 is kinematic viscosity; 〈𝜀〉 = 〈2𝜈𝑆𝑖𝑗𝑆𝑖𝑗〉 is the turbulence dissipation rate averaged over 

the cube; and 𝑆𝑖𝑗 = (𝜕𝑢𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ ) 2⁄  is the rate-of-strain tensor. 

At 𝑡 = 0, a pre-computed planar laminar flame (the equivalence ratio Φ = 0.81, the 

pressure 𝑃 = 1 bar, and the unburned gas temperature 𝑇𝑢 =310 K) was embedded into the 

cuboid at 𝑥 = 𝑥0. The laminar flame speed 𝑆𝐿, thickness 𝛿𝐿 = max{|∇𝑇|} (𝑇𝑏 − 𝑇𝑢)⁄ , and time 

scale 𝜏𝑓 = 𝛿𝐿 𝑆𝐿⁄  are equal to 1.84 m/s, 0.36 mm, and 0.20 ms, respectively. Here, subscripts u 

and b refer to unburned and burned mixtures, respectively. Subsequently, the flame was 

wrinkled and stretched by the pre-generated turbulence, which was continuously injected into 

the computational domain through its left boundary 𝑥 = 0 and decayed along the 𝑥-direction. 

It is worth stressing that for the equivalence ratio Φ = 0.81 addressed in the present work, 

diffusional-thermal effects discussed in detail elsewhere [39-41] are weakly pronounced despite 

the mixture is lean. For instance, a ratio of turbulent burning velocity to flame surface area is 

close to 𝑆𝐿 [31, Fig. 3]. 

The Karlovitz number 𝐾𝑎 = 𝜏𝑓 𝜏𝜂⁄  and the Damköhler number 𝐷𝑎 = 𝐿𝑆𝐿 (𝑢′𝛿𝐿)⁄ , 

evaluated using characteristics of the pre-generated turbulence, are equal to 13 and 2.35, 

respectively. Due to decay of the injected statistically stationary turbulence with distance 𝑥 

from the inlet, the turbulence characteristics averaged over the cuboid cross-section nearest to 

a plane where the transverse-averaged 〈𝑐〉(𝑥, 𝑡) = 0.01 (leading edge of the mean flame brush) 

are different: 𝑢′ = 3.3 m/s; the Taylor length scale 𝜆 = (10𝜈𝑢〈𝑘〉̅̅ ̅̅ 〈𝜀〉̅̅ ̅̅⁄ )
1 2⁄

= 0.25 mm or 

0.69𝛿𝐿
𝑇; 𝜂 = 0.018 mm or 0.05𝛿𝐿

𝑇; 𝜏𝜂 = 0.087 ms; 𝑅𝑒𝜆 = 𝑢′𝜆 𝜈𝑢⁄ = 55; and 𝐾𝑎 = 2.3 is 

much less than (𝛿𝐿 𝜂⁄ )2 ≅ 400, because 𝑆𝐿𝛿𝐿 𝜈𝑢⁄ ≫ 1 in moderately lean hydrogen-air 

mixtures [42]. Here, 𝑐 = 1 − 𝑌𝐹 𝑌𝐹,𝑢⁄  is the fuel-based combustion progress variable; 𝑌𝐹 is fuel 

mass fraction; 〈𝑘〉̅̅ ̅̅  and 〈𝜀〉̅̅ ̅̅  are time- and transverse-averaged turbulent kinetic energy and its 

dissipation rate, respectively, sampled at 58 instants from 1.0 to 1.57 ms. Henceforth, 〈∙〉̅̅ ̅ 

designates time- (overline) and transverse-averaged (angles) value of a local or filtered quantity, 

e.g., 〈𝑝̅〉̅̅ ̅̅ (𝑥) refers to axial variations of the filtered pressure field 𝑝̅(𝐱, 𝑡). 

The density field 𝜌(𝐱, 𝑡), the velocity field 𝐮(𝐱, 𝑡), and the combustion progress variable 

field 𝑐(𝐱, 𝑡), obtained in the DNS, are filtered out using box (top-hat) filters, see Eq. (12), of 



different widths ∆, equal to 0.22𝛿𝐿, 0.44𝛿𝐿, and 0.88𝛿𝐿. Moreover, the following Gaussian 

filter [43,44] 

 

 𝐺Δ(𝐱, 𝛏) =
1

Δ3
(

6

𝜋
)

3 2⁄
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6|𝛏|2

Δ2
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is used with Δ = 0.44𝛿𝐿. When testing Eqs. (13) and (14), the model constants 𝑏𝐷 and 𝑏𝐺, 

respectively, are inserted into these equations, i.e., the following gradient model equations  
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and 
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are assessed. Here, subscripts D and G in 𝑏𝐷 and 𝑏𝐺 refer to dilatation and gradient, respectively. 

In the following, variations of the considered terms within mean flame brush are reported 

vs. time- and transverse-averaged combustion progress variable by taking advantage of the 

monotonous increase in 〈𝑐〉̅̅ ̅̅ (𝑥) from zero to unity with distance 𝑥. Moreover, the terms 
⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩ and ⟨𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩ conditioned to |𝑐̅(𝐱, 𝑡) − 𝜉| < ∆𝜉 and sampled from the 

entire flame brush over all instances are also reported, with ∆𝜉 = 0.05.  

 

Results and Discussion 

Figure 1 shows variations of subfilter pressure-dilatation term 𝜏̅(𝑝, Θ) within mean flame brush, 

with both time- and transverse-averaged term 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and conditioned terms ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩ 

being presented, see curves plotted in black dots and color lines, respectively. As far as results 

obtained using the top hat filters are concerned, the following trends are worth noting. 

First, magnitudes of both the mean term 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the conditioned terms 
⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩ are decreased with decreasing the filter width ∆, cf. scales of ordinate axes in 

Figs. 1a, 1b, and 1d. This observation is associated with the fact that the difference in 𝑝Θ̅̅̅̅  and 

𝑝̅Θ̅ tends to zero as ∆→ 0. 
Second, the conditioned terms have the largest magnitude at 𝜉 = 0.1 if Δ = 0.22𝛿𝐿, with 

the term being negative, see curve plotted in violet dashed line in Fig. 1a. If Δ = 0.88𝛿𝐿, the 

largest magnitude of ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩ is reached at 𝜉 = 0.7, with the term being positive, see 

curve plotted in magenta dotted-double-dashed line in Fig. 1d. At Δ = 0.44𝛿𝐿, magnitudes of 

the negative ⟨𝜏̅(𝑝, Θ)|𝑐 = 0.1⟩ and the positive ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 0.5⟩ are comparable, see Fig. 1b. 

Third, as already noted, the conditioned term changes its sign from negative at 𝜉 =  0.1 to 

positive at 𝜉 =  0.5 and 𝜉 =  0.7, see curves plotted in violet dashed, orange solid, and 

magenta dotted-doubled-dashed lines, respectively, in Figs. 1a, 1b, or 1d. At 𝜉 =  0.3, the term 

is positive if Δ = 0.22𝛿𝐿, but is negative if Δ = 0.44𝛿𝐿 or Δ = 0.88𝛿𝐿, see curves plotted in 

blue double-dotted-dashed lines. The observed dependence of the sign of ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩ on 

the sampling variable 𝜉 can be explained by recalling that the studied flame statistically retains 

the local structure of the counterpart unperturbed laminar premixed flame [28,29,31,32]. In the 

latter flame, pressure monotonously decreases from unburned to burned sides, whereas 

dilatation grows from zero to a peak value reached at 𝑐 ≈ 0.3 and decreases with further 

increasing 𝑐. Accordingly, correlation between pressure and dilatation should be negative and 

positive at 𝑐 < 𝑐∗ and 𝑐 > 𝑐∗, respectively, with 𝑐∗ ≈ 0.3. These simple reasoning explain the 

opposite signs of ⟨𝜏̅(𝑝, Θ)|𝑐 = 0.1⟩ < 0 and ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 0.5⟩ > 0. 
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Figure 1. Variations of pressure-dilatation term 𝜏̅(𝑝, Θ) within mean flame brush. Black 

dotted lines show time- and transverse-averaged term 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Color lines show conditioned 

terms ⟨𝜏̅(𝑝, Θ)|𝑐̅ = 𝜉⟩, with the values of the conditioning variable 𝜉 being specified near 

curves. All terms are normalized using 𝛿𝐿 (𝜌𝑢𝑆𝐿
3)⁄ . (a) Top hat filter, Δ = 0.22𝛿𝐿. (b) Top hat 

filter, Δ = 0.44𝛿𝐿. (c) Gaussian filter, Δ = 0.44𝛿𝐿. (d) Top hat filter, Δ = 0.88𝛿𝐿. 

 

Fourth, due to the emphasized dependence of the sign of ⟨𝜏̅(𝑝, Θ)|𝑐 = 𝜉⟩ on 𝜉, positive and 

negative contributions to the mean term  〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ partially counterbalance one another and the 

mean term magnitudes, see curves plotted in black dots, are much smaller than magnitudes of 

the conditioned terms sampled at 0.1 ≤ 𝜉 ≤ 0.7. Moreover, these differences in the magnitudes 

of 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and ⟨𝜏̅(𝑝, Θ)|𝑐 = 𝜉⟩ are associated with the fact that dilatation is localized to thin 

zones in a typical premixed turbulent flame and, in particular, in the studied flame [30]. When 

averaging is performed over a transverse plane, probability of finding such zones is low and the 

mean terms 𝑝Θ̅̅̅̅  and 𝑝̅Θ̅ are relatively small. When averaging is performed over volumes 

characterized by 𝑐̅(𝐱, 𝑡) = 0.1 or 0.5, probability of finding large dilatation is substantial and 

the magnitude of the conditioned term ⟨𝑝Θ̅̅̅̅ |𝑐̅ = 𝜉⟩ or ⟨𝑝̅Θ̅|𝑐̅ = 𝜉⟩ is significantly larger when 

compared to its mean counterpart. 

Dependence of both sign and magnitude of ⟨𝜏̅(𝑝, Θ)|𝑐 = 𝜉⟩ on 𝜉 seems to pose a challenge 

to models of 𝜏̅(𝑝, Θ) for LES of premixed turbulent combustion. Even much more serios 

challenge is revealed by comparing Figs. 1b and 1c, which show that both qualitative behaviour 

and magnitudes of both mean and conditioned terms are very different for top hat and Gaussian 

filters, with all other things being equal. These observations are associated with great sensitivity 

of very small differences 𝑝Θ̅̅̅̅ − 𝑝̅Θ̅  (see scales of ordinate axes in Figs. 1b or 1c) between very 



large terms 𝑝Θ̅̅̅̅  and 𝑝̅Θ̅, see Fig. 2a, to small variations in numerics. Note that 〈𝑝̅Θ̅〉̅̅ ̅̅ ̅̅ (〈𝑐〉̅̅ ̅̅ )- and 

〈𝑝Θ̅̅̅̅ 〉̅̅ ̅̅ ̅̅ (〈𝑐〉̅̅ ̅̅ )-curves are indistinguishable in Fig. 2a, as well as curves obtained using top hat and 

Gaussian filters (cf. black and red curves) or different filter widths (not shown for brevity). 

Since independence of results on the choice of filter shape is a cornerstone hypothesis of LES, 

comparison of Figs. 1b and 1c calls into question the utility of adopting the terms 𝑝Θ̅̅̅̅  and 𝑝̅Θ̅ 

in LES of premixed turbulent flames. 
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Figure 2. Variations of time- and transverse-averaged terms (a) 〈𝑝̅Θ̅〉̅̅ ̅̅ ̅̅  (lines) and 〈𝑝Θ̅̅̅̅ 〉̅̅ ̅̅ ̅̅  

(symbols) or (b) −〈𝐮̅ ∙ ∇𝑝̅̅̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (lines) and −〈𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (symbols) and within mean flame brush. Δ =
0.44𝛿𝐿. Black and red lines/symbols show results obtained using top hat and Gaussian filters, 

respectively. All terms are normalized using 𝛿𝐿 (𝜌𝑢𝑆𝐿
3)⁄ . 

 

Comparison of scales of ordinate axes in Figs. 2b and 3 shows that |〈𝐮̅ ∙ ∇𝑝̅̅̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | and |〈𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | 

are also significantly larger than |〈𝐮̅ ∙ ∇𝑝̅̅̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 〈𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |. However, the difference in magnitudes 

of |〈𝐮̅ ∙ ∇𝑝̅̅̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | or |〈𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | and |〈𝐮̅ ∙ ∇𝑝̅̅̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 〈𝐮 ∙ ∇𝑝̅̅ ̅̅ ̅̅ ̅̅ 〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | is much smaller than the counterpart 

difference for the pressure-dilatation terms, e.g., scales of ordinates axes in Figs. 1a and 3a, 1b 

and 3b, or 1d and 3d are comparable, whereas scale of ordinate axis in Fig. 2a is much larger 

when compared to Fig. 2b. Therefore, sensitivity of 𝜏̅(𝐮, ∇𝑝) to numerics is significantly less 

pronounced and similar results are obtained using top hat and Gaussian filters with Δ = 0.44𝛿𝐿, 

cf. Figs. 3b and 3c. 

With the exception of this very important difference between 𝜏̅(𝑝, Θ)) and 𝜏̅(𝐮, ∇𝑝), other 

trends observed in Figs. 1 and 3 are similar. Specifically, first, magnitudes of both the mean 

term 〈𝜏̅(𝐮, ∇𝑝)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the conditioned terms ⟨𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩ are decreased with decreasing the 

filter width ∆, cf. scales of ordinate axes in Figs. 3a, 3b, and 3d. Second, magnitude of the mean 

term  〈𝜏̅(𝐮, ∇𝑝)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is much smaller than magnitudes of the conditioned terms ⟨𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩ 
sampled at 0.1 ≤ 𝜉 ≤ 0.7 Third, both magnitude and sign of ⟨𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩ vary 

significantly with the sampling variable 𝜉, e.g., this term is negative at 𝜉 = 0.1 or 0.3, see curves 

plotted in violet dashed or blue double-dotted-dashed lines in Fig. 3 and note that this curves 

show ⟨−𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩, because the rhs of Eq. (2) involves −𝜏̅(𝐮, ∇𝑝). On the contrary, 
⟨𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 0.7⟩ > 0, see curves plotted in magenta dotted-double-dashed lines. 

Results of assessing gradient models of both 𝜏̅(𝑝, Θ) and 𝜏̅(𝐮, ∇𝑝) are plotted in Fig. 4 in 

red and black lines, respectively. With the exception of 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ yielded by the Gaussian filter, 

the DNS data (solid lines) are reasonably well predicted by the gradient models without any 

tuning, i.e., by Eqs. (16)-(17) with 𝑏𝐷 = 𝑏𝐺 = 1 (dashed lines).  
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Figure 3. Variations of velocity-pressure-gradient term 𝜏̅(𝐮, ∇𝑝) within mean flame brush. 

Black dotted lines show time- and transverse-averaged term 〈−𝜏̅(𝐮, ∇𝑝)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Color lines show 

conditioned terms ⟨−𝜏̅(𝐮, ∇𝑝)|𝑐̅ = 𝜉⟩, with the values of the conditioning variable 𝜉 being 

specified near curves. All terms are normalized using 𝛿𝐿 (𝜌𝑢𝑆𝐿
3)⁄ . (a) Top hat filter, Δ =

0.22𝛿𝐿. (b) Top hat filter, Δ = 0.44𝛿𝐿. (c) Gaussian filter, Δ = 0.44𝛿𝐿. (d) Top hat filter, Δ =
0.88𝛿𝐿. 

 

Nevertheless, difference between the DNS and model results increases with increasing the 

filter width ∆, cf. Figs. 4a and 4d. Predictions can be significantly improved by tuning the 

constants 𝑏𝐷 and 𝑏𝐺 in Eqs. (16) and (17), respectively, cf. curves plotted in solid and dotted 

lines. It is remarkable that the curve shapes are well predicted in all cases with the exception of 

𝜏̅(𝑝, Θ) computed by adopting the Gaussian filter. Results obtained by tuning 𝑏𝐷 in that case 

are not shown in Fig. 4c, because the use of very large values of model constants does not seem 

to be basically justified. 

The tuned values of 𝑏𝐷 and 𝑏𝐺 reported in Table 1, show a gradual increase with ∆. 

Nevertheless, the tuned values remain of unity order and this fact implies that gradient models 

are promising even for the pressure-containing terms. However, it is worth noting that the 

largest filter width used in the present work is on the order of laminar flame thickness. Such a 

limitation is typical for a priori analysis of DNS data obtained from three-dimensional complex 

chemistry turbulent flames, because a ratio of computational width to 𝛿𝐿 is still rather moderate 

in such simulations reviewed elsewhere [45]. Accordingly, substantially larger values of 𝑏𝐺 

may be expected for larger Δ 𝛿𝐿⁄ . Under such conditions, dynamic-modelling approach 



pioneered by Germano et al. [46] could be used to determine 𝑏𝐺. In any case, close agreement 

between curves plotted in solid and dotted lines in Fig. 4 lends support to gradient models. 
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Figure 4. Assessment of gradient models for subfilter pressure-dilatation term 𝜏̅(𝑝, Θ) (red 

lines) and subfilter velocity-pressure-gradient term 𝜏̅(𝐮, ∇𝑝) (black lines). Solid lines show 

time- and transverse-averaged terms 〈𝜏̅(𝑝, Θ)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 〈𝜏̅(𝐮, ∇𝑝)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Dashed lines show results 

yielded straightforwardly by gradient models, see Eqs. (16) and (17) with the constants 𝑏𝐷 =
𝑏𝐺 = 1. Dotted lines show results yielded by gradient models with tuned values of the 

constants 𝑏𝐺 and 𝑏𝐷, reported in Table 1. All terms are normalized using 𝛿𝐿 (𝜌𝑢𝑆𝐿
3)⁄ . (a) Top 

hat filter, Δ = 0.22𝛿𝐿. (b) Top hat filter, Δ = 0.44𝛿𝐿. (c) Gaussian filter, Δ = 0.44𝛿𝐿. (d) Top 

hat filter, Δ = 0.88𝛿𝐿. 

 

Table 1. Tuned values of model constants. 

 

Filter 𝑏𝐷 in Eq. (16) 𝑏𝐺 in Eq. (17) 

Top hat, Δ = 0.22𝛿𝐿 0.94 0.93 

Top hat, Δ = 0.44𝛿𝐿 1.12 1.14 

Gaussian, Δ = 0.44𝛿𝐿 - 1.15 

Top hat, Δ = 0.88𝛿𝐿 1.39 1.59 

 

Recently, Wang et al. [12] supported the following equation: 

 

 𝑢𝑖
𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅
− 𝑢̃𝑖

𝜕𝑝̅

𝜕𝑥𝑖
= 𝐶𝑝∆2 𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕2𝑝̅

𝜕𝑥𝑖𝜕𝑥𝑘
 (18) 



in their a priory analysis of DNS data obtained from a premixed swirling flame. However, to 

get good agreement between Eq. (18) and those DNS data, Wang et al. [12, Fig. 3] were forced 

to significantly increase 𝐶𝑝 when compared to 1/12. On the face of it, these recent results are 

inconsistent with the present analysis. However, this is not so, because the lhs of Eq. (18) differs 

from 𝜏̅(𝐮, ∇𝑝) analysed by us. Indeed, 
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𝜕𝑥𝑖
+ (𝑢̅𝑖 − 𝑢̃𝑖)

𝜕𝑝̅

𝜕𝑥𝑖
= 𝜏̅ (𝑢𝑖 ,

𝜕𝑝

𝜕𝑥𝑖
) + (𝑢̅𝑖 − 𝑢̃𝑖)

𝜕𝑝̅

𝜕𝑥𝑖
, (19) 

 

i.e., the closure relation assessed by Wang et al. [12] differs from the gradient model explored 

by us, see Eq. (17). Moreover, the right hand sides of Eqs. (17) and (19) involve 𝜕𝑢̅𝑖 𝜕𝑥𝑘⁄  and 

𝜕𝑢̃𝑖 𝜕𝑥𝑘⁄ , respectively. 

 

Conclusions 

Pressure-dilatation and velocity-pressure-gradient terms in transport equations for subfilter 

turbulent kinetic energy were a priori explored by analyzing three-dimensional DNS data 

obtained by Dave et al. [13,14] from a moderately lean complex-chemistry hydrogen-air flame 

propagating in moderately intense, small-scale turbulence in a box. The terms were computed 

by filtering out the DNS fields of velocity, density, pressure, and fuel mass fraction and 

adopting Gaussian or top hat filters of different widths, which were smaller or comparable with 

laminar flame thickness.  

In addition, gradient models of the second order generalized central moments (joint 

cumulants), which were mainly applied to subfiter turbulent stresses and scalar fluxes in various 

flows, were further extended to close the explored pressure-containing terms.  

The reported numerical results give priority to using the velocity-pressure-gradient term 

when compared to the pressure-dilatation term, because the former term is weakly sensitive to 

filter shape, whereas the latter term evaluated adopting the Gaussian filter is significantly larger 

than the same term yielded by the top-hat filter of the same width. The latter result is associated 

with great sensitivity of a small difference in two very larger quantities to numerics. 

Moreover, spatial variations of time- and transverse averaged velocity-pressure-gradient 

term within mean flame brush were shown to be well predicted by the newly introduced 

gradient model in all studied cases (different filter shapes or widths). While the sole model 

constant tuned to get the best prediction increases gradually with filter width, the constant 

remains of unity order in all cases. These results encourage further assessment of gradient 

models as a promising tool for LES research into premixed turbulent combustion. 
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