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 A B S T R A C T

Textile-reinforced concrete (TRC) exhibits a complex mechanical response, necessitating accurate and advanced 
models for analysis. This work shows the possibilities to model TRC using a two-scale approach. On the 
sub-scale, the response is predicted using Representative Volume Elements (RVEs), where the textile yarns 
are resolved. This approach makes it possible to capture the effects of bond–slip, interfilament slip, as well 
as concrete cracking and crushing. The large-scale plate response, in terms of membrane forces and bending 
moments, is obtained by homogenizing the results from the RVE using Kirchhoff plate kinematics. The outcome 
shows the possibilities of obtaining effective large-scale responses for varying sub-scale configurations. In this 
way, we omit the need for re-calibrating the large-scale model for every new reinforcement configuration. The 
scale-bridging framework developed in this work can be employed in large-scale plate and shell models to 
predict the effective constitutive response of TRC.
1. Introduction

Textile-reinforced concrete (TRC) is an emerging composite material 
with potential as an efficient alternative to steel reinforced concrete 
(Brameshuber, 2006). Unlike steel, the textile fibers used are not sus-
ceptible to corrosion, eliminating the need for a passivating concrete 
cover and reducing the total amount of required concrete. In general, 
TRC performs well in the serviceability state, where the fine rein-
forcement mesh results in a favorable crack pattern with many small 
cracks (Preinstorfer et al., 2019). Moreover, TRC can be used for curved 
structures since the flexible textiles easily can be bent. This capability 
opens up the possibility of manufacturing for instance lightweight 
ceiling systems using curved shells as in May et al. (2018). TRC 
has also been demonstrated for use in lightweight low-maintenance 
bridges (Helbig et al., 2016). While TRC has been demonstrated to have 
properties that make it an appealing alternative to steel reinforcement 
for many applications, its widespread adoption remains limited. One 
reason for this is the lack of knowledge of the mechanical behavior of 
TRC (Preinstorfer et al., 2023), such as stress redistribution and strain 
softening due to matrix cracking and yarn debonding (Sharei et al., 
2017). Moreover, since TRC exhibits less ductility than conventional 
reinforced concrete, it is paramount to base the design on a realistic 
stress distribution, since stress redistribution is limited  (Yu et al., 
2021). Consequently, there is a necessity for accurate non-linear me-
chanical models that describe the complex response for various loading 
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conditions. The complex behavior of TRC stems from the interaction 
between the reinforcement yarns and the concrete and cracking of the 
concrete (Chudoba et al., 2016). Unlike steel reinforcement, where the 
bars have a uniform stress, the stress in the yarns is non-uniform due 
to interfilament slip. This interfilament slip, which also leads to partial 
activation of the inner filaments, can be modeled with efficiency factors 
for strength and stiffness as in  (Hegger and Voss, 2008; Sciegaj et al., 
2022). These factors vary between 1 for full activation and 0 for no 
activation of the filaments.

Several authors have addressed the influence of the sub-scale com-
position on large-scale behavior. One approach is to use multi-scale 
modeling to account for the sub-scale heterogeneities. In short, multi-
scale modeling acknowledges the fact that the effective response of 
a material is determined from phenomena that occur on multiple 
different smaller length scales. To this end, the material is modeled on 
different length scales, capturing different phenomena, and then coarse-
grained to obtain an effective response at the larger length scales (Geers 
et al., 2010). The coarse-graining, often referred to as homogenization, 
is typically based on some kind of averaging of the response on the 
smaller scales, either by analytical or numerical methods. By using 
computational homogenization, it is possible to capture the response of 
complex sub-structures without having to use restrictive assumptions 
as when using analytical homogenization (Yvonnet, 2019). Typically, 
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since the response on the different scales is dependent on the response 
on the other scales, the problem has to be solved concurrently. One 
popular such approach is the FE2 method, where each integration point 
in the large-scale mesh is associated with a Representative Volume 
Element (RVE). For each load step, the solution on the large scale is 
sent to the sub-scale and applied as boundary conditions to the RVE. 
Subsequently, the solution from the RVE is homogenized and sent back 
to the large scale (Feyel and Chaboche, 2000). A drawback of com-
putational homogenization is its computational expense, as concurrent 
analyses must be performed at multiple length scales. However, this 
can somewhat be compensated by solving the sub-scale problems in 
parallel (Coenen et al., 2010). An example of a multi-scale modeling 
approach using Eshelby’s solution for TRC can be found in Richter 
(2005). The major advantage of such an analytical homogenization 
model lies in its simplicity and ability to capture sub-scale features 
efficiently. Some disadvantages however, as pointed out by the au-
thor, are that such a model is restricted to relatively simple sub-scale 
configurations, constitutive models and boundary conditions. A similar 
model developed by Zastrau et al. (2008) is the hierarchical multi-
scale framework, that can be used to model TRC on three different 
length scales, predetermining the scale transition before the simulation. 
Another modeling approach that has been used is the semi-smeared 
layered type of model, where the influence of each reinforcement layer 
is smeared in the plane and then stacked with plain concrete layers 
to form a composite cross layup, see e.g. Kadi et al. (2018). Although 
this approach has demonstrated overall accuracy, it presents certain 
drawbacks. Specifically, the material response of the reinforcement 
layer must be re-calibrated whenever the reinforcement configuration 
changes. Additionally, the smeared representation of the reinforcement 
means that the dependency between crack spacing and yarn spacing, 
and local effects, such as yarn pullout, cannot be accurately captured.

While homogenization primarily has been used to scale up the 
response in a general 3D setting, work has been done to scale up the 
response to effective structural members such as beams, plates and 
shells. In particular, methods for scaling up the response to planar shells 
using Kirchhoff–Love kinematics have been developed in e.g. Geers 
et al. (2010), Mercatoris and Massart (2011), Challagulla et al. (2008) 
and Oskay and Pal (2010), with the latter two employing asymptotic 
homogenization to derive effective properties. Similarly, methods for 
scaling up the response to thick shells using Reissner–Mindlin kinemat-
ics have been developed, e.g. in Coenen et al. (2010) and Petracca et al. 
(2017). A consistent method of deriving the multi-scale problem from 
the single-scale problem, denoted Variationally Consistent Homoge-
nization (VCH), was developed in Larsson et al. (2010) and has been 
applied by Sciegaj et al. (2020) to model steel-reinforced concrete using 
Kirchhoff–Love kinematics and by Börjesson et al. (2023) to model 
composites using Reissner–Mindlin kinematics. Another approach to 
account for the sub-scale damage and anisotropy of TRC is the micro-
plane damage model, which makes it possible to use a homogeneous 
shell representation of TRC at the large-scale (Chudoba et al., 2016; 
Platen et al., 2023). However, this model requires re-calibration when 
the cross-section layout or reinforcement configuration is changed.

Although most aspects of the modeling of TRC have been considered 
through a variety of different analytical and numerical methods, there 
is still a need of a comprehensive computational framework for the 
analysis of arbitrary large-scale TRC plate and shell structures. In this 
paper, we propose, as a first step in such a modeling framework, an 
upscaling framework from the sub scale RVE to the large scale effective 
homogeneous Kirchhoff–Love plate. Currently, only planar textiles are 
considered, meaning that yarns are assumed to be straight. However, 
no restrictions are imposed on their orientation or length, hence the 
proposed technique could be used to model simple 3D textiles. This 
framework considers concrete cracking and crushing, bond–slip, and 
interfilament slip on the sub-scale and only requires calibration on the 
sub-scale. The developed upscaling approach is suited for accurately 
modeling large-scale plate and shell structures without having to fully 
2 
resolve all sub-scale features. At the sub-scale, we model TRC using 
RVEs, where we resolve the yarns and the interface with the concrete. 
The upscaling to the large-scale plate model follows the approach 
in Sciegaj et al. (2020), where the effective-plate membrane forces and 
bending moments are obtained by employing a homogenization scheme 
based on the Kirchhoff–Love plate kinematics. Although the upscaling 
in this work is done for plates, it could be used to model shells by using 
planar facet shell elements. The motivation for choosing a two-scale 
modeling approach is twofold. Firstly, we note that the overall response 
of TRC is heavily influenced by the sub-scale composition and behav-
ior (Rampini et al., 2019). By modeling TRC on the finer sub-scale, 
we can employ a bond–slip model that captures the complex yarn-
concrete interaction  (Sciegaj et al., 2022). Secondly, we acknowledge 
that it is infeasible to model large-scale structures with fully resolved 
models (Unger and Eckardt, 2011).

The remainder of this paper is organized as follows: Section 2 de-
scribes the mechanical model used for modeling TRC on the sub-scale. 
This includes the approximation of the yarn and the interface between 
the yarn and the concrete as well as the formulation of the weak 
problem for equilibrium of the yarns and the concrete. Section 3 treats 
the two-scale modeling using VCH and the associated prolongation 
and homogenization operators used. Based on this, the sub-scale and 
large-scale problems are derived. In Section 4, the material models and 
parameters used for the numerical studies are presented. In Section 5, 
the upscaling framework is validated and then used to demonstrate how 
effective large-scale moment–curvature and strain-membrane force re-
lations can be obtained. Also, the influence of RVE size and different 
boundary conditions is investigated. Finally, the results and suggestions 
for further work are discussed in Section 6.

2. Modeling of textile-reinforced concrete

This section outlines the modeling approach for the yarns, the 
concrete, and the interface between them. The starting point is a fully 
resolved 3D representation of the yarns. From this, certain approx-
imations and the introduction of efficiency factors for strength and 
stiffness allow us to idealize the response of the yarns as functions of 
their centerline coordinate. Additionally, we account for the weakening 
effect by reducing the concrete’s stiffness, strength, and fracture energy 
in proportion to the volume occupied by the yarns. The concrete is mod-
eled as a continuum, and damage is accounted for using an isotropic 
damage model. Finally, the equilibrium equations are established in 
both the strong and weak form.

2.1. Idealization of the yarns

Consider a textile yarn composed of multiple filaments that occupy 
the domain 𝛺r , with the longitudinal coordinate 𝑙 ∈ 𝛤r passing through 
the centroid. The boundary of the yarn is divided into a lateral part 
𝜕𝛺r,lat surrounding the yarn and a part 𝜕𝛺r,end at the yarn’s ends, such 
that 𝜕𝛺r = 𝜕𝛺r,lat ∪ 𝜕𝛺r,end, see Fig.  1. An arbitrary cross-section of 
the yarn is denoted 𝐴r and the associated boundary is denoted 𝜕𝐴r . 
The yarn is considered to be homogeneous, with the displacement field 
𝒖̃r (𝒙̂, 𝑙) and the stress field 𝝈̃r (𝒙̂, 𝑙), for 𝒙̂ ∈ 𝐴r . For an arbitrary point 
𝒙 ∈ 𝛺̄r , we define 𝒙r as the closest point on 𝛤r , i.e. 

𝒙r (𝒙) ∶= arg min
𝒙̂r∈𝛤𝑟

‖𝒙 − 𝒙̂r‖. (1)

Using this definition, it is now possible to approximate the yarn 
displacement 𝒖̃r as the displacement at 𝒙r (𝒙)

𝒖̃r (𝒙) ≈ 𝒖r
(

𝒙r (𝒙)
)

, (2)

where 𝒖  is only defined on 𝛤 .
r r
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Fig. 1. Cut-out of a textile yarn showing the displacement and stress fields.
2.1.1. Normal force in the yarn
Following the approach in Richter (2005), the yarn is assumed not 

to transfer any normal or shear stresses in the transverse direction. 
Moreover, the bending stiffness of the yarn is assumed to be small. As 
a consequence, it suffices to consider only the normal stress component 
along the yarn 𝜎̃r ∶= 𝝈̃r ∶

[

𝒆l ⊗ 𝒆l
]

. From this, the normal force in an 
arbitrary cross-section of the yarn is obtained as 

𝑁r = ∫𝐴r

𝜎̃r d𝐴 = 𝐴r𝜎r
(

𝒙r
)

, (3)

where the normal stress 𝜎̃r is represented by its average 𝜎r
(

𝒙r
) defined 

on 𝛤r , see Fig.  2. The yarns are assumed to have a linear elastic 
response, even though the yarns exhibit a non-linear behavior at low 
strains due to the straightening of the filaments (Bruckermann, 2007), 
and progressive failure at high strains (Bruckermann, 2007; Krüger, 
2004). This approximation has proven to be sufficient for modeling the 
response of TRC (Sciegaj et al., 2023). Using this assumption of linear 
elasticity, the varying normal stress 𝜎̃r in the yarn can be related to the 
varying normal strain 𝜀̃r using the nominal stiffness 𝐸0

r  (the stiffness 
of a single filament) and the uniform normal stress 𝜎r can be related to 
the uniform normal strain 𝜀r using the effective stiffness 𝐸r respectively, 
i.e. 
𝜎̃r = 𝐸0

r 𝜀̃r , 𝜀̃r ∶=
[

𝒖̃r ⊗ ∇
]

∶
[

𝒆l ⊗ 𝒆l
]

(4a)

𝜎r = 𝐸r𝜀r , 𝜀r ∶=
d𝑢r
d𝑙

(4b)

where 𝑢r = 𝒖r ⋅ 𝒆l is the longitudinal component of the uniform yarn 
displacement. By inserting Eqs.  (4a) and (4b) in Eq. (3), one obtains 
the relation between the nominal and the effective stiffness 

𝐸r = 𝜂𝐸𝐸
0
r , 𝜂𝐸 ∶=

1
𝐴r

∫𝐴r
𝜀̃r d𝐴

𝜀r
(5)

where 𝜂𝐸 is assumed to be a constant efficient factor. Moreover, we 
define that failure of the yarn occurs when the most stressed filament 
reaches the nominal strength 𝑓 0

u , i.e. the strength of a single filament. 
Equivalently, the effective failure stress 𝑓u can be related to the uniform 
stress 𝜎r

max
𝒙̂∈𝐴𝑟

𝜎̃r (𝒙̂, 𝑙) = 𝑓 0
u , (6a)

𝜎r = 𝑓u (6b)

By combining these failure criteria, together with Eq. (3), it is 
possible to relate the uniaxial strength of the yarn 𝑓u and the nominal 
strength of a single filament 𝑓 0

u  as 

𝑓u = 𝜂f𝑓
0
u , 𝜂f =

1
𝐴r

∫𝐴r
𝜎̃r d𝐴

max𝒙̂∈𝐴𝑟
𝜎̃r (𝒙̂)

. (7)

This strength efficiency factor 𝜂f  can be identified as the same one 
used in e.g. as in Peled and Bentur (2000). Note that both 𝜂E and 𝜂f
have to be determined from experimental testing.
3 
Fig. 2. Idealization of the normal stress in a cross-section of a yarn.

2.1.2. Compatibility between yarn and concrete
The yarn is assumed to be rigidly coupled to the concrete in the 

transverse direction, which in general can be expressed as 
𝒖r,⟂(𝒙r (𝒙)) = 𝒖c,⟂(𝒙) on 𝜕𝛺r,lat , (8)

where 𝒖r,⟂ =
[

𝑰 − 𝒆l ⊗ 𝒆l
]

⋅ 𝒖r and 𝒖c,⟂ =
[

𝑰 − 𝒆l ⊗ 𝒆l
]

⋅ 𝒖c are the 
transverse displacement components of the yarn and the concrete re-
spectively. The yarn is however allowed to slip relative to the concrete 
in the longitudinal direction. The slip, generally varying around the 
perimeter of the yarn 𝜕𝛺r,lat , between the concrete and the yarn is 
defined as the relative displacement in the longitudinal direction, i.e. 
𝑠̃l(𝒙) = 𝑢r (𝒙r (𝒙)) − 𝑢c,l(𝒙) on 𝜕𝛺r,lat , (9)

where 𝑢c,l = 𝒖c ⋅ 𝒆l is the longitudinal projection of the concrete 
displacement, and as we recall 𝑢r = 𝒖r ⋅ 𝒆l. The bond–slip in the 
longitudinal direction gives rise to a conjugate longitudinal traction 
component 𝑡b,l(𝑠̃l) = 𝒕̃b ⋅ 𝒆l between the concrete and the yarn, where ̃𝒕b
is the traction between the concrete and the reinforcement yarn. Note 
that the transverse component 𝒕̃b,⟂ =

[

𝑰 − 𝒆l ⊗ 𝒆l
]

⋅ 𝒕̃b is the reaction 
stress associated to the constraint in Eq. (8). ̃𝑡b,l can be integrated along 
the perimeter of the yarn to obtain the bond-force per unit length 𝑇b, 
i.e. 
𝑇b(𝑠̃l) = ∫𝜕𝐴r

𝑡b,l(𝑠̃l) d𝑆 (10)

2.2. Concrete stress

To account for damage caused by cracking and crushing, an
isotropic damage model referred to as the Mazars model is employed
(Mazars, 1986). In such a model, the damaged concrete stress 𝝈c is 
expressed as a degradation of the elastic stress 𝝈c,0, using the damage 
variable 𝑑, such as 
𝝈c = (1 − 𝑑)𝝈c,0

(

𝒖c
)

. (11)

The damage parameter 𝑑 equals 0 when no damage has occurred 
and 1 for complete damage. For further details about the damage 
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Fig. 3. Cut-out of a TRC-body, showing a yarn, the surrounding concrete, and the interface in between the yarn and the concrete.
Fig. 4. Single-scale TRC-problem with the different domains and displacement fields.

modeling, see Appendix  E. Spatial regularization is done using the 
crack-band method, whereby the strain is assumed to localize over a 
width ℎcb.

2.3. Equilibrium equations

Now, consider a textile-reinforced concrete body, occupying the 
domain 𝛺, see  Fig.  4. The reinforcement yarns occupy 𝛺r , inside the 
concrete domain 𝛺c, such that 𝛺 = 𝛺c ∪ 𝛺r . The displacement field 
associated with the concrete is denoted 𝒖c and has three components. 
The boundary of 𝛺c can be divided into a part with prescribed traction 
𝛤c,t , a part with prescribed displacement 𝛤c,u and a part that constitutes 
the lateral interface with the yarns 𝜕𝛺r,lat and a part that constitutes the 
interface at the ends of the yarns 𝜕𝛺r,end.

2.3.1. Concrete equilibrium
From the above, the strong form of the equilibrium in the concrete 

domain can be formulated as

−𝝈c ⋅ 𝛁 = 𝒃̂ in 𝛺c, (12a)

𝒖c = 𝒖̂c on 𝛤c,u, (12b)

𝝈c ⋅ 𝒏c = 𝒕̂ on 𝛤c,t , (12c)

𝝈c ⋅ 𝒏c = 𝒕̃b on 𝜕𝛺r,lat , (12d)

𝝈c ⋅ 𝒏c = 𝟎 on 𝜕𝛺r,end (12e)

where 𝒃̂ is the body load on the concrete, 𝒕̂ is a prescribed traction 
vector, 𝒖̂c is a prescribed displacement vector and 𝒕̃b is the boundary 
traction vector acting on the concrete and 𝒏  is the outwards pointing 
c

4 
unit normal of the concrete, see Fig.  3. The corresponding weak form 
of  (12a) can be expressed as

∫𝛺c

𝝈c ∶
[

𝛿𝒖c ⊗ 𝛁
]

d𝛺 − ∫𝛤r ∫𝜕𝐴r

𝑡b,l 𝛿𝑢c,l d𝑆 d𝛤

=∫𝛺c

𝒃̂ ⋅ 𝛿𝒖c d𝛺 + ∫𝛤c,t
𝒕̂ ⋅ 𝛿𝒖c d𝛤 , (13)

where it was used that 𝜕𝛺r,lat = 𝛤r × 𝜕𝐴r .

2.3.2. Yarn equilibrium
Similarly as for the concrete, the general strong form of the equilib-

rium of the yarns can be formulated as

−𝝈̃r ⋅ 𝛁 = 0 in 𝛺r , (14a)

𝝈̃r ⋅ 𝒏r = −𝒕̃b on 𝜕𝛺r,lat , (14b)

𝝈̃r ⋅ 𝒏r = 𝟎 on 𝜕𝛺r,end, (14c)

where 𝒏r is the outwards pointing unit normal of the surface of the rein-
forcement yarns, see Fig.  3. The boundary condition in Eq. (14c) implies 
that the ends of the yarns are free. At this stage, no Dirichlet boundary 
conditions have been specified for the yarns. The corresponding weak 
form of  (14a) can be expressed as 

∫𝛺r

𝝈̃r ∶
[

𝛿𝒖̃r ⊗ 𝛁
]

d𝛺 − ∫𝜕𝛺r,lat

[

𝝈̃r ⋅ 𝒏r
]

⋅ 𝛿𝒖̃r d𝐴 = 0. (15)

Note that Eqs. (14c) was used to get rid of the boundary term 
related to 𝜕𝛺r,end. By applying the assumption of uniaxial stress and 
substituting the interface boundary condition in Eqs. (14b) and (15) 
can be written as 

∫𝛤r ∫𝐴r

𝜎̃r
d𝛿𝑢̃r
d𝑙

d𝐴 d𝛤 + ∫𝛤r ∫𝜕𝐴r

𝑡b,l d𝑆 𝛿𝑢r d𝛤 = 0. (16)

Finally, by using the approximation in Eq. (3), the weak form of the 
yarn equilibrium can be written as 

∫𝛤r
𝑁r

d𝛿𝑢r
d𝑙

d𝛤 + ∫𝛤r ∫𝜕𝐴r

𝑡b,l d𝑆 𝛿𝑢r d𝛤 = 0. (17)

2.4. Weak form of the single -scale TRC problem

We are now in the position to formulate the weak form of the full 
TRC problem by combining Eqs.  (13) and (17): Find 𝒖c ∈ Uc and 𝑢r ∈ Ur
such that 
𝑎̃c

(

𝒖c ; 𝛿𝒖c
)

− 𝑏̃
(

𝑢r − 𝒆l ⋅ 𝒖c ; 𝒆l ⋅ 𝛿𝒖c
)

= 𝑙c
(

𝛿𝒖c
)

∀ 𝛿𝒖c ∈ U0
c ,

𝑎
(

𝑢 ; 𝛿𝑢
)

+ 𝑏̃
(

𝑢 − 𝒆 ⋅ 𝒖 ; 𝛿𝑢
)

= 0 ∀ 𝛿𝑢 ∈ U ,
(18)
r r r r l c r r r
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where the bilinear forms for the concrete and the yarns are defined as

𝑎̃c
(

𝒖c ; 𝛿𝒖c
)

∶= ∫𝛺c

𝝈c

(

𝜺[𝒖c ]
)

∶
[

𝛿𝒖c ⊗ 𝛁
]

d𝛺, (19)

𝑎r
(

𝑢r ; 𝛿𝑢r
)

∶= ∫𝛤r
𝑁r

(

𝑑𝑢r
𝑑𝑙

)

𝑑𝛿𝑢r
𝑑𝑙

d𝛤 , (20)

𝑏̃ (𝑢; 𝛿𝑣) ∶= ∫𝛤r ∫𝜕𝐴r

𝑡b,l(𝑢) 𝛿𝑣 d𝑆 d𝛤 . (21)

Finally, the loading form, containing contributions from both the 
body load and boundary traction is defined as 

𝑙c
(

𝛿𝒖c
)

= ∫𝛤c,t
𝒕̂ ⋅ 𝛿𝒖c d𝛤 + ∫𝛺c

𝒃̂ ⋅ 𝛿𝒖c d𝛺. (22)

The trial and test spaces are defined as
Uc =

{

𝒖 ∈ [H1(𝛺c)]
3, 𝒖c = 𝒖̂c on 𝛤c,u

}

, (23)

U0
c =

{

𝒖 ∈ [H1(𝛺c)]
3, 𝒖c = 𝟎 on 𝛤c,t

}

, (24)

Ur =
{

𝑣 ∈ H1(𝛤r )
}

, (25)

where H1 denotes the Sobolev space on either the concrete domain 𝛺c
or the reinforcement domain 𝛤r .

2.5. Weakening effect caused by the yarns

Instead of considering the weakening effect caused by the yarns 
by only integrating over the concrete domain 𝛺c in 𝑎̃c

(

𝒖c ; 𝛿𝒖c
)

, the 
integration is instead performed over the whole domain 𝛺, hence 

𝑎̃c
(

𝒖c ; 𝛿𝒖c
)

≈ 𝑎c
(

𝒖c ; 𝛿𝒖c
)

∶= ∫𝛺
𝜁 (𝒙)𝝈c

(

𝜺[𝒖c ]
)

∶
[

𝛿𝒖c ⊗ 𝛁
]

d𝛺. (26)

Instead, the weakening effect from the yarns is considered through 
the factor 𝜁 , defined as 

𝜁 (𝒙) =
⎧

⎪

⎨

⎪

⎩

1 if 𝑥 ∈ 𝛺 ⧵𝛺′
c,

(

1 − |𝛺′
c|

|𝛺r |

)

if 𝑥 ∈ 𝛺′
c,

(27)

where 𝛺′
c is a region centered around the yarns, see Fig.  5.

Note that 𝜁 is decreasing if the reduced zone 𝛺′
c is increasing, and 

becomes zero if |𝛺r | = |𝛺′
c|.

Moreover, by approximating the concrete displacement on the in-
terface according to 
𝒖̃c (𝒙) ≈ 𝒖c

(

𝒙r (𝒙)
)  on 𝜕𝛺r,lat , (28)

it is possible to approximate the bond–slip according to 
𝑠̃l(𝒙) ≈ 𝑠(𝒙r ) = 𝑢r (𝒙r ) − 𝑢c,l(𝒙r ) on 𝛤r . (29)

The approximation of the bond–slip in Eq. (29) can now be used to 
approximate the bond-force 𝑇b according to 
𝑇b(𝑠̃l) ≈ 𝑆r 𝑡b,l(𝑠) ∶= 𝑆r𝜏b(𝑠), (30)

where 𝑆r = |𝜕𝐴r | is the circumference of the yarn. Note that the bond 
stress 𝜏b(𝑠) is generally a non-linear function of 𝑠, as will be specified in 
Section 5. Eq. (30) can now be used to approximate the coupling form 
𝑏̃(𝑢; 𝛿𝑣) as 

𝑏̃(𝑢; 𝛿𝑣) ≈ 𝑏(𝑢; 𝛿𝑣) ∶= 𝑆r ∫𝛤r
𝜏b (𝑢) 𝛿𝑣 d𝛤 (31)

Finally the compatibility condition in Eq. (8) also has to be updated 
in accordance to Eq. (28), such that 
𝒖r,⟂(𝒙r ) = 𝒖c,⟂(𝒙r ) on 𝛤r . (32)

Remark.  The approximation in Eq. (31) means that the strong form of 
the yarn equilibrium can be written as 

−
d𝑁r
d𝑙

+ 𝑆r𝜏b = 0 in 𝛤r , (33)

𝑁r = 0 on 𝜕𝛤r .

5 
For consistency, the reduction factor 𝜁 is also applied to the fracture 
energy 𝐺F and the tensile strength of the concrete 𝑓c,t as in Sciegaj et al. 
(2023). To summarize, the following effective parameters have been 
used inside 𝛺′

c

𝐸′
c = 𝜁𝐸c (34a)

𝐺′
F = 𝜁𝐺F (34b)

𝑓 ′
c,t = 𝜁𝑓c,t (34c)

3. Upscaling using VCH

To capture the effects stemming from the sub-scale composition of 
TRC, a two-scale modeling framework is employed. The finer scale, in 
this work referred to as the sub-scale, is the length scale corresponding 
to the characteristic length scale of the yarns. The coarse scale, on the 
other hand, in this work referred to as the large-scale, is the scale at 
which the structure is modeled, e.g. the plate or shell. To this end, 
a Representative Volume Element (RVE) at the resolved sub-scale is 
considered. According to the theory of homogenization, the effective re-
sponse in a point on the coarser scale can be obtained by averaging the 
response of this RVE. Formally then, the RVE is defined as the smallest 
possible unit cell for which the effective response converges (Yvonnet, 
2019).

The damage modeling is carried out at the sub-scale; therefore 
individual cracks are not explicitly depicted at the large scale. The 
effect of cracking on the constitutive behavior on the large scale is 
however captured in an average sense in the homogenization, since the 
effective strain is affected by sub-scale strain localization. It should be 
noted that it is always possible to go back to the sub-scale and analyze 
the crack widths etc. in individual RVEs.

Following the approach in Sciegaj et al. (2020), the first step is to 
additively decompose the sub-scale displacement fields 𝒖c  and 𝑢r into 
a prolonged large-scale part and a fluctuating sub-scale part, such that

𝒖c = 𝒖Lc + 𝒖sc , (35a)

𝑢r = 𝑢Lr + 𝑢sr , (35b)

where the superscripts L and s denotes the large-scale and sub-scale 
parts respectively. Here 𝑢Lr  is chosen as the projection of the large-
scale part of the displacement field of the concrete, i.e. 𝑢Lr = 𝒆l ⋅ 𝒖Lc . 
The sub-scale displacement fields associated with the concrete and 
the reinforcement as well as the displacement field on the large scale 
are illustrated in Fig.  6. On the large scale, the total displacement 
𝒖̄ is decomposed into the mid-plane (𝑧 = 0) in-plane displacement 
vector 𝒖̄p and out-of-plane displacement component 𝑤̄, such that [𝒖̄] =
[𝒖̄p, 𝑤̄]T. The in-plane displacements vary linearly through the thickness 
𝑧 ∈ [−𝑡∕2, 𝑡∕2] of the plate, according to the Kirchhoff–Love plate 
kinematics

𝒖KL
p

(

𝒙̄p, 𝑧
)

= 𝒖̄p − 𝑧𝛁p𝑤̄
|

|

|𝒙̄p
, (36a)

𝑤KL (𝒙̄p
)

= 𝑤̄𝒙̄p , (36b)

where 𝛁p is the in-plane gradient operator.

3.1. Homogenization of sub-scale fields

Following the approach in Börjesson et al. (2023), the upscaling 
from the sub-scale fields 𝒖c,p and 𝑤c to the large-scale fields 𝒖̄p, 𝒉̄, 𝑤̄, 
𝜿̄ and 𝜽̄ is defined by the homogenization mapping 

∗ ∶
{

𝒖c,p , 𝑤c, 𝑢r
}

→
{

𝑢̄□[𝒖c,p], ℎ̄□[𝒖c,p], 𝑤̄□[𝒖c,p], 𝜃̄□[𝒖c,p], 𝜅̄□[𝒖c,p]
}

,

(37)
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Fig. 5. Reduction zone 𝛺′
c due to weakening effect from the yarn 𝛺r .
where the homogenization operators are defined as

𝑢̄□[𝒖c,p] ∶=
1

|

|

|

𝛺□
|

|

|

∫𝛺□

𝒖c,p d𝛺, (38)

ℎ̄□
[

𝒖c,p
]

∶= 1
|

|

|

𝛺□
|

|

|

∫𝛺□

[

𝒖c,p ⊗ 𝛁p
]

d𝛺, (39)

𝑤̄□[𝒖c,p, 𝑤c] ∶=
1

|

|

|

𝛺□
|

|

|

∫𝛺□

𝑤c d𝛺

− 1
2 ||
|

𝛺□
|

|

|

∫𝛺□

[

𝒙p − 𝒙̄p
]

⋅

[

1
𝐼□ ∫𝛺□

𝑧
[

𝒖c,p ⊗ 𝛁p
]sym d𝛺

]

⋅
[

𝒙p − 𝒙̄p
]

d𝛺,

(40)

𝜃̄□[𝒖c,p] ∶= − 1
𝐼□ ∫𝛺□

𝑧𝒖c,p d𝛺, (41)

𝜅̄□[𝒖c,p] ∶= − 1
𝐼□ ∫𝛺□

𝑧
[

𝒖c,p ⊗ 𝛁p
]sym d𝛺, (42)

where ||
|

𝐴□
|

|

|

 is the mid-plane area of the RVE and 𝐿□,z is the thickness 
of the RVE (same thickness as the plate). Note that the choice of 
homogenization operators means that the homogenization is only done 
for the concrete displacement fields. 𝐼□ is defined as 

𝐼□ = ∫𝛺□

𝑧2 d𝛺 = |𝐴|∫

𝐿□,z∕2

−𝐿□,z∕2
𝑧2 d𝑧 =

𝐿3
□,z

|

|

|

𝐴□
|

|

|

12
(43)

The second-order prolongation of the vertical displacement results 
in a coupling between the in-plane and the vertical displacements, 
necessitating the second term in Eq. (40).

3.2. Prolongation of large-scale fields

The prolongation from the large-scale fields to the large-scale part 
of the sub–scale fields is defined by the prolongation mapping 
 ∶

{

𝒖̄p, 𝒉̄, 𝑤̄, 𝜽̄, 𝜿̄
}

→
{

𝒖Lc,p , 𝑤
L
c , 𝑢

L
r

}

. (44)

The prolongation of the large-scale in-plane displacement field is done 
using first-order homogenization, i.e. by a first-order Taylor series 
expansion of  Eq. (36a)
𝒖Lc,p = 𝒖̄p

(

𝒙̄p
)

− 𝑧𝜽̄
(

𝒙̄p
)

+ 𝒉̄(𝒙̄p) ⋅
[

𝒙p − 𝒙̄p
]

− 𝑧𝜿̄
(

𝒙̄p
)

⋅
[

𝒙p − 𝒙̄p
]

, (45)

where we have introduced the in-plane displacement gradient, curva-
ture tensor and out-of-plane displacement gradient according to

𝒉̄(𝒙̄p) ∶=
[

𝒖̄p ⊗ 𝛁p
]

𝒙̄p
, (46a)

𝜿̄(𝒙̄p) ∶=
[

𝛁p𝑤̄ ⊗ 𝛁p
]

𝒙̄p
, (46b)

𝜽̄(𝒙̄p) ∶= 𝛁p𝑤̄
|

|

|𝒙̄p
. (46c)

𝒙̄p is a reference point within the RVE, in this case chosen as the 
centroid of the RVE. The vertical displacement field 𝑤̄ (

𝒙̄p
) on the other 

hand, is prolonged using a second-order Taylor expansion of Eq. (36b), 
whereby 

𝑤L = 𝑤̄
(

𝒙̄
)

+ 𝜽̄
(

𝒙̄
)

⋅
[

𝒙 − 𝒙̄
]

+ 1 [

𝒙 − 𝒙̄
]

⋅ 𝜿̄
(

𝒙̄
)

⋅
[

𝒙 − 𝒙̄
]

. (47)
c p p p p 2 p p p p p

6 
The motivation for using a second-order expansion for 𝑤L
c  is that 

we then obtain that the strains are only caused by uniform in-plane and 
bending deformation and no shear deformations, i.e. that 𝜺

[

𝒖Lc,p +𝑤L
c 𝒆z

]

= 𝒉̄sym − 𝑧𝜿̄. This is fulfilled for the current choice of 𝑤L
c , see Eq. (C.3).

Remark.  First-order prolongation of the vertical part of the displace-
ment field 𝑤L

c  would result in an extra shear strain term − 1
2 𝜿̄⋅

[

𝒙p − 𝒙̄p
]

⊗
𝒆z in the expression for the strain tensor.

The next step is to approximate the integrals of the fully resolved 
weak form by integrating the running averages over the sub-domains 
𝛺□ = 𝐴□ × [−𝐿□,𝑧∕2, 𝐿□,𝑧∕2], the RVEs. Consequently, for any func-
tions 𝑓 and 𝑔 defined on 𝛺 and 𝛤r respectively, the following approxi-
mation is done 

∫𝛺
𝑓 d𝛺 + ∫𝛤r

𝑔 d𝛤 ≈ ∫𝐴
⟨𝑓 ⟩ + ⟨⟨𝑔⟩⟩ d𝐴, (48)

where ⟨𝑓 ⟩ and ⟨⟨𝑔⟩⟩ are the homogenization operators on 𝛺□ and 𝛤□,r
respectively, defined as

⟨𝑓⟩ = 1
|

|

|

𝐴□
|

|

|

∫𝛺□

𝑓 d𝛺, (49)

⟨⟨𝑔⟩⟩ = 1
|

|

|

𝐴□
|

|

|

∫𝛤□,r

𝑔 d𝛤 . (50)

Inserting the approximation in Eq. (48) into the weak form of the 
fully resolved problem in  Eq. (18) yields

∫𝐴
𝑎□,c

(

𝒖c ; 𝛿𝒖c
)

+ 𝑏□
(

𝑠; 𝛿𝑢r − 𝒆l ⋅ 𝛿𝒖c
)

+ 𝑎□,r
(

𝑢r ; 𝛿𝑢r
)

d𝐴 = 𝑙c
(

𝛿𝒖c
)

, ∀ 𝛿𝒖c ∈ U0
c , ∀ 𝛿𝑢r ∈ Ur . (51)

Note that both the body forces 𝒃̂ and the boundary tractions 𝒕̂ are 
assumed to be smooth on the sub-scale, hence ⟨𝒃̂ ⋅ 𝛿𝒖c

⟩

≈ 𝒃̂ ⋅ 𝛿𝒖c and 
⟨

𝒕̂ ⋅ 𝛿𝒖c
⟩

≈ 𝒕̂ ⋅𝛿𝒖c. Also, note that the integration is now performed over 
the averaged forms in Eqs. (26), (20) and (31), such as

𝑎□,c

(

𝒖c ; 𝛿𝒖c
)

∶= 1
|

|

|

𝐴□
|

|

|

∫𝛺□

𝜁 (𝒙)𝝈c

(

𝜺[𝒖c ]
)

∶
[

𝛿𝒖c ⊗ 𝛁
]

d𝛺, (52)

𝑎□,r
(

𝑢r ; 𝛿𝑢r
)

∶= 1
|

|

|

𝐴□
|

|

|

∫𝛤r,□
𝑁r

(

𝑑𝑢r
𝑑𝑙

)

𝑑𝛿𝑢r
𝑑𝑙

d𝛤 , (53)

𝑏□ (𝑢; 𝛿𝑣) ∶= 1
|

|

|

𝐴□
|

|

|

∫𝛤r,□
𝑆r𝜏b (𝑢) 𝛿𝑣 d𝛤 . (54)

3.3. Compatibility between homogenization and prolongation

To ensure a proper unique mapping, we require that the homoge-
nized sub-scale fields should be zero, i.e that 
∗ ∶

{

𝒖sc,p, 𝑤
s
c, 𝑢

s
r

}

= {0, 0, 0, 0, 0} (55)

Consequently, for compatibility reasons, the homogenized large-
scale parts of the fields must equal the large-scale fields, i.e. that


(

̂̄𝒖p, ̂̄𝒉, ̂̄𝑤, ̂̄𝜿, ̂̄𝜽
)

=
{

𝒖̂Lc,p, 𝑤̂
L
c , 𝑢̂

L
r

}

, (56a)

∗
(

𝒖̂L , 𝑤̂L, 𝑢̂L
)

=
{

̂̄𝒖 , ̂̄𝒉, ̂̄𝑤, ̂̄𝜿, ̂̄𝜽
}

, (56b)
c,p c r p
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Fig. 6. Displacement fields on the sub-scale and the large-scale. Note that the height of the RVE 𝐿□,𝑧 is the same as the plate thickness 𝑡, hence homogenization is only performed 
in the plane of the plate.
for any choice of 
{

̂̄𝒖p, ̂̄𝒉, ̂̄𝑤, ̂̄𝜿, ̂̄𝜽
}

. The fulfillment of Eq. (56) is 
shown in Appendix  A.1.

3.4. Large-scale problem

The large-scale plate problem is derived from Eq. (51) by testing 
with the prolonged large-scale displacements 𝛿𝒖Lc  (Sciegaj et al., 2020).

∫𝐴
1

|

|

|

𝐴□
|

|

|

(

∫𝛺□

𝝈c

(

𝜺[𝒖c ]
)

∶
[

𝛿𝒖Lc ⊗ 𝛁
]

d𝛺 + ∫𝛤r,□
𝑁r

𝜕𝛿𝑢Lr
𝜕𝑙

d𝛤

)

d𝐴

=∫𝜕𝐴
𝒕̂ ⋅ 𝛿𝒖Lc d𝛤 + ∫𝐴

𝒃̂ ⋅ 𝛿𝒖Lc d𝐴. (57)

Note that the coupling term disappears since we are testing with the 
large-scale displacements, hence 𝛿𝑢Lr − 𝒆l ⋅ 𝛿𝒖Lc = 𝒆l ⋅ 𝛿𝒖Lc − 𝒆l ⋅ 𝛿𝒖Lc = 0.

The first term in Eq. (57) can be evaluated using the expression 
for the gradient of the large-scale part of the concrete displacement in 
Eq. (C.5)

∫𝛺□

𝝈c ∶
[

𝛿𝒖Lc ⊗ 𝛁
]

d𝛺 = ∫𝛺□

𝝈c,p ∶ 𝒉̄[𝛿𝒖̄p] − 𝑧𝝈c,p ∶ 𝜿̄[𝛿𝑤̄] d𝛺, (58)

where the symmetry of the stress tensor 𝝈s was used so that all terms 
related to the anti-symmetric part of [𝛿𝒖Lc ⊗ 𝛁

] vanish. Left are the 
terms involving the in-plane components of the stress tensor 𝝈c,p

[

𝝈c,p
]

=
[

𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦

]

.

The second term involves the derivative of the large-scale yarn 
displacement and can be evaluated as 

∫𝛤r,□
𝑁r

d𝛿𝑢Lr
d𝑙

d𝛤 = ∫𝛤r,□
𝑁r𝒆l⊗𝒆l ∶ 𝒉̄[𝛿𝒖̄p]−𝑁r𝑧𝒆l⊗𝒆l ∶ 𝜿̄[𝛿𝒖̄p] d𝛤 , (59)

where the derivative of 𝑢Lr  is evaluated in Appendix  C.1.
Finally, by inserting Eqs. (58) and (59) in Eq. (57), the LHS can be 

expanded as

∫𝐴

⎛

⎜

⎜

⎝

𝒉̄[𝛿𝒖̄p] ∶
1

|

|

|

𝐴□
|

|

|

[

∫𝛺□

𝝈c,p d𝛺 + ∫𝛤r,□
𝑁r𝒆l ⊗ 𝒆l d𝛤

]

− 𝜿̄[𝛿𝑤̄] ∶ 1
|

|

|

𝐴□
|

|

|

[

∫𝛺□

𝑧𝝈c,p d𝛺 + ∫𝛤r,□
𝑁r𝑧𝒆l ⊗ 𝒆l d𝛤

]

⎞

⎟

⎟

⎠

d𝐴. (60)

From this, the effective membrane forces and bending moments can 
be identified as

𝑵̄ = 1
|

|

|

𝐴□
|

|

|

[

∫𝛺□

𝝈c,p d𝛺 + ∫𝛤r,□
𝑁r𝒆l ⊗ 𝒆l d𝛤

]

, (61)

𝑴̄ = − 1
| |

[

∫𝛺
𝑧𝝈c,p d𝛺 + ∫𝛤

𝑁r𝑧𝒆l ⊗ 𝒆l d𝛤

]

. (62)

|

|

𝐴□|

|

□ r,□

7 
Remark. It can be proven that the effective membrane forces and 
moments are only dependent on the large-scale in-plane strains, i.e. that 
𝑵̄ = 𝑵̄ {𝜺̄, 𝜿̄} and curvatures 𝑴̄ = 𝑴̄ {𝜺̄, 𝜿̄}, see Appendix  D. This 
means that both the membrane forces and moments are invariant under 
rigid body motion 𝒖̄p, 𝑤̄ and 𝜽̄.

Finally, by using the definitions of 𝑵̄ and 𝑴̄ , the large-scale prob-
lem in Eq. (57) can be written as 

∫𝐴
𝒉̄(𝛿𝒖̄p) ∶ 𝑵̄ + 𝜿̄ (𝛿𝑤̄) ∶ 𝑴̄d𝐴 = 𝑙

(

𝛿𝒖̄p, 𝛿𝑤̄
)

,∀ 𝛿𝒖̄p ∈ Ū0,∀ 𝛿𝑤̄ ∈ W̄0,

(63)

where the loading form 𝑙 (𝛿𝒖̄p, 𝛿𝑤̄
) can be evaluated in terms of the 

large-scale displacement fields by substituting Eqs.  (45) and (47) for 
𝛿𝒖Lc  in Eq. (57). The membrane forces and moments tensors can be 
expressed in terms of the Cartesian components
[

𝑵̄
]

=
[

𝑁̄𝑥𝑥 𝑁̄𝑥𝑦
𝑁̄𝑦𝑥 𝑁̄𝑦𝑦

]

,
[

𝑴̄
]

=
[

𝑀̄𝑥𝑥 𝑀̄𝑥𝑦
𝑀̄𝑦𝑥 𝑀̄𝑦𝑦

]

,

where the first index denotes the normal of the section and the second 
index denotes the direction of the associated stress, see Fig.  7. Note that 
both tensors are symmetric, i.e. that 𝑵̄ = 𝑵̄T and 𝑴̄ = 𝑴̄T.

3.5. Sub-scale problem

If the fully resolved problem in Eq. (51) is instead localized on the 
RVE and tested with sub-scale displacement test functions, the sub-scale 
problem can be derived (Sciegaj et al., 2020). The weak form of the 
sub-scale problem, before specifying the boundary conditions, can be 
formulated as: Find 𝒖sc ∈ U□,c and 𝑢sr ∈ U□,r such that

𝑎□,c

(

𝒖Lc + 𝒖sc ; 𝛿𝒖c
)

− 𝑏□
(

𝑢sr − 𝒆l ⋅ 𝒖sc ; 𝒆l ⋅ 𝛿𝒖
s
c

)

= 0 ∀ 𝛿𝒖sc ∈ U□,c, (64a)

𝑎□,r
(

𝑢Lr + 𝑢sr ; 𝛿𝑢
s
r
)

+ 𝑏□
(

𝑢sr − 𝒆l ⋅ 𝒖sc ; 𝛿𝑢
s
r

)

= 0 ∀ 𝛿𝑢sr ∈ U□,r , (64b)

 with suitable trial/test spaces, which will be specified for each of the 
boundary conditions in Section 3.6.

Note that the weak form is formulated in terms of the sought-for 
sub-scale displacements 𝒖sc and 𝑢sr instead of the total displacements 𝒖c
and 𝑢r as in Eq. (51). Also, note that there is no large-scale contribution 
to 𝑏□ (𝑢; 𝛿𝑣) since 𝑢Lr = 𝒆l ⋅ 𝒖Lc .

3.6. Boundary conditions on the RVE

It is necessary to prescribe boundary conditions on the RVE to 
obtain a solvable system. In this study, three different types of bound-
ary conditions are considered. An upper bound of the response is 
obtained by prescribing the large-scale displacement field, referred to 
as Dirichlet boundary condition. An intermediate solution is obtained 
by applying strongly periodic boundary conditions, i.e. we strongly 
enforce that the displacements on opposite boundaries are equal. A 
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Fig. 7. Convention used for the moment and membrane force vectors, for the Cartesian coordinate system in the figure.
Fig. 8. Illustration of the different boundary conditions for the case of uniaxial bending and membrane strain. (a) Dirichlet boundary conditions. (b) Strongly periodic boundary 
conditions (c) Neumann boundary conditions.
lower bound, referred to as Neumann conditions, is obtained by us-
ing constant large-scale membrane forces and moments to derive the 
prescribed traction on the vertical faces of the RVE, see Fig.  8.

3.6.1. Dirichlet boundary condition
The sub-scale fluctuations of the displacement field 𝒖sc  are assumed 

to vanish on the vertical boundaries. This means that

𝒖c = 𝒖Lc  on 𝛤□, (65a)

𝑢r = 𝑢Lr  on 𝛤□,r ∩ 𝛤□, (65b)

where the large-scale part of the displacement is given by Eqs.  (45) and 
(47). The corresponding trial and test spaces pertinent to the Dirichlet 
boundary condition are then

UDBC
□,c =

{

𝒖 ∈ [H1(𝛺□)]3, 𝒖 = 𝟎 on 𝛤□

}

, (66a)

UDBC
□,r =

{

𝑣 ∈ H1(𝛤□,r ), 𝑣 = 0 on 𝛤□,r ∩ 𝛤□
}

. (66b)

3.6.2. Strongly periodic boundary condition
Instead of assuming that the fluctuation field 𝒖sc  is zero on the 

boundary of the RVE as for the Dirichlet condition, we assume that the 
sub-scale part of the displacement field is periodic on the boundary, 
i.e. that 
[[𝒖sc ]] = 0 on 𝛤+

□, (67)

where the jump operator is defined as [[𝒖]] = 𝒖 (𝒙)−𝒖
(

𝜑per (𝒙)
)

, see Fig. 
9.

From Eq. (67) it follows that the total displacement jump must equal 
the large-scale part of the displacement jump, i.e. that 
[[𝒖c ]] = [[𝒖Lc + 𝒖sc ]] = [[𝒖Lc ]] on 𝛤+

□. (68)

By inserting the large-scale part of the displacements from Eqs.  (45) 
and (47) in Eq. (68), we obtain

[[𝒖c,p ]] = 𝒉̄
(

𝒙̄p
)

⋅ [[𝒙p]] − 𝑧𝜿̄
(

𝒙̄p
)

⋅ [[𝒙p]] on 𝛤+
□, (69a)

[[𝑤c]] = 𝜽̄
(

𝒙̄p
)

⋅ [[𝒙p]] +
1
2
𝜿̄
(

𝒙̄p
)

∶ [[𝒙p ⊗ 𝒙p]] on 𝛤+
□. (69b)

where [[𝒙p]] is the length of the RVE in the respective direction. Note 
that all terms being constant within the RVE vanish and that the terms 
8 
Fig. 9. Mapping between the image and mirror boundaries 𝜑per ∶ 𝛤 + ↦ 𝛤 − for the 
RVE.

in Eq. (69b) involving [[𝑥2p]] and [[𝑦2p]] are zero. The same periodicity 
constraint is also applied to the reinforcement, i.e. 
[[𝑢r ]] = 𝒆l ⋅ [[𝒖Lc ]] on 𝛤+

□, (70)

Note that it is possible to move 𝒆l outside the jump operator since 
the direction of the yarns is assumed to be constant in the RVE. Further, 
note that this boundary condition is invariant under translation for both 
the concrete and the yarns, hence the displacement must be prescribed 
to prevent rigid body motion. For the concrete, the displacement is 
prescribed in one of the corners. For the yarns, the displacement at 
the ends is prescribed to the same value as the concrete displacement 
at that point. The trial/test spaces pertinent to the strongly periodic 
boundary condition are then

USPBC
□,c = {𝒖 ∈ [H1(𝛺□)]3, [[𝒖]] = 𝟎 on 𝛤+

□,∫𝛺□

𝒖 d𝛺 = 𝟎}, (71a)

USPBC
□,r = {𝑣 ∈ H1(𝛤□,r ), [[𝑣]] = 0 on 𝛤+

□,r ∩ 𝛤+
□}. (71b)

3.6.3. Neumann boundary condition
For the Neumann boundary condition, the prescribed boundary trac-

tion on the RVE is assumed to be caused by constant membrane forces 
𝑵̄ ∈ R2×2 and bending moments 𝑴̄ ∈ R2×2. These boundary conditions 
can be imposed either by adding the following weak constraints

𝛿𝑴̄ ∶ 𝜅̄□[𝒖c] = 𝛿𝑴̄ ∶ 𝜿̄, (72a)

𝛿𝑵̄ ∶ ℎ̄□[𝒖c] = 𝛿𝑵̄ ∶ 𝒉̄, (72b)
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where 𝑵̄ and 𝑴̄ act as Lagrange multipliers, or by enforcing the strong 
form of the constraints, i.e. that

𝜅̄□[𝒖c] = 𝜿̄, (73a)

ℎ̄□[𝒖c] = 𝒉̄. (73b)

Note that the constraint in Eqs.  (73b) and (73a) only applies to the 
concrete boundary 𝛤+

□. Consequently, the reinforcement is free to move 
at the boundaries 𝜕𝛤r . In this work, the constraints are implemented 
using the strong form as in Eqs.  (73a) and (73b).

Rigid body translations are constrained by locking the x,y and z 
displacements in one of the nodes, the z and 𝑦 displacements in one 
other and finally the 𝑦 displacement in three of the nodes in the xy-
plane. The trial and test spaces pertinent to the Neumann boundary 
condition are then

UNBC
□,c = {𝒖 ∈ [H1(𝛺□)]3, 𝜅̄□[𝒖] = ℎ̄□[𝒖] = 𝟎 in 𝛺□,∫𝛺□

𝒖 d𝛺 = 𝟎},

(74a)

UNBC
□,r = {𝑣 ∈ H1(𝛤□,r )}. (74b)

Remark. By using the expression for the effective curvature in Eq. (42), 
together with the Gauss divergence theorem, Eq. (73a) can be expressed 
in terms of the displacement jump at the boundary 

𝜅̄□[𝒖sc] = − 1
𝐼□ ∫𝛤+

□

𝑧
2
𝑛□,j[[𝑢sc,p,i]] +

𝑧
2
𝑛□,i[[𝑢sc,p,j]] d𝛤 = 0, (75)

where 𝒏□ is the unit normal of the RVE boundary. See Appendix  B for 
the derivation. Similarly, Eq. (73b) can be expanded using Eq. (39) such 
that 
ℎ̄□[𝒖sc] =

1
|

|

|

𝛺□
|

|

|

∫𝛤+
□

[[𝒖sc,p]]⊗ 𝒏□ d𝛤 = 0. (76)

4. Numerical implementation

The sub-scale problem, as defined in Eqs.  (64a) and (64b) is solved 
using the finite element software COMSOL. The concrete displacement 
field is approximated using linear hexahedron elements. The sufficient 
number of elements used for the FE-mesh for the RVEs is determined by 
studying the convergence of the linear elastic effective bending moment 
𝑀̄xx for the 2 × 2 yarn RVE. From this analysis, a mesh consisting of 
2000 elements for the concrete and 16 truss elements for each yarn, is 
deemed sufficient for the RVE consisting of 2 × 2 yarns. The number of 
elements for the other RVE sizes is then scaled in proportion to the size 
to maintain the same element resolution. The distance from the center 
of the yarns to the edge of the concrete is 3.125 mm for all studies. The 
material models and parameters used for the analysis are described in 
the following sections.

4.1. Yarns

The constitutive model used for the yarns is shown in Fig.  10. In 
this model, the yarns are only developing a normal stress in tension. 
Since the yarns are assumed to exhibit micro-buckling already at a 
small stress level, they are modeled as stress-free in compression. 
Additionally, the yarns are assumed to lose all load-carrying capacity 
once the stress reaches the ultimate stress 𝑓u. The material parameters 
used for the yarns are sourced from Sciegaj et al. (2022) and correspond 
to a textile designated StoFRP Grid 1000 C 390 with yarn dimensions 
3.55mm × 0.39mm , see Table  1. The stiffness reduction factor 𝜂E has 
been calibrated in Sciegaj et al. (2022) together with the parameters 
for the bond–slip model, see Section 4.3 for a more comprehensive 
account of the calibration procedure. In the same work, the efficiency 
factor for the strength 𝜂𝑓  has been calibrated directly by comparing 
the capacity obtained from tensile tests with the values provided by 
the manufacturer.
9 
Fig. 10. Constitutive relation used for the yarns.

Table 1
Material properties for the concrete matrix and the yarns.
 Parameter Value Unit  
 Tensile strength concrete, 𝑓c,t 4.35 MPa  
 Ultimate compressive strain concrete, 𝜀c,u 2.9 × 10−3 −  
 Compressive strength concrete, 𝑓c,c 67.8 MPa  
 Young’s modulus concrete, 𝐸c 40.7 GPa  
 Poisson’s ratio concrete, 𝜈c 0.2 −  
 Fracture energy concrete, 𝐺F 156 N m−1 
 Damage parameter, 𝛽 1.06 −  
 Damage parameter, 𝐴c 2.04 −  
 Damage parameter, 𝐵c 1.500 × 103 −  
 Compressive strain threshold, 𝜀0,c 3.39 × 10−4 −  
 Nominal young’s modulus yarns, 𝐸r,0 242 GPa  
 Nominal tensile strength yarns, 𝑓u,0 3.97 GPa  
 Efficiency factor tensile strength yarns, 𝜂𝑓 0.34 −  
 Efficiency factor stiffness yarns, 𝜂E 0.34 −  

4.2. Concrete

The material parameters used for the concrete matrix are sourced 
from Sciegaj et al. (2022) and are gathered in Table  1. Based on 
the compressive strength, the concrete approximately corresponds to 
a strength class of C60/75, on which the ultimate strain is based (Eu-
ropean Organization for Standardization, 2004).

The parameters used for the damage modeling are presented in 
Table  1. For regularization, a crack-band width ℎcb equal to the el-
ement length is used, as the elements are cube-shaped. It was later 
verified that the strain localized in one element row. To trigger strain 
localization, a uniform variation with a range of 5% is applied to the 
tensile strength 𝑓u, fracture energy 𝐺f  and the Young’s modulus 𝐸c
in 𝛺. Moreover, the stiffness reduction factor 𝜁 , accounting for the 
weakening effect of the yarns, is calculated from Eq. (27) for a region 
|𝛺′

c| = 2.76 mm2 centered around the yarns, yielding 𝜁 = 0.51 in 𝛺′
c.

4.3. Bond–slip model

The bond slip-stress model 𝜏b(𝑠) adopted in this work has been 
developed by Sciegaj et al. in Sciegaj et al. (2022), and is based on 
a bond–slip relation from Model Code 2010, see Fig.  11.

The parameters that control the bond slip-stress curve are 𝜏max, 
𝜏f , 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝛼. These parameters have been calibrated in Sciegaj 
et al. (2022) by using an optimization scheme minimizing the overall 
discrepancy in the crack opening-force relation between numerical and 
experimental results from a pull-out experiment. The values used for 
these parameters are presented in Table  2. Note that these values are 
valid for the specific combination of textile and concrete used, see 
4.1 and 4.2. To account for degradation and subsequent unloading 
and reloading, a linear branch is added in this work. During loading, 
the bond stress evolution follows the virgin curve 𝜏b,v in Fig.  11 and 
during unloading/reloading the bond stress evolution follows the linear 
branch.
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Fig. 11. Bond slip-stress relation employed in the analysis.

Table 2
Bond–slip model parameters.
 Parameter Value Unit 
 𝜏f 0.822 MPa 
 𝜏max 2.910 MPa 
 𝛼 0.316 −  
 𝑠0 0.015 mm  
 𝑠1 0.025 mm  
 𝑠2 0.086 mm  
 𝑠3 1.092 mm  

5. Numerical studies

Numerical studies are performed to validate the model and to 
demonstrate its capabilities for some applications. In Section 5.1, the 
influence of RVE-size and boundary conditions is investigated. Partic-
ularly, the convergence properties of the stiffness tensors are investi-
gated. The upscaling framework is then validated against an analytical 
solution for the case of uniaxial bending in Section 5.2. Finally, in 
Section 5.3, the model is validated against fully resolved one-way and 
two-way slabs, both when the membrane displacements are prescribed 
(Sections 5.3.1 and 5.3.2) and when membrane tractions are prescribed 
(Section 5.3.3). Material models and parameters used in the simulations 
are presented in Section 4.

5.1. Influence of boundary conditions and RVE size

The effect of increasing the RVE-size is analyzed by studying the 
eigenvalues of the linear membrane and bending stiffness tensors. In 
the linear regime, it is possible to directly relate the membrane forces 
and the in-plane strains and curvatures using the membrane stiffness 
𝑫̄M and the coupling stiffness 𝑫̄M,B as well as the curvatures and strains 
and the bending moments using the bending stiffness tensor 𝑫̄B and the 
coupling stiffness 𝑫̄B,M

𝑵̄ = 𝑫̄M ∶ 𝜺̄ + 𝑫̄M,B ∶ 𝜿̄, (77a)

𝑴̄ = 𝑫̄B,M ∶ 𝜺̄ + 𝑫̄B ∶ 𝜿̄, (77b)

where the coupling terms arise since the coordinate system is fixed at 
the mid-plane of the plate and to account for a non-symmetric stiffness 
about the mid-plane. Using the symmetry of 𝑵̄ , 𝑴̄ , 𝜺̄ and 𝜿̄, the in-
plane strains and the curvatures can be written using Voigt notation 
as 𝜺̄ =

[

𝜀̄xx 𝜀̄yy 2𝜀̄xy
]T, 𝜿̄ =

[

𝜅̄xx 𝜅̄yy 2𝜅̄xy
]T. Consequently, the 

Cartesian components of the membrane stiffness tensor are obtained 
by subjecting the RVE to unit strain perturbations 𝜀̂xx, 𝜀̂yy and 𝜀̂xy. 
Similarly, for the bending stiffness tensor, the components are obtained 
by subjecting the RVE to unit curvature perturbations 𝜅̂xx, 𝜅̂yy and 𝜅̂xy.

An analysis using four different RVE sizes and the three different 
boundary conditions described in Section 3.6 is performed to study the 
effect of increasing the RVE size. The two smallest of the four RVEs, 
10 
Fig. 12. Geometry of the 1 × 1 and 2 × 2 yarn RVEs.

ranging in size from 1 × 1 to 8 × 8 yarns, are illustrated in Fig.  12. 
The spacing between the yarns 𝑠yarns and the plate thickness 𝐿□,z is 
15 mm for all four sizes. The results, in terms of the largest eigenvalues 
of the respective stiffness tensor 𝑫̄M and 𝑫̄B, are displayed in Fig. 
13. Starting with the membrane stiffness in Fig.  13(a), it is evident 
that the Neumann and Dirichlet boundary conditions provide lower 
and upper bounds on the stiffness, just as expected since the influence 
from the boundary conditions decreases when the RVE size increases. 
Looking at the same graphs, one can also observe that the stiffness is 
converging for an increasing RVE size, with a faster convergence rate 
for the Dirichlet boundary condition. The same convergence behavior 
can also be observed for the bending stiffness, see Fig.  13(b). There is, 
however, a slightly larger relative difference between the periodic and 
Neumann boundary conditions.

5.2. Validation against analytical solution

To validate the proposed upscaling framework, the results obtained 
for the case of uniaxial bending are compared to results obtained from 
a simplified analytical beam model. In the linear regime (stage I), 
the response is fully determined by the concrete stiffness. In the post-
cracking regime, the concrete stress is obtained from the curvature 
using Eq. (5).6 in European Organization for Standardization (2004). 
Eq. 9.28 in European Organization for Standardization (2004) is used 
to interpolate the moment in the tension stiffening regime, i.e. in 
the region immediately after cracking has occurred. Furthermore, full 
interaction is assumed between the yarns and the concrete, and the RVE 
is assumed to be fully cracked. The former assumption contributes to 
an overestimation of the bending moment while the latter assumption 
contributes to an underestimation of the bending moment. The com-
parison with the analytical solution is performed for a RVE subjected 
to pure uniaxial bending, i.e. 𝑀̄xx ≠ 0 kNm∕m while 𝑁̄xx = 0 kN∕m.

The numerical simulation is performed using displacement control, 
therefore 𝑁̄xx = 𝑁̄yy = 0 kN∕m and 𝑀̄yy = 0 kNm∕m were added 
as point-wise strong constraints to allow the mid-plane to stretch and 
the beam to bend in the transverse direction, as assumed in the beam 
model. The simulation is performed for the three different boundary 
conditions described in 3.6. The result in terms of effective bending 
moment is presented in Fig.  14(a).

Looking at the curvature-moment response in Fig.  14(a), one can 
see that there is a good agreement between the moment from the ana-
lytical solution and the RVE model, especially when using the periodic 
boundary conditions. In particular, cracking occured at approximately 
the same curvature as in the analytical model for all boundary condi-
tions, approximately 0.02 m−1. Also, the bending stiffness is accurately 
predicted using the proposed upscaling technique. On the other hand, 
the analysis using the Neumann boundary condition fails already at a 
small curvature. This is because the prescribed traction on the boundary 
locally ruptured the concrete at cracking. Furthermore, as expected, the 
Dirichlet and Neumann boundary conditions provide upper and upper 
and lower bounds on the effective bending moment and the periodic 
boundary conditions provide an intermediate solution. By studying 
the post-cracking regime in Fig.  14(a), it is evident that the effective 
curvature-moment response obtained using the upscaling from the RVE 
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Fig. 13. The largest eigenvalue of the linear stiffness tensors, for increasing RVE size and for different boundary conditions. (a) Membrane stiffness 𝑫̄M. (b) Bending stiffness 𝑫̄B.
Fig. 14. Results from RVE subjected to pure uniaxial bending 𝜅̄xx ≠ kNm∕m (𝜅̄yy = 𝜅̄xy = 0 1∕m and 𝑁̄xx = 0 kN∕m). The numerical results are plotted up to the point where the 
analysis stopped converging, while the analytical solution is plotted up to the ultimate strain, marked by a cross. The ultimate compressive strain is highlighted with a cross. (a) 
Effective bending moment–curvature response. (b) Maximum yarn stress (c) Maximum negative equivalent strain.
does show significant tension softening, which is not captured in the 
simplified beam model.

To assess the failure mode of the RVE, also the maximum value of 
the equivalent negative strain is plotted in Fig.  14(c) and the maximum 
yarn stress is plotted in Fig.  14(b). The equivalent negative strain is a 
11 
scalar strain metric defined as 

𝜀−eq =
√

⟨−𝜺el⟩ ∶ ⟨−𝜺el⟩, (78)

where ⟨−𝜺el⟩ returns the negative components of the principal strain 
tensor. Looking at the result in Fig.  14(b), one can observe that the 
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Fig. 15. Equivalent positive strain in the top half of the RVE and negative strain in the bottom half of the RVE, for the RVE subjected to uniaxial bending and using periodic 
boundary conditions. Both strain measures are normalized against the maximum value in the RVE. (a) At a curvature of 0.1 m−1, where the strain localizes equally in the two 
cracks. (b) At a curvature of 0.15 m−1, right after the strain localizes more in the left-most crack.
results obtained using periodic boundary conditions agree well with 
the analytical results. Finally, a comparison in terms of the maximum 
compressive strain, see Fig.  14(c) reveals that the RVE fails in com-
pression and that the failure takes place at a smaller curvature than 
predicted by the beam model. From the same graph, one can also see 
that the strain is higher for all boundary conditions compared to the 
analytical solution, in particular when using the periodic boundary con-
dition. Moreover, the predicted effective strain using periodic boundary 
conditions abruptly increases, first at a curvature of 0.1 m−1, and then 
again at a curvature of 0.4 m−1. This can be explained by studying the 
crack pattern in Fig.  15. Initially, two cracks are forming along the 
transverse yarns, see Fig.  15(a). But at a curvature at around 0.1 m−1, 
a hinge starts to form at one of the cracks whereby the compressive 
strain in this section starts to increase rapidly.

Finally, it is of interest to study the crack patterns occurring in the 
simulation and to assess whether the weakening effect of the yarns 
actually does force strain localization. From Fig.  15, it is clear that 
strain localization occurs at the transverse yarns as expected. This 
cracking pattern has also been observed experimentally, for instance 
in Jesse (2004).

5.3. Validation against direct numerical simulations

To further assess and validate the performance and accuracy of the 
upscaling framework, especially with respect to the boundary condi-
tions on the RVE, a comparison is made with the results from a fully 
resolved large-scale direct numerical simulation (DNS). In this context, 
the fully resolved analysis is regarded as the exact solution, while the 
RVE analysis is an approximation. By computing the effective strain and 
curvature for a subdomain of the fully resolved model and subjecting 
an RVE to the same loading, it is possible to measure how well the RVE 
predicts the response. In theory, the RVE should reproduce the effective 
membrane forces and moments insofar as the boundary conditions 
can reproduce the actual tractions and displacements on the subdo-
main boundary. In reality, the boundary conditions only approximate 
the response, and the effective response will converge to the true 
solution as the RVE size increases. The simulations were conducted 
using deformation control. Due to the highly non-linear nature of the 
problem, the curvature is incrementally increased from 0 to 𝜅̄max using 
the parameter 𝜆𝑘. In all simulations, the effective curvature 𝜿̄ is the 
controlled parameter. To this end, for load step 𝑘, the following strong 
constraint is added 
𝜆𝑘𝜅̄max =

[

𝜅̄□
[

𝒖𝑘c,p
]]

𝑥𝑥
. (79)

Since 𝜿̄ is monotonically increasing for increasing 𝜆, solving the 
problems using a Newton solver with constant step size is possible.
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Fig. 16. Model used for the DNS of the one-way slab.

5.3.1. One-way slab
The first comparison against a DNS is done for a one-way slab, see 

Fig.  16. The plate is clamped in both ends and subjected to a uniformly 
distributed vertical force 𝑞z. The analysis is performed for three dif-
ferent plate lengths and using a constant RVE size corresponding to 
2 × 2 yarns. The action on the RVE is applied using periodic boundary 
conditions. Moreover, the plate is assumed to be wide enough in the 
𝑦-direction so that the transverse curvature and displacement could be 
neglected. These assumptions make it possible to model the plate as a 
strip with only one RVE in the 𝑦-direction.

The effective curvature-moment response obtained from the DNS 
and the RVE is shown in Fig.  17(a). Overall, the result from the RVE 
agrees well with the DNS, with a maximum error of approximately 
10% for a plate width of 9𝐿□,x. The error does however increase for 
increasing curvature as shown in Fig.  17(b), especially when the RVE 
starts to crack at a curvature of roughly 0.2 m−1. Moreover, the error 
decreased when the length of the plate increased. This tendency can be 
explained by the fact that the separation of scales increases, i.e. that the 
RVE size decreases with respect to the length-scale of the plate. As the 
separation of scales increases, the assumption of periodic displacements 
becomes more accurate, and the error associated with prolongation 
becomes less significant.

5.3.2. Two-way slab
The same type of comparison is also done for a two-way slab, to 

validate the response under bi-axial bending. The setup of the analysis 
is shown in Fig.  18. Just as for the one-way slab, the plate consists of 
multiple joined sub-domains, in this case five in each direction. The 
plate is clamped around all vertical boundaries and is subjected to a 
uniform load 𝑞z.

The result from the analysis, when using periodic boundary condi-
tions, in terms of the effective curvature-moment response, is shown 
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Fig. 17. Comparison of the results obtained from the DNS of a one-way slab and an RVE simulation using periodic boundary conditions. The numerical results are plotted up to 
the point where the maximum equivalent compressive strain reaches 2.9 × 10−3 (a) Effective bending moment–curvature response. (b) Relative error 𝑒 = 𝑀RVE

xx ∕𝑀DNS
xx − 1 of the 

effective bending moment–curvature response.
Fig. 18. Setup of the DNS of the two-way slab. The analyzed subdomain is highlighted 
in green.

in Fig.  19(b). Also, the bending mode and the equivalent strain for 
the RVE are shown in Fig.  19(a). As expected, since the plate is 
symmetric, the effective bending moments have the same magnitude 
in both directions. Additionally, in the absence of twisting, the results 
in the respective direction should match those in Fig.  17(a), which is 
clearly observed.

5.3.3. One-way slab subjected to varying external membrane force
To verify that the RVE captures the response of a plate with com-

bined bending moment and membrane force, a DNS with an applied 
normal membrane force is performed for the same one-way slab as 
in Fig.  16. The normal stress 𝑞x is applied at the right boundary of 
the plate. The right boundary is also modified to allow for an axial 
displacement while restricting the rotation and vertical displacement, 
see Fig.  20. The normal stress 𝑞x is normalized with the plate width 
so that the relation between the normal traction and the maximum 
compressive stress from bending roughly remains constant for the 
different plate widths. 𝑞x is calculated according to 

𝑞x = 0.4
𝑡𝐿2

x
48𝐼y

𝑞z, (80)

where 𝐼y = 𝑡3

12  is the second moment of area per unit width of the plate 
and 0.4 is a scaling factor.

The result in terms of the effective curvature-moment response is 
shown in Fig.  21(b). The first thing to notice is the delayed cracking 
compared to the results from the one-way slab in Fig.  17(a). This is 
caused by the externally applied compressive membrane force. Also, 
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as for the earlier studied plate in Fig.  17(a), the error decreases with 
increasing separation of scales. On the other hand, the magnitude of the 
error is larger than for the plate with no externally applied compressive 
membrane force. This indicates that the RVE model is less accurate 
when subjected to simultaneously acting high membrane forces and 
bending moments. When examining the result in terms of the effective 
relation between the uniaxial strain and membrane force as shown in 
Fig.  21(a), there is no or little influence of the scale separation. This is 
however expected since the width of the plate has no influence on the 
membrane action. In general, there is a good agreement between the 
membrane forces computed from the RVE and the DNS.

5.3.4. One-way slab subjected to constant external membrane force
In this study, the external membrane traction is 𝑞x constant in-

stead of increasing with the curvature as in 5.3.3. The analysis is 
performed for membrane tractions corresponding to membrane forces 
of 𝑁̂xx = 0 kN/m, 𝑁̂xx = 225 kN/m and 𝑁̂xx = 450 kN/m and a fixed 
plate width of 7𝐿□,x. The result in terms of the effective curvature-
moment response is shown in Fig.  22(a). Firstly, one can observe 
that the response for the case when 𝑁̂xx = 0 kN/m approximately 
matches that of RVE subjected to uniaxial bending, see Fig.  14(a). The 
reason that the graphs do not perfectly match is that the transverse 
curvature and strain are constrained for the DNS. Secondly, one can 
observe the delayed cracking and hence higher capacity that is achieved 
when the membrane force is increased. Lastly, the results show that 
the deformation capacity is drastically decreased for the case with 
𝑁̂xx = 450 kN/m. This can be explained by studying the maximum 
equivalent compressive strain in Fig.  22(b), where it is evident that 
the compressive strain capacity is ‘‘consumed’’ by the membrane strain. 
There is however a positive effect of the membrane strain as can be seen 
for the cases when the membrane force is greater than zero, namely that 
the compressive strain localization caused by cracking is suppressed. 
Turning our attention to the normal strain-membrane force graph in 
Fig.  21(a), it can be observed that the plate length does not affect 
the membrane force. This is expected since the membrane action is 
statically determinate, meaning that the normal stress is determined 
solely by the applied membrane stress. However, local crushing of the 
concrete may result in local variations of the stress over the cross-
section, which could explain the small deviations in membrane force 
observed for high strains.

6. Conclusions and outlook

In this paper, a method for scaling up the TRC response to plate 
membrane forces and moments was developed. The proposed method 
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Fig. 19. Comparison of the results obtained from the DNS of a two-way slab and an RVE simulation using periodic boundary conditions. The numerical results are plotted up 
to the point where the analysis stopped converging due to excessive damage at the plate boundaries (a) Deformation and equivalent strain [-] for a curvature of 0.03 1/m and 
periodic boundary conditions. (b) Effective bending moment–curvature response.
Fig. 20. Model used for the DNS of the one-way slab subjected to external membrane 
force.

is independent of assumptions regarding specific reinforcement layouts 
or material models, provided the yarns remain straight. Furthermore, 
the model makes it possible to capture local effects related to the 
interaction between the yarns and the concrete, such as bond–slip and 
pullout failure. By resolving the yarns, it is also possible to predict how 
cracks are forming and are influenced by the reinforcement layout. This 
makes the proposed method an option to the commonly adopted lay-
ered approach for the analysis of plates and shells when high accuracy 
is required and the response is highly dependent on the yarn-concrete 
interaction.

The effects of interfilament slip and bond–slip are captured by using 
efficiency factors for the strength and stiffness of the yarns. The up-
scaling methodology was validated against both an analytical solution 
and several fully resolved direct numerical simulations: one-way plates 
with and without applied external membrane forces, as well as a two-
way plate. The results show that the RVE simulations yielded accurate 
results, especially for small or moderate membrane forces, with an 
error in the range of 5 to 20% for the studied examples. Furthermore, 
the accuracy was demonstrated to increase for increasing separation 
of scales (smaller RVEs compared to the larger scale). Three differ-
ent boundary conditions were investigated: Dirichlet, Neumann and 
strongly periodic. Neumann and Dirichlet conditions were shown to 
provide lower and upper bounds, while the strongly periodic condition 
was shown to provide the most accurate results.

The proposed homogenization technique could be employed in 
large-scale plate or shell models, either by on-the-fly RVE simulations 
at each integration point, or by identification of a surrogate model 
based on virtual testing of the RVE model. For the analysis of plates, it 
only remains to also solve the large-scale problem in Eq. (63) together 
with the sub-scale problems in Eqs.  (64a) and (64b). Two alternative 
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approaches can be employed for the analysis of curved shells, either 
by deriving the sub-scale and large-scale problems that account for the 
influence of curvature, or by approximating the shell using facet shell 
elements. For the latter approach, it is possible to use the flat RVEs 
derived in this work insofar as the separation of scales is sufficient, 
i.e. if the influence of the curvature of the shell has little influence on 
the sub-scale response.

Further work could improve the accuracy of the modeling on the 
sub-scale. Depending on the intended application of the analysis, al-
ternative representations of the yarns can be considered. For example, 
resolving the micro-structure of the yarns, as demonstrated in  Voss 
(2008), Valeri et al. (2020) and Banholzer (2004), would make it possi-
ble to capture for instance transverse effects on the yarns or progressive 
failure of the yarns. It should be noted that a finer resolution in the 
modeling of the yarns should ideally be complemented by a more 
detailed representation of their geometry to account for effects such 
as yarn crimping. In the case that the yarns are completely resolved, 
tools such as TexGen or WiseTex (Sherburn, 2025; Verpoest and Lomov, 
2005) could be used. However, this would require modifications to 
the current formulation. Currently, only straight yarns are considered, 
which is a reasonable simplification for plain weaves. However, for wo-
ven textiles, the curvature of the yarns has to be considered also on the 
sub-scale. Furthermore, to properly model 3D textiles with spacer yarns 
requires careful consideration of the yarn anchorage and yarn-yarn 
interaction. Finally, it also remains to validate all the different bending 
and membrane modes, especially the twisting and shear modes, as well 
as all combinations of the modes.

Finally, we note that the upscaling framework developed in this 
work could be used for two-scale optimization of TRC plates and 
shells. At the large scale, typical design variables are related to thick-
ness, shape, and density (for topology optimization). The two-scale 
framework also incorporates design parameters at the sub-scale, such 
as parameters related to fiber orientation, textile architecture, and 
material properties for the concrete and the fibers. This approach 
enables a more holistic optimization of plates and shells, maximizing 
the potential of TRC.
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Fig. 21. Comparison of the effective RVE response and the result from the DNS of the one-way slab subjected to an external membrane force. The numerical results are plotted 
up to the point where the maximum equivalent compressive strain reaches 2.9 × 10−3 (a) Strain-membrane force response. (b) Curvature-moment response.
Fig. 22. Comparison of the effective RVE response and the result from the DNS of the one-way slab subjected to a prescribed membrane force 𝑁̂xx. The numerical results are 
plotted up to the point where the maximum equivalent compressive strain reaches 2.9×10−3 (a) Curvature-moment response. (b) Curvature-maximum equivalent compressive strain 
response measured for the RVE.
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Appendix A. Compatibility between prolongation and homoge-
nization operators

First, the sub-scale displacement fields are additively decomposed 
into the large-scale part and the fluctuating part according to Eq. (35b)

∗ (𝒖c,p, 𝑤c
)

= ∗
(

𝒖Lc,p + 𝒖sc,p, 𝑤
L
c +𝑤s

c

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢̄□[𝒖Lc,p + 𝒖sc,p],
ℎ̄□[𝒖Lc,p + 𝒖sc,p],
𝑤̄□[𝒖Lc,p + 𝒖sc,p, 𝑤

L
c +𝑤s

c],
𝜃̄□[𝒖Lc,p + 𝒖sc,p],
𝜅̄□[𝒖Lc,p + 𝒖sc,p]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

(A.1)

Now, since ∗ is a linear operator it is possible to sum the separately 
homogenized large-scale part and the fluctuating part 

∗ (𝒖c,p, 𝑤c
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑢̄□[𝒖Lc,p] + 𝑢̄□[𝒖sc,p],
ℎ̄□[𝒖Lc,p] + ℎ̄□[𝒖sc,p],
𝑤̄□[𝒖Lc,p, 𝑤

L
c ] + 𝑤̄□[𝒖sc,p, 𝑤

s
c],

𝜃̄□[𝒖Lc,p] + 𝜃̄□[𝒖sc,p],
𝜅̄□[𝒖Lc,p] + 𝜅̄□[𝒖sc,p]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑢̄□[𝒖Lc,p],
ℎ̄□[𝒖Lc,p],
𝑤̄□[𝒖Lc,p, 𝑤

L
c ],

𝜃̄□[𝒖Lc,p],
𝜅̄□[𝒖Lc,p]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

. (A.2)
⎩ ⎭ ⎩ ⎭
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where Eq. (55) was used to remove the homogenized fluctuating sub-
scale fields. Subsequently, we show the identity in Eq. (55).

A.1. Compatibility between homogenization and prolongation operators

In order to show that 𝑢̄□
[

𝒖Lc,p
]

= 𝒖̄p, the prolonged field 𝒖Lc,p
from Eq. (45) is substitute into the homogenization operator Eq. (38), 
whereby

𝑢̄□
[

𝒖Lc,p
]

= 1
|

|

|

𝛺□
|

|

|

∫𝛺□

𝒖̄c,p − 𝑧𝜽̄
(

𝒙̄p
)

+ 𝒉̄(𝒙̄p) ⋅
[

𝒙p − 𝒙̄p
]

−

𝑧𝜿̄
(

𝒙̄p
)

⋅
[

𝒙p − 𝒙̄p
]

d𝛺 = 𝒖̄p □ (A.3)

where it was used that all terms except the one involving 𝒖̄c,p are zero, 
since 𝜽̄, 𝒉̄ and 𝜿̄ are constant inside each RVE and that the average of 
[

𝒙p − 𝒙̄p
] is also zero in each RVE.

Compatibility between the homogenization and prolongation 
of displacement gradient

In order to show that ℎ̄□
[

𝒖c,p
]

= ℎ̄□
[

𝒖Lc,p
]

, the prolonged field 𝒖Lc,p
from Eq. (45) is substitute into the homogenization operator Eq. (39), 
whereby 

ℎ̄□
[

𝒖Lc,p
]

= 1
𝛺□ ∫𝛺□

[

𝒖Lc,p ⊗ 𝛁p

]

d𝛺. (A.4)

The gradient operator 𝛁p and the integral are distributive over 
addition and the terms in 𝒖Lc,p can be evaluated individually. The 
first two terms vanish since the gradient of the large-scale in-plane 
displacements and rotations is zero within each RVE. The third term 
is evaluated as 
1

𝛺□ ∫𝛺□

[(

𝒉̄ ⋅
[

𝒙p − 𝒙̄p
]

− 𝑧𝜿̄ ⋅
[

𝒙p − 𝒙̄p
])

⊗ 𝛁p
]

d𝛺 = 𝒉̄ □. (A.5)

Compatibility between the homogenization and prolongation 
of the out-of-plane displacement fields

In order to show that 𝑤̄□
[

𝒖c,p, 𝑤c
]

= 𝑤̄□

[

𝒖Lc,p, 𝑤
L
c

]

, the prolonged 
field 𝒖Lc,p from Eqs.  (45) and (47) are substitute into the homogenization 
operator Eq. (40), whereby

𝑤̄□

[

𝒖Lc,p, 𝑤
L
c

]

= 1
|

|

|

𝛺□
|

|

|

∫𝛺□

𝑤L
c d𝛺−

1
2 ||
|

𝛺□
|

|

|

∫𝛺□

[

𝒙p − 𝒙̄p
]

⋅ 𝜅̄□[𝒖Lc,p] ⋅
[

𝒙p − 𝒙̄p
]

d𝛺

= 1
|

|

|

𝛺□
|

|

|

∫𝛺□

𝑤̄d𝛺 = 𝑤̄ □. (A.6)

Compatibility between the homogenization and prolongation 
of the gradient of vertical displacement field

In order to show that 𝜃̄□
[

𝒖c,p
]

= 𝜃̄□
[

𝒖Lc,p
]

, the prolonged field 𝒖Lc,p
from Eq. (45) is substitute into the homogenization operator Eq. (39), 
whereby 

𝜃̄□
[

𝒖Lc,p
]

= 1
𝐼□ ∫𝛺□

𝑧𝒖c,pd𝛺. (A.7)

The second term is the only non-zero term. This can be evaluated 
as 

𝜃̄□
[

𝒖Lc,p
]

= 1
𝐼□ ∫𝛺□

𝑧2𝜽̄
(

𝒙̄p
)

d𝛺 = 𝜽̄ □. (A.8)

Compatibility between the homogenization and prolongation 
of curvatures

In order to show that 𝜅̄□
[

𝒖c,p
]

= 𝜅̄□
[

𝒖Lc,p
]

, the prolonged field 𝒖Lc,p
from Eq. (45) is substitute into the homogenization operator Eq. (42), 
whereby 

𝜅̄□
[

𝒖Lc,p
]

= − 1
𝐼□ ∫𝛺□

𝑧
[

𝒖Lc,p ⊗ 𝛁p

]sym
d𝛺. (A.9)
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The gradient operator 𝛁p and the integral are distributive over 
addition and the terms in 𝒖Lc,p can be evaluated individually. The 
first two terms vanish since the gradient of the large-scale in-plane 
displacements and rotations is zero within each RVE. The third term 
is evaluated as 
1
𝐼□ ∫𝛺□

𝑧
[(

𝒉̄ ⋅
[

𝒙p − 𝒙̄p
])

⊗ 𝛁p
]sym d𝛺 = −𝒉̄sym 1

𝐼□ ∫𝛺□

𝑧d𝛺 = 𝟎,

(A.10)

where it was used that the first moment of area is zero, i.e. that 

∫𝛺□

𝑧d𝛺 = |

|

|

𝐴□
|

|

|∫

𝐿z∕2

−𝐿z∕2
𝑧d𝛺 = 0 (A.11)

Similarly, for the last and only non-zero term 

1
𝐼□ ∫𝛺□

𝑧
[(

−𝑧𝜿̄ ⋅
[

𝒙p − 𝒙̄p
])

⊗ 𝛁p
]sym d𝛺 = 𝜿̄sym 1

𝐼□ ∫𝛺□

𝑧2d𝛺 = 𝜿̄ □,

(A.12)

where it was used that the large-scale curvature tensor is symmetric.

Appendix B. Neumann curvature constraint

By using the expression for the effective curvature in Eq. (42), 
together with the Gauss divergence theorem, Eq. (73a) can be expanded 
as

𝜅̄□[𝒖c] = − 1
𝐼□ ∫𝛺□

𝑧
[

𝒖c,p ⊗ 𝛁p
]sym d𝛺

= − 1
𝐼□ ∫𝛺□

𝑧
2

[ 𝜕𝑢c,p,i
𝜕𝑥j

+
𝜕𝑢c,p,j
𝜕𝑥i

]

d𝛺

= − 1
𝐼□

[

∫𝛤□

𝑧
2
𝑛□,j𝑢c,p,i d𝛤 + ∫𝛤□

𝑧
2
𝑢c,p,j𝑛□,i d𝛤

]

, (B.1)

where 𝒏□ is the unit normal of the RVE boundary. Finally, the curva-
ture constraint can be expressed in terms of the jump of the displace-
ment field, using that 𝑛□,j(𝒙+) = −𝑛□,j

(

𝜑per
(

𝒙+
))

. Hence
1
𝐼□

[

∫𝛤□

𝑧
2
𝑛□,j𝑢c,p,i d𝛤 + ∫𝛤□

𝑧
2
𝑢c,p,j𝑛□,i d𝛤

]

= 1
𝐼□

[

∫𝛤+
□

𝑧
2
𝑛□,j

(

𝑢c,p,i − 𝑢c,p,i
(

𝜑per
(

𝒙+
))

)

d𝛤

+∫𝛤+
□

𝑧
2

(

𝑢c,p,j − 𝑢j
(

𝜑per
(

𝒙+
))

)

𝑛□,i d𝛤
]

= 1
𝐼□ ∫𝛤+

□

𝑧
2
𝑛□,j[[𝑢c,p,i]] +

𝑧
2
𝑛□,i[[𝑢c,p,j]] d𝛤 = 0. (B.2)

Note that the constraint is expressed in terms of the jump of the 
displacement field by using that 𝑛□,j(𝒙+) = −𝑛□,j

(

𝜑per
(

𝒙+
))

.

Appendix C. Evaluation of sub-scale derivatives of large-scale part 
of displacement fields

C.1. Derivative of large-scale part of yarn displacement

The derivative of the large-scale yarn displacement is evaluated as
d𝑢Lr
d𝑙

= d
d𝑙

(

𝒆l ⋅ 𝒖Lc
)

= d
d𝑙

(

𝒆l,p ⋅ 𝒖Lc,p + 𝑒l,z𝑤
𝐿
c

)

= d
d𝑙

(

𝒆l,p ⋅ (𝒖̄p − 𝑧𝜽̄ + 𝒉̄ ⋅
[

𝒙p − 𝒙̄p
]

− 𝑧𝜿̄ ⋅
[

𝒙p − 𝒙̄p
]

)
)

+ d
d𝑙

(

𝑒l,z(𝑤̄ + 𝜽̄ ⋅
[

𝒙p − 𝒙̄p
]

+ 1
2
[

𝒙p − 𝒙̄p
]

⋅ 𝜿̄ ⋅
[

𝒙p − 𝒙̄p
]

)
)

, (C.1)

where 𝒆l,p is the in-plane part of the direction vector of the yarns. By 
using that
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𝜕𝒙p
𝜕𝑙

= 𝜕
𝜕𝑙

[

𝑙𝒆l − 𝒙0
]

= 𝒆l, (C.2a)
𝜕𝑧
𝜕𝑙

= 𝑒l,z, (C.2b)

(C.1) can be evaluated as
d𝑢Lr
d𝑙

= − 𝒆l,p𝑒l,z ⋅ 𝜽̄ + 𝒆l ⊗ 𝒆l ∶ 𝒉̄ − 𝑧𝒆l ⊗ 𝒆l ∶ 𝜿̄

− 𝒆l,p𝑒l,z ⋅ 𝜿 ⋅ [𝒙p − 𝒙̄p] + 𝒆l,p𝑒l,z ⋅ 𝜽̄ + 𝒆l,p𝑒l,z ⋅ 𝜿 ⋅ [𝒙p − 𝒙̄p]

= 𝒆l ⊗ 𝒆l ∶ 𝒉̄ − 𝑧𝒆l ⊗ 𝒆l ∶ 𝜿̄ (C.3)

C.2. Gradient of large-scale part of concrete displacement

The gradient of the large-scale part of the concrete displacement 
vector can be formulated as 

𝒉Lc =
[

𝒖Lc,p ⊗ 𝛁p

]

+
𝜕𝒖Lc,p
𝜕𝑧

⊗ 𝒆z + 𝒆z ⊗ 𝛁p𝑤
L
c +

𝜕𝑤L
c

𝜕𝑧
𝒆z ⊗ 𝒆z. (C.4)

By inserting the prolongation conditions 𝒖Lc,p and 𝜕𝑤L
c , Eq. (C.4) can 

be evaluated as 
𝒉Lc = 𝒉̄ − 𝑧𝜿̄ + [−𝜽̄ − 𝜿̄ ⋅ [𝒙p − 𝒙̄p]]⊗ 𝒆z + 𝒆z ⊗ [𝜽̄ + 𝜿̄ ⋅ [𝒙p − 𝒙̄p]]. (C.5)

C.3. Concrete strain

The concrete strain of the prolonged displacement field can be 
evaluated by taking the symmetric part of the gradient of the large-scale 
part of the concrete displacement in Eq. (C.5), i.e. 
𝜺c(𝒖Lc ) = [𝒉Lc ]

sym = 𝒉̄sym − 𝑧𝜿̄sym = 𝜺̄ − 𝑧𝜿̄, (C.6)

where the symmetry of the curvature tensor has been used, i.e. that 
𝜿̄sym = 𝜿̄.

Appendix D. Proof of effective rigid body invariance

The proof that 𝑵̄ = 𝑵̄ {𝜺̄, 𝜿̄} and 𝑴̄ = 𝑴̄ {𝜺̄, 𝜿̄} is divided into two 
parts. In part I, it is proven that 𝒖sc = 𝒖sc {𝜺̄, 𝜿̄} and that 𝑢sr = 𝑢sr {𝜺̄, 𝜿̄}, 
using the weak form of the sub-scale problem in Eq. (64). In step II it 
is shown that 𝑵̄ and 𝑴̄ are functions of 𝜺̄, 𝜿̄, by first showing that 𝑵̄
and 𝑴̄ are only depending on 𝒖sc, 𝑢sr , 𝜺c(𝒖Lc ) and 𝜀r (𝑢Lr ).

Step I The large-scale dependency of the weak form of the sub-scale 
problem in Eq. (64) is in 𝑎□,c

(

𝒖c ; 𝛿𝒖c
)

 and 𝑎□,r
(

𝑢r ; 𝛿𝑢r
)

. Using that the 
stress tensor 𝝈c is a function of the strain tensor 𝜺c and using Eq. (54), 
these forms can be expanded as

𝑎□,c

(

𝒖c ; 𝛿𝒖sc
)

= 1
|

|

|

𝐴□
|

|

|

∫𝛺□

𝝈c
(

𝜺c(𝒖Lc ) + 𝜺c(𝒖sc)
)

∶
[

𝛿𝒖sc ⊗ 𝛁
]

d𝛺, (D.1a)

𝑎□,r
(

𝑢r ; 𝛿𝑢sr
)

∶= 1
|

|

|

𝐴□
|

|

|

∫𝛤r,□
𝑁r

(

𝜀r (𝒖Lr ) + 𝜀r (𝒖sr )
) 𝑑𝛿𝑢sr

𝑑𝑙
d𝛤 . (D.1b)

The large-scale part of the concrete strain can be evaluated as 
𝜺c(𝒖Lc ) = 𝒉̄sym − 𝑧𝜿̄sym, (D.2)

see Eq. (C.3). The large-scale part of the reinforcement strain 𝜀r (𝒖Lc )
can be identified as the derivative in Eq. (C.3)
𝜀r (𝒖Lc ) = 𝒆l ⊗ 𝒆l ∶ 𝜺̄ − 𝑧𝒆l ⊗ 𝒆l ∶ 𝜿̄. (D.3)

Now, from Eqs.  (C.6) and (D.3), it is possible to conclude that

𝒖sc = 𝒖sc {𝜺̄, 𝜿̄} , (D.4a)

𝑢sr = 𝑢sr {𝜺̄, 𝜿̄} . (D.4b)
17 
Step II The membrane forces and moments are given by Eqs.  (61) 
and (62)

𝑵̄ = 1
|

|

|

𝐴□
|

|

|

[

∫𝛺□

𝝈c,p
(

𝜺c,p(𝒖Lc ) + 𝜺c,p(𝒖sc)
)

d𝛺

+ ∫𝛤r,□
𝑁r

(

𝜀r (𝒖Lr ) + 𝜀r (𝒖sr )
)

𝒆l ⊗ 𝒆l d𝛤

]

, (D.5)

𝑴̄ = − 1
|

|

|

𝐴□
|

|

|

[

∫𝛺□

𝑧𝝈c,p
(

𝜺c,p(𝒖Lc ) + 𝜺c,p(𝒖sc)
)

d𝛺

+ ∫𝛤r,□
𝑧𝑁r

(

𝜀r (𝒖Lr ) + 𝜀r (𝒖sr )
)

𝒆l ⊗ 𝒆l d𝛤

]

. (D.6)

Now since it was shown in Eqs. (C.6), (D.3) and (D.4b) that 
𝜺c,p(𝒖Lc ) = 𝜺c,p(𝜺̄, 𝜿̄), that 𝜀r (𝒖Lc ) = 𝜀r (𝜺̄, 𝜿̄), that 𝒖sc = 𝒖sc {𝜺̄, 𝜿̄} and 
that 𝑢sr = 𝑢sr {𝜺̄, 𝜿̄}, we can conclude that 𝑵̄ = 𝑵̄ {𝜺̄, 𝜿̄} and 𝑴̄ =
𝑴̄ {𝜺̄, 𝜿̄} □

Appendix E. Damage modeling

For the tensile damage, an exponential strain softening law is used 

𝑑t (𝜇) = 1 −
𝜀0,t
𝜇

exp
(

−
𝜇 − 𝜀0,t
𝜀f − 𝜀0,t

)

, (E.1)

where 𝜀0,t is the tensile strain threshold, computed from the uniaxial 
tensile strength according to 𝜀0,t = 𝑓c,t∕𝐸𝑐 (Jirásek, 2011). 𝜀f  is 
a material-dependent parameter that is computed from the fracture 
energy 𝐺F, the tensile strength 𝜎c,t , crack-band width ℎcb and the strain 
threshold 𝜀0,t as 

𝜀f =
𝐺F

𝑓c,tℎcb
+

𝜀0,t
2

. (E.2)

𝜇 is a state variable that keeps track of the maximum equivalent strain 
attained during the load history. For the equivalent strain 𝜀eq, the 
Euclidean norm of the positive part of the elastic strain tensor 𝜺el is 
used. To better capture the behavior under bi-axial compression such as 
in the case of two-way plates, a modified equivalent strain from Jirásek 
(2011) is used, where the factor 𝛾 is added to the norm. Hence the 
equivalent strain can be written as 

𝜀eq = 𝛾
√

⟨𝜺el⟩ ∶ ⟨𝜺el⟩, (E.3)

where ⟨∙⟩ returns only the positive components of the tensor, to ac-
count for that the tensile damage only is caused by tensile strains, 
see COMSOL Inc. (2024) for details. In compression, the following 
damage evolution is used 

𝑑c(𝜇) = 1 −
(

1 − 𝐴c
) 𝜀0,c

𝜇
− 𝐴cexp

(

−𝐵c
(

𝜇 − 𝜀0,c
))

, (E.4)

where 𝜀0,c is the compressive strain threshold and 𝐴c 𝐵c are parameters. 
These parameters are calibrated so that the maximum negative value 
in the uniaxial stress–strain curve matches the compressive strength 
𝑓c,c and that the stress–strain curve has a continuous derivative. The 
total damage variable is obtained by adding the tensile and compressive 
damage variables, i.e. 

𝑑(𝜇) = 𝛼𝛽t 𝑑t (𝜇) + 𝛼𝛽c 𝑑c(𝜇), (E.5)

where 𝛽 is denoted the shear exponent. 𝛼t and 𝛼c are parameters that 
are determined from the strain-state. The scalar damage variable 𝑑 is 
then used in Eq. (11) to compute the damaged stress.

Data availability

Data will be made available on request.
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