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Representing the glaciation of mixed-phase clouds in terms of the Wegener–Bergeron–
Findeisen process is a challenge for many weather and climate models, which tend to
overestimate this process because cloud dynamics and microphysics are not accurately
represented. As turbulence is essential for the transport of water vapor from evaporating
liquid droplets to ice crystals, we developed a statistical model using established closures to
assess the role of small-scale turbulence. The model successfully captures results of direct
numerical simulations and we use it to assess the role of small-scale turbulence. We find
that small-scale turbulence broadens the droplet-size distribution somewhat, but it does not
significantly affect the glaciation time on submeter scales. However, our analysis indicates
that turbulence on larger spatial scales is likely to affect ice growth. While the model
must be amended to describe larger scales, the present work facilitates a path forward
to understanding the role of turbulence in the Wegener–Bergeron–Findeisen process.

DOI: 10.1103/PhysRevFluids.10.053803

I. INTRODUCTION

In mixed-phase clouds, ice particles grow at the cost of evaporating water droplets via the so-
called Wegener–Bergeron–Findeisen (WBF) process [1]. This occurs because the saturation vapor
pressure differs for liquid water and ice. In the absence of any other processes, the WBF process
turns mixed-phase clouds into ice clouds, which is commonly referred to as glaciation. However,
mixed-phase clouds can be astonishingly stable (see, e.g., Ref. [2]), evading a too simplistic
interpretation of the WBF process. Thus our understanding and ability to adequately represent the
WBF process has important implications on the longevity and coverage of mixed-phase clouds and
hence Earth’s radiation budget (e.g., Ref. [3]).

Korolev [4] used a rising-parcel model to study growth of ice particles in mixed-phase clouds,
under the assumption that ice particles, water droplets, water vapor, and temperature are well
mixed, showing that the cooling rates associated with a sufficiently strong updraft can prevent full
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glaciation. In a similar framework, Ervens et al. [5] highlighted the importance of the number
of ice particles on the glaciation process, where smaller ice particle concentrations slow down
glaciation. A number of studies, theoretical [6,7] and numerical [8], analyzed how the glaciation
process depends on large-scale turbulent motions that sweep air parcels through the whole cloud.

A question that has received little attention in connection with the WBF process is the impact of
small-scale turbulence. Recently, Chen et al. [9] used direct numerical simulations (DNSs) to study
the influence of turbulence on growth of ice particles in a mixed-phase cloud, determining which
conditions favor ice growth in cloud-top generating cells (CTGC). The authors found that a higher
liquid-water content (LWC) and higher relative humidity (RH) favor ice growth by the WBF process.
Once the water droplets have evaporated, ice particles continue to grow consuming the remaining
water vapor in the cloud. The simulations show that small-scale turbulence has a weak effect on the
change of the mean radii of water droplets and ice particles, on the LWC and the ice-particle mass,
and therefore on the glaciation time (defined as the time it takes to reach an ice-mass fraction of
0.9). On the other hand, the simulations show how small-scale turbulence increases the width of the
particle-size distributions.

Chen et al. [10] compiled parameter sets and specifications to compare models for mixed-phase
processes, including models for small-scale turbulence, in the Michigan Pi cloud chamber [11]. The
specifications for this test case were guided by numerical Pi-chamber simulations [12], as well as
the original experimental study of Desai et al. [13]. The corresponding microscopic equations for
the core region of the Pi chamber are similar to those of Chen et al. [9], except that a constant influx
and removal of ice particles and droplets due to settling is specified.

Here, we analyze a statistical model for these processes, derived from the mapping-closure
approximation [14–16] under the assumption that the Lagrangian supersaturation distributions (the
distribution of supersaturation along droplet paths) are Gaussian, generalizing statistical models
for droplet-phase change in turbulence [17–21] to mixed-phase clouds. The model also relies
on combining temperature and water-vapor mixing ratio fields into a single supersaturation field
[19,22–24]. A strength of the model is that it is constructed from the microscopic governing
equations. To assess the accuracy of the model, we compare its predictions to DNS results, for the
parameters of Ref. [9] and for the Pi-chamber test case [10]. Another advantage of the model is that it
is straightforward to disregard small-scale turbulence in the model, simply by ignoring the stochastic
terms. In this way the model simplifies to a parcel model for mixed-phase clouds [4,25,26]. This
allows us to study under which circumstances small-scale turbulence matters for glaciation and
when it does not. Using the model we investigate the nondimensional parameters of the problem
and discuss how our conclusions depend on the spatial scale of the turbulent fluctuations.

The remainder of this article is organized as follows. In Sec. II we describe the microscopic
model for mixed-phase clouds, the basis for our DNS, and those of Refs. [9,10]. The statistical
model is introduced in Sec. III. Section IV summarizes our results, for DNS, statistical model, and
for its deterministic limit that disregards small-scale turbulence. In Sec. V we compare the results
and discuss their implications for glaciation of mixed-phase clouds. We summarize our conclusions
in Sec. VI. Four Appendixes contain a summary of all parameters used in the calculations and
mathematical details regarding our statistical-model analysis.

II. MICROSCOPIC MODEL

A. Supersaturation over ice and water

The microscopic model of Chen et al. [9] describes how local temperature and the water-vapor
mixing ratio are advected by the turbulent flow and how droplets and ice particles grow and shrink
in response to local fluctuations of these quantities. We start by showing how to simplify this
microscopic dynamics by combining the water-vapor and temperature fields into supersaturation
fields over ice and water. Thereby we extend the results of Refs. [19,22–24] that treat the case
without ice. Water-vapor supersaturations sw and si over liquid water and ice are defined via the
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partial pressure pv of water vapor, and saturated vapor pressures pv,w and pv,i over liquid water
and ice:

sw = pv

pv,w
− 1, si = pv

pv,i
− 1. (1)

For brevity, we refer to “liquid water” as “water” and use subscripts “w”, “i”, and “v” respectively
for liquid water, ice, and vapor. Expressions for pw(T ) and pi(T ) as functions of temperature T
are given by Eq. (A1) in Appendix A. Supersaturations are often expressed in terms of the mixing
ratio. The mixing ratio qv of water vapor is defined as the ratio of the mass mv of water vapor to
the mass ma of the dry air in a given volume, qv = mv/ma, or in terms of densities qv = ρv/ρa,
where ρa = pa/(RaT ) is the dry air density at partial air pressure pa. Note that the full pressure p
of the mixture is the sum of partial pressures of air and water vapor, p = pv + pa. But, because
mv � ma, we can take ρa ≈ ρ (the density of the mixture) and pa ≈ p, so that pv = (Rv/Ra)pqv, Ra

and Rv being the specific gas constants for dry air and water. Using this relation in Eqs. (1), one can
compute the supersaturation over water and ice as

sw = Rv

Ra

p

pv,w
qv − 1, si = Rv

Ra

p

pv,i
qv − 1. (2)

In order to derive a consistent diffusion-convection-reaction equation for supersaturation, one
approximates supersaturation as a linear function of qv, T , and p near their reference values qv,0, T0,
and p0 [19]. To this end we compute the differential of sw from Eq. (2):

dsw = (1 + sw)

(
dqv

qv
− Lw

RvT

dT

T
+ dp

p

)
= Rv

Ra

p

pv,w
dqv + (1 + sw)

(
− Lw

RvT

dT

T
+ dp

p

)
, (3)

where Lw is the latent heat of water evaporation and Li is the latent heat of ice sublimation. We
determine Lw and Li in the following way to ensure consistency with the approximations of pv,w

and pv,i:

Lw(T ) = RvT 2 d ln pv,w

dT
, Li(T ) = RvT 2 d ln pv,i

dT
. (4)

We can further simplify Eq. (3). Within the Oberbeck-Boussinesq approximation, the variations
of p and T around p0 and T0 are small, allowing us to use constant coefficients in front of the
differentials. Next, we deal with the factor 1 + sw. We assume that the supersaturation variations
�sw satisfy �sw � 1 + sw,0, where

sw,0 = sw(qv,0, T0, p0) = Rv

Ra

p0

pv,w(T0)
qv,0 − 1. (5)

We stress that this assumption is violated when the variations of sw (equivalently of qv) are not
small, as for example when completely dry air at sw = −1 saturates to sw = 0.

When the supersaturation fluctuations are small enough, we can integrate Eq. (3) using the
simplifying assumptions of the previous paragraph to obtain sw as a linear function of qv, T , and p
(and si is derived in a similar manner):

sw = sw,0 + Rv

Ra

p0

pv,w(T0)
(qv − qv,0) + (1 + sw,0)

(
− Lw(T0)

RvT0

T − T0

T0
+ p − p0

p0

)
, (6a)

si = si,0 + Rv

Ra

p0

pv,i(T0)
(qv − qv,0) + (1 + si,0)

(
− Li(T0)

RvT0

T − T0

T0
+ p − p0

p0

)
. (6b)

In order to derive the diffusion-convection-reaction equations for the fields sw(x, t ) and si(x, t )
from Eqs. (6), we follow [23] and start from the corresponding equations for the fields T (x, t )
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and qv(x, t ):

dT

dt
= κT

∂2T

∂x j∂x j
+ Lw(T0)

cp
Cw + Li(T0)

cp
Ci, (7a)

dqv

dt
= κqv

∂2qv

∂x j∂x j
− Cw − Ci. (7b)

Here Cw(x, t ) and Ci(x, t ) are water and ice condensation and deposition rates, which are discussed
in more detail in Sec. II C, cp = 7

2 Ra is the specific heat of air at constant pressure, and κT and κqv

are the molecular diffusivities of T and qv. Math-style Latin indices (as in x j) denote vector/tensor
components in Cartesian coordinates and we use the Einstein summation convention for repeated
indices. Next, d/dt = ∂/∂t + uj∂/∂x j are the components of the convective derivative, where
u j (x, t ) is the turbulent velocity of air determined by the Navier-Stokes equations

du j

dt
= − 1

ρ0

∂ p

∂x j
+ ν

∂2u j

∂xk∂xk
+ f (u)

j ,
∂u j

∂x j
= 0. (8)

Here ν is the kinematic viscosity of air. The forcing f (u)
j is required to maintain stationary turbu-

lence, as in Refs. [9,10].
Now we combine Eqs. (6) and (7). For this, we first calculate the Laplacian of sw from

Eq. (6a). Within the Oberbeck-Boussinesq approximation only the hydrostatic pressure affects the
thermodynamic variables like sw and the Laplacian of hydrostatic pressure is negligible compared
to the effects of Laplacians of T and qv, which are dominated by small-scale turbulence. Thus we
can neglect the Laplacian ∂2 p/∂x j∂x j to obtain

∂2sw

∂x j∂x j
= Rv

Ra

p0

pv,w(T0)

∂2qv

∂x j∂x j
− (1+sw,0)Lw(T0)

RvT 2
0

∂2T

∂x j∂x j
. (9)

The second step is to assume κqv ≈ κT , which is justified since κqv = 1.17κT [Eq. (A11)]. Defining
κ = √

κqvκT allows us to write

dsw

dt
= κ

∂2sw

∂x j∂x j
− A2,w,w Cw − A2,w,i Ci, (10a)

dsi

dt
= κ

∂2si

∂x j∂x j
− A2,i,w Cw − A2,i,i Ci, (10b)

where the equation for si is derived analogously. Here we introduced the parameters

A2,φ1,φ2 = Rv

Ra

p0

pv,φ1 (T0)
+ (1 + sφ1,0)Lφ1 (T0)Lφ2 (T0)

cpRvT 2
0

. (11)

In this expression, the variable φ stands for a particular condensed phase, either φ = w or φ = i. If
we disregard the ice phase, we obtain the supersaturation dynamics used in the statistical models
for evaporation of water droplets at the cloud edge [16,19]. There are minor differences in the
expressions of the A parameters in those references, reflecting slightly different assumptions.

The model (10) can be further simplified if we express si as a function of sw, so that it is sufficient
to solve a single partial differential equation for sw. The final model for sw and si used in our DNS
and in the statistical model is

dsw

dt
= κ

∂2sw

∂x j∂x j
− A2,wCw − A2,iCi + f (sw ), (12a)

si = A4(sw + 1) − 1. (12b)

Here we introduced a forcing term f (sw ) representing the forcing of small-scale fluctuations due to
large spatial scales that are not resolved by the DNS [9,10]. The new A2 parameters are given by
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A2,w = A2,w,w and A2,i = A2,w,i, in simplified notation. The parameter A4 is defined as

A4 = pv,w(T0)

pv,i(T0)
. (13)

Since pv,w > pv,i for T < 0 ◦C, we have A4 > 1 and si > sw in the mixed-phase cloud. The WBF
process corresponds to si > 0 > sw; under this condition water droplets evaporate and ice particles
grow. To assess how the single-supersaturation approximation works, we estimate the error δsi

between si calculated from (6b) and (12b). For T0 between 231.15 K and 273.15 K and the
parameters from Appendix A we find

δsi/si ≈ −0.011 K−1 (T − T0)/si. (14)

We conclude that the single-supersaturation approximation (12b) works well for temperature varia-
tions of the order of T − T0 ∼ 1 K, provided that |si| � 0.01. The latter condition is satisfied at the
initial and most interesting stage of glaciation, when air is saturated with respect to water, sw = 0
and si > 0.1. More generally, the approximation works well when temperature fluctuations are much
smaller than 1 K, as in the case of the CTGC [9].

B. Particle dynamics

Water droplets and ice particles are assumed to be so small that they follow the flow; their
positions xw(t ) and xi(t ) obey

dxw, j

dt
= u j (xw, t ),

dxi, j

dt
= u j (xi, t ). (15)

In other words, effects of particle inertia [27] are neglected. The particle radii rw(t ) and ri(t ) change
according to

dr2
w

dt
= 2A3,w a3

(
rw/rA3,w

)
[sw − sw,K(rw)], (16a)

dr2
i

dt
=

{
2A3,i a3

(
ri/rA3,i

)
si if ri > 0,

0 if ri = 0,
(16b)

with supersaturation taken at the particle position, e.g., sw(t ) = sw(xw, t ). For ice particles, dri/dt
is constrained to vanish at ri = 0 to ensure that r2

i remains non-negative, as it must.
Water droplets are not allowed to completely evaporate, due to the Köhler correction term in

Eq. (16), involving the radius-dependent function sw,K. This function is parametrized by the dry
aerosol radius rdry and the hygroscopicity coefficient κ:

sw,K(rw) = r3
w − r3

dry

r3
w − r3

dry(1 − κ )
− 1. (17)

A more general expression for Köhler corrections contains an exponential term for Kelvin curvature
effects [28]. In Eq. (17) we approximated the exponential by unity. This is a good approximation
for our values of rdry. Unlike water droplets, ice particles are not allowed to reactivate: once an
ice particle sublimates and ri reaches zero, it stays evaporated with ri = 0 (the ice is pure). This is
in agreement with the specifications of both the CTGC and the Pi chamber cases. Equations (16)
contain corrections for the efficiency of accommodation of water vapor on the particle surface,
introducing the particle-size dependent function a3(x) = x/(x + 1) with accommodation length rA3,φ

[29,30]:

rA3,φ
= A3,φ

ρφ

√
2πRvT0

αqv,φ pv,φ (T0)
, (18)
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where φ refers to the phase of condensed water, either φ = w or φ = i. Particles with radii rφ �
rA3,φ

are not affected by these corrections. Here αqv,w and αqv,i are water-vapor accommodation
coefficients over water and ice. The use of the particular forms of A3,φ , a3, and rA3,φ for our cases
is justified in Appendix A. Neglecting all radius-dependent corrections corresponds to a3 = 1 and
sw,K = 0. The A3 parameters in Eqs. (16) and (18) are given by [31]

A3,φ =
[

Ra

Rv

ρφL2
φ (T0)

κT cpT0 p0
+ ρφRvT0

κqv pv,φ (T0)

]−1

. (19)

Finally, the specifications for the cloud-chamber test case allow for injection and removal of water
droplets and ice particles [10]. Water droplets are injected in the form of dry aerosol at a constant
rate Iw [(s m3)−1] and removed at a rate defined by the settling velocity u∞,w. Ice particles are treated
the same way, with Ii and u∞,i. Namely, each particle is removed with a probability Pw (droplet) or
Pi (ice particle):

Pw = min

(
uw,∞�t

H
, 1

)
, Pi = min

(
ui,∞�t

H
, 1

)
, (20)

where H is is the total height of the Pi chamber. The settling velocities depend on the particle radii
rw and ri:

u∞,w = k∞,wr2
w, u∞,i = k∞,ir

2
i . (21)

The values of the parameters k∞,w and k∞,i are specified by [10]. We note that particle shape impacts
the sedimentation velocity. Here we assume spherical particles, but larger ice crystals (with radii >

30 µm) tend to be nonspherical. This is not accounted for in the model (for the data discussed below,
Figs. 1 and 2, the ice particles do not exceed this size). The overall number of particles changes as

dNw

dt
= V Iw + Nw

H
〈uw,∞〉, dNi

dt
= V Ii + Ni

H
〈ui,∞〉, (22)

where V is the volume of the simulation domain (corresponding to the core of the Pi chamber).

C. Condensation and deposition rates

The condensation and deposition rates Cw, Ci for water and ice are defined through the rate of
change of condensed water content:

Cw(x, t ) = 4

3
π

ρw

ρ0

Nw∑
α=1

G(x − xw,α )
dr3

w,α

dt
, (23a)

Ci(x, t ) = 4

3
π

ρi

ρ0

Ni∑
α=1

G(x − xi,α )
dr3

i,α

dt
, (23b)

where Nw is the number of water droplets, Ni is the number of ice particles, and G is the standard
spatial kernel, normalized to unity [9,32]. The spatial range of G is the linear size of a DNS-grid
cell. Using Eqs. (16) we can rewrite Cw and Ci as

Cw(x, t ) = 4π
ρw

ρ0
A3,w

Nw∑
α=1

G(x − xw,α )rw,αa3

(
rw,α

rA3,w

)
[sw,α − sw,K(rw,α )], (24a)

Ci(x, t ) = 4π
ρi

ρ0
A3,i

Ni∑
α=1

G(x − xi,α )ri,αa3

(
ri,α

rA3,i

)
si,α. (24b)

Here sw,α is the supersaturation field at the position of particle α, sw,α (t ) = sw(xα, t ). Note that the
multiplication by ri,α in Eq. (24b) correctly accounts for the ri = 0 condition in Eq. (16b).
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(a) (b)

(c) (d)

(e) (f)

µm µm

FIG. 1. Model results for ice growth in cloud-top generating cells [9]. Shown are the DNS results of Chen
et al. [9] (solid lines) for the mean droplet radius (a), liquid-water content LWC (b), the mean ice-particle
radius (c), the ice mass (d), and the mean supersaturation over water (e) and ice (f) as functions of time. In
each panel, curves for four parameter sets are shown; these parameter sets are given in Table III. Only ice
particles with ri > 0.001 µm are included in the statistics [9]. Also shown are simulations of the statistical
model (dashed lines) and of its deterministic limit (dash-dotted lines). The deterministic limit is so close to the
full statistical-model results that the lines are hard to distinguish.

Without injection and sedimentation (Nw and Ni are constant) and for vanishing mean forcing
〈 f (sw )〉, Eqs. (12a) and (23) imply that the quantities

sw,inv = 〈sw〉V + 4

3
π

ρw

ρ0
A2,wnw

〈
r3

w

〉
V + 4

3
π

ρi

ρ0
A2,ini

〈
r3

i

〉
V , (25a)

si,inv = A4(sw,inv + 1) − 1 (25b)

are invariant. Here nw = Nw/V and ni = Ni/V are droplet and ice number densities and 〈sw〉V =
1
V

∫
sw dx is the spatially averaged supersaturation. Since Eq. (12a) for sw is derived from the

two Eqs. (7) for qv and for T , the conservation law (25) combines both water and thermal energy
conservation during condensation and deposition of water vapor [18,19]. Physically, sw,inv and si,inv

correspond to supersaturation over water and ice if all the particles evaporate, so that all the water
is contained in the form of water vapor. In case we ignore the Köhler corrections, si,inv provides us
with an insight into the final state of the cloud. Since water evaporates (rw = 0), si,inv > 0 means
that ice remains, while si,inv � 0 implies that ice evaporates too.
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µm µm

FIG. 2. Model results for ice growth in the core of the Pi chamber [10]. Shown are the DNS results
(Sec. II D) (solid lines) for the mean droplet radius (a), the liquid-water content LWC (b), the mean ice-particle
radius (c), the ice mass (d), the mean supersaturation over water (e) and ice (f), and water droplet concentration
(g) and ice particle concentration (h) as functions of time. In each panel, curves for five different ice-particle
injection rates [cm−3 min−1] are shown; the parameter values are given in the insets. Also shown are simulations
of the statistical model (dashed lines) and of its deterministic limit (dash-dotted lines). In most but not all cases,
the deterministic limit is so close to the full statistical-model results that the lines are hard to distinguish.

All thermodynamic parameters in the above microscopic equations are summarized in Tables IV
(CTGC) and V (Pi chamber) in Appendix A.

D. Direct numerical simulations

We performed DNSs using Eqs. (8) to (22) for mixed-phase processes in the core of the Pi
chamber, for the parameters specified by Chen et al. [10]. The turbulent dissipation rate per unit mass
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was ε = 66 cm2s−3 in a cubic domain with side length L = 20 cm. With ν = 1.278 × 10−5 m2s−1,
the Kolmogorov length η = (ν3/ε)1/4 is around η = 0.75 mm. To properly resolve the turbulent
flow we used a numerical resolution with 2563 collocation points to solve the Eulerian equations.
The Taylor-scale Reynolds number of the simulation is Reλ = 94.

As specified by Chen et al. [10], our DNSs used the forcing term in the Navier-Stokes equa-
tions (8) to maintain a statistically steady turbulent state with constant dissipation rate ε. In Fourier
space, the forcing reads

f̂
(u)

(k) = εN (t )û(k, t ) for |k| < 3π/L. (26)

Here û(k, t ) is the Fourier transform of the turbulent velocity field u(x, t ), k is the wave vector,
and N (t ) = (

∑
|k|<2π/L |û(k, t )|2)

−1
is a normalization factor. The supersaturation equation (12a)

is also forced. For the CTGC we use a Gaussian random forcing [33],

f̂ (sw )(k) = β dW (k, t ) for |k| < 3π/L, (27)

where dW (t ) is white noise with unit variance independently chosen for different k. The numerical
factor β is used to maintain the prescribed steady water supersaturation root mean square σsw before
the aerosol injection. The forcing (27) differs from the one suggested by Chen et al. [10] where
there is no explicit forcing term; instead the supersaturation Fourier coefficients of the forced wave
numbers are rescaled at each time step to mantain the prescribed σsw . We tested that the two forcing
schemes yield the same condensation/evaporation statistics, provided that they achieve the same
statistically steady-state value of σsw . For the Pi chamber, Chen et al. [10] specify an additional
average forcing in Eq. (12a) that nudges the average supersaturation,

〈 f (sw )〉 = −(〈sw〉 − sw,force)/τsw,force , (28)

where sw,force is the mean supersaturation before aerosol injection and τsw,force is a forcing timescale.
This forcing mimics the property of the Rayleigh–Benard convection inside the cloud chamber to
achieve a statistically steady thermodynamic state [13,34].

For the Pi chamber, we need to add and remove the particles during each time step �t as specified
by Chen et al. [10]. The removal of particles is implemented as described by Eqs. (21) and (22) in
Sec. II B. Particle insertion is implemented in the following manner. The numbers of added particles
with radii rw,initial and ri,initial are

�Nw = floor(IwV �t ) +
{

1, frac(IwV �t ) � ξw,

0, else,
(29)

�Ni = floor(IiV �t ) +
{

1, frac(IiV �t ) � ξi,

0, else,
(30)

where Iw and Ii are water and ice injection rates and ξw and ξi are independent random variables
uniformly distributed in [0,1]. The initial ice particle radius is 2 µm, while the initial droplet size
corresponds to a dry aerosol particle with a diameter of 0.125 µm. The particles are inserted at
random positions in the simulation domain.

For our DNSs, we used the same numerical solver as in Refs. [19,23]. The Navier-Stokes
equations (8) were solved in Fourier space using fast Fourier transform. The nonlinear terms were
calculated in configuration space using the dealiasing 2/3 rule [23]. Time integration used a low-
storage third-order Runge-Kutta method, where the terms are treated exactly by using integration
factors, while the nonlinear terms followed an Adam-Bashforth scheme. The same Runge-Kutta
scheme was used to integrate the equations of motion (15) for water droplets and ice particles and
their growth equations (16). A linear interpolation scheme was used to evaluate the air velocity and
supersaturation at the particle positions, while linear extrapolation was employed to calculate the
condensation rates Cw and Ci in Eqs. (24). The parameter values for the DNSs are summarized in
Table I.
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TABLE I. DNS time and length scales for the Pi chamber [10].

Parameter Value

Simulation time tDNS 600 s
Eddy-turnover time k/ε 1.6 s
Kolmogorov time τη 4.4 × 10−2 s
Integration time step �t 1 × 10−3 s
Linear domain size L 2 × 10−1 m
Integral length scale Lint 4.2 × 10−2 m
Taylor microscale λ 1.6 × 10−2 m
Kolmogorov length η 7.5 × 10−4 m
Spatial resolution �x 7.8 × 10−4 m

We also performed our own DNSs for the CTGC [9], for the same parameters as in Ref. [9], with
Taylor-scale Reynolds number Reλ = 58. They advect two scalar fields—temperature and water-
vapor mixing ratio (Sec. V). The parameters for these DNS runs are given in Table II. We note that
we used slightly larger time steps and slightly coarser grid than Chen et al. [9]. We use our DNSs
for the CTGC to determine the Lagrangian correlation time of supersaturation, an input needed for
the statistical model that is discussed next.

III. STATISTICAL MODEL

To understand glaciation dynamics and how it is affected by small-scale turbulence one could
simulate the microscopic model described in Sec. II for a wide range of parameters. Here we take
an alternative approach: we derive a statistical model that allows us to systematically study the pa-
rameter dependencies of the glaciation process and provides immediate insight into possible effects
of small-scale turbulence. We validate the model by showing that it yields quantitative agreement
with the DNS results of [9]. In essence, the model is a statistical model for the supersaturation,
approximating Eqs. (8), (12), and (15), while Eqs. (16) for particle radii remain the same. The
derivation of the model rests on two assumptions.

(A1) The supersaturation statistics along water-droplet, ice-particle, and Lagrangian fluid paths
are the same.

(A2) The supersaturation statistics are Gaussian.
Our DNSs for the CTGC and for the core of the Pi chamber show that these assumptions hold

(Appendix D). In Sec. V we discuss their range of validity. To derive the model under the above
assumptions, we start by decomposing the supersaturation along a particle trajectory into its mean

TABLE II. DNS time and length scales for the CTGC [9].

Parameter Value

Simulation time tDNS 95 s
Eddy turnover time k/ε 2.82 s
Kolmogorov time τη 1.26 × 10−1 s
Integration time step �t 2.5 × 10−3 s
Linear domain size L 2 × 10−1 m
Integral length scale Lint 1.31 × 10−1 m
Taylor microscale λ 2.13 × 10−2 m
Kolmogorov length η 1.42 × 10−3 m
Spatial resolution �x 1.5625 × 10−3 m
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and fluctuating parts

sw = 〈sw〉 + s′
w. (31)

We use the usual notation 〈·〉 for ensemble averages of physical quantities and ·′ for their fluctuating
parts. The system is statistically homogeneous: the mean values may depend on t , but not on x.
Since water droplets and ice particles are Lagrangian tracers, and since the flow is incompressible,
single-point Eulerian and Lagrangian statistics are the same. Therefore, we can take the ensemble
average of Eq. (12a) to obtain the evolution equation for the mean supersaturation 〈sw〉:

d〈sw〉
dt

= −A2,w〈Cw〉 − A2,i〈Ci〉 + 〈 f (sw )〉. (32)

To close Eq. (32), we need expressions for the mean condensation rates 〈Cw〉 and 〈Ci〉, which we
derive in Appendix B:

〈Cw〉 = 4

3
π

ρw

ρ0
nw

〈
dr3

w

dt

〉
, 〈Ci〉 = 4

3
π

ρi

ρ0
ni

〈
dr3

i

dt

〉
. (33)

Using Eqs. (16), these expressions evaluate to

〈Cw〉 = 4π
ρw

ρ0
A3,wnw

〈
a3

(
rw

rA3,w

)
rw[(sw − sw,K(rw)]

〉
, (34a)

〈Ci〉 = 4π
ρi

ρ0
A3,ini

〈
a3

(
ri

rA3,i

)
risi

〉
. (34b)

Note that averages involving particle radii also include averaging over particles, e.g., 〈rwsw〉 =
1

Nw

∑Nw
α=1〈rw,αsw,α〉. However, for simplicity we do not introduce a special notation for such av-

erages, except for Appendix B where we use 〈·〉w or 〈·〉i. For the Pi chamber, the average forcing
〈 f (sw )〉 in (32) is given by Eq. (28). For the CTGC [9], the average vanishes.

With a model for the mean supersaturation in place, we now introduce a model for its fluctuating
part. Fries et al. [16] used the mapping closure of Pope [14] and Chen et al. [15] to accurately
describe non-Gaussian dynamics of s′

w during the evaporation of water droplets at the cloud edge.
We start from the same model here. Since in our case the statistics of sw is Gaussian, the mapping
closure becomes a linear theory and reduces to an Ornstein-Uhlenbeck process for s′

w

ds′
w = − 1

τ
(L)
sw

s′
w dt +

√
2σ 2

sw

τ
(L)
sw

dW (t ). (35)

Here dW (t ) are white-noise increments, while the supersaturation variance σ 2
sw

= 〈s′2
w〉 and the

correlation time τ (L)
sw

are the two parameters of the model. The model (35) is also known as the
Langevin mixing model [[14], Eq. 5.52]. The stochastic term in Eq. (35) is part of the mixing model.
Together with the drift term −s′

w/τ (L)
sw

, it describes how supersaturation is mixed by turbulence. In
Ref. [7], the stochastic term has a different role: there it represents supersaturation fluctuations
due to updraft-velocity fluctuations that sweep Lagrangian particles through a nonuniform mean
supersaturation field. Models related to (35) have been used to describe the effect of supersaturation
fluctuations on the growth of water droplets in turbulent clouds [17,18,20,21,35]. Some of them
contain additional condensation terms in the equation for s′

w. To understand why such terms do not
matter in our case, consider a more general statistical model for the supersaturation fluctuations

ds′
w = −A2,w〈C′

w | s′
w, t〉 − A2,i〈C′

i | s′
w, t〉 − s′

w

τ
(L)
sw

dt +
√

D(2) dW (t ). (36)

Here 〈C′
φ | s′

w, t〉 = 〈Cφ | s′
w, t〉 − 〈Cφ〉, where 〈Cφ | sw, t〉 are conditional condensation rates, and

D(2) is chosen such to conserve σsw [Eq. (B16)]. Appendix B outlines how to derive Eq. (36) using
the method of Sarnitsky and Heinz [36].
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However, the fluctuating condensation-rate contributions are negligible if the timescale of turbu-
lent mixing τ (L)

sw
is much smaller than the timescales τsw,w and τsw,i of supersaturation evolution due

to the phase change of water droplets and ice particles,

τsw,w = σ 2
sw

A2,w|〈C′
ws′

w〉| , τsw,i = σ 2
sw

A2,i|〈C′
i s

′
w〉| , (37)

where |·| denotes the absolute value. Their fractions with τ (L)
sw

define the supersaturation Damköhler
numbers

Dasw,w = τ (L)
sw

τsw,w
, Dasw,w = τ (L)

sw

τsw,w
. (38)

We conclude that, for small Damköhler numbers, Dasw,w � 1 and Dasw,i � 1, one can use the model
(35) instead of (36). Our model calculations confirm that the supersaturation Damköhler numbers
are smaller than unity for the cases studied here.

To close the model (35), we need to provide the supersaturation variance σ 2
sw

and the correlation
time τ (L)

sw
. For the Pi chamber, the variance is given by Chen et al. [10]. For the CTGC, Chen et al. [9]

specify the variances of temperature and the water-vapor mixing ratio, which allows us to compute
σ 2

sw
. The Lagrangian correlation time τ (L)

sw
is defined as

τ (L)
sw

= σ−2
sw

∫ ∞

0
dt 〈s′(t )s′(0)〉, (39)

where 〈s′(t )s′(0)〉 is the Lagrangian autocovariance, i.e., it is taken along Lagrangian trajectories.
The numerical values of τ (L)

sw
and τL are given in Appendix A. We note that, for the cases studied

here, phase change does not affect τ (L)
sw

since the condensation terms are negligible in the dynamics
of s′

w for small supersaturation Damköhler numbers. Disregarding phase change, τ (L)
sw

is commonly
related to the large eddy turbulent timescale τL = k/ε:

τ (L)
sw

= C0,sw

Csw

τL. (40)

The Lagrangian Obukhov-Corrsin constant C0,sw comes from the Kolmogorov hypothesis extended
to passive scalars and connects the correlation timescale τ (L)

sw
to the dissipation timescale σ 2

sw
/εsw ,

τ (L)
sw

= C0,swσ 2
sw

/εsw , where εsw = 2κ〈 ∂sw
∂x j

∂sw
∂x j

〉 is the supersaturation dissipation rate. Note that this
definition of the supersaturation-dissipation rate requires that Eq. (12a) is a good approximation, as
it is for all cases described in the following. For the CTGC and Pi chamber, the values of C0,sw are 1.2
and 1.1, inferred from the DNS described in Sec. II D. The quantity Csw is the so called mechanical-
to-scalar timescale ratio, formally defined as Csw = kεsw/(σ 2

sw
ε). The quantity Csw can be considered

approximately constant only in specific types of flows, like the forced isotropic turbulence we deal
with here [37]. Its numerical values calculated from the DNS for the CTGC and Pi Chamber cases
are 1.8 and 2.2, respectivly. We stress again this discussion is valid only for Dasw � 1 and Dasi � 1.
In the case of non-negligible supersaturation Damköhler numbers, Fries et al. [16] found that both
C0,sw and Csw (denoted there as 2/C and 2φ∗) cannot be considered constant.

To numerically integrate the statistical model, we use the Euler-Maruyama scheme with a time
step of 0.05 s for the CTGC and 0.02 s for the Pi chamber. To ensure that the numerical integration
conserves the invariants (25), condensation rates are computed directly from Eqs. (33) and not
Eqs. (34). For the CTGC, we use Nw = Ni = 107 to suppress the statistical noise for cases 1 and 2.
The choice of Nw and Ni here has no other consequences, since the model depends only on nw and
ni in Eq. (33), which are fixed in each run. For the Pi chamber, the number of particles is determined
by the particle injection and removal process, which is implemented as described in Sec. II D.

Below, we refer to the deterministic limit of the statistical model, or deterministic model. It
is obtained by taking the limit σsw → 0 in the statistical model, which amounts to removing the
white-noise term in Eq. (35) and setting s′

w = 0.
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TABLE III. Parameters for the CTGC case (Fig. 1).

Case si,inv Initial 〈sw〉 Initial rw (µm) Initial ri (µm) nw (cm−3) ni (cm−3) σsw

1 −0.080 −0.2 10 1 1 100 0.017
2 −0.023 −0.15 10 1 1 100 0.017
3 0.42 −0.1 10 1 100 10 0.016
4 0.42 −0.1 10 1 100 100 0.016

IV. RESULTS

Figure 1 shows the results for ice growth and water evaporation due to the WBF in the CTGC
[9]. We chose the four cases from the accompanying Replication Data [38], where the particle-size
evolution is most rapid; their parameters are listed in Table III and Table V (Appendix A). Panel (a)
shows how the droplet radius shrinks because the droplets evaporate. The radius saturates at a
small value determined by the interplay between solute and curvature effects on the one hand
and evaporation on the other hand [39]. Shown are the DNS results of Chen et al. [9] with two
scalar fields, temperature and water-vapor mixing ratio (solid lines). We see that the statistical
model results (dashed lines) agree very well with those of the DNS, although the droplets evaporate
somewhat faster in the statistical model. Also shown are results for the deterministic limit of the
model (dash-dotted lines). They are almost indistinguishable from the full statistical-model results.
This shows that turbulence has no effect on the evolution of the mean droplet radius. Panel (c)
shows how the LWC decreases as the droplets evaporate, with analogous conclusions. In panel (b),
we compare how the mean ice-particle radius changes as a function of time. In agreement with
the values of the invariant si,inv [Eq. (25b), Table III]: the first two cases have si,inv < 0 and the ice
evaporates, while for the last two cases si,inv > 0 and the ice particles grow. Panel (d) shows the IWC,
which approaches a nonzero steady state when the cloud glaciates, but tends to zero in the other two
cases, as expected. The fact that LWC decreases and IWC increases for cases 3 and 4 indicates that
the ice particles grow at the expense of water droplets, as described by the WBF process. Finally,
panels (e) and (f) show the evolution of mean supersaturations over water and ice; once again both
are unaffected by turbulence. Note that 〈si〉 calculated from Eq. (12b) is almost indistinguishable
from the DNS of Chen et al. [9], indicating that the approximation (12b) works well. In summary,
the main conclusion from Fig. 1 is that small-scale turbulence does not affect the mean particle
radius. Chen et al. [9] came to the same conclusion for their base case. Comparing the deterministic
limit of our statistical model to their DNS for all parameter settings listed in the replication data
[38] shows that turbulence does not affect the mean particle radii or mean supersaturation for any
of the cases.

Figure 2 shows mean particle radii versus time for the five Pi chamber cases specified by Chen
et al. [10] corresponding to different ice-particle injection rates. As specified by Chen et al. [10], the
mean droplet radius in Fig. 1 is computed excluding droplets with radii <3.5 µm. Panel (a) reveals
how the droplet radius changes. For the two highest ice-particle injection rates, the radius tends to
zero. In other words, the cloud glaciates. For lower ice-particle injection rates, droplets remain in
the center of the Pi chamber at the end of the simulation. The transition to glaciation occurs for
ice-injection rates between 5 and 10 cm−3min−1. As for the CTGC, we see that the statistical model
(dashed lines) describes the DNS results (solid lines) very well, as does the deterministic limit. Also
here we conclude that small-scale turbulence has little effect, at least on droplets of radii >3.5 µm.
Panel (c) shows how the LWC changes as a function of time. The results indicate that turbulence
may change the location of the glaciation transition, as evident from the case Ii = 5 cm−3min−1

(green lines). The LWC with turbulence (the dashed line) increases at large times and the cloud
remains mixed phase, whereas LWC without turbulence (the dash-dotted line) decreases and the
cloud glaciates. Approaching the glaciation transition, LWC curves show a dip, as demonstrated
the clearest by the case Ii = 3 cm−3min−1 (the orange curve) near t ∼ 180 s. This is explained as
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FIG. 3. (a) Relative dispersion of droplet radii for ice growth in cloud-top generating cells [9]. Shown are
the DNS results of Chen et al. [9] (solid lines) and simulations of the statistical model (dashed lines). (b)
Statistical-model results for the Damköhler number Darw versus time for the same cases as shown in panel (a).

follows. Initially the droplets evaporate, so the LWC falls. But as aerosol is added, the competition
for water vapor increases, which leads to smaller droplets. Because these droplets do not sediment
substantially, the LWC grows. Hence as the overall number of droplets keeps increasing, the mean
radius of droplets decreases and reaches a steady state, as demonstrated by panel (g). All this
happens at a virtually constant value of the mean supersaturation [panel (e)]. Hence injecting ice
particles results in a decrease of droplet size, but in an increase of droplet concentration. Panels (b),
(d), (f), and (h) show how the mean ice-particle radius approaches a plateau, as does the IWC, the
mean supersaturation over ice, and the ice particle concentration. The differences in water contents
and particle concentrations between the statistical model and the DNS are due to slight differences
in the particle injection rates. The general message from Fig. 2 is that small-scale turbulence
has little effect on the mean radius of ice particles and droplets with rw > 3.5 µm for the parameters
from Chen et al. [10], except possibly upon the timing of the glaciation transition.

Figure 3 illustrates how the fluctuations in droplet radii develop as a function of time for the
CTGC. For all four cases, the relative dispersion σrw/〈rw〉 (σrw = √〈r′2

w 〉) increases rapidly, before
decaying to a plateau (for the green curve the decay is not shown).

We see that the statistical model (dashed lines) describes the DNS (solid lines) very well; the
deviations are consistent with the attenuation of σsw with time in the DNS of [9], while in the
statistical model we use σsw constant in time. More importantly, in the deterministic limit σrw = 0
(not shown), since turbulence is the only source of variability of particle radii in our setup. We
conclude that the particle-size dispersion is a consequence of small-scale turbulence and it is well
described by the statistical model. We do not show corresponding results for ice, because ice
evaporates quickly and 〈ri〉 reaches zero for cases 1 and 2. For cases 3 and 4, ice grows so rapidly
that the relative fluctuations in the ice-particle radii are negligible.

Figure 4 summarizes the same for the Pi chamber, regarding the relative dispersion of droplet
radii as a function of time. A major difference in this case is that particle removal and injection
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FIG. 4. Relative dispersion of droplet radii for the Pi chamber [10], for different ice-particle injection rates
[cm−3 min−1]. Shown are the DNS results (Sec. II D, solid lines), simulations of the statistical model (dashed
lines), and of its deterministic limit (dash-dotted lines).

causes a particle-size dispersion. This is well described by the deterministic model. So here small-
scale turbulence is less important for the particle-size dispersion, compared with the CTGC results
in Fig. 3. Note that this observation is valid only for larger droplets with rw > 3.5 µm, with this
cutoff also being the reason why σrw = 0 for glaciated clouds. Now we turn to the question of how
turbulence affects smaller droplets (haze).

Figure 5 shows the probability density functions (PDFs) of particle radii for the Pi chamber at
large times, for water droplets [panel (a)] and for ice particles [panel (b)]. For the ice particles,
statistical-model predictions and the deterministic limit agree very well, for the droplets also, but
not near or after the glaciation transition. The smaller the mean particle radius the greater the shift
of the deterministic limit PDF to smaller radii compared to the statistical-model PDF. Thus we see
that turbulence widens the distribution of droplet radii for smaller droplets.

V. DISCUSSION

Figures 1 and 2 show that the statistical-model predictions agree very well with the DNS results.
We now explain why this is the case here and under which circumstances the model may fail. To this
end we study the limits of validity of the statistical model, which we derived from the assumptions
(A1) and (A2) listed in Sec. III.

The first assumption, (A1), is that the supersaturation statistics along water-droplet, ice-particle,
and Lagrangian fluid paths are the same. We expect this to hold when the Damköhler numbers Dasw,w

and Dasw,i [Eq. (38)] are small and when water droplets and ice particles are initially well mixed.

µm µm

FIG. 5. Final probability distributions of particle radii for the Pi chamber [10], for different ice-particle
injection rates [cm−3 min−1]. Shown are statistical-model results (solid lines) and from its deterministic limit
(dashed). (a) Water droplets; (b) ice particles.
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Under these conditions, turbulence transports water vapor to and from particles faster than phase
change occurs. Hence the particles have no time to form a supersaturation field in their vicinity,
which might differ from particle-free regions of the flow; all the particles experience the same
supersaturation statistics.

The second assumption, (A2), is that the supersaturation statistics are Gaussian. In a homo-
geneous system (no scalar gradients [40–42]), the steady-state distribution of a passive scalar in
isotropic homogeneous turbulence is Gaussian [43–46]. Non-Gaussian tails that may be present in
transient mixing [47] disappear as the steady state is approached.

In summary, the statistical model from Sec. III can be justified when the Damköhler numbers
Dasw,w and Dasw,i are small. The cases summarized in Sec. IV all have Damköhler numbers smaller
than unity, explaining why the statistical model works so well. On the other hand, it is worth
noting that the interaction between turbulence and phase change can be more intricate and harder
to describe at larger Damköhler numbers. This is in line with the findings of Fries et al. [16] and
requires more refined mapping-closure approximations [14,15].

Next, we quantify the role of turbulence on the dynamics of mean supersaturation and upon the
mean particle radii. In the framework of the statistical model, the question is how σsw —the measure
of turbulence intensity—enters the dynamical equations for 〈sw〉 and 〈rw〉. To this end we need to
introduce two more Damköhler numbers [besides the supersaturation Damköhler numbers (38)]:

Darw = τ (L)
sw

τrw

, Dari = τ (L)
sw

τri

. (41)

They are associated with the timescales τrw and τri of the particle-size evolution:

τrw = 〈rw〉2∣∣ d
dt

〈
r2

w

〉∣∣ , τrw = 〈ri〉2∣∣ d
dt

〈
r2

i

〉∣∣ . (42)

We note that these Damköhler numbers scale as ∼2A3sφτ (L)
sw

/〈rφ〉2 (φ = w or φ = i). Therefore,
they are larger for smaller particles.

Figures 1 and 2 imply that small-scale turbulence has only a weak effect on the evolution of
the average supersaturation. To explain this, we look at the evolution equation (32) for 〈sw〉. It is
written in terms of the mean condensation rates 〈Cw〉 and 〈Ci〉. For the CTGC (no particle injection
or removal), we can estimate 〈Cw〉 and 〈Ci〉 as

〈Cφ〉 = 4π
ρφ

ρ0
A3,φnφ (〈rφ〉〈sφ〉 + 〈r′

φs′
φ〉) ≈ 4π

ρφ

ρ0
A3,φnφ〈rφ〉〈sφ〉

(
1 + 1

2

σ 2
sφ

〈sφ〉|〈sφ〉|Darφ

)
, (43)

where φ = w or φ = i, as before. These approximations are derived in Appendix C for a simplified
particle-growth model and assuming small particle Damköhler numbers, small supersaturation
Damköhler numbers, and narrow particle-size distributions. Equation (43) shows that the turbulence
term 〈r′

φs′
φ〉 is proportional to the particle Damköhler numbers. It can therefore be neglected when

Darw and Dari are small, when the particles are large enough. Neglecting 〈r′
φs′

φ〉 corresponds to the
decoupling between the fluctuations of radii and supersaturation when s′

φ evolves much faster than
r′
φ for large particles, so that r′

φ can respond only to the slow evolving 〈sφ〉, but not s′
φ . We note that

Eq. (43) fails near 〈sφ〉 ≈ 0, when the turbulence term 〈r′
φs′

φ〉 becomes comparable to 〈rφ〉〈sφ〉. In
practice this affects most the stationary state where the system spends significant time at si ≈ 0, i.e.,
after glaciation has happened.

Now consider the evolution of the average particle radii. In Appendix C we derive an approximate
equation for 〈rφ〉 under the same assumptions used to derive Eq. (43):

d〈rφ〉
dt

≈ A3,φ

〈sφ〉
〈rφ〉

(
1 − 1

2

σ 2
sφ

〈sφ〉|〈sφ〉|Darφ

)
. (44)

This result shows that small-scale turbulent fluctuations are negligible for small particle Damköhler
numbers. The physical reason why the mean radius dynamics is unaffected by turbulent fluctuations
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of supersaturation is the same decoupling between the dynamics of r′
φ and s′

φ discussed in the
previous paragraph. Equation (44) comes with the same caveat as above; it fails near sφ ≈ 0. We
stress that the statistical model correctly describes the mean radius even when sφ ≈ 0.

In conclusion, Figs. 1 and 2, as well as Eqs. (43) and (44), show that turbulence has at best a weak
effect upon the evolution of the mean particle size at small Damköhler numbers. This implies that
small-scale turbulence neither affects the WBF process nor the resulting glaciation time, defined as
the time it takes for the ice-particle mass fraction IWC/(IWC + LWC + qvρ0) to reach 90% [10].

On the other hand, Figure 3(a) shows that small-scale turbulence has an effect upon the fluctu-
ations σ 2

rφ
= 〈r′2

φ 〉 of the particle radii, as Chen et al. [9] concluded in their DNS study. Our model
can explain this as follows. Equations (16), drφ/dt ∼ A3,φsφ/rφ , imply that particles evaporate more
rapidly the smaller they are. As a consequence, any small differences in radii of evaporating particles
amplify in a deterministic fashion, explaining the rapid growth of the variance in Fig. 3. However,
when the initial variance vanishes as for the CTGC, turbulent supersaturation fluctuations are
required to initially widen the particle-size distribution, triggering the amplification. The widening
of σrφ

happens for water droplets, but not for ice particles. Since the ice particles grow, the variance
〈r′2

i 〉 shrinks instead. We note, finally, that the peaks of σrw/〈rw〉 in Fig. 3 coincide with the peaks of
the droplet Damköhler number Darw [Fig. 3(b)], confirming that larger particle Damköhler numbers
imply stronger coupling between s′

φ and r′
φ .

The above reasonings regarding the effect of small-scale turbulence on the average particle radii
and their fluctuations have to be adjusted when discussing the core of the Pi chamber (Fig. 4),
because we did not account for the particle injection and removal. In this case the particle-size
distribution of larger droplets (rw > 3.5 µm as in Fig. 4) is dominated not by turbulence, but by
injection of small particles and removal of larger ones, so small-scale turbulence has a weaker
effect, compared with the CTGC. However, if we look at the PDF of rw for all droplet sizes
[Fig. 5(a)], we see that turbulence has no influence only on cases with low ice injection rates. These
cases correspond to larger particle sizes and smaller droplet Damköhler number Darw . Once the
ice injection rate increases and the cloud glaciates, only small or even unactivated droplets remain.
Their Darw is larger and they are sensitive to supersaturation fluctuations, which widen droplet size
distribution compared to the case without turbulence. The distributions of ice particle size [Fig. 5(b)]
are unaffected by turbulence, because ice remains large and Dari is small.

At larger Damköhler numbers, small-scale turbulence could have a larger effect, in particular for
spatially inhomogeneous initial conditions [16]. Consider for example increasing the simulation-box
size in the DNS to increase the size of the unresolved turbulent scales. This increases the Damköhler
numbers (41), causing small-scale turbulence to be more important. In [9,10] the linear size of the
simulation domain was about 0.2 m; the Damköhler number Darw does not exceed 1.5 [Fig. 3(b)].
In order to get Damköhler numbers of order 15, where turbulence is expected to have a stronger
effect [16], the linear size should be at least about 20 m [since τL ∼ (L2/ε)1/3]. But, as discussed
above, the statistical model may fail when the Damköhler numbers become too large. In this case
more refined approximations for the condensation rates are needed [16]. It could also be of interest
to formulate models aimed to describe the large-Da limit, as used in dense evaporating sprays [48].

Here we considered high number densities of ice particles, typical for deeper clouds. Polar stratus
clouds tend to have lower ice-particle number densities, of the order 10−3 cm−3 [2]. In this case it
is hard to reach the steady state with DNS (although it is possible for the statistical model). Figure 7
of Chen et al. [9] shows results for the initial growth of ice particles at lower ice-particle number
density (the lowest value is 8 × 10−3 cm−3). We performed our own DNSs for these cases and find
good agreement with the statistical-model results and with the deterministic limit of the model (not
shown).

Abade and Albuquerque [49] found that turbulence increases cloud glaciation times and that ice
particles and supercooled droplets experience different supersaturation fluctuations, in apparent con-
tradiction with the DNS of [9] and with our statistical-model results. This discrepancy is explained
by the approximations for condensation and deposition rates used in [49], where the influence of
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neighboring particles (ice particles or water droplets) is not taken into account, hindering the WBF
process.

Korolev and Milbrandt [50] speculated that ice particles and water droplets may be locally
unmixed at small scales. In this case one expects the supersaturation distributions to be non-
Gaussian [16], causing the statistical model to fail, in the form used here. Instead, one must rely on
improved approximations of the supersaturation dynamics, such as mapping-closure approximations
[14–16]. In this case we certainly expect the deterministic model to be inaccurate, in particular
for the glaciation time. The question is by how much local unmixing delays glaciation and how
much turbulence contributes to the acceleration of it. This question also relates to a recent field
campaign in which supercooled clouds were seeded with ice nuclei to initiate the WBF [51]. For
these experiments, turbulence appears to be crucial to expose the newly nucleated ice crystals to
water droplets [52].

Both test cases studied, CTGC and Pi chamber, account for reactivation of water droplets, but not
of ice particles. We ran all CTGC cases with ice reactivation and did not see any difference. Under
different conditions than those studied here, ice reactivation might impact the glaciation process.

It must be emphasized the turbulence considered here is homogeneous, isotropic, and stationary.
At the submeter scales considered, this is likely a good representation of cloud turbulence, except
perhaps for entrainment zones where air masses with very different properties (warm and dry cloud-
free air vs cold and moist cloudy air) are mixed. It was found by Chandrakar et al. [53,54] that
such inhomogeneous conditions may lead not only to non-Gaussian supersaturation fluctuations,
but may also cause the diffusion-convection-reaction Eq. (12a) to become less accurate, because
small differences in diffusivities of temperature and water vapor may begin to matter. In this case,
it may be necessary to model temperature and mixing-ratio fields separately, rather than in terms of
a single supersaturation field.

VI. CONCLUSIONS

We analyzed the effect of small-scale turbulence on the glaciation process in mixed-phase clouds
using a statistical model similar to those used to describe droplet evaporation in warm clouds. We
found that the model describes DNS results for the glaciation process very well, for the parameters
in [9] corresponding to a cloud-top generating cell and also for the parameters specified in [10]
corresponding to the core of the Michigan Pi cloud chamber.

The statistical-model analysis shows that small-scale turbulence has an overall small effect on
ice growth. Small-scale turbulence affects the evaporation of water droplets in the CTGC in that it
initializes the growth of the droplet-size variance. In the core of the Pi chamber, for the parameters
specified by Chen et al. [10], small-scale turbulence matters only close to the glaciation transition,
where the water droplets are very small. When the corresponding time scale for droplet evaporation
decreases so that it is of the same order of magnitude as the Lagrangian mixing time, then small-
scale turbulence may have a stronger effect.

Our calculations show more generally that the effect of turbulence on glaciation is expected to
be larger at larger Damköhler numbers, i.e., on larger spatial scales L. Since mixed-phase clouds
exhibit a large range of vertical and horizontal length scales, covering shallow stratiform clouds of
just hundred meters depth and a horizontal extent of several tens to hundreds of kilometers to deep
convective clouds extending across the entire troposphere, the potential for small-scale turbulence
to affect the glaciation process in these clouds needs to be acknowledged. This is especially true
since most models used in the atmospheric sciences (from large-scale global circulation models
to comparably high-resolution large-eddy simulation models) do not represent the effects of small-
scale turbulence on cloud microphysical processes such as the WBF process on length scales smaller
than at least a few tens to a couple of hundred meters (i.e., their grid spacing).

A statistical model, such as the one presented here, may not only enable us to assess the effects
of small-scale turbulence on the WBF process on larger length scales in a follow-up study, but could
also be the basis of a parametrization to represent the effects of small-scale turbulence in larger-scale
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models, which still struggle to represent mixed-phase clouds, and especially the coupling of cloud
microphysics and turbulence [55].
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APPENDIX A: MODEL PARAMETERS

In this appendix we summarize the details necessary to understand the definition and values of
the model parameters used in the main text, for the CTGC [9] and for the Pi chamber [10].

Saturation pressures. The saturation pressures pv,w and pv,i are functions of only temperature.
For the Pi chamber we take [56]

pv,w(T ) = 611.2 Pa exp

(
17.62

T − 273.15 K

T − 30.03 K

)
, (A1a)

pv,i(T ) = 611.2 Pa exp

(
22.46

T − 273.15 K

T − 0.53 K

)
. (A1b)

For CTGC we take [57]

pv,w(T ) = 2.53 × 1011 Pa exp

(
− 5.42 × 103 K

T

)
, (A2)

pv,i(T ) = 3.41 × 1012 Pa exp

(
− 6.13 × 103 K

T

)
. (A3)

Parameters A3,φ and rA3,φ
. To derive expressions (19) and (18), we start from the well-known

form of the particle growth equations [31,58]:
dr2

w

dt
= 2Â3,w(rw) [sw − sw,K(rw)], (A4a)

dr2
i

dt
= 2Â3,i(ri ) a3(ri ) si. (A4b)

To derive expressions (19) and (18) we need to show that Â3,φ (rφ ) = A3,φa3(rφ/rA3,φ ). The radius-
dependent function Â3,φ in Eq. (A4) is given by

Â3,φ =
[(

Lφ (T0)

RvT0
− 1

)
Ra

cp

ρφLφ (T0)

κ
′
T,φ p0

+ ρφRvT0

κ
′
qv,φ

pv,φ (T0)

]−1

, (A5a)

κ
′
T,φ (rφ ) = κT

(
rφ

rφ + �T
+ κT

rφαT,φ

√
2π

RaT0

)−1

, (A5b)

κ
′
qv,φ

(rφ ) = κqv

(
rφ

rφ + �qv

+ κqv

rφαqv,φ

√
2π

RvT0

)−1

. (A5c)

053803-19



G. SARNITSKY et al.

This form for Â3,φ was used by [9] and [10]; however, we note that [59] provides a different formula
that involves the Köhler correction function sw,K. Here �T and �qv are scales of the order of the
mean free path in air, λa, parametrising kinetic corrections. The parameters αT,φ and αqv,φ are
thermal and condensation accommodation coefficients. We take their values from Refs. [60–62],

�T = 2.16 × 10−7 m, �qv = 0.87 × 10−7 m,

αT,w = αT,i = 0.7, αqv,w = 0.036, αqv,i = 0.5. (A6)

For these values, the dominant radius-dependent term in Eq. (A5a) is the one with κ
′
qv,φ

. Thus we
ignore the kinetic corrections and the temperature accommodation correction, effectively setting
�T = �qv = 0 and κT,φ = κT . In addition, we observe that Lφ/(RvT0) � 1 and proceed to derive
Â3,φ = A3,φa3(rφ/rA3,φ

):

Â3,φ =
[(

Lφ (T0)

RvT0
− 1

)
Ra

cp

ρφLφ (T0)

κT,φ p0
+ ρφRvT0

κqv,φ pv,φ (T0)

]−1

=
(

Ra

Rv

ρφL2
φ (T0)

κT cpT0 p0
+ ρφRvT0

κqv pv,φ (T0)
+ ρφ

√
2πRvT0

rφαqv,φ pv,φ (T0)

)−1

=
(

1

A3,φ

+ 1

A3,φ

rA3,φ

rφ

)−1

= A3 a3
(
r/rA3,φ

)
. (A7)

The last row yields Eqs. (19) and (18).
Supersaturation variance and correlation time. Now we describe how we obtained σsw and τ (L)

sw

for the CTGC [9] and for the Pi chamber [10].
The value of σsw is specified for the Pi chamber, but for the CTGC only the standard deviations

σqv and σT of the mixing ratio and temperature are provided. We reconstruct the value of σsw from
the data provided in the Supplemental Material for [9]. Recall that A4(T ) = pv,w(T )/pv,i(T ), so
expanding A4 near T = 〈T 〉 we express si as

si = A4(T )(sw + 1) − 1 =
[

A4(〈T 〉) + T ′ dA4

dT

∣∣∣∣
T =〈T 〉

+ · · ·
]

(sw + 1) − 1. (A8)

After averaging this expression we can express the correlation 〈s′
wT ′〉, Eq. (A9a). At the same time,

we can compute the correlations 〈s′
wT ′〉 and 〈s′2

w〉 straight from Eq. (6a), taking T0 = 〈T 〉, p0 =
〈p〉, and sw,0 = 〈sw〉. As before, we note that in our case the pressure term is negligible within the
Oberbeck-Boussinesq approximation. Overall we get a system of three equations:

〈s′
wT ′〉 = [(〈si〉 + 1) − A4(〈T 〉)(〈sw〉 + 1)]

/
dA4

dT

∣∣∣∣
T =〈T 〉

, (A9a)

〈s′
wT ′〉 = Rv

Ra

〈p〉
pv,w(〈T 〉)

〈q′
vT ′〉 − (1 + 〈sw〉)

Lw(〈T 〉)

Rv〈T 〉2
〈T ′2〉, (A9b)

〈
s′2

w

〉 =
[

Rv

Ra

〈p〉
pv,w(〈T 〉)

]2

〈q′2
v 〉 +

[
(1 + 〈sw〉)

Lw(〈T 〉)

Rv〈T 〉2

]2

〈T ′2〉

− 2(1 + 〈sw〉)
Rv

Ra

〈p〉
pv,w(〈T 〉)

Lw(〈T 〉)

Rv〈T 〉2
〈q′

vT ′〉. (A9c)

We solve this system to express σ 2
sw

= 〈s′2
w〉 as a function of σ 2

qv
= 〈q′2

v 〉, σ 2
T = 〈T ′2〉, 〈sw〉, 〈si〉,

〈T 〉, and 〈p〉; these data sets are provided in [38].
The calculation of τsw as the parameter of the model (35) follows the procedure described in

[[63], Eq. 5.2 and Appendix F].
Thermodynamic parameter values. The thermodynamic parameters for the CTGC case are given

in Table IV. They were taken either directly from [9] and its Replication Data [38] or from the
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TABLE IV. Model parameters for Pi
chamber [10].

Parameter Value

Ra 287.05 J/(kg K)
Rv 461.52 J/(kg K)
cp 1005 J/(kg K)
T0 265.63 K
p0 1 × 105 Pa
ρ0 1.311 kg/m3

V 8 × 10−3 m3

sw,0 5.253 × 10−2

qv,0 2.28 × 10−3 kg/kg
ν 1.278 × 10−5 m2/s
κT 1.800 × 10−5 m2/s
κqv 2.098 × 10−5 m2/s
κ 1.944 × 10−5 m2/s
ρ0 1.311 kg/m3

ρw 1000 kg/m3

ρi 917 kg/m3

αqv,w 0.036
αqv,i 0.5
rA3,w 2.805 × 10−6 m
rA3,i 0.1906 × 10−6 m
rdry 0.0625 × 10−6 m
rw,initial 0.0625 × 10−6 m
ri,initial 2 × 10−6 m
κ 1.12
A2,w 664.8
A2,i 691.0
A3,w 40.08 × 10−12 m2/s
A3,i 38.27 × 10−12 m2/s
A4 1.078
k∞,w 1.233 × 108 m−1s−1

k∞,i 1.131 × 108 m−1s−1

H 0.2 m
Iw 10 × 106

60 m−3s−1

σT 0.72 K
σqv 0.165 × 10−3

σsw 2.047 × 10−2

τ (L)
sw

0.755 s
τsw,force 60 s
sw,force 5.253 × 10−2

previous papers in the series [64–66]. For the reference value of supersaturation sw,0 we take the
mean of sw = 0 (water vapor saturated with respect to water) and sw = 1/A4 − 1 (water vapor
saturated with respect to ice):

sw,0 = 1

2

( 1

A4
− 1

)
. (A10)

This value of sw,0 should be a good general choice for describing the WBF process in which
supersaturation lies between these two points.

053803-21



G. SARNITSKY et al.

TABLE V. Model parameters for CTGC [9].

Parameter Value

Ra 287 J/(kg K)
Rv 467 J/(kg K)
cp 1005 J/(kg K)
T0 259.53 K
p0 57160 Pa
ρ0 0.7674 kg/m3

V 8 × 10−3 m3

sw,0 −6.298 × 10−2

qv,0 2.171 × 10−3 kg/kg
ν 1.6 × 10−5 m2/s
κT 2.22 × 10−5 m2/s
κqv 2.55 × 10−5 m2/s
κ 2.379 × 10−5 m2/s
ρw 1000 kg/m3

ρi 917 kg/m3

αqv,w 0.036
αqv,i 0.036
rA3,w 3.313 × 10−6 m
rA3,i 3.182 × 10−6 m
rdry 1 × 10−6 m
κ 0.3
A2,w 621.6
A2,i 646.5
A3,w 2.945 × 10−11 m2/s
A3,i 2.696 × 10−11 m2/s
A4 1.144
σT 0.143 K
σqv 4.5 × 10−5 kg/kg
τ (L)

sw
2.04 s

The parameter values for the Pi chamber [10] are summarized in Table V. For the diffusivities of
temperature and water-vapor mixing ratio, κT and κqv , as well as the kinematic visocity ν of air, we
used [67,68]

ν(p, T ) = 1.327 × 10−5 m2

s

101325 Pa

p

(
T

273.15 K

)1.81

, (A11a)

κT (p, T ) = 1.869 × 10−5 m2

s

101325 Pa

p

(
T

273.15 K

)1.81

, (A11b)

κqv (p, T ) = 2.178 × 10−5 m2

s

101325 Pa

p

(
T

273.15 K

)1.81

. (A11c)

The value for sw,0 was calculated from (5) from the values of qv,0 and T0 specified by [69].

APPENDIX B: CONDENSATION RATES IN THE STATISTICAL MODEL

In this appendix we derive the expressions for the conditional condensation rates 〈Cw | sw, t〉
and 〈Ci | sw, t〉, the mean condensation rates 〈Cw〉(t ) and 〈Ci〉(t ), and the statistical model (36). The
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notation 〈·|sw, t〉 is a shorthand for the usual notation for the conditional averages:

〈·|sw, t〉 = 〈·|Sw(x, t ) = sw〉. (B1)

This defines the ensemble average over all flow realizations for which the supersaturation field at
point x at time t equals sw. We use upper- and lowercase letters to distinguish the random variable
S(x, t ) from its value sw. All results here are valid for a statistically homogeneous system. For more
details on the mathematical tools used here see Appendix H in Ref. [70].

Conditional condensation rates. To simplify the notation, we ignore here the subscript w in sw

and use just s for supersaturation, especially since the derivation is valid for si too. First we show
that any conditional average for quantities of the form (24) can be computed as

〈 Nφ∑
α=1

G(x − xα )F (rα, S(xα, t ))

∣∣∣∣∣S(x, t ) = s

〉
= Nφ

V

fφ (s, t )

f (s, t )
〈F |s, t〉φ. (B2)

Here F is any function of a particle radius and supersaturation at the position of this particle and V
is the volume of the simulation box. Next, f (s, t ) is the PDF of the Eulerian supersaturation field; it
can be written as

f (s, t ) = 〈δ(S(x, t ) − s)〉, (B3)

where δ is the Dirac delta function. The PDF fφ of supersaturation at the particle positions (water
droplets or ice particles, φ = w or φ = i) is

fφ (s, t ) = 1

Nφ

Nφ∑
α=1

〈δ(S(xα, t ) − s)〉. (B4)

Averages over the particle positions are denoted as 〈 · 〉φ , φ = w or φ = i:

〈F |s, t〉φ = 1

Nφ

Nφ∑
α=1

〈F (rα, S(xα, t ))|S(xα, t ) = s〉. (B5)

To derive (B2), we use that the conditional average of a field H (x, t ) can be expressed as

〈H |S(x, t ) = s〉 = 1

f (s, t )
〈H δ(S(x, t ) − s)〉. (B6)

Second, we use that the system is statistically homogeneous. This allows us to take the spatial
average of the left-hand side of Eq. (B2), resulting in

〈 Nφ∑
α=1

G(x − xα )F (rα, S(xα, t ))|S(x, t ) = s

〉

=
Nφ∑

α=1

1

f (s, t )
〈G(x − xα ) F (rα, S(xα, t )) δ(S(x, t ) − s)〉

= 1

V

∫
V

1

f (s, t )

Nφ∑
α=1

〈G(x − xα ) F (rα, S(xα, t )) δ(S(x, t ) − s)〉 dx. (B7)

053803-23



G. SARNITSKY et al.

Third, we require that the support of spatial kernels G is smaller than the length scale at which
s(x, t ) varies, so that we can treat G as a delta function. Under these conditions we obtain〈 Nφ∑

α=1

G(x − xα )F
(
rα, S(xα, t )

)∣∣∣∣∣S(x, t ) = s

〉

= 1

V

1

f (s, t )

Nφ∑
α=1

〈F (rα, S(xα, t )
)
δ(S(xα, t ) − s)〉

= 1

V

fφ (s, t )

f (s, t )

Nφ∑
α=1

〈F (rα, S(xα, t ))|S(xα, t ) = s〉 = Nφ

V

fφ (s, t )

f (s, t )
〈F |s, t〉φ. (B8)

Using this result and Eq. (23), we can rewrite the conditional condensation rates as

〈Cw | sw, t〉 = 4

3
π

ρw

ρ0

Nw

V

fw(sw, t )

f (sw, t )

〈
dr3

w

dt

∣∣∣∣ sw, t

〉
w

, (B9a)

〈Ci | sw, t〉 = 4

3
π

ρi

ρ0

Ni

V

fi(sw, t )

f (sw, t )

〈
dr3

i

dt

∣∣∣∣ sw, t

〉
i

. (B9b)

These formulas are consistent with Eq. (5) in [16], which considered a turbulent mixing problem
with spatially inhomogeneous initial conditions and strong phase change, using mapping-closure
approximations.

Mean condensation rates. Averaging expressions (B9) for 〈Cw | sw, t〉 and 〈Ci|sw, t〉 over sw, we
obtain Eqs. (33) for the mean condensation rates.

Statistical model for s′
w with condensation-rate fluctuations. Now we derive the model (36) for

the fluctuating supersaturation s′
w that involves the condensation terms following the method of [36].

We start with the exact equation for s′
w, which for a statistically homogeneous system follows from

(12a) as

ds′
w

dt
= κ

∂2s′
w

∂x j∂x j
− A2,wC′

w − A2,iC
′
i + f (sw )′ . (B10)

If s′
w has a fast oscillating component we can model it as a stochastic differential equation

ds′
w = D(1)(s′

w, t ) dt +
√

D(2)(s′
w, t ) dW. (B11)

This equation describes the behavior of s′
w on timescales larger than τM,sw , the Markov–

Einstein timescale of sw, and is not applicable for modeling the real behavior of s′
w on smaller

timescales. The Markov–Einstein timescale is of the order of the Taylor timescale for sw, τM,sw ∼√〈s′2
w〉/〈(ds′

w/dt )2〉, and is of the order of the usual velocity Taylor timescale. In Itô’s stochastic
calculus that we use in Eq. (B11), future values of white noise are independent on the current value
of s′

w (the nonanticipation property). Since from (B11) we can express the white-noise term with√
D(2)(s′

w, t ) dW = ds′
w − D(1)(s′

w, t ) dt, (B12)

we require it to obey the nonanticipation property:〈
ds′

w

dt
(t + �t ) − D(1)[sw(t + �t ), t + �t]

∣∣∣∣ sw, t

〉
= 0, for �t � τM,sw . (B13)

Since D(1) evolves on timescales larger than τM,sw , we can approximate it from (B13) as

D(1)(sw, t ) =
〈

ds′
w

dt

(
t + τM,sw

)∣∣∣∣sw, t

〉
= κ

〈
∂2s′

w

∂x j∂x j

(
t + τM,sw

)∣∣∣∣sw, t

〉
+ 〈

f (sw )′(t + τM,sw

) | sw
〉

− A2,w
〈
C′

w

(
t + τM,sw

)∣∣sw, t
〉 − A2,i

〈
C′

i

(
t + τM,sw

)∣∣sw, t
〉
. (B14)
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Because the change of sw due to evaporation/condensation is slow compared to τM,sw in our setup,
we can substitute 〈C′

w(t + τM,sw ) | sw, t〉 with 〈C′
w(t ) | sw, t〉. For the diffusion term, we can use a

usual Langevin mixing closure, while the forcing term will be accounted for with D(2) since its only
role is to keep σsw constant. Thus we turn (B11) into

ds′
w = −A2,w〈C′

w | s′
w, t〉 − A2,i〈C′

i | s′
w, t〉 − 1

τ
(L)
sw

s′
w dt +

√
D(2)(s′

w, t ) dW (t ). (B15)

We could also relate D(2)(sw, t ) to the statistics of ds′
w/dt as further described by [36]. However, for

simplicity we just take D(2) to be independent of sw, also ensuring that its value yields σsw = const:

D(2) = 2σ 2
sw

τ
(L)
sw

+ 2A2,w〈C′
ws′

w〉 + 2A2,i〈C′
i s

′
w〉. (B16)

Thus we arrive at Eq. (36).

APPENDIX C: EFFECT OF PHASE CHANGE AND SMALL-SCALE TURBULENCE
ON PARTICLE-SIZE DISTRIBUTIONS

In this appendix we summarize details regarding the effect of small-scale turbulence on the mean
supersaturation and the mean particle size, needed for the discussion in Sec. V. For simplicity we
neglect radius-dependent corrections, replacing Eq. (16) by

dr2
φ

dt
=

{
2A3,φsφ if rφ > 0,

0 if rφ = 0.
(C1)

Further, we consider the state when none of the particles considered has evaporated completely.
Also, the derivations below rely on expanding 1/rφ around 1/〈rφ〉 assuming small r′

φ/〈rφ〉,
1

rφ

= 1

〈rφ〉 − r′
φ

〈rφ〉2
+ · · · , (C2)

and thus are valid for relatively sharp particle size distributions.
First we show that the correlation 〈r′

φs′
φ〉 of the fluctuating quantities r′

φ and s′
φ is of the order

of Darφ
,

〈r′
φs′

φ〉 = 1

2
Darφ

σ 2
sφ

〈sφ〉|〈sφ〉| 〈rφ〉〈sφ〉. (C3)

We start by deriving the evolution equation for 〈r′
φs′

φ〉. From Eqs. (C1), (12b), (35), and (C2)
we find

d〈r′
φs′

φ〉
dt

= d〈rφs′
φ〉

dt
=

〈
d(rφs′

φ )

dt

〉
=

〈
rφ

ds′
φ

dt

〉
+

〈
s′
φ

drφ

dt

〉

= − 1

τ
(L)
sw

〈r′
φs′

φ〉 + A3,φ

〈
sφs′

φ

rφ

〉
= − 1

τ
(L)
sw

〈r′
φs′

φ〉 + A3,φ

σ 2
sφ

〈rφ〉 + · · · . (C4)

For small Damköhler numbers, the evolution of the mean quantities, including 〈r′
φs′

φ〉, happens on
timescales much larger than the turbulent timescale τ L

sw
. Hence we can neglect the term d〈r′

φs′
φ〉/dt

compared to the term 〈r′
φs′

φ〉/τ (L)
sw

. This results in

〈r′
φs′

φ〉 = τ (L)
sw

A3,φ

σ 2
sφ

〈rφ〉 . (C5)

Using the definitions (42) and (41) of τrφ
and Darφ

we arrive at Eq. (C3).
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FIG. 6. PDFs of supersaturation fluctuations for the CTGC case obtained from DNS of the microscopic
model of Sec. II D, compared with a Gaussian PDF. Linear scale (left) and logarithmic scale (right).

Next, we derive (43). The mean condensation rates are

〈Cφ〉 = 4π
ρφ

ρ0
A3,φnφ〈rφsφ〉 = 4π

ρφ

ρ0
A3,φnφ[〈rφ〉〈sφ〉 + 〈r′

φs′
φ〉]. (C6)

Using (C3) we obtain (43). The derivation of Eqs. (44) proceeds by averaging Eq. (16), using
Eq. (C2) and Eq. (C3):

d〈rφ〉
dt

= A3,φ

〈
sφ

rφ

〉
= A3,φ

〈
sφ

〈rφ〉 − sφr′
φ

〈rφ〉
〉

(C7)

= A3,φ

〈sφ〉
〈rφ〉

(
1 − 〈r′

φsφ〉
〈rφ〉〈sφ〉

)
= A3,φ

〈sφ〉
〈rφ〉

(
1 − 1

2

σ 2
sφ

〈sφ〉|〈sφ〉|Darφ

)
.

APPENDIX D: GAUSSIANITY OF SUPERSATURATION FLUCTUATIONS

Figure 6 shows PDFs of supersaturation fluctuations for the CTGC cases 1 and 2 (see Table III).
For these two cases, the supersaturation field has reached a statistically steady state; the data is
obtained by ensemble averaging 20 supersaturation fields separated by 2.5 s in time. We observe
that both cases show Gaussian PDFs.
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