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Abstract
This paper presents Fenics, a modular framework for evaluating
the resilience of Decentralized Federated Learning (DFL) networks
under adversarial conditions. As a nascent field, DFL raises secu-
rity challenges in decentralized network settings under adversarial
behaviors. To our knowledge, Fenics is the first fully open-source
framework of its kind, enabling user-defined topologies, multiple
communication protocols, and customizable attack models to study
how malicious node placement affects network performance. It
integrates core components of DFL, including data distribution,
dynamic node participation, and aggregation to establish the DFL
architecture. We demonstrate the framework’s capabilities through
different use cases under poisoning and delay attacks using the
FashionMNIST dataset. The results validate its capability to re-
veal how node placement affects performance and expose network
vulnerabilities. For example, poisoning attacks exhibit topology-
dependent impacts, with accuracy dropping by over 55% in certain
scenarios, leading to derailed convergence. Additionally, the ex-
tensive logging features of the framework enable post-simulation
analysis and insightful interpretation. Its modular architecture, sim-
ple deployment, and customizable options make it a lightweight
yet useful tool for in-depth research on DFL network security.

CCS Concepts
• Networks → Cyber-physical networks; Peer-to-peer net-
works; • Computing methodologies → Distributed simula-
tion; • Security and privacy→ Distributed systems security.
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1 Introduction
Federated Learning (FL), introduced by Google in 2016, enables
collaborative model training without sharing raw data, enhancing
privacy and security [1]. Decentralized Federated Learning (DFL)
extends FL in 2018 by eliminating the need for a central server
[10]. In DFL networks, nodes communicate directly with each other
while handling both training and aggregation locally. This decentral-
ized structure protects local data privacy, reduces communication
overhead, and eliminates single points of failure. However, this
evolving technology introduces new security challenges as well.
Without central coordination, the system can be more susceptible
to attacks from malicious nodes, significantly impacting network
performance. For example, in model poisoning attack, a compro-
mised node can deliberately manipulate its local model parameters
by injecting significant random noise after local training. Later,
these poisoned models are shared during the aggregation phase to
degrade overall network performance, cause misclassification, or
lead to convergence on suboptimal solutions [15]. Similarly, in delay
attacks, nodes intentionally postpone transmitting their updated
model parameters during themodel exchange phase, which disrupts
the overall network performance [4]. As each node independently
aggregates updates from its neighbors, the topology significantly
influences how attacks propagate through the network as well. This
makes the placement of malicious nodes a critical factor in DFL
architectures, where a single compromised node can jeopardize the
entire network. Despite being a nascent field, several contemporary
solutions have contributed to the advancement of DFL. For instance,
protection against poisoning attacks by leveraging Blockchain [12]
or privacy preservation through partial homomorphic encryption
[2]. However, some frameworks lack comprehensivemodules for de-
signing network topologies and modeling attacks based on custom
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Table 1: Comparison of Federated Learning Frameworks

Existing
Frameworks

Architecture
(DFL)

Supported
Topologies Modularity

Custom
Attack Model Lightweight Open-source

TFF[14] No Star Yes No Partial Yes
Flower[3] No Star Yes No Yes Yes
PySyft[19] No N/S Yes No No Yes
FL-SEC[2] Yes P2P No No Yes No
P4L[2] Yes P2P No No Yes No
DEFEAT[5] Yes Random, P2P No No Partial No
Fedstellar[7] Yes Custom, P2P Yes Partial No Yes
EdgeFL[18] Yes P2P No No Yes Yes
Fenics (This paper) Yes Custom, P2P Yes Yes Yes Yes
N/S: Not specified by the authors.

configurations [12–14], while some require users to build the base
DFL structure from scratch [3]. Additionally, these platforms tend
to involve complex configurations, extensive deployment, and de-
mand a high level of expertise. Considering these issues, this paper
presents Fenics, an open-source1 framework that provides sup-
port for comprehensive and in-depth security assessments of DFL
networks across diverse adversarial settings. It provides flexible cus-
tom setups that also help to understand how different placements
of adversarial nodes can affect the network and increase security
risks. Real-world implications of this work include risk analysis
and developing mitigation strategies. For that, the first crucial step
is understanding the network’s underlying vulnerabilities, i.e., how
trustworthy the network already is. Fenics enables such security
evaluation by offering customizable attack strategies and simula-
tion options. Fenics consists of modular components that enable
options to customize network topologies, different attack strategies,
communication protocols, machine learning models, aggregation
algorithms, etc. Moreover, this framework is easy to deploy with
minimal hardware configurations, which makes it lightweight.

To evaluate the effectiveness of the framework, the FashionM-
NIST dataset is used, and a series of scenario-based experiments are
conducted by implementing two types of attacks: model poisoning
and delay. The performance of the experiments is evaluated using
accuracy, precision, recall, and F1-score at each round to monitor
the convergence point. The findings indicate useful insights, e.g.,
poisoning attacks significantly degrade performance depending on
attacker placement, while delay attacks cause resource consumption
by extending execution time. These findings highlight the frame-
work’s ability to analyze network resilience in DFL and validate its
usability. By offering comprehensive support and features, Fenics
stands as a valuable tool for students, academics, researchers, and
security practitioners interested in exploring the security aspects of
DFL networks. The rest of the paper is organized as follows: Section
2 reviews some existing works, Section 3 presents the framework
architecture, Section 4 describes the experimental setup, Section 5
discusses the results, and lastly Section 6 concludes the paper.

2 Related Work
As FL continues to evolve, numerous frameworks have emerged to
address different challenges in distributed and decentralized learn-
ing. Table 1 highlights some notable works that have contributed
1https://github.com/Shubham-Saha/Fenics—A-Modular-Framework-for-Security-
Evaluation-in-Decentralized-Federated-Learning

to the advancements in this field. To construct the table, we system-
atically reviewed existing popular FL frameworks. Our selection
criteria included framework architecture, security features, open-
source availability, and modularity. Key criteria for comparison
included support for custom topologies, attack model integration,
and lightweight deployment, which are crucial for evaluating secu-
rity resilience in decentralized settings. To begin with, TensorFlow
Federated (TFF), Flower, and PySyft are modular and open-source
frameworks that support centralized federated learning (CFL) with
privacy-preserving techniques such as differential privacy and se-
cure aggregation [3, 14, 19]. Flower emphasizes lightweight deploy-
ment for resource-constrained devices, and TFF supports flexible
simulations. However, PySyft can be harder to set up, and its strong
focus on privacy might make it less convenient for developers who
want something easy to use and scale [18]. Some frameworks specif-
ically focus on enhancing decentralization, privacy, and security
in federated learning through specialized techniques, mostly em-
ploying peer-to-peer (P2P) topologies. For instance, FL-SEC [12]
employs blockchain technology for decentralization and protection
against poisoning attacks. Similarly, P4L [2] implements partial
homomorphic encryption for privacy preservation and supports
fully connected topologies without centralized federation. While
these approaches offer robust security features, their implemen-
tation complexity can affect scalability in resource-constrained
environments. DEFEAT [5] presents a hybrid approach combin-
ing decentralized and semi-decentralized architectures with secure
aggregation and custom algorithms. DEFEAT’s implementation
balances communication costs and model accuracy through various
message exchange schemes. Although this framework demonstrates
effective solutions for specific use cases, its specialized architec-
ture may present challenges for broader applications. Fedstellar
[7], currently called “Nebula”, presents another notable advance-
ment in DFL platforms, addressing various aspects like secure ag-
gregation and communication encryption, with the capability of
deploying all types of topologies. It is an open-source platform and
supports multiple features, extensible to DFL research. However,
with the availability of many features, the framework requires a
heavy computational setup. Lastly, EdgeFL [18] is a lightweight and
open-source DFL framework focused on ease of deployment and
integration in edge environments. While it performs well under
standard conditions, it lacks adversarial evaluation and advanced
security features, emphasizing simplicity over customization.
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Figure 1: Architecture of Fenics.

Despite notable contributions, existing solutions often lack the
flexibility and thorough security evaluation needed for decentral-
ized FL networks. Limited customization, resource-heavy features,
and the absence of open-source access further hinder usability.
Hence, a necessity remains to address these limitations by propos-
ing an accessible solution that enables comprehensive security
evaluation in DFL through simple deployment and custom configu-
ration options.

3 Architecture of Fenics
Fenics integrates core components of the DFL pipeline, including
node selection, communication protocols, aggregation algorithms,
and convergence techniques. This section provides an overview of
its modular architecture with separated components. The key DFL
components that are integrated in Fenics include:
Dynamic Node Participation: Node participation varies in DFL
networks over the consecutive rounds, with the participation rate
determining the proportion of active nodes during training and
aggregation. To ensure universal participation of nodes while pri-
oritizing larger datasets, MD client sampling approach is used in
this framework, proposed in [11] with probabilities assigned based
on local dataset sizes:

𝑃𝑖=
𝑛𝑖∑𝑁
𝑗=1 𝑛 𝑗

where 𝑃𝑖 is the probability of selecting node 𝑖 , 𝑛𝑖 is the size of node
𝑖’s dataset, and 𝑁 is the total number of nodes.
Communication Mechanisms: This framework uses two differ-
ent decentralized communication methods: P2P [6] and Gossip (GP)
[9] protocol. P2P establishes deterministic communication patterns
based on network topology, allowing nodes to exchange param-
eters with their immediate neighbors. Conversely, GP follows a
stochastic approach where nodes randomly select peers for param-
eter exchange. Fenics dynamically accommodates these protocols
based on network conditions and performance requirements.

Topologies: Beyond standard topologies like fully connected, ring,
and star, Fenics is designed to support user-defined topologies via
edgelist files, enabling custom configuration and scalable setups.
This feature enhances the understanding of diverse network topolo-
gies in DFL, offering intuitive insights into network configurations.
Attack Simulation: Two fundamental attack simulation strategies:
Poisoning [15] and Delay [4] are currently implemented in Fenics.
Themodular design also allows users to implement additional attack
strategies based on specific requirements.
Model Aggregation: FedAvg is a widely adopted aggregation
method in DFL that averages model parameters from all partici-
pating nodes to update their local models individually [8]. Let 𝐾
denote the total number of nodes (𝐾=𝑁 ), 𝑛𝑘 be the number of data
samples at node 𝑘 , and𝑤𝑡

𝑘
be the model parameters from node 𝑘

at round 𝑡 . The updated parameters for node 𝑘 at round 𝑡 + 1 are
computed as:

𝑤𝑡+1
𝑘

=
1∑

𝑗∈𝑁𝑘
𝑛 𝑗

∑︁
𝑗∈𝑁𝑘

𝑛 𝑗𝑤
𝑡
𝑗

where 𝑁𝑘 is the set of neighboring nodes for node 𝑘 , and
∑

𝑗∈𝑁𝑘
𝑛 𝑗

is the total number of samples across 𝑘 and its neighbors.
Convergence Detection Mechanism: Detecting convergence
is crucial to determine model stabilization, optimizing execution
time, and conserving computational resources. It is determined by
analyzing improvements in average test accuracy over consecutive
rounds using a moving window analysis of performance metrics.
For any given round 𝑟 , convergence is detected if the improvements
in the average test accuracy in the previous rounds 𝑝 satisfy:

Δ𝑟− 𝑗+1 < 𝜃 ∀𝑗 ∈ {1, 2, . . . , 𝑝}

where Δ𝑟=𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟−1 represents the improvement in
average test accuracy from round 𝑟−1 to round 𝑟 , 𝜃 represents the
minimum significant improvement threshold, and 𝑝 is the patience.

Workflow: Figure 1 depicts the architecture of Fenics and illustrates
how the components described above interact during each training
round. The execution proceeds through a sequence of configurable
steps to emulate realistic DFL behavior. It begins with initializa-
tion, where configuration parameters are loaded via YAML files
and CLI inputs, and network topologies are established using edge
list files. A Dirichlet distribution [17] is applied for non-i.i.d. data
partitioning across nodes. After that, the machine learning model
is initialized to establish the baseline for training. The above setup
forms the foundation for the subsequent iterative training process,
where nodes are selected for participation to perform local training
using MD client sampling based on their respective datasets. Upon
completion of the training, model parameters are exchanged accord-
ing to the specified communication mechanism. After receiving
model parameters from their neighbors, each node independently
performs FedAvg aggregation using dataset-weighted averaging
to update its local model. This creates a new baseline for the next
round. Depending on the attack types, the execution of attacks
can occur at different steps as illustrated in Figure 1. For instance,
model poisoning occurs after local training but before parameter
exchange, while delay attacks disrupt the model exchange phase.

After aggregation, the performance of the use case scenarios
is evaluated using metrics such as accuracy, F1 score, precision,
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Table 2: Model Training Parameters.
Layer Type Details
Conv Layer 1 32 filters, 3 × 3 kernel
Conv Layer 2 64 filters, 3 × 3 kernel
Activation ReLU, Softmax (Output layer)
Max-Pooling 2 × 2
Fully Connected Layer 128 hidden units, ReLU activation.
Output Layer 10 units
Loss Function Cross-Entropy Loss
Optimizer Stochastic Gradient Descent (SGD)
Learning Rate 0.01

Table 3: Default parameters used in Fenics.
Parameter Default Value
Dataset FashionMNIST
Data Distribution Dirichlet (𝛼 = 0.5)
Number of Nodes 10
Training Rounds 15
Local Epochs 5
Participation Rate 0.7(70%)
Aggregation method FedAvg
Convergence Threshold (𝜃 ) 0.01
Model CNN
Topology Custom
Patience (𝑝) 3
Communication Protocol P2P

and recall. This step also monitors convergence and captures the
influence of adversarial behaviors across rounds. Based on the eval-
uation, the system decides whether to proceed to the next round
or terminate training. Throughout the process, Fenics logs key
metrics including training time, aggregation duration, and model
performance. It also generates logging of convergence trends, class
distributions, and network topologies that help in post-simulation
analysis. The capabilities of Fenics are demonstrated and validated
through scenario-based evaluations. The entire execution, from
configurable setup to performance assessment and visualization,
highlights its usability and potential to analyze diverse DFL scenar-
ios under adversarial conditions.

4 Experimental Setup
This section demonstrates the framework’s effectiveness through
experimental analyses, including the impact of malicious nodes
based on the placements, with three distinct attack scenarios com-
pared with a baseline.
SystemConfiguration: For the evaluation of the experimental sce-
narios, FashionMNIST dataset, which consists of 70,000 grayscale
images across 10 fashion categories [16], is used with a Convolu-
tional Neural Network (CNN) model. The model’s training parame-
ters are shown in Table 2. The framework is implemented in Python
to support efficient and scalable development. It leverages PyTorch
for local training and aggregation, while NumPy and Pandas handle
data processing. NetworkX is used to simulate network topologies,
and built-in logging modules track runtime behavior. Matplotlib
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Figure 2: Custom topology of 10 nodes used in our evaluation.

and Seaborn are used to visualize performance metrics. Python’s
multiprocessing and threading libraries are used to simulate decen-
tralized processing that allows parallel execution for each node’s
training and concurrent update exchanges. The default parameters
used in Fenics are summarized in Table 3, which serves as a baseline
for custom configurations. The concentration parameter𝛼 in Dirich-
let distribution controls the degree of heterogeneity, where lower
values 𝛼 < 1 produce more skewed distributions [17]. A custom
topology comprising 10 nodes, as illustrated in Figure 2 is designed
to evaluate the impact of attacks based on the node placements.
Three distinct attack scenarios are simulated and executed over
multiple rounds to closely resemble anonymous attack patterns
observed in real-world settings. All experiments are conducted on
a system equipped with an AMD Ryzen 7 processor, an NVIDIA
GeForce RTX 3060 Ti GPU, and 32GB of DDR4 RAM.
Baseline Configuration: In the baseline setting, the system op-
erates without attacks to establish reference performance metrics.
This serves as a benchmark for evaluating the impact of the subse-
quent attack implementations.
Attack Scenarios: Fenics provides precise control over attack exe-
cution through various tunable parameters and specific assessment
preferences. We design three distinct attack scenarios based on the
custom topology shown in Figure 2 while retaining the baseline
configuration parameters. Through these targeted attack scenarios
assessing DFL network performance, the usability and capabilities
of the framework are validated.
Scenario 1 (Poison attack from theCenter):Node 5 is designated
as a malicious node to perform poison attack. The node selection is
based on its central position in the network topology to observe
the attack impact on neighboring nodes in a dense area.
Scenario 2 (Poison attack from the Edge): Following the pre-
vious scenario, the malicious node is repositioned from 5 to 0 to
investigate how an attacker’s position with minimum neighbor-
connected affects the system.
Scenario 3 (Delay attack from both positions) : Nodes 0 and 5
are performing the delay attack to evaluate the system’s behavior
under temporal disruptions rather than data corruption, while the
attackers are positioned at both central and edge locations.

5 Results and Discussion
The experimental evaluation using Fenics reveals several analytical
insights into system behavior under various attack scenarios. This
section presents a detailed analysis of the findings across different
attack configurations and a comparison with the baseline.
Baseline Performance: The baseline configuration demonstrates
robust performance and stable convergence, as shown in Figure 3.
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Figure 3: Performance metrics of Baseline.
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Figure 4: Performance metrics of Scenario 1.

The system achieves convergence at round 7 with an accuracy of
90.57% and maintains consistent performance. This indicates robust
distributed learning behavior in the absence of attacks.

5.1 Impact of Attack Scenarios
A comparative analysis of the DFL network under three attack sce-
narios is presented to evaluate the impact of poisoning and delay
attacks based on the placement of malicious nodes.
Performance Under Poison Attack: This analysis reveals that
the placement of malicious nodes within the network significantly
influences the system performance. In Scenario 1, node 5 performed
poison attacks in rounds 1, 5, 7, 9, and 13 during the execution. As
illustrated in Figure 4, this attack leads to substantial degradation
in model performance. Using P2P communication protocol, node
5 shares its corrupted model updates with its immediate neigh-
bors. This contamination spreads through the network, causing
significant disruptions in the subsequent rounds. For example, ac-
curacy drops from a peak of 86.84% in round 4 to 10.23% in round 5,
consequently preventing the system from achieving convergence.
These results underscore the critical role of centrally positioned
malicious nodes in undermining the learning process. This provides
a significant insight into how the placements of the nodes affect
model performance. Thus, a strategic placement of an attacker
can severely disrupt the global model’s performance by injecting
poisoned updates into key areas of the network.

In Scenario 2, the attacker is repositioned to node 0 and launches
attacks in rounds 1, 3, 6, 10, and 12, as shown in Figure 5. Compared
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Figure 5: Performance metrics of Scenario 2.

to Scenario 1, this setup shows improved performance but still falls
short of the baseline. This is because the attacker is placed at the
edge of the topology, connected to only one neighbor, limiting the
spread of corrupted updates. The overall performance drops due to
delayed convergence compared to the baseline scenario in Figure 3.
However, the model achieves convergence by round 10, maintaining
an accuracy level above 80%. This analysis emphasizes that an attack
from a single nodewithminimal connections has a limited impact. It
also highlights how attack strategies, communication protocols, and
topologies can significantly impact the resilience and performance
of a DFL network.
Performance Under Delay Attack: In Scenario 3, both nodes
0 and 5 execute delay attacks. Although accuracy levels remain
nearly identical to the baseline (Figure 3), the key impact lies in the
time metrics. The deliberate postponement of model updates by
these nodes introduces significant delays in the training process.
As shown in Figure 6, the total round time (in seconds) is compared
across multiple rounds for both the baseline and the delay attack
scenario. The baseline shows relatively stable round times, ranging
between 1100 and 1900 secondswithminor fluctuations. Conversely,
the delay attack leads to erratic behavior, with sharp spikes in
round times, particularly in rounds 3, 6, 7, and 10-12, where round
durations exceed 1600 seconds. This behavior highlights the attack’s
effectiveness in disrupting normal operations by introducing delays
and prolonging round completion times.

The results in Table 4 present a comparative view of model
performance across scenarios. While the baseline maintains high
accuracy and stability, Scenario 1 shows major degradation due to
a centrally placed poisoning attack. In contrast, Scenario 2 remains
comparatively resilient, with the attacker at a less connected edge
node. Scenario 3 highlights increased round times from delay at-
tacks, despite minimal accuracy loss. These insights are obtained
through Fenics’ modular attack simulation and detailed logging,
which allow tracking convergence behavior, per-round metrics, and
the topological influence of malicious nodes. This exhibits the effec-
tiveness of Fenics in the security evaluation of DFL by facilitating
network performance observation under adversarial settings.

6 Conclusion
This paper presents Fenics, an open-source and comprehensive
framework for security assessment in DFL networks with a modu-
lar architecture. This framework is designed to be lightweight and
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Table 4: Performance Comparison Across Different Scenar-
ios.

Metric Baseline Scenario 1 Scenario 2 Scenario 3

Accuracy 0.909 ± 0.001 0.844 ± 0.010 0.885 ± 0.035 0.893 ± 0.023

F1 Score 0.908 ± 0.002 0.843 ± 0.012 0.884 ± 0.034 0.891 ± 0.023

Precision 0.909 ± 0.001 0.865 ± 0.005 0.887 ± 0.030 0.893 ± 0.023

Recall 0.908 ± 0.001 0.844 ± 0.010 0.885 ± 0.033 0.895 ± 0.022
Avg Round
Time(s) 1168.81 ± 127.65 1226.41 ± 51.40 1289.10 ± 83.92 1303.26 ± 111.03

easy to configure, enabling the in-depth security research of diverse
DFL scenarios. Integration of key DFL components combined with
thorough analysis and visualization capabilities makes Fenics a use-
ful and cost-effective tool. The experimental results demonstrate its
effectiveness and validate its potential in analyzing DFL behavior
under various scenarios, particularly on the network behaviors
depending on the placement of the malicious nodes. The findings
emphasize the critical relationship between network topology and
attack impacts while also uncovering key trade-offs between model
performance and computational efficiency. Fenics serves as a foun-
dational tool for these extensive security evaluations, whether to
analyze attack impacts, improve aggregation protocols, develop mit-
igation strategies, or address defensive measures. We plan to extend
Fenics with support for additional attack types, adaptive defense
mechanisms, and real-world deployment scenarios to strengthen
its utility in secure decentralized learning. By providing a flexible
platform especially tailored for DFL security evaluation, it paves
the way for more resilient strategies towards secured distributed
learning environments.
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