
FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach
to Continuous Distributed Monitoring

Downloaded from: https://research.chalmers.se, 2025-07-01 09:05 UTC

Citation for the original published paper (version of record):
Zhang, Y., Duvignau, R. (2025). FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware
Approach to Continuous Distributed
Monitoring. DEBS 2025 - Proceedings of the 19th ACM International Conference on Distributed and
Event-based Systems: 39-50. http://dx.doi.org/10.1145/3701717.3730544

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware
Approach to Continuous Distributed Monitoring

Yixing Zhang
yixing@chalmers.se

Chalmers University of Technology and University of
Gothenburg

Gothenburg, Sweden

Romaric Duvigau
duvignau@chalmers.se

Chalmers University of Technology and University of
Gothenburg

Gothenburg, Sweden

ABSTRACT
Efficiently monitoring distributed systems is critical for applications
such as data center load balancing, fleet management, and smart
grid energy optimization. Traditional continuous monitoring solu-
tions often require significant communication overhead, straining
network resources. This paper addresses the continuous distributed
monitoring problem, where a central coordinator needs to track
statistics from numerous distributed nodes in real-time. We propose
a novel forecast-based, error-bounded, and data-aware approach
that significantly reduces communication costs while maintaining
accurate monitoring. Instead of transmitting all observed values
to the central coordinator, our event-based monitoring leverages
lightweight forecasting models at edge nodes. Both the coordi-
nator and distributed nodes predict the evolution of local values,
communicating only when deviations exceed a predefined error
threshold. To adapt to dynamically changing trends in data streams,
we introduce a data-aware model selection strategy that optimizes
the balance between communication frequency and monitoring
accuracy. Our solution is evaluated on diverse datasets and results
demonstrate a substantial reduction in communication overhead
with minimal impacts on accuracy, outperforming baseline monitor-
ing regarding communication complexity, e.g., sending, on average,
only 10% of baseline update events while maintaining less than
2% average error across all monitored streams. Furthermore, we
show that our standard parameter solution even surpasses the best
calibrated single models, achieving up to a 17% improvement in
communication overhead with identical guarantees on maximum
error. Optimizing the control factor in data-aware approach leads to
a 13% improvement in performance, reducing error by 1%, without
incurring additional communication costs. We believe our approach
offers a scalable and efficient solution, enabling fully automatic,
real-time monitoring with optimized performance.

CCS CONCEPTS
• Applied computing→ Event-driven architectures; • Networks
→ Network monitoring; Data center networks; • Theory of com-
putation→ Distributed algorithms; • Information systems→
Data streams.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.
DEBS ’25, June 10–13, 2025, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1332-3/2025/06
https://doi.org/10.1145/3701717.3730544

KEYWORDS
continuous monitoring, distributed data streams, network monitor-
ing, distributed tracking, data-aware approaches

ACM Reference Format:
Yixing Zhang and Romaric Duvigau. 2025. FEDAMON: A Forecast-Based,
Error-Bounded and Data-Aware Approach to Continuous Distributed Mon-
itoring. In The 19th ACM International Conference on Distributed and Event-
based Systems (DEBS ’25), June 10–13, 2025, Gothenburg, Sweden. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3701717.3730544

1 INTRODUCTION
The proliferation of connected devices has led to an unprecedented
surge in the volume and velocity of data being generated across
modern networks. Today’s network infrastructure faces the chal-
lenge of managing high-velocity and high-volume data generated
by billions of internet-connected devices, reflecting the pervasive
reality of the Internet of Things (IoT) era [1]. Thus, reducing the
amount of continuously transmitted data has become imperative for
saving energy [3] and enhancing performance in modern packet-
processing architectures [13, 19]. Efficiently and continuously mon-
itoring large-scale distributed systems is a crucial challenge with
numerous applications, ranging from extending the lifespan of
battery-powered devices [11] in sensor networks to improving load
balancing in data centers [2, 18].

This paper focuses on the Continuous Distributed Monitoring
(CDM) problem, where a central coordinator 𝐶 monitors a dis-
tributed system in a synchronous manner, retrieving observed
values from all sensors during each round. The primary goal is
to minimize the amount of data transmitted between distributed
nodes and 𝐶 while maintaining accurate monitoring. The field of
CDM is a vibrant research area, with various approaches aiming to
reduce network costs. In recent years, significant research has been
devoted to developing communication-efficient algorithms across
various models for problems like (approximate) event counting [8],
computing item frequencies [9], and identifying the most popu-
lar items [36]. We focus here on the All-Values-Tracking (AVT)
problem, i.e., keeping track of all observed distributed values at
each round, an important task with numerous practical applica-
tions [13, 23, 24]. AVT focuses on tracking every single value from
every node, and as such, offers a generic solution to CDM since by
having𝐶 observing values from all nodes, any aggregation function
at 𝐶 can be computed based on the estimates.

The existing literature highlights several approaches to
communication-efficient distributed monitoring, such as prediction-
based models and data compression techniques. Prediction-based

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3701717.3730544
https://doi.org/10.1145/3701717.3730544

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

frameworks, like the one in [22], employ forecasting models to min-
imize data transmission, but often rely on static modeling choices
and do not account for the evolving nature of data streams. Simi-
larly, prediction-based data reduction in Wireless Sensor Networks
(WSNs) [11] assumes shared communication mediums and lever-
ages inter-node correlations, which limits the applicability of per-
node prediction schemes in more general distributed settings. Data
compression techniques [30], while effective at reducing commu-
nication, fail to provide real-time monitoring capabilities, which
are critical for applications requiring up-to-date resource tracking.
Thus, there remains a gap in designing a scalable, adaptive mon-
itoring approach that minimizes communication overhead while
maintaining real-time accuracy, particularly in distributed systems
with private communication channels and loosely correlated data
streams, applicable to many Cyber-Physical Systems (CPS) and
modern distributed environments.

1.1 Aim, Motivations and Challenges
To avoid continuously flooding the network with monitoring mes-
sages, we aim to reduce communication costs by allowing a small,
bounded error in the tracked statistics at the coordinator. This is
a challenging problem, as worst-case scenarios may require all
data to be transmitted at all times. By embedding the monitoring
logic close to data sources and leveraging the predictable nature
of data evolution, we seek to drastically reduce network transmis-
sions while incurring only a small reduction in tracking accuracy.
Additionally, the dynamic nature of data streams necessitates data-
aware monitoring model selection to account for changing data
characteristics, thereby enhancing monitoring performances.

Despite advancements in distributed monitoring, current state-
of-the-art solutions [8, 23, 24, 33] often prioritize worst-case sce-
narios, focusing on tight theoretical bounds for communication
complexity or near-optimal online algorithms. However, these ap-
proaches fall short in practical settings, where real-time data stream
values typically exhibit strong temporal correlations. For instance,
continuously tracking all node values remains a significant chal-
lenge due to the dynamic nature of the data and the requirement
for lightweight approaches—excessive computational demands for
monitoring would negate the benefits of reduced communication.
Furthermore, CPS and IoT devices operate under stringent energy
and computational constraints. In this context, monitoring algo-
rithms must be efficient not only in communication but also in
computation to ensure low energy consumption and sustain system-
wide energy efficiency. This creates a pressing need for algorithms
that are both lightweight and capable of leveraging temporal cor-
relations in data streams. A shift towards data-driven, data-aware
monitoring solutions is essential to address these challenges and
meet the demands of real-world applications.

1.2 Contributions
In this paper, we present (1) a novel forecast-based, error-
bounded approach for continuous distributed monitoring. Our
system enables both the coordinator and distributed nodes to pre-
dict the evolution of local values, reducing communication by trans-
mitting updates only when observed values deviate beyond a pre-
defined error threshold. This strategy leverages simple yet effective

Table 1: Summary of notations used in the paper.

Notation Description

𝐶 Coordinator node
S, 𝑛 = |S| Set of distributed nodes and its size
𝑠𝑖 ∈ S 𝑖-th distributed node
𝑣𝑖𝑡 , 𝑣

𝑖
𝑡 value observed, estimated on 𝑠𝑖 at time 𝑡

𝝐 Absolute error upper-bound
𝐷 Maximum buffer size
𝑇 Total no. of monitoring timesteps
𝑄 Total no. of update messages sent
𝜌 Communication ratio
𝑅D Range of dataset D
𝑅E , 𝑅G , 𝑅I , 𝑅A Range of Ericsson, Geolife, IntelLab,ACSF1
𝑊 Window size for score calculations
𝛼 Control factor for score calculations
𝜉 Model selection criteria

forecasting models, such as the Auto-Regressive (AR) model,
Least Mean Square (LMS) filter [20, 31], and Piecewise-Linear
Approximation (PLA) [12], to minimize computational complexity
at the nodes. Additionally, we introduce (2) a data-aware mecha-
nism that dynamically selects the most suitable forecasting model
based on current data characteristics. By evaluating multiple can-
didate models, the coordinator optimizes the trade-off between
communication cost and monitoring accuracy by updating the dis-
tributed nodeswith appropriatemodel parameters as needed. To val-
idate our approach, we conduct experiments on four large datasets
spanning diverse environments, including CPU usage in mobile
architectures, vehicular sensor data, temperature readings in sensor
networks, and energy consumption of home appliances. The results
demonstrate significant reductions in communication costs with
minimal impact on real-time monitoring accuracy, highlighting the
practical benefits of our framework in real-world applications.

1.3 Paper structure
The rest of this paper is structured as follows. Section 2 provides
an overview of related work in continuous distributed monitor-
ing and forecasting approaches. Section 3 presents our proposed
forecast-basedmonitoring framework, including the design of error-
bounded communication protocols. Strategies for data-aware model
selection are introduced in Section 4. Section 5 discusses the results
of our extensive performance evaluation, highlighting the effec-
tiveness of our approach across various scenarios and comparing
it to baseline solutions. Finally, Section 6 concludes the paper by
summarizing our contributions and discussing future works.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce our system model and compare it to
other related monitoring models, highlighting the differences in
key assumptions and characteristics. We then outline the primary
problem in focus and present the existing solutions solving it.

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach to Continuous Distributed Monitoring DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

65

70

75
sensor1 sensor2 sensor3 sensor4

65

70

75
sensor1 sensor2 sensor3 sensor4

Coordinator Node (C)

M
o

n
ito

ri
n

g
V

ie
w

Sensor
Nodes

(a) Baseline Monitoring (b) Simple Approximation Monitoring

Sent
Values

65

70

67.5
70.0
72.5

70

75

67.5
70.0

Sen
d

Val
ue

s

read

Coordinator
Node (C)

M
o

n
ito

ri
n

g
V

ie
w

Sensor
Nodes

read

S
end V

alues

Figure 1: Illustration of continuous monitoring comparing baseline monitoring (a) [25] with a simple approximation (b) [28]
strategies, both on 4 distributed sensor nodes with monitoring views of each coordinator.

2.1 Continuous Distributed Monitoring
2.1.1 CDM System Model. The CDM problem involves the task
of continuously gathering information at a central location, or
Coordinator (denoted as𝐶), i.e., a sink node that collects all observed
values by a set of distributed nodes. Unlike traditional monitoring
approaches, CDM emphasizes the optimization of communication
efficiency over computational performance. Refer to Table 1 for the
notations used throughout the rest of the paper.

We consider a set of n distributed nodes, or sensors S =

{𝑠1, 𝑠2, . . . , 𝑠𝑛}, where each node 𝑠𝑖 observes a discrete stream of
values 𝑣𝑖𝑡 ∈ R+ at discrete timesteps 𝑡 ∈ N. The coordinator 𝐶 is
connected to each node via a bi-directional channel, and direct
communication between nodes is assumed not to take place. The
distributed nodes can be thought of as routers or worker nodes
in a data center, IoT devices in a sensor network, or vehicles in
a vehicular network. Figure 1 presents an example of communi-
cation between 𝐶 and the sensor nodes. For each node 𝑠𝑖 , rounds
are assumed to have a constant duration 𝑑𝑖 , such that time 𝑡 (or
round 𝑡) refers to the interval starting at real-time 𝑡 · 𝑑𝑖 and ending
at (𝑡 + 1) · 𝑑𝑖 . The objective of CDM is to compute a monitoring
function 𝑓 at𝐶 using distributed inputs, while minimizing commu-
nication overhead. The function 𝑓 can track all values individually
or be the resolut of an aggregation (e.g., maximum or average) of
the sensor nodes’ readings, e.g. CPU usage of worker nodes in a
data center, temperature or humidity from a number of IoT devices,
or vehicle’s position and usage for a fleet management application.

A monitoring decision is defined as the action taken by a node
after recording a measurement — to either inform 𝐶 or remain
silent. The key challenge in CDM lies in reducing communication
overhead while ensuring that the monitoring function is accurately
computed at the coordinator. The monitoring view refers to 𝐶’s
(approximated) view over the complete set of tracked values and is
updated at every round. Values observed at the nodes are treated as
observation events. Based on the monitoring decision, each node
determines whether to trigger an update event or not.

2.1.2 Other Related CDM Models. Cormode’s Model [8] is among
the most well-known frameworks for distributed monitoring. This
model focuses on enabling𝐶 to compute an aggregate function over
the union of streams from 𝑛 observers, each directly connected to

𝐶 via a bidirectional channel. In this context, an item refers to
an application-specific type of observation detected at a remote
site, which is then considered an event. The model operates asyn-
chronously, where each observation triggers an event, followed by
a monitoring decision and a message transmission to update the
function 𝑓 at 𝐶 . The key strength of this model lies in leveraging
the interchangeability of events to efficiently compute classical data
mining functions. However, there is a major limitation that prevents
its application to our setting, namely treating 𝑓 as a function over
the union of streams, thereby ignoring the identity of the nodes (i.e.,
the same event from different nodes is treated identically), whereas
our problem requires tracking each node individually.

The Distributed Data StreamsModel [6] introduces a variation of
the CDM model with two notable differences: observers communi-
cate with𝐶 via unidirectional channels, and they are constrained to
use sublinear space, meaning they can only maintain approximate
summaries or data sketches [26] of their input streams. Due to the
unidirectional communication, observers must rely solely on their
own observations to make monitoring decisions, without any feed-
back from 𝐶 . While the space limitations are effective for counting
problems (like top-𝑘 items or frequency tracking), they are less ap-
plicable in scenarios where historical data is critical, which is often
the case in our context. Additionally, the restriction to unidirec-
tional channels significantly reduces the efficiency of monitoring
algorithms and no practical system justifies this limitation.

The Distributed Online Tracking Model [33] is another unidirec-
tional, synchronous framework that also introduces intermediary
nodes (or relays) between observers and 𝐶 . These relays, as cluster
heads in WSNs [11], are responsible for local aggregation before
forwarding data to 𝐶 . This model emphasizes competitive analysis,
comparing its online algorithms against an optimal offline solution.
It suffers from assuming a unidirectional communication channel,
a requirement to achieve online performance bounds.

Lastly, the Online Monitoring Model [23, 24] addresses the prob-
lem of tracking (approximately) the top-𝑘 greatest values from
distributed nodes in a synchronous environment. Within each mon-
itoring round, nodes are allowed to send a polylogarithmic number
of messages to the coordinator, with the option of performing syn-
chronized sub-rounds. This model also incorporates a broadcast
channel, counted as a single message, to enhance communication.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

However, this synchronization assumption limits its applicability
to specific types of distributed systems, and no experimental vali-
dation was provided in prior studies.

2.2 The All-Values-Tracking Problem
The AVT problem consists in maintaining at 𝐶 an approximation
of the current value for every node and every monitoring round,
where observed values are assumed to arrive in discrete asynchro-
nous rounds. See Figure 1 for an illustration of AVT monitoring
with 4 distributed nodes, one coordinator 𝐶 and 50 rounds; 2 moni-
toring strategies “baseline monitoring [25]” and “simple approxima-
tion [28]” are presented, cf.§ 2.3 and § 3.3 and the monitoring views
at𝐶 . We would like to highlight that when a highly communication-
efficient solution for AVT is presented, it can be extended to effi-
ciently monitor any function 𝑓 at 𝐶 . This can be achieved without
the need to fine tune the monitoring logic to 𝑓 , by simply contin-
uously computing 𝑓 over the (approximated) tracked values at 𝐶 .
As this work is focusing on a general CDM setting rather than pro-
viding solutions for a specific monitoring function 𝑓 , there might
exist more efficient monitoring algorithms for some 𝑓 . Our design
thus offers query flexibility by allowing new aggregation queries to
be implemented without redesigning the monitoring system, for
instance abnormal values can be easily detected when all values
are being tracked. Beyond supporting any aggregation functions,
observe that tracking all values from all nodes in real-time is also
essential in many practical scenarios. For example, in a smart city
scenario, vehicle tracking [4] requires real-time access to the posi-
tion of each single node to enable traffic flow optimization, safety
monitoring, and incident detection. Similarly, in sensor networks,
IoT devices often need to report raw, full-resolution readings (e.g.
environmental or health monitoring [35]) rather than data sum-
maries, as the original values feature anomalies or correlations that
are required to the later analysis.

While there are efficient solutions in the CDM space [8, 9, 15, 32,
36] that significantly reduce data transfer over the network, these
methods are not applicable to the AVT problem. This limitation
arises because these approaches rely on the interchangeability of
data sources – meaning that a value observed at one node can be
treated as equivalent to that observed at another. However, in the
AVT setting, each individual data streammust be tracked separately.

One of the most practical approaches to AVT includes adaptive
filtering [27] (transmitting only values that fall outside a predefined
per-node interval). It has been extensively studied in the context
of IoT devices [16]. While it yields significant reductions in com-
munication costs, it often masks a loss in accuracy—whether in
value-accuracy by filtering minor fluctuations or in time-accuracy.
However, as demonstrated in our evaluation, it can be further re-
fined by considering both data variation (not all nodes benefit
equally from the same model) and data evolution (prediction mod-
els may need to adapt over time to better align with changing data
trends).

One particularly well-studied technique is Geometric Monitor-
ing [15, 32], which enables efficient threshold-based monitoring
of functions computed over network-wide aggregates. However,
these global approaches are not directly applicable to AVT which

focuses on per-node data granularity. In addition to analytical ap-
proaches, heuristic solutions for distributed queries have also been
explored [27] as well as algorithms for tracking popular items [5].
These heuristic methods prioritize reducing communication costs
while maintaining acceptable accuracy but are generally limited to
specific query types and do not address the challenges of per-node
tracking inherent in AVT.

To summarize, the inherent complexity of AVT lies in the ne-
cessity to monitor all individual streams independently, without
leveraging data redundancy across nodes. Thus, there is no one-
size-fits-all solution for arbitrary input data, which previous CDM
approaches have generally targeted. The distributed nature of AVT
compounds the challenge, requiring solutions that prioritize node-
to-coordinator communication while remaining agnostic to the
presence or absence of other nodes. This necessitates more so-
phisticated, communication-efficient strategies that can handle the
non-transferable nature of events across distributed nodes.

2.3 Forecast-based Monitoring
Simple Approaches. The most straightforward approach to CDM is
for each node to directly forward all its observations to 𝐶 , which
is the TinyDB [25] strategy, serving as our baseline monitoring
method . However, this strategy quickly becomes impractical as
the number of observers or the volume of observations increases,
leading to scalability issues [8, 13]. Two common approaches to
address this challenge are polling the system less frequently and
sampling values from only a subset of nodes. Reducing the polling
frequency helps mitigate scalability issues but sacrifices some real-
time aspects. The key drawback of polling lies in its dependency
on the chosen frequency: a high polling rate can easily overload
the network, while a lower rate may result in significant losses
in monitoring accuracy [8]. Sampling, on the other hand, reduces
monitoring overhead by collecting data from only a subset of nodes.
While sampling can alleviate the communication burden, it is clearly
unsuitable for the AVT problem, where monitoring every individual
stream is essential.

State of the art. In [22], the authors outline a framework for
communication-efficient distributed monitoring using predictive
modeling. As in our proposal, the approach involves leveraging
predictions at 𝐶 and sending real values only when the deviation
from predictions exceeds a predefined threshold. It employs an
AR model whose parameters are transmitted instead of raw data.
Initially, nodes runmultiple ARmodels with varying lags and utilize
a racing mechanism based on the Hoeffding bound to evaluate and
discard underperforming models. Ultimately, each node maintains a
single, optimized model, ensuring efficient and adaptive monitoring.
The main differences with our proposed approach are: 1) utilizing
a single AR model instead of considering the prediction model
as “pluggin” which can have several possible implementations,
and 2) disregarding the evolution of data streams contrary to our
data-aware forecasting approach that adapts to different data and
network conditions.

Prediction-based data reduction has also been extensively stud-
ied in the context of WSNs [11]. A notable difference from our
setting is that WSN models typically assume a shared communica-
tion medium among sensor nodes, allowing values transmitted by

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach to Continuous Distributed Monitoring DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

nearby sensors to aid in data reduction. This approach limits the
feasibility of per-node prediction schemes [11], as they are often
considered too energy-intensive to operate on individual sensor
nodes. Instead, prediction tasks are usually offloaded to a cluster
head or to𝐶 which limits the possible reduction in communication.
For instance, in [7], the authors propose a probabilistic model to
compute a probability density function over values on the nodes. It
exploits spatial correlations among distributed nodes by exchang-
ing information between nodes. In contrast, our work considers
a more general distributed setting where communication chan-
nels between nodes and the coordinator are private. As their work
is compared with TinyDB [25] and Simple Approximation [28],
we also utilize these methods for comparison with our approach.
Furthermore, the datasets we use often exhibit low correlations be-
tween the observations of distributed nodes, making our approach
better suited for such scenarios. The related problem of data stream
compression [12], particularly in sensor networks [30], is worth
mentioning. The key distinction from the problem studied here lies
in the “real-time” dimension of monitoring. If the sole focus were on
the data itself, nodes could compress their observations and trans-
mit the compressed data at large intervals, significantly reducing
communication with the coordinator. However, this approach elim-
inates the coordinator’s ability to track all values in real-time, as it
would need to wait for the next batch of compressed data to update
its node-specific information. For many applications that require
regular monitoring of resources, such a delay is unacceptable.

3 ERROR-BOUNDED FORECAST-BASED
MONITORING

In this section, we introduce our monitoring framework, which
is based on maintaining aligned time series prediction models at
both the nodes and C. By treating the observations at each node
as a time series, we can capture the underlying characteristics of
the evolving patterns with limited required prior knowledge, thus
is general to apply for any data stream. In summary, during each
round, each node follows a monitoring strategy by making a moni-
toring decision regarding the incoming observations. Specifically,
the node decides whether to inform𝐶 or remain silent by checking
if the predicted value exceeds a predefined violation threshold.

3.1 Error-Bounded Value Tracking
It is evident that striving for an error-free solution to the AVT
problem is impractical: due to the unpredictable nature of stream
changes over time, the only viable approach to perfect AVT (i.e.,
error-free) would be to transmit every value that differs from the
last shared value. Instead, we adopt a more efficient strategy by
permitting the coordinator to tolerate a small, bounded error for
each stream independently, with this error constrained in absolute
terms by a predefined absolute error upper bound. That is, for any
given times 𝑡 ≥ 1, the value 𝑣𝑖𝑡 that C has as estimate for the value
on 𝑠𝑖 is within 𝝐 of its true observation 𝑣𝑖𝑡 , i.e.,��𝑣𝑖𝑡 − 𝑣𝑖𝑡 �� ≤ 𝝐, (1)

where 𝝐 ∈ R+ is defined based on the percentage of the range 𝑅D
that encompasses a sufficient proportion of percentiles for all values
within the relevant data streams over the prior time period (i.e., a

modest one equal to 15% · 𝑅D , and a strict one equal to 1% · 𝑅D).
We refer hereafter to as eq. 1 as the error constraint we set on 𝑠𝑖 ,
and it is assumed identical to all nodes in the system.

3.2 Monitoring Strategy
The monitoring decision is guided by the current monitoring strat-
egy, which balances communication efficiency with the need for
accuracy. The primary objective is to reduce unnecessary transmis-
sions while ensuring that C maintains an approximate but suffi-
ciently accurate view of the observed data streams. Our system is
built on the principle of forecasting the evolution of the monitored
values to reduce communication. As long as the constraint in eq. 1
holds at time t, no update message (event) is needed for that round.
The observations are stored locally in a buffer, with a maximum
buffer length1 of 𝐷 which depends on the prediction models used
but is constrained to a constant value.

If the observed value deviates significantly fromwhatC currently
knows (i.e., the constraint is violated), the node sends an update
message. When a violation occurs on node 𝑠𝑖 at time 𝑡 , both the
observed value 𝑣𝑖𝑡 and the buffered values are sent to C. Then, C
and node 𝑠𝑖 utilize previous observations in the buffer to estimate
new model parameters for predicting future values 𝑣𝑖𝑡 on node 𝑠𝑖 .
After sending an update message to C, the buffer is cleared to save
memory for new observations.

Our proposed framework is a 2-layer hierarchical model where
the nodes are all directly connected to the central coordinator𝐶 . In
real-world systems, it can be easily extended to more hierarchical
layers, by e.g., running our monitoring framework both at a cluster
level of aggregation between the end-nodes and𝐶 and at the central
coordinator 𝐶 for a 3-layer hierarchy.

The communication benefit is measured by the communication
ratio 𝜌 , which is defined as the proportion of update messages sent
to𝐶 , regardless of the information contained in those messages (i.e.,
one message could fit multiple values). For 𝑇 being the number of
timesteps in our studied period (assuming here that all nodes have
the same monitoring period), it is calculated as:

𝜌 =
𝑄

𝑇 · 𝑛 , (2)

where 𝑄 is the number of updates sent by the current monitoring
strategy during 𝑇 . If we assume our system achieves a 𝜌 as eq. 2,
when taking into account the cost of protocol headers (i.e., not
only the data itself but also the header in the packet), the achieved
communication reduction is bounded by 𝜌 together with the header
size. In other words, the communication reduction in practice is
less compared to 𝜌 .

3.3 Prediction Models
Since the observations generated vary across nodes, we give dif-
ferent options for models employed to describe local observation
behaviors at 𝑠𝑖 and 𝐶 . In real-world environments, our framework
applies to generic models capable of making predictions, thus other
models can be added as well to adapt to different data streams.
While the specified models introduced later are effective, alterna-
tive models can also be utilized within the framework. We elaborate
1The buffer size is limited to reduce memory usage and data transmission for better
performance, but one could easily store all values that do not trigger an update.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

here on how the combination of estimation of model parameters
and monitoring strategy works in the following. Each node runs a
prediction model independently, and all of the models are the same
for each, thus for simplicity, we denote 𝑣𝑖𝑡 , 𝑣

𝑖
𝑡 as 𝑣𝑡 , 𝑣𝑡 here.

3.3.1 Simple Approximation (SA). It produces a static value based
on the last updated observation, assuming that the local observa-
tions remain static over time. In other words, the prediction 𝑣𝑡 does
not change over time interval 𝑡 − 𝑡𝑝𝑟𝑒𝑣 , where 𝑡𝑝𝑟𝑒𝑣 is the last time
the node violated the constraint. The prediction model is given by:

𝑣𝑡 = 𝑣𝑡𝑝𝑟𝑒𝑣 , (3)

This model is trivial to implement, requiring no additional in-
formation to be exchanged between 𝐶 and 𝑠𝑖 . This model, referred
to as Approximate Caching [28], is one of the baseline methods
presented in [7]. In this study, we also implement it as the simplest
model in our framework.

3.3.2 Auto-Regressive Model (AR). The AR model can be em-
ployed in our system, with parameters that can be updated online
as new observations become available while being computationally
efficient to maintain. The predicted value 𝑣𝑡 at each node is based
on a linear combination of past observations 𝑣𝑡− 𝑗 , which can be
expressed as an AR model of lag ℓ , defined as:

𝑣𝑡 = 𝛿𝑡 +
ℓ∑︁
𝑗=1

𝑤 𝑗,𝑡 · 𝑣𝑡− 𝑗 , (4)

where w = (𝑤1,𝑡 ,𝑤2,𝑡 , . . . ,𝑤ℓ,𝑡 , 𝛿𝑡) is the set of model parameters.
The estimation of the model parameters w is calculated using con-
ditional Maximum Likelihood Estimation [29], which requires 𝑘
samples for computation. As long as the local constraint in eq. 1
holds, the model parameters w remain unchanged. When 𝑠𝑖 breaks
the constraint at time 𝑡 , all the buffered values (of maximum size
𝐷 = 𝑘) will be sent to 𝐶 . Following this, both 𝐶 and 𝑠𝑖 will recalcu-
late w using the new data for time 𝑡 + 1.

3.3.3 Least Mean Square Filter (LMS). LMS is one of the most
successfully applied adaptive filters [14], known for its low com-
putational overhead and memory usage, making it well-suited for
predictive tasks. Essentially, LMS takes each observation at time 𝑡
as input and computes the prediction as a linear combination of
the last ℓ observations, defined as:

𝑣𝑡 =

ℓ∑︁
𝑗=1

𝜃 𝑗,𝑡 · 𝑣𝑡− 𝑗 , (5)

where 𝜽 = (𝜃1,𝑡 , 𝜃2,𝑡 , . . . , 𝜃ℓ,𝑡)𝑇 is the set of model weights at time
𝑡 . Initially, 𝜽 is set to zero and is updated iteratively to approach
the optimal weights. After collecting ℓ observations, the model
can start making predictions using the initialized weights. When
a violation occurs at 𝑠𝑖 , the error between the predicted value and
the true value is computed as:

𝑒𝑡 = 𝑣𝑡 − 𝑣𝑡 .
The goal is to minimize 𝑒𝑡 as the cost function between the

prediction and the true value. The weights are then updated in one
iteration (which occurs when an update message is sent to 𝐶) as
follows:

𝜃 𝑗,𝑡+1 ← 𝜃 𝑗,𝑡 + 𝜂 · 𝑒𝑡 · 𝑣𝑡− 𝑗 ,
where 𝜂 is the step-size, which must satisfy the condition 0 ≤ 𝜂 ≤
1

𝜅𝐸2
𝑡

to ensure convergence [17]. Here, 𝜅 is a constant associated
with the bound 𝐸𝑡 , which changes after each iteration as:

𝐸𝑡 =
1
ℓ

ℓ∑︁
𝑗=1

𝑣2𝑡− 𝑗 .

This bound is used to compute the upper limit for the step-size
𝜂. Since our method introduces the error constraint, when 𝜽 has
not yet converged to the optimum, update messages are sent, and
𝜽 is updated accordingly. This iterative process continues until the
weights converge to the optimal values.

LMS requires fewer observations to compute the weights com-
pared to other methods and is well-suited to track time variations in
the statistics of the data streams, provided that these variations oc-
cur at a sufficiently slow pace. Predictions begin once ℓ observations
are available, and updates to 𝜽 also require only ℓ observations. This
is in contrast to the “normal” mode as set in [31], which requires
additional iterations for 𝜽 to converge. As a result, the LMS imple-
mentation avoids the transmission overhead of these unnecessary
updates.

3.3.4 Piecewise Linear Approximation (PLA). Instead of using
previous values themselves as input for prediction (i.e., using the
output as the input for the next time step), we can compute the
PLA over the data by representing the observations in the data
stream as a function of time, modeled by line segments with a
size of ℓ points. The time duration of one line segment spans the
range [𝑡 − ℓ, 𝑡), where the points on the segment are represented
as ⟨𝑡 − ℓ, 𝑣𝑡−ℓ ⟩, ⟨𝑡 − ℓ + 1, 𝑣𝑡−ℓ+1⟩, . . . , ⟨𝑡 − 1, 𝑣𝑡−1⟩. Let the set
of timestamps {𝑡 − ℓ, 𝑡 − ℓ + 1, . . . , 𝑡 − 1} be denoted as 𝑋 , and
the corresponding set of values {𝑣𝑡−ℓ , 𝑣𝑡−ℓ+1, . . . , 𝑣𝑡−1} as 𝑌 . By
extending this line segment, we can estimate future predictions.
The prediction at time 𝑡 is expressed by the linear equation:

𝑣𝑡 = 𝑎 · 𝑡 + 𝑏, (6)
where 𝑎 is the slope of the best-fit line given by the covariance
between 𝑋 and 𝑌 divided by the variance of 𝑋 , i.e.,

𝑎 =
cov(𝑋,𝑌)
var(𝑋) .

The intercept 𝑏 is calculated as:

𝑏 = E(𝑋) − 𝑎 · E(𝑌),
where E(𝑋) and E(𝑌) represent the expected values of 𝑋 and 𝑌 ,
respectively. The remaining process follows the same steps as other
prediction methods: when 𝑣𝑡 breaks the error constraint, 𝐷 = ℓ

observations are sent to 𝐶 , and the parameters for 𝑎 and 𝑏 are
recalculated on both sides.

4 DATA-AWARE MODEL SELECTION
In this section, we propose a data-aware model selection framework
to adapt the prediction model to the diversity of data stream charac-
teristics. Without prior knowledge of the observations, selecting an
optimal model for the nodes can be challenging. Additionally, due to

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach to Continuous Distributed Monitoring DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

the skewed distribution of data across distributed nodes, applying
a single model type is not suitable for all nodes. Thus, we advocate
for a data-aware model selection approach based on model scores,
enabling automatic control in determining the appropriate model
type and following the data streams continuously generated on the
nodes. The selection is done by 𝐶 using node-wise model selection
over a list of𝑚 candidate models denoted as M = {𝑀1, . . . , 𝑀𝑚}
simultaneously. Hence, 𝑠𝑖 runs a personalized model type indepen-
dently, without requiring alignment with other nodes, while being
guided by messages from 𝐶 regarding model type switching.

4.1 Model Score
∀𝑀 ∈ M at time 𝑡 , the competition of candidate models is calculated
using score which is a trade-off between the score of monitoring
accuracy acc𝑊 and that of messages omission rate omiss𝑊 :

score𝑊,𝛼 (𝑀, 𝑡) = 𝛼 · acc𝑊 (𝑀, 𝑡) + (1 − 𝛼) · omiss𝑊 (𝑀, 𝑡),
where 0 ≤ 𝛼 ≤ 1 is the control factor that controls the contribu-

tion of monitoring accuracy. Specifically, acc𝑊 is calculated over
the last W rounds as:

acc𝑊 (𝑀, 𝑡) = 1
𝑊

∑︁
𝑡 ∈N

(
1 − | 𝑣𝑡 − 𝑣𝑡 |

𝝐

)
,

withN being the set of timestamps included over the last𝑊 rounds.
omiss𝑊 is the fraction of omitted messages among all observations
over the last𝑊 rounds, i.e.,

omiss𝑊 (𝑀, 𝑡) = 1 −
𝑄𝑊,𝑀

W
where 𝑄𝑊,𝑀 is the number of updates transmitted during the last
𝑊 rounds when model𝑀 is used for prediction. Let us observe both
acc𝑊 and omiss𝑊 lie in the interval [0, 1] hence score𝑊,𝛼 (𝑀, 𝑡)
is bounded to the same interval. If we set 𝛼 = 0, the emphasis is
on reducing communication overhead, and 𝛼 = 1 places all the
importance on accuracy. Thus, tuning 𝛼 enables the ability to take
both communication and accuracy into account.

4.2 Node-wise Model Selection
𝐶 maintains the list M and simulates them in parallel. Each sensor
𝑠𝑖 is initialized with the execution of SA as the selected modelM .
After gathering at least W observations on 𝑠𝑖 , when there is an
update sent to 𝐶 , 𝐶 calculates score of all candidates in M. Let
𝑀𝑡 ∈ M be the model at round 𝑡 with highest score, i.e., 𝑀𝑡 =

argmax𝑀∈M score𝑊,𝛼 (𝑀). Then the maximum score is compared
with the selected model’s score running on 𝑠𝑖 . If

score𝑊,𝛼 (𝑀𝑡) > score𝑊,𝛼 (M) + 𝜉
holds, where the parameter 𝜉 is referred to as the model selection
criteria, then a new model is selected. A model-switching message
⟨“switch”, 𝑀𝑡 ⟩ is then sent from𝐶 to 𝑠𝑖 . Since 𝑠𝑖 retains its previous
observations, it can estimate the parameters for the currently se-
lected model. Refer to Algorithm 1 for more details. Such a selection
process is done independently for each node and can scale up to
multiple nodes. Moreover, we set an initialization phase (line 4) at
the beginning of monitoring to collect enough observations, which
takes 𝜏 time to finish. It produces 𝑡 ′ as the timestamp represent-
ing the last time an update occurs. This ensures the fairness of

Algorithm 1: Forecast-based Error-Bounded Data-aware
Model Selection
1 Node 𝑠𝑖 ∈ S executes:

Input: absolute error upper-bound 𝝐 , init. period 𝜏
2 M ← SA // M is an input in static model

3 𝑡 ′ ← Initialize(M, 𝜏)
4 for 𝑡 ≥ 𝜏 do
5 𝑣𝑡 ← read(𝑡)
6 if Receive(⟨“switch”, 𝑀𝑡 ⟩) then
7 M ←𝑀𝑡

8 𝑣𝑡 ← M .predict(𝑡)
9 if |v̂𝑡 − v𝑡 | > 𝝐 then
10 Send(C, ⟨“update”, 𝐿, 𝑡 ′, 𝑡⟩)
11 M .update(𝐿)
12 𝐿 = ∅, 𝑡 ′ ← 𝑡 // clear buffer

13 else
14 𝐿 ← 𝐿 + {𝑣𝑡 } // store value in buffer

15 Coordinator 𝐶 executes:
Input: absolute error upper-bound 𝝐 , candidate models

M, criteria 𝜉 , control factor 𝛼 , window sizeW,
init. period 𝜏

16 for 𝑠𝑖 ∈ S do
17 for𝑀 ∈ M𝑖 do
18 Initialize(𝑀 , 𝜏)

19 M𝑖 ← M𝑖 [𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡] // set to default model

20 for 𝑡 ≥ 𝜏 do
21 for 𝑠𝑖 ∈ S in parallel do
22 if 𝐶 receives ⟨“update”, 𝐿, 𝑡 ′, 𝑡⟩ from 𝑠𝑖 then
23 for𝑀 ∈ M𝑖 do
24 𝑀.update(𝐿)
25 𝑀𝑡 = argmax𝑀∈M𝑖 score𝑊,𝛼 (𝑀)
26 if score𝑊,𝛼 (𝑀𝑡) > score𝑊,𝛼 (M𝑖) + 𝜉 then
27 Send(𝑠𝑖 , ⟨“switch”, 𝑀𝑡 ⟩)
28 M𝑖 ← 𝑀𝑡

29 𝑣𝑖𝑡 ← M𝑖 .predict(𝑡) // estimated value

each model’s performance, eliminating the cold-start effect on the
reported statistics.

4.3 Standard Solution
When distributed nodes receive entirely new data streams, we pro-
vide a standard system framework to compensate for the shortcom-
ings arising from the lack of knowledge about the data distribution
and characteristics. Since selecting candidate models also requires
tuning efforts, it deviates from our objective of achieving automatic
control. In other words, candidate models are predefined as a set of
model types and parameter combinations, thereby eliminating the
need for manual adjustments and adaptations. Thus, for heteroge-
neous datasets with varying data stream dynamics, the provided
standard solution performs well without requiring tuning which is

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

Coordinator
Node (C)

Sensor
Node

t t+1 t+2 t+3 t+4 t+5

t t+1 t+2 t+3 t+4 t+5

Observation PredictionUpdate Switch

Monitoring Round

Event Types

Figure 2: Example of different types of events arriving in
different orders with one single node and coordinator 𝐶.

essential when data streams are completely new. In the experimen-
tal study section, detailed settings and evaluations are provided to
demonstrate the resulting benefits and we will further show the
strength of the chosen candidate models in various scenarios.

4.4 Reliability and Event Consistency
We discuss herebelow how our framework maintains stability and
handles failures in data transmission.

Reliable communication. A reliable and stable connection is as-
sumed between 𝐶 and each node. We note that perfect synchro-
nization between nodes and 𝐶 is not required by our system. A
reasonable assumption is that, due to the lightweight nature of
our framework, the time spent in taking a monitoring decision
on a particular node is negligible in comparison to the length of
the monitoring round. Also, the typical latency allows in practice
several communication round-trips between 𝐶 and the nodes.

Types of events. New observation events are generated at the
beginning of each monitoring round on the nodes. If the error con-
straint is violated at time 𝑡 on node 𝑠𝑖 , then an update is sent from
𝑠𝑖 to 𝐶 triggering what we refer as an update event. The update
event corresponds to sending the message ⟨“update”, 𝐿, 𝑡 ′, 𝑡⟩ (line
11), where 𝐿 is the buffer of 𝑠𝑖 , 𝑡 ′ is the timestamp of the last up-
date event which occurred on node 𝑠𝑖 and 𝑡 denotes the current
timestamp. Then upon reception of an update event, 𝐶 replaces 𝑣𝑖𝑡
for node 𝑠𝑖 at time 𝑡 by the exact current value 𝑣𝑖𝑡 (the last element
of 𝐿) when there is no failure, determined by verifying whether 𝑡
corresponds to the current monitoring round. For ease of reading,
consistency detection is abstracted away from the pseudo-code.

If a delayed or disordered update occurs, out-of-order events arise.
As shown in Figure 2, updates may arrive later than scheduled (e.g.,
update of time 𝑡 arrives at time 𝑡 + 1 but before 𝑡 + 1’s update,
or update of 𝑡 + 3 arrives after 𝑡 + 4’s update), however, 𝐶 knows
whether to wait or process immediately the event by checking 𝑡 ′
and 𝑡 included in the event message; disorders are hence effectively
handled. Moreover, due to the difference in scale between the time
of reception of update events after the start of a monitoring round
(requiring computation of monitoring decisions and sending of
event messages) and the length of a monitoring round, such events
are considered rare. Thus, they are not within the primary foci of

this study while out-of-order event handling has extensively been
addressed in prior work [34]. Consistent with previous studies [8,
23, 24, 33], we assume a single instance of the central coordinator
𝐶 , without considering its replication. Therefore, failures of 𝐶 are
beyond the scope of this study.

5 EVALUATION
In this section, we evaluate the experimental results on different
datasets using our proposed methods under the assumption of
reliable communication with no failure occurs. First, we evaluate
how different prediction models perform in communication-saving
and their accuracy. Then, we choose candidate models of the same
model type in one dataset using data-aware model selection. Next,
we move on to test the framework of standard model parameter
settings in four datasets. Finally, we explore the trade-off between
communication overhead and monitoring accuracy.

5.1 Experimental Setup
5.1.1 Datasets. We evaluate our approach on a variety of datasets
with different characteristics. All experiments use timestamp se-
quences starting from 0 and increasing by 1 at every data point.
Range 𝑅D is an empirical knowledge we collect from each dataset
D which represents the possible fluctuation of the data streams.
We have set the value of 𝑅D in relation to D so that it covers the
97.2% percentiles of all values within D, hence discarding some
outliers with extremal values. Then 𝝐 is calculated as a proportion
of 𝑅D . The properties of the datasets we used are listed in Table 2.
• Ericsson [13] is 4 hours of hardware CPU usage retrieved during
8 runs of a load testing procedure in an Evolved Packet Core
testing infrastructure.
• Geolife [37] is GPS trajectories generated from vehicles within
the scope of the (Microsoft Research Asia) Geolife project. We
calculate the vehicular speed based on the longitude, latitude,
and timestamps from the raw data.
• IntelLab [21] is collected from 54 IoT sensors in IntelLab, from
which we select 47 sensors for temperature readings.
• ACSF1 is from UCR Time Series Classification Archive [10],
which contains power consumption from home appliances
across 10 classes. In this study, we select class 3 and aggre-
gate all the time series data (training and test datasets). Each
node represents a subset of data from class 3.
For clarity, we denote by 𝑅E , 𝑅G , 𝑅I and 𝑅A (corresponding

respectively to Ericsson, Geolife, IntelLab and ACSF1) when refer-
encing a specific 𝑅D of one of the datasets. The values of each are
listed in Table 2.

5.1.2 Parameters. We test various configurations and choose top
performers based on empirical results; the values of the parame-
ters ℓ, 𝑘, 𝜅 are listed in the legend of Figure 3. We set W=100 for
all datasets in our data-aware system. Parameter settings for the
standard solution for data-aware experiments are listed in Table 3.

5.1.3 Evaluation metrics. FEDAMON is evaluated for two metrics
among all scenarios :
• Communication ratio: 𝜌 is the number of update messages 𝑄
sent to 𝐶 over the total duration of time 𝑇 of all nodes 𝑛 as
described in § 3.2.

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach to Continuous Distributed Monitoring DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

Table 2: Datasets with type of statistics, no. of nodes, total duration𝑇 , standard data range 𝑅D , 𝝐 = 5% · 𝑅D , and model criteria 𝜉 .

Dataset D Statistic # Nodes T Standard Data Range 𝑅D 𝝐 (×5% · 𝑅D) 𝝃

Ericsson CPU usage 720 1972 𝑅E = 97 4.85 0.01
Geolife Vehicle speed 100 54743 𝑅G = 120 6.0 0.029
IntelLab Sensor Temperature 47 299950 𝑅I = 44.6 2.23 0.015
ACFS1 Power consumption 10 2870 𝑅A = 13 0.65 0.01

0

5

10

15

20

25

Co
m

m
un

ica
tio

n
Ra

tio
 (%

)

(a) Ericsson
SA
AR-4-130
AR-5-130
AR-6-130
LMS-27-80

LMS-28-80
LMS-29-80
PLA-38
PLA-39
PLA-40

20

40

60

80

100
(b) Geolife

SA
AR-3-70
AR-4-70
AR-5-70
LMS-3-300

LMS-6-300
LMS-7-300
PLA-8
PLA-9
PLA-10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(c) IntelLab
SA
AR-1-50
AR-2-50
AR-3-50
LMS-5-40

LMS-6-40
LMS-8-40
PLA-7
PLA-8
PLA-9

0

20

40

60

80

100
(d) ACSF1

SA
AR-4-80
AR-8-80
AR-12-80
LMS-1-28000

LMS-2-28000
LMS-3-28000
PLA-29
PLA-33
PLA-37

2 4 6 8 10 12 14
Epsilon (% range)

1

2

3

4

5

6

7

M
AE

 o
ve

r r
an

ge
 (%

)

2 4 6 8 10 12 14
Epsilon (% range)

0
2
4
6
8

10
12
14
16

2 4 6 8 10 12 14
Epsilon (% range)

0.5

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10 12 14
Epsilon (% range)

0

1

2

3

4

5

6

7

Figure 3: Forecast-based model performance in four datasets. Here, AR-4-130 indicates that ℓ = 4 and 𝑘 = 130, LMS-3-300 indicates
that 𝑙 = 3 and 𝜅 = 300, while PLA-8 indicates that ℓ = 8.

• Mean Absolute Error (MAE) over 𝑅D : MAE is the difference
between the reported value on 𝐶 and 𝑣𝑖𝑡 , note that the reported
value is different from 𝑣𝑖𝑡 since when the constraint is broken,
𝑣𝑖𝑡 is replaced by 𝑣𝑖𝑡 .

5.2 Single Model Prediction Performance
We start our evaluation by measuring the communication cost
saved in each of the 4 datasets. Figure 3 shows 𝜌 achieved by SA,
AR, LMS and PLA together with the measurements in terms of MAE
over 𝑅D with different parameter settings. We have tested various
configurations and choose top performers based on preliminary
empirical results.We report 𝜌 for varying 𝝐 values.More specifically,
we show results for 1% · 𝑅D ≤ 𝝐 ≤ 15% · 𝑅D for all datasets.

Regarding 𝜌 , the performance of our forecast-based method is
evident in Ericsson, IntelLab, and ACFS1 across all models. When 𝝐
exceeds 7% ·𝑅D , the best model for each dataset achieves a 𝜌 of less
than 20%. However, other models still achieve a communication effi-
ciency below 20% when 𝝐 is 15% ·𝑅D . In Figure 3a and 3d, AR stands
out as the most communication-efficient prediction model, and in
Figure 3b and 3c, SA outperforms all other models. Considering the

Table 3: Standard model parameters for data-aware system.

Parameter AR LMS PLA

ℓ 3,4,6,8 6,28 8,29,39
𝑘 100 - -
𝜅 - 100 -

0

5

10

15

M
es

sa
ge

s

SA
AR-4-130

LMS-27-80
PLA-38

0 250 500 750 1000 1250 1500 1750 2000
Monitoring Period

0

20

40

60

80

CP
U

ut
iliz

at
io

n
(%

)

Node 1
Node 2

Node 3
Node 4

Figure 4:Messages sent (upper plot) over time across all nodes
of Ericsson dataset (𝝐 = 5% ·𝑅E) using a subset of models from
Figure 3 (a) and original data streams from four selected
nodes (lower plot).

significantly smaller resource overhead of the SA algorithm, its per-
formance on those datasets is quite remarkable. We observe that 𝝐
not only bounds MAE over 𝑅D but can reduce it to half of 𝑅D from
Figure 3a, 3c and 3d. Furthermore, increasing 𝝐 results in greater
communication savings; however, the MAE over 𝑅D also increases.
This highlights a trade-off between communication efficiency and
error, which we will examine in the following discussion.

We analyze the performance of each model over time by ex-
amining the number of messages sent across all nodes (excluding

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epsilon (% range)

0

10

20

30

40

50

Co
m

m
un

ica
tio

n
Ra

tio
 (%

)

AR

Data-aware
SA
AR-4
AR-8
AR-9
AR-12

AR-13
AR-14
AR-15
AR-16
AR-17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epsilon (% range)

LMS
Data-aware
SA
LMS-1
LMS-2
LMS-3
LMS-4

LMS-5
LMS-6
LMS-7
LMS-8
LMS-9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epsilon (% range)

PLA
Data-aware
SA
PLA-21
PLA-25
PLA-29
PLA-33

PLA-37
PLA-41
PLA-42
PLA-45
PLA-46

Figure 5: Comparison between the selected model and candidate models (same type) on ACSF1 (𝛼 = 0, 𝑘 = 80, 𝜅 = 280000).

the initialization phase). We select a parameter setting from AR,
LMS, and PLA, consistent with Figure 3a together with SA, under
Ericsson with 𝝐 = 5% ·𝑅E . As we can see from Figure 4, PLA-38 ini-
tially outperforms when 𝑡 ∈ [200, 1000], but it exhibits the weakest
performance toward the end of the period analyzed. Similarly, SA
sends the most messages when 𝑡 ∈ [400, 1000], but it is the most
communication-efficient at the end. The differences among models
mainly stem from the temporal evolution of data streams, as shown
in Figure 4 using selected original data streams from various nodes
in the Ericsson dataset. Therefore, selecting a fixed model does not
ensure consistent superiority over time, highlighting the necessity
of our data-aware model selection approach.

5.3 Data-aware System Evaluation
5.3.1 Communication Focus. We continue to explore the perfor-
mance of the selected model in 𝜌 when having candidate models
with the same model type but different parameter settings. Specif-
ically, we evaluate the performance under ACSF1 with AR-only,
LMS-only, and PLA-only with 𝛼 = 0. From Figure 5, the results
show the data-aware method can always guarantee 𝜌 close to the
best parameter setting. Moreover, from PLA in Figure 5, the selected
model outperforms all the others when 𝝐 is smaller than 10% · 𝑅A .

Standard Solution: We run one SA, four ARs, two LMSs, and
three PLAs to evaluate the generalization of our data-aware system
with standard settings in four datasets with 𝛼 = 0, 𝜉 = 0.01. As we
can see from the previous discussion, the parameters are highly de-
pendent on each dataset, we set standard model parameters (listed
in Table 3) for all datasets to avoid manual model selection under
situations where there is a lack of knowledge of the characteristics
of the dataset. The model types and corresponding parameters are
chosen from those showing consistently strong performance across
all datasets. Specifically, AR generally outperforms the other models,
so we select four of its better variants. PLA and LMS show weaker
performances overall, and we select three and two configurations
for them. As shown in Figure 6, the average performance of our
data-aware method surpasses that of all individual models in terms
of 𝜌 when 𝝐 is below 11% · 𝑅D . In the best-case scenario, when
𝜺 is 2%, it achieves a +3.59% absolute increase (+17% relative im-
provement) compared to AR. While our selection involves empirical

Source code available at: https://doi.org/10.5281/zenodo.15310950

10

20

30

40

50

Co
m

m
un

ica
tio

n
Ra

tio
 (%

)

2 4 6 8 10 12 14
Epsilon (% range)

0

1

2

3

4

5

6

7

8

M
AE

 o
ve

r r
an

ge
 (%

)

Data-aware
SA
AR
LMS
PLA

Figure 6: Average performance on selected vs. candidate mod-
els with standard parameters over all datasets (𝛼 = 0, 𝜉 = 0.01).

judgment over quantitative results, it is guided by systematic test-
ing and clearly shows the effectiveness of the data-aware approach
consisting in adapting and switching models.

5.3.2 Accuracy Focus. When nodes send more messages to𝐶 , mon-
itoring accuracy is increased at the same time. We explore the
trade-off between communication and accuracy by setting the 𝝐 as
15% · 𝑅D . Because 𝝐 bounds our system’s error to a smaller range
when it is small, and when 𝝐 is larger, it gives more variety to adjust
the communication and accuracy based on model performance. We
use the same model parameters as § 5.2 for each dataset and run the
data-aware selection algorithm. Figure 7 shows the effectiveness of

https://doi.org/10.5281/zenodo.15310950

FEDAMON: A Forecast-Based, Error-Bounded and Data-Aware Approach to Continuous Distributed Monitoring DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

4

5

6

7

M
AE

 o
ve

r r
an

ge
 (%

)

5

10

15

20

25

Co
m

m
un

ica
tio

n
Ra

tio
 (%

)

Figure 7: The trade-off of the data-aware system between 𝜌

and MAE over range on four datasets (𝝐 = 15% · 𝑅D).

Data-aware SA
AR-4 AR-5 AR-6

LMS-27
LMS-28

LMS-29
PLA-38

PLA-39
PLA-40

0

5

10

15

20

25

M
AE

 o
ve

r r
an

ge
 (%

)

Figure 8: MAE over range on Ericsson, and the red dashed
lines represent the mean values (𝝐 = 25% · 𝑅E , 𝛼 = 0.7).

𝛼 controlling the trade-off. More specifically, when 𝛼 is 0, it gives
all the focus on communication, thus 𝜌 is minimal. At the same
time, MAE decreases linearly as 𝛼 grows, i.e., our system places
more importance on accuracy rather than communication cost.

Moreover, the reduction of +1% of MAE (13% relative improve-
ment) is achieved by setting 𝛼 = 0.5 without sacrificing commu-
nication overhead (compared to 𝛼 = 0). The robustness of our
data-aware system in absolute error is shown in Figure 8 with
𝝐 = 25% · 𝑅E and the same settings as § 5.2 under Ericsson when
𝛼 = 0.7. The distribution of error is comparable with SA and both
mean and median is under 10% of 𝑅E even 𝝐 = 25%, which shows
the effectiveness of controlling the error with 𝛼 .

5.3.3 Occurrence of each Model. We continue our investigation
on how each model is chosen over time: model’s occurrence is
reported in Figure 9. The evolution is studied on Ericsson with
𝝐 = 25% · 𝑅E , 𝛼 = 0.4, the candidate models are one SA, three ARs
with 𝑘 = 130, three LMSs with 𝜅 = 80, and three PLAs. The entire
duration is divided into eight time slots, with time increasing along
the x-axis from left to right. It shows at slot 0, it begins with SA,
and as time passes, other models are gradually selected. At slot
2, AR models become the predominant choice, while at time slots
4 and 5, PLA models dominate the currently selected model. This
aligns with the model trends shown in Figure 4, demonstrating that
data-aware system can effectively adapt through time-dependent
data variation.

0 1 2 3 4 5 6 7
Time Slot

SA

AR-5

AR-7

AR-10

LMS-4

LMS-5

LMS-11

PLA-5

PLA-7

PLA-8

177840 149418 26662 8208 5623 17398 33153 42007

0 6861 33729 29026 23463 23873 24195 28794

0 5792 30986 26298 22064 23343 26065 28424

0 8451 39635 28584 20484 22747 29847 33337

0 0 25 2683 4823 4840 4318 3346

0 0 0 5691 6402 4319 3847 3024

0 0 322 3926 4718 5453 4744 4862

0 1886 14281 25951 31547 27848 18658 11695

0 1618 9805 18137 26679 23602 18739 13028

0 3814 22395 29336 31317 23697 13554 8603

0

20000

40000

60000

80000

100000

120000

140000

160000

Figure 9: Occurrence of each model over time on Ericsson
(𝝐 = 25%·𝑅E , 𝛼 = 0.4); total duration is divided into 8 timeslots.

50 100 150 200
Number of Nodes

1.698

1.699

1.700

1.701

1.702
M

AE
 o

ve
r r

an
ge

 (%
)

29.640

29.645

29.650

29.655

29.660

Co
m

m
un

ica
tio

n
Ra

tio
 (%

)

Figure 10: Impact of varying no. of nodes on performance
using standard parameters on Geolife (𝝐 = 5% · 𝑅E , 𝛼 = 0).

5.3.4 Scalability. Our framework is designed to scale effectively
with an increasing number of nodes in large distributed systems.
As previously demonstrated across four datasets, with the num-
ber of nodes ranging from 10 to 720, our framework consistently
performs well. Additionally, we examine how varying the number
of nodes impacts performance on the same dataset. The MAE and
communication are shown in Figure 10 when the number of nodes
changes. We simulate different nodes on Geolife with 𝝐 = 5% · 𝑅E ,
𝛼 = 0, the candidate models are the same from the standard model
parameters as listed in Table 3. The MAE over the range remains
stable at approximately 1.7%, while communication overhead is
around 29.65%. Therefore, adjusting the number of nodes impact
very little the performance and our framework does maintain its
effectiveness when scaled up.

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Yixing Zhang and Romaric Duvigau

6 CONCLUSIONS
In this paper, we propose FEDAMON, a forecast-based error-
bounded monitoring framework for continuously monitoring the
values generated from distributed nodes on a central node with data-
aware model selection for reducing the communication overhead in
large distributed systems. We aimed for finding a trade-off between
the communication cost and monitoring accuracy. Our experiments
evaluation shows that FEDAMON sends only 10% of the updates
of the baseline monitoring, while maintaining less than 2% of aver-
age error across all monitored streams. Moreover, it is particularly
suited for distributed applications where one aims to track all values
of nodes without much prior knowledge. In contrast to assigning
fine-calibrated models for a specific dataset, FEDAMON performs
well when using standard candidate models for different datasets
with up to 17% improvement in communication overhead with
identical guarantees on maximum error which validates the gener-
alization of our data-aware model selection framework. Moreover,
the trade-off between communication overhead and monitoring
accuracy is controlled by our data-aware model selection, achieving
a 13% improvement in average monitoring error without sacrificing
additional communication cost. Our evaluation results are promis-
ing and point to the potential of our framework for large-scale and
efficient monitoring of distributed systems.

Our directions for extending our work include: (1) a parameter-
free solution for a fully automatic control for our standard data-
aware framework, and (2) more types of prediction models that are
lightweight yet efficient to be utilized in our framework.

REFERENCES
[1] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. 2016. Next generation 5G

wireless networks: A comprehensive survey. IEEE Communications Surveys &
Tutorials 18, 3 (2016), 1617–1655.

[2] Ali M Alakeel et al. 2010. A guide to dynamic load balancing in distributed
computer systems. International Journal of Computer Science and Information
Security 10, 6 (2010), 153–160.

[3] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella. 2009.
Energy conservation in wireless sensor networks: A survey. Ad hoc networks 7, 3
(2009), 537–568.

[4] Jahongir Azimjonov and Ahmet Özmen. 2021. A real-time vehicle detection and
a novel vehicle tracking systems for estimating and monitoring traffic flow on
highways. Advanced Engineering Informatics 50 (2021), 101393.

[5] Brian Babcock and Chris Olston. 2003. Distributed top-k monitoring. In Proc. of
the 2003 ACM SIGMOD International Conference on Management of Data. ACM,
28–39.

[6] Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. 2012. Contin-
uous monitoring of distributed data streams over a time-based sliding window.
Algorithmica 62, 3-4 (2012), 1088–1111.

[7] David Chu, Amol Deshpande, Joseph M Hellerstein, and Wei Hong. 2006. Ap-
proximate data collection in sensor networks using probabilistic models. In 22nd
International Conference on Data Engineering (ICDE). IEEE, 48–48.

[8] Graham Cormode. 2013. The continuous distributed monitoring model. ACM
SIGMOD Record 42, 1 (2013), 5–14.

[9] Graham Cormode, Minos Garofalakis, S Muthukrishnan, and Rajeev Rastogi.
2005. Holistic aggregates in a networked world: Distributed tracking of approx-
imate quantiles. In Proc. of the 2005 ACM SIGMOD International Conference on
Management of Data. ACM, 25–36.

[10] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing
Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and
Hexagon-ML. 2018. The UCR Time Series Classification Archive. https://www.
cs.ucr.edu/~eamonn/time_series_data_2018/.

[11] Gabriel Martins Dias, Boris Bellalta, and Simon Oechsner. 2016. A survey about
prediction-based data reduction in wireless sensor networks. ACM Computing
Surveys (CSUR) 49, 3 (2016), 1–35.

[12] Romaric Duvignau, Vincenzo Gulisano, Marina Papatriantafilou, and Vladimir
Savic. 2019. Streaming piecewise linear approximation for efficient data manage-
ment in edge computing. In Proc. of the 34th ACM/SIGAPP Symposium on Applied
Computing (SAC). 593–596.

[13] Romaric Duvignau, Marina Papatriantafilou, Konstantinos Peratinos, Eric Nord-
ström, and Patrik Nyman. 2019. Continuous Distributed Monitoring in the
Evolved Packet Core. In Proc. of the 13th ACM International Conference on Dis-
tributed and Event-based Systems (DEBS). 187–192.

[14] Behrouz Farhang-Boroujeny. 2013. Adaptive filters: theory and applications. John
wiley & sons.

[15] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Daniel Keren, and
Vasilis Samoladas. 2018. Scalable approximate query tracking over highly dis-
tributed data streams with tunable accuracy guarantees. Information Systems 76
(2018), 59–87.

[16] Dimitrios Giouroukis, Alexander Dadiani, Jonas Traub, Steffen Zeuch, and Volker
Markl. 2020. A survey of adaptive sampling and filtering algorithms for the
internet of things. In Proc. of the 14th ACM International Conference on Distributed
and Event-based Systems (DEBS). 27–38.

[17] Simon S Haykin. 2002. Adaptive filter theory. Pearson Education India.
[18] Yichuan Jiang. 2015. A survey of task allocation and load balancing in distributed

systems. IEEE Transactions on Parallel and Distributed Systems 27, 2 (2015), 585–
599.

[19] Grigorios Kakkavas, Adamantia Stamou, Vasileios Karyotis, and Symeon Pa-
pavassiliou. 2021. Network tomography for efficient monitoring in SDN-enabled
5G networks and beyond: Challenges and opportunities. IEEE Communications
Magazine 59, 3 (2021), 70–76.

[20] Jan Körner, Samuel Bach, Albin Karlsson, Linus Sundkvist, and Romaric Duvig-
nau. 2024. Efficient Monitoring of CPS and IoT Systems: A Deployment Guide
for Empirical Evaluations. In 2024 13th Mediterranean Conference on Embedded
Computing (MECO). IEEE, 1–6.

[21] Intel Berkeley Research Lab. 2004. Intel Lab Data. https://db.csail.mit.edu/
labdata/labdata.html Accessed: 2024-11-06.

[22] Yann-Aël Le Borgne, Silvia Santini, and Gianluca Bontempi. 2007. Adaptive
model selection for time series prediction in wireless sensor networks. Signal
Processing 87, 12 (2007), 3010–3020.

[23] Alexander Mäcker, Manuel Malatyali, and Friedhelm Meyer auf der Heide. 2015.
Online Top-k-position monitoring of distributed data streams. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE, 357–364.

[24] Alexander Mäcker, Manuel Malatyali, and Friedhelm Meyer auf der Heide. 2016.
On competitive algorithms for approximations of Top-k-position monitoring of
distributed streams. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 700–709.

[25] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. 2003.
The design of an acquisitional query processor for sensor networks. In Proc. of the
2003 ACM SIGMOD International Conference on Management of Data. 491–502.

[26] Luke Olsen, Faramarz F Samavati, Mario Costa Sousa, and Joaquim A Jorge. 2009.
Sketch-based modeling: A survey. Computers & Graphics 33, 1 (2009), 85–103.

[27] Chris Olston, Jing Jiang, and Jennifer Widom. 2003. Adaptive filters for contin-
uous queries over distributed data streams. In Proc. of the 2003 ACM SIGMOD
International Conference on Management of data. 563–574.

[28] Chris Olston, Boon Thau Loo, and Jennifer Widom. 2001. Adaptive precision
setting for cached approximate values. ACM SIGMOD Record 30, 2 (2001), 355–
366.

[29] Hossein Pishro-Nik. 2014. Introduction to probability, statistics, and random
processes. Kappa Research, LLC Blue Bell, PA, USA.

[30] Mohammad Abdur Razzaque, Chris Bleakley, and Simon Dobson. 2013. Compres-
sion in wireless sensor networks: A survey and comparative evaluation. ACM
Transactions on Sensor Networks (TOSN) 10, 1 (2013), 1–44.

[31] Silvia Santini and Kay Romer. 2006. An adaptive strategy for quality-based data
reduction in wireless sensor networks. In Proc. of the 3rd international conference
on networked sensing systems (INSS 2006). TRF Chicago, 29–36.

[32] Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2007. A geometric approach
to monitoring threshold functions over distributed data streams. ACM Transac-
tions on Database Systems (TODS) 32, 4 (2007), 23.

[33] Mingwang Tang, Feifei Li, and Yufei Tao. 2015. Distributed online tracking. In
Proc. of the 2015 ACM SIGMOD International Conference on Management of Data.
2047–2061.

[34] Juliane Verwiebe, Philipp M Grulich, Jonas Traub, and Volker Markl. 2023. Survey
of window types for aggregation in stream processing systems. The VLDB Journal
32, 5 (2023), 985–1011.

[35] Diana Yacchirema, David Sarabia-Jácome, Carlos E Palau, and Manuel Esteve.
2018. System for monitoring and supporting the treatment of sleep apnea using
IoT and big data. Pervasive and Mobile Computing 50 (2018), 25–40.

[36] Ke Yi and Qin Zhang. 2013. Optimal tracking of distributed heavy hitters and
quantiles. Algorithmica 65, 1 (2013), 206–223.

[37] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social
networking service among user, location and trajectory. IEEE Data Engineering
Bulletin 33, 2 (2010), 32–39.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://db.csail.mit.edu/labdata/labdata.html
https://db.csail.mit.edu/labdata/labdata.html

	Abstract
	1 Introduction
	1.1 Aim, Motivations and Challenges
	1.2 Contributions
	1.3 Paper structure

	2 Background and Related Work
	2.1 Continuous Distributed Monitoring
	2.2 The All-Values-Tracking Problem
	2.3 Forecast-based Monitoring

	3 Error-Bounded Forecast-based Monitoring
	3.1 Error-Bounded Value Tracking
	3.2 Monitoring Strategy
	3.3 Prediction Models

	4 Data-Aware Model Selection
	4.1 Model Score
	4.2 Node-wise Model Selection
	4.3 Standard Solution
	4.4 Reliability and Event Consistency

	5 Evaluation
	5.1 Experimental Setup
	5.2 Single Model Prediction Performance
	5.3 Data-aware System Evaluation

	6 Conclusions
	References

