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Abstract
The potential of Artificial intelligence (AI) is increasingly recognized in
musculoskeletal radiology, offering solutions to challenges posed by
increasing imaging volumes and fellowship trained radiologist short-
ages. The integration of AI is not intended to replace radiologists but to
augment their capabilities, improving workflow efficiency and diagnostic
accuracy. This narrative review examines the current landscape of AI
applications in musculoskeletal imaging, focusing on both general‐
purpose multimodal models and specialized foundation models. AI has
proven effective in musculoskeletal imaging, enhancing fracture
detection, scoliosis assessment, and lower limb alignment analysis. In
osteoarthritis, AI aids early detection by identifying subtle structural
changes. AI‐accelerated MRI reconstruction reduces scan times by up
to 90% while maintaining diagnostic quality, improving efficiency and
accessibility. Emerging multimodal models further integrate imaging
with clinical data, advancing precision medicine. Technical challenges
persist, particularly in addressing motion artifacts and anatomical
complexity. Ethical considerations, including data privacy, algorithmic
bias, and model transparency, remain crucial for responsible imple-
mentation. While challenges remain in clinical validation and imple-
mentation, the combination of broad and narrow AI models shows
promise in advancing precision medicine and democratizing quality
care.

Level of Evidence: Level V.
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INTRODUCTION

Artificial intelligence (AI) has emerged as a powerful
tool in medical imaging, including musculoskeletal
radiology [44, 49]. By leveraging advanced algorithms
and big data, AI enables the automation of image
analysis, offering the potential to improve diagnostic
accuracy, reproducibility and efficiency [9, 15, 24]. This
is especially valuable in improving patient flow and
reducing turnover times in musculoskeletal imaging,
where the interpretation of radiographs, computed
tomography (CT), and magnetic resonance imaging
(MRI) scans, can be intricate and time‐consuming.

Considering increasing imaging volumes and a
relative shortage of subspecialized musculoskeletal
radiologists, AI offers the potential for a scalable solu-
tion, democratising accurate diagnosis and therefore
quality of care. By triaging imaging examinations and
assisting with image interpretation, AI‐based tools fur-
thermore reduce reporting times. The integration of AI
into clinical practice is not intended to replace radiolo-
gists but to augment their capabilities, allowing them to
manage increasing workloads effectively [12].

While AI has demonstrated significant potential in
musculoskeletal imaging, its clinical adoption requires
validation, ethical oversight, and consideration of its
limitations. This review aims to explore these aspects
to provide a balanced perspective on the future of AI in
musculoskeletal radiology including exploration of the
types of AI models utilised, ethical considerations,
technical challenges, and current solutions.

TYPES OF AI MODELS IN MEDICAL
IMAGE ANALYSIS

Broad machine learning (ML) models

Multimodal AI models such as Gemini, ChatGPT,
Llama and Claude have the potential to disrupt medical
image analysis through their ability to process both
visual and textual data. These models can integrate
visual data from medical imaging with clinical informa-
tion from the patient's electronic health record, enabling
comprehensive diagnostic assessments across multi-
ple medical domains [37]. For instance, the Llama 3.2‐
90B model demonstrated superior performance in
85.27% of cases, outperforming human experts on
assessment of CT reports [37].

These multimodal models exhibit great versatility in
musculoskeletal imaging, supporting complex tasks

such as fracture detection, bone age assessment,
osteoarthritis grading and tumour diagnosis [11, 26].
Emerging technologies including Google's Med‐PaLM
are expanding these capabilities, enabling more
sophisticated interpretation of biomedical information
[6, 45, 49]. However, current limitations such as
potential biases, occasional diagnostic inaccuracies
and the need for extensive validation across diverse
clinical populations hold back widespread adoption.
Ongoing research focuses on improving model reli-
ability, reducing algorithmic bias, and developing robust
human‐AI collaborative diagnostic frameworks [37, 45].

Narrow ML models

Narrow ML models are tailored to specific domains
including natural language processing and computer
vision [50]. These models are meticulously trained on
domain‐specific data sets, enabling them to perform
tasks within narrow fields with remarkable precision.

Two examples illustrate the potential of Narrow AI.
The Segment Anything Model (SAM), developed by
Meta AI, represented a breakthrough in image seg-
mentation, demonstrating remarkable versatility across
multiple imaging domains [19]. Similarly, GE Health-
Care's radiograph model showcases the targeted
potential of these models, providing specialised capa-
bilities for medical imaging analysis. These models are
typically constructed through pre‐training on extensive
domain‐specific datasets, adapting existing architec-
tures like BERT and Swin, and incorporating multi-
spectral data handling techniques.

One subgroup, Specialized Foundational Models,
are of a special area of particular interest, however
research indicates that such models have not con-
sistently outperformed smaller supervised models,
suggesting the field remains in a state of development
[50]. Their primary characteristics include domain‐
specific training, high adaptability, transfer learning
capabilities, and significant scalability, though they
demand substantial computational resources [50].

Broad AI models, approaching a primitive general
AI, represent a versatile approach to healthcare,
including medical imaging, distinguished by their ability
to handle tasks across multiple imaging modalities [30].
These models leverage big data, enabling transfer
learning and adaptation to emerging medical chal-
lenges [30, 47]. Their architecture allows for analysis
across medical specialties, however, this broad
approach is not without limitations—as these models
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often struggle with domain‐specific nuances and
require substantial computational infrastructure for
effective training and deployment [30]. Narrow AI
models, in contrast, offer precision‐engineered solu-
tions focused on e.g. specific medical imaging sub-
specialties. By integrating deep, domain‐specific
knowledge and training on targeted datasets, these
models can achieve superior accuracy in niche diag-
nostic tasks [43]. They excel in areas requiring intricate
'understanding', such as rare disease detection and
precise anatomical segmentation. Their primary con-
straint remains their limited generalisability outside of
the specific trained domain, necessitating multiple
specialized models for comprehensive medical imaging
workflows [43].

The future of medical image analysis lies in inte-
gration strategies that synthesise the strengths of both
broad and narrow models. Emerging approaches
include hybrid model architectures, advanced transfer
learning techniques, ensemble methodologies, and
federated learning frameworks [2, 30, 43, 47]. These
strategies aim to create more robust, adaptable, and
interpretable AI systems that can augment clinical
decision‐making while maintaining high diagnostic
accuracy and reliability. Researchers and clinicians
recognised that the most promising path forward is not
a binary choice between broad and narrow models, but
a collaborative approach that leverages the strengths
of multiple models. By developing context‐aware AI
frameworks that can dynamically adapt and specialise,
healthcare providers can unlock unprecedented
potential in diagnostic imaging, ultimately improving
patient outcomes and advancing precision medicine
[24, 30].

TECHNICAL CHALLENGES IN
MUSCULOSKELETAL IMAGING AI

Image quality

Motion artefacts represent a critical challenge in mus-
culoskeletal imaging, particularly in imaging systems
like EOS imaging used for spinal pathology diag-
nostics. With acquisition times extending up to
25 seconds, patient movement can introduce signifi-
cant image distortions that challenge accurate diag-
nostic interpretation [46]. Researchers developed a
systematic approach to quantify these artifacts by at-
taching a radiopaque reference device (a straight metal
wire) to patients and measuring deviations from a
precise vertical line. They found that 80% of patients
demonstrated motion artifacts exceeding 1mm in
frontal projection, while 87.9% showed similar artefact
levels in lateral projections [46]. These high artefact
rates underscore the critical need for AI algorithms
capable of distinguishing between genuine pathological

findings and image distortions caused by patient
movement. The potential for motion artifacts to mimic
conditions like scoliosis highlights the complexity of
developing robust medical imaging analysis technolo-
gies that can maintain diagnostic accuracy under
challenging imaging conditions.

In a 2024 study, researchers evaluated an AI‐based
bone scan noise‐reduction filter for whole‐body planar
bone scintigraphy [8]. The filter demonstrated promis-
ing capabilities, enhancing image quality and contrast
while allowing a potential 50% reduction in adminis-
tered dose or acquisition time. By successfully pro-
cessing artificially degraded noisy images with varying
total count levels, the AI filter significantly improved
diagnostic confidence in low‐count imaging scenarios.

Deep learning image reconstruction, an entirely
different field of research, has made substantial ad-
vances in noise reduction across medical imaging
modalities. A 2024 study revealed that AI‐based
reconstruction techniques enable 60% accelerated
volumetric brain MRI while preserving quantitative
performance, with similar improvements observed in
spinal MRI scans in which 40% faster scans matched
or exceeded standard care quality [4, 5].

Addressing the complexity of the
musculoskeletal system

The anatomical complexity of the musculoskeletal
system presents challenges for AI in medical imaging,
particularly in structure identification. Foundation
models like SAM, MedSAM, and SAM2 are being
evaluated for processing diverse anatomical structures
in musculoskeletal MRI, while AI‐powered ultrasound
systems such as Clarius MSK AI can now identify and
label key anatomical structures in real time [14]. How-
ever, segmentation of musculoskeletal structures
remains complex, with deep learning models and
convolutional neural networks (CNNs) (e.g., To-
talSegmentor) showing potential [12, 48]. Researchers
including Liu et al. have successfully used advanced
modelling techniques to accurately segment knee
structures, including cartilage, menisci, and bones [25].
However, challenges persist in segmenting structures
with low contrast or those affected by pathological
changes, driving ongoing research to improve algo-
rithmic accuracy and robustness [11]. Additionally, the
potential of AI‐assisted image segmentation relies
heavily on the unbiased ability of models to accurately
detect bony morphology and soft‐tissue structures
among patients with different ages, sex, and racial
backgrounds. Recent research discusses potential
strategies to mitigate bias in automated image seg-
mentation through computational methods that may
enhance fairness based on certain tradeoffs in the
applied modelling approach [41].
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Mapping relationships between musculoskeletal
structures is crucial for understanding biomechanics
and pathology. Emerging techniques include joint‐
muscle mapping using neural networks, three‐
dimensional imaging reconstructions, and algorithms
for image registration [18, 44]. These approaches aim
to analyse spatial configurations, express nonlinear
relationships between joint angles and muscle lengths,
and facilitate more comprehensive understanding of
complex anatomical interactions.

AI SOLUTIONS AND APPLICATIONS

AI has been promising in accurately detecting fractures
on imaging, enhancing triage, diagnosis, and patient
care, particularly in emergency settings [33]. A sys-
tematic review and meta‐analysis of 100 studies re-
ported AI algorithms achieving a sensitivity of 91.43%
and specificity of 92.12% for fracture detection on plain
radiographs, highlighting their potential as valuable
tools for clinicians [33]. In a multi‐reader, multi‐case
study, nonspecialist readers using AI support improved
their patient‐wise sensitivity from 72% to 80% and
specificity from 81% to 85%, resulting in a 29% relative
reduction in missed fractures [3]. Key benefits of AI
integration include improved diagnostic accuracy, fas-
ter interpretation times, support for less experienced
clinicians, triage assistance for prioritising urgent
cases, and standardised assessments that reduce in-
terobserver variability [3, 28, 40]. Recently the UK's
National Institute for Health and Care Excellence has
endorsed AI technologies for fracture detection, re-
cognising their ability to improve diagnostic perform-
ance in urgent care compared to standard care alone
[32]. As these tools are designed to assist rather than
replace human clinicians, their highest performance is
achieved when used alongside expert interpretation,
underscoring the importance of ongoing research and
clinical validation to optimise their role in musculo-
skeletal imaging [15].

AI has shown encouraging performance in accurate
quantitative measurements for radiographic measure-
ments, including scoliosis and limb lengths, improving
assessment and treatment planning in musculoskeletal
care. For scoliosis, an AI model (cobbAngle pro) has
demonstrated good accuracy and repeatability in
automatically measuring the Cobb angle, eliminating
the need for manual measurements by clinicians [23].
Comparative studies have highlighted the superior
performance of algorithms trained on both adolescent
idiopathic scoliosis and adult spinal deformity cases,
with convolutional neural networks achieving intraclass
correlation coefficients of 0.973 for major curves in the
standing position [17, 27]. In limb length measurement,
AI systems have shown exceptional accuracy, with
correlation coefficients exceeding 0.99 and mean

errors under 1% [21, 38]. Deep learning approaches for
bilateral leg length assessments have demonstrated
high concordance with radiologists, with intraclass
correlation coefficients of 0.979 for whole‐leg lengths,
0.905 for tibial lengths, and 0.979 for femoral lengths
[29]. The IB Lab LAMA AI software further enhances
measurements on long‐leg radiographs, including
cases with hip or knee implants, aiding in identifying
alignment deformities and discrepancies (Figure 1)
[39]. These AI‐powered tools improve measurement
accuracy, reduce inter‐observer variability, standardise
assessments across centres, and significantly reduce
measurement times—some by up to 87% [1]. Addi-
tionally, they offer support in remote settings lacking
specialist radiologists [1, 51]. By enhancing accuracy,
objectivity, and efficiency, AI tools are advancing the
assessment and treatment planning for scoliosis and
limb length discrepancies, ultimately enabling better
treatment decisions and improved patient care.

Diagnosing osteoarthritis (OA) on knee radio-
graphs, particularly identifying early disease signs is
another application for AI modes. A model developed
by researchers at the University of Pittsburgh and
Carnegie Mellon University detected OA on MRI scans
with high accuracy three years before symptom onset
[20]. Similarly, a ResNet101‐based AI platform dem-
onstrated high accuracy in distinguishing OA grades,
excelling in early‐stage detection [22]. An AI neural
network from the University of Jyväskylä matched cli-
nicians' diagnoses of early OA in 87% of cases, and AI‐
aided radiographic analysis improved inter‐rater reli-
ability [31, 36]. Advanced methods like 3D transport‐
based morphometry further enable the detection of
biochemical cartilage changes via MRI [20]. By offering
earlier intervention, improved accuracy, expedited
screening, and consistent assessments, AI enhances
OA diagnosis while complementing clinical expertise
[42]. Ongoing research is essential to optimise its role
in advancing patient care.

ETHICAL CONSIDERATIONS

Ethical considerations are critical for the responsible
implementation of AI in musculoskeletal imaging, par-
ticularly in ensuring patient care and equitable out-
comes. Protecting data privacy is paramount, requiring
secure storage, robust de‐identification, and adherence
to regulations [16]. To mitigate bias, AI must be trained
on diverse, representative datasets and regularly
assessed for its impact on different demographics [7].
Transparency and explainability are equally vital, as
interpretable AI models foster trust by providing clear
rationales for their outputs, enabling both clinicians and
patients to make informed decisions [13, 34, 35].
Accountability frameworks are necessary to clarify
responsibilities for AI‐assisted decisions, emphasising
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that radiologists and the treating physicians retain ulti-
mate responsibility for patient care [10]. Additionally,
ensuring data quality and model efficacy involves rig-
orous validation and continuous monitoring of AI tools
[11]. By addressing these ethical issues, the integration
of AI can improve musculoskeletal imaging while
safeguarding privacy, promoting fairness, and main-
taining trust in clinical decision‐making.

CONCLUSION

AI is transforming musculoskeletal imaging by enhan-
cing diagnostic accuracy, streamlining workflows, and
enabling personalised care. Despite challenges
including anatomical complexity, image quality issues,

and ethical concerns, advancements in both multi-
modal and specialized models show immense promise.
To fully realise AI's potential, rigorous validation, ethical
safeguards, and seamless clinical integration are es-
sential. By fostering collaboration between clinicians
and AI tools, the field can achieve improved efficiency,
equity, and outcomes, marking a new era in precision
medicine.
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