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ABSTRACT Infections from antibiotic-resistant bacteria threaten human health globally. 
Resistance is often caused by mobile antibiotic resistance genes (ARGs) shared hori­
zontally between bacterial genomes. Many ARGs originate from environmental and 
commensal bacteria and are transferred between divergent bacterial hosts before they 
reach pathogens. This process remains, however, poorly understood, which complicates 
the development of countermeasures that reduce the spread of ARGs. In this study, we 
aimed to systematically analyze the ARGs transferred between the most evolutionarily 
distant bacteria, defined here based on their phylum. We implemented an algorithm 
that identified inter-phylum transfers (IPTs) by combining ARG-specific phylogenetic 
trees with the taxonomy of the bacterial hosts. From the analysis of almost 1 million 
ARGs identified in >400,000 bacterial genomes, we identified 661 IPTs, which inclu­
ded transfers between all major bacterial phyla. The frequency of IPTs varies substan­
tially between ARG classes and was highest for the aminoglycoside resistance gene 
AAC(3), while the levels for beta-lactamases were generally lower. ARGs involved in IPTs 
also differed between phyla, where, for example, tetracycline ARGs were commonly 
transferred between Firmicutes and Proteobacteria, but rarely between Actinobacteria 
and Proteobacteria. The results, furthermore, show that conjugative systems are seldom 
shared between bacterial phyla, suggesting that other mechanisms drive the dissemina­
tion of ARGs between divergent hosts. We also show that bacterial genomes involved 
in IPTs of ARGs are either over- or underrepresented in specific environments. These 
IPTs were also found to be more recent compared to transfers associated with bacteria 
isolated from water, soil, and sediment. While macrolide and tetracycline ARGs involved 
in IPTs almost always were >95% identical between phyla, corresponding β-lactamases 
showed a median identity of <60%. We conclude that inter-phylum transfer is recurrent,
and our results offer new insights into how ARGs are disseminated between evolutionar­
ily distant bacteria.

IMPORTANCE Antibiotic-resistant infections pose a growing threat to global health. This 
study reveals how genes conferring antibiotic resistance can move between bacteria 
that belong to different phyla lineages previously thought to be too evolutionarily 
distant for frequent gene exchange. By analyzing nearly 1 million resistance genes from 
over 400,000 bacterial genomes, the researchers uncovered hundreds of inter-phylum 
transfer events, exposing surprising patterns in how different classes of resistance genes 
spread. The findings highlight that conjugative systems are less common than expected 
in cross-phyla transfers and suggest that alternative mechanisms may play key roles. 
This new understanding of how resistance genes leap between vastly different bacterial 
groups can inform strategies to slow the emergence of drug-resistant infections, aiding 
in the development of more effective public health interventions.
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I nfections from antibiotic-resistant bacteria constitute a growing global public health 
crisis, which, in 2019, alone was associated with almost 5 million deaths (1). Bacteria 

often become resistant to antibiotics by acquiring antibiotic resistance genes (ARGs) 
through the process of horizontal gene transfer (2). ARGs are commonly transferred by 
conjugation, but also by transformation and possibly transduction, and are therefore 
often located on mobile genetic elements (MGEs), such as plasmids and other integra­
tive elements, transposons, and integrons (3–6). This allows them to efficiently move 
within and between bacterial cells (7). Many ARGs, encoding a wide range of resistance 
mechanisms, have been described to date (8). This number is constantly increasing, not 
only due to the discovery of ARGs in pathogenic bacteria but also because new ARGs are 
frequently identified in non-pathogenic bacteria and metagenomes, where it is often not 
possible to assign a specific host (9, 10).

ARGs are commonly shared between evolutionarily distant hosts. For example, the 
New Delhi metallo-β-lactamase, which provides resistance to penicillin, cephalosporins, 
and carbapenems, has been detected in multiple bacterial phyla, including pathogens 
from Proteobacteria, Bacteroidetes, and Firmicutes (11, 12). Similarly, the monooxyge­
nase tet(X), which provides high-level resistance by degrading both tetracyclines and 
tigecycline, is hypothesized to originate from Flavobacteriaceae (Bacteroidetes), but
despite this, tet(X) is commonly found in species from both Proteobacteria and Firmicutes 
(13). A third example is the macrolide resistance gene erm(B), which is widespread in 
Proteobacteria but has been suggested to originate from an yet undiscovered Firmicutes 
species (14). The recruitment of ARGs from evolutionarily distant bacteria has enabled 
pathogens and other bacteria to adapt to strong antibiotic selection pressures. This 
constitutes a major component in the development of multiresistant strains.

The origins of most ARGs encountered to date remain unknown. Indeed, less than 
5% of the ARGs have been associated with a host from which they were mobilized 
onto MGEs that later spread horizontally to pathogens (15). Bacterial communities, 
both in the human and animal microbiome and in external environments, such as 
soil, water, and sediments, are known to harbor large and diverse collections of ARGs, 
many of which remain uncharacterized (16). These ARGs have been hypothesized to 
constitute a reservoir from which novel resistance determinants can be recruited and, 
eventually, transferred into pathogens (17). This will, in many cases, require transfers 
between evolutionarily distant bacterial hosts—a process that, to a large extent, remains 
unknown.

In this study, we systematically analyzed the transfer of ARGs between bacterial 
phyla as represented by the current sequence repositories. We also aimed to describe 
taxonomical patterns of this inter-phylum flow of ARGs and identify environments where 
these transfers are most likely to occur. We took advantage of the growing number 
of bacterial genomes available in public databases (9, 18, 19) and the development of 
accurate computational methods to identify both established and previously uncharac­
terized resistance determinants (9, 20) to analyze almost half a million bacterial genomes 
for the horizontal transfer of ARGs. Through analysis of inconsistencies between host 
taxonomy in phylogenetic trees constructed from ARGs, we could identify 661 inter-phy­
lum transfers (IPTs) of ARGs. Our results show that most types of ARGs have been 
involved in IPTs, but the observed frequency of IPTs varied between resistance mecha­
nisms. Network analysis revealed that Proteobacteria was the most connected phylum, 
followed by Firmicutes and Actinobacteria. By contrast, low frequencies were observed 
for IPTs involving Bacteroidetes, especially for those also involving Actinobacteria. Finally, 
our results suggest that IPTs were associated with different environments depending 
on the resistance mechanism, implying that ecological and taxonomic factors play 
important roles.
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RESULTS

Antibiotic resistance genes are ubiquitously present in all major bacterial 
phyla

A total of 427,495 bacterial genomes were screened for antibiotic resistance genes 
using fARGene, a software that uses optimized probabilistic models to identify ARGs 
in sequence data (20). The experimental pipeline followed in this analysis is detailed 
thoroughly in Fig. S1. Experimental validation of fARGene has shown high predictive 
accuracy, even for genes with lower sequence similarity (14, 20–23). Each genome was 
analyzed for 22 classes of ARGs, representing 18 resistance mechanisms against five 
major groups of clinically relevant antibiotics (aminoglycosides, β-lactams, fluoroquino-
lones, macrolides, and tetracyclines), resulting in almost 1 million (993,827) significant 
matches. The number of identified ARGs differed between gene classes, where AAC(6′) 
aminoglycoside acetyltransferases were the most common (180,321 matches), while 
tetracycline degradation enzymes were the least common (1,049 matches). ARGs were 
found in genomes from all the largest phyla, most commonly in Proteobacteria (66.3% 
on average) followed by Firmicutes (20.4%), Actinobacteria (8.4%), Bacteroidetes (3.9%), 
Cyanobacteria (0.22%), and Chloroflexi (0.18%) (Fig. 1A).

The phyla of the hosts carrying ARGs varied between gene classes. Most ARGs were 
predominantly found in Proteobacteria, but there were exceptions, such as AAC(2′), 
which was almost exclusively found in Actinobacteria [96.2% of the AAC(2′)-encoding 
species] and AAC(3) (of class 2), APH(2″), and Erm, which were mostly found in Firmicutes 
(74.4%, 60.5%, and 77.6% of the species, respectively). Bacteroidetes, in which ARGs were 
less commonly observed, had a high prevalence of genes encoding tetracycline degrada­
tion enzymes and class B1/B2 β-lactamases (present in 34.0% and 18.7% of the species, 
respectively). Furthermore, most of the identified ARGs were identical or highly similar to 
previously well-characterized ARGs (Fig. 1B). There were, however, a substantial propor­
tion of less well-described genes—especially encoding class B1/B2 and B3 β-lactamases, 
tetracycline degradation enzymes, and aminoglycoside modifying enzymes AAC(2′), 
APH(2″), and AAC(3), which is in line with previous studies (14, 21, 22). In total, close to 
two-thirds (66.2%) of the ARGs showed a high sequence similarity (≥90%) to at least one 
well-characterized ARG.

Detection of inter-phylum transfer of ARGs

We applied an algorithm to identify IPTs of ARGs using deviations in the evolutionary 
history of the gene and its host (24). The algorithm was based on gene-specific phyloge­
netic trees (Fig. S2 to S19), in which IPTs were detected based on differences in the 
taxonomy of the bacterial hosts carrying evolutionarily similar ARGs (see Materials and 
Methods). As a part of this process, we re-evaluated the taxonomic affiliation of the 
bacterial genomes appearing in sparsely populated leaves of the ARG trees to minimize 
the impact of false positives (see Table S1 for the 1,221 excluded genomes).

In total, we detected 661 IPTs of ARGs, which were unevenly distributed between the 
resistance gene classes (Fig. 1C). The highest number of IPTs was found for the tetracy­
cline ribosomal protection genes (RPGs; 106 transfers), followed by aminoglycoside 
acetyltransferase AAC(6′) (81 transfers) and class A beta-lactamases (75 transfers), while, 
in contrast, only two transfers were detected for quinolone resistance (qnr) genes. There 
was, as expected, a positive correlation between the number of observed IPTs and the 
number of identified ARGs (r = 0.71, P = 6.3 × 10−4). However, this trend disappeared after 
normalization by the ARG frequency (Fig. 1D) and, thereby, adjusting for biased species 
distributions that give rise to differences in resistance gene abundance. The aminoglyco­
side acetyltransferases AAC(3) (type 1) and APH(2″), along with the tetracycline-degrad­
ing enzymes, had the highest number of IPTs in relation to the identified ARGs. Although 
these genes were relatively infrequent, with 1,534, 3,441, and 1,049 identified genes, 
respectively, they were associated with a substantial portion of the total IPTs, corre­
sponding to 17, 20, and 10 IPTs, respectively (Fig. 1C). Interestingly, all classes of 
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β-lactamases, except for B1/B2, were associated with a relatively low number of IPTs 
compared to their prevalence (Fig. 1D).

The sequence similarity of ARGs involved in IPTs in their different phyla varied (Fig. 
1E). Most RPG, Erm, and APH(3′) genes were found to be similar between phyla (median 
amino acid similarity 99.7%, 99.8%, and 98.16%, respectively), suggesting that they were 
more recently transferred. In contrast, β-lactamases and other aminoglycoside-modifying 
enzymes were, generally, more dissimilar (median sequence similarity between 59.1% 
and 57.3%). However, these values were substantially higher than typically observed 
between genes from different bacterial phyla (25, 26).

FIG 1 Overview of the identified antibiotic resistance genes and detected inter-phylum transfers. Each genome was analyzed for 22 ARG classes, representing 

18 resistance mechanisms against five major groups of clinically relevant antibiotics: aminoglycosides, β-lactams, fluoroquinolones, macrolides, and tetracyclines. 

The distribution of host phyla (A) differed considerably between ARGs. In panel B, the sequence similarity of the identified ARGs when compared to genes 

present in the ResFinder database is shown. The number of IPTs, together with the number of detected ARGs, is shown in panel C, while the ratio between 

the number of IPTs and the number of detected ARGs within each group, multiplied by 1,000, is shown in panel D. Finally, in panel E, the maximum sequence 

similarity of ARGs involved in IPTs from different phyla is shown, suggesting both recent and more ancient transfers. The letters in the brackets after the gene 

names indicate the class of antibiotics for which they provide resistance: A for aminoglycosides, B for beta-lactams, M for macrolides, and T for tetracyclines.
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The structure of the inter-phylum transfers of ARGs

Network analysis was used to visualize how ARGs have been transferred between 
phyla (Fig. 2). This showed that Proteobacteria had the largest number of connec­
tions, primarily to Firmicutes, Actinobacteria, and Acidobacteria (136, 56, and 48 IPTs, 
respectively). Transfers between Proteobacteria and Chloroflexi, Cyanobacteria, and 
Verrucomicrobia were also observed, but less frequently (11, 11, and 26 IPTs, respec­
tively). Stratification of the results into resistance gene classes showed that Proteobac­
teria played a central role for all ARGs except for Erm and RPG (Fig. 2C through F). 
Aside from Proteobacteria, IPTs between Firmicutes and Actinobacteria (49) and between 
Firmicutes and Bacteroidetes (21) were also commonly observed. Interestingly, only a 
single IPT was detected between Actinobacteria and Bacteroidetes.

The transfer of β-lactamases was predominantly observed between Proteobacteria 
and other gram-negative phyla, especially Bacteroidetes, Acidobacteria, and Verrucomi­
crobia (Fig. 2C). We noted that the relatively rare class B1 + B2 β-lactamases have been 
commonly transferred between Proteobacteria and Bacteroidetes (six IPTs), more than 
the frequently encountered class A β-lactamases (five IPTs). Among the aminoglycoside 
ARGs, AAC(3), AAC(6′), and APH(3′) were all observed to be transferred between Firmi­
cutes and Proteobacteria (7, 13, and 28 IPTs, respectively), while no such transfers were 
detected for APH(6). Transfers involving Bacteroidetes could be seen for all aminoglyco­
side resistance mechanisms except AAC(3′), where instead transfers involving Chloroflexi 
were frequent (Fig. 2D). The transfers of the Erm macrolide resistance mechanism 
involved, almost exclusively, Firmicutes and either Proteobacteria, Bacteroidetes, or 
Actinobacteria (Fig. 2E). Similarly, tetracycline RPGs were frequently transferred between 
Firmicutes and Proteobacteria and between Actinobacteria and Firmicutes, but rarely 
between Firmicutes and Bacteroidetes (Fig. 2F). Finally, we noted that Erm and RPGs had 
either very few or no detected transfers between Proteobacteria and Actinobacteria, 
even though these classes of ARGs were common in both phyla.

Analysis of the IPTs at higher taxonomic resolution revealed distinct patterns (Fig. 2B). 
The class Bacilli (Firmicutes) was involved in the highest number of transfers, primarily 
together with Gamma- and Epsilonproteobacteria. Interestingly, a large proportion of 
the transfers between Bacilli and Gammaproteobacteria was associated with tetracycline 
RPGs, while the transfers between Bacilli and Epsilonproteobacteria were instead 
dominated by aminoglycoside-modifying enzymes. The transfers of RPGs to and from 
Epsilonproteobacteria were, instead, frequently involving Clostridia (Firmicutes). The IPTs, 
including Proteobacteria and Actinobacteria, were primarily observed between Alpha-, 
Beta-, and/or Gammaproteobacteria and the eponymous Actinobacteria class. We noted, 
however, that not a single transfer of RPGs could be detected between Gammaproteo­
bacteria and Actinobacteria (class), while, in contrast, these genes were commonly 
transferred between Actinobacteria (class) and Clostridia. The transfer between Corio­
bacteria (Actinobacteria) and Clostridia was also dominated by RPGs, but not a single IPT 
could be detected between Coriobacteria and any proteobacterial class.

Conjugative elements associated with the inter-phylum transfer of ARGs

Conjugative elements, in particular plasmids, have been hypothesized to play a central 
role in the inter-phylum transfer of bacterial genes (27, 28). We, therefore, annotated the 
genomic context of all ARGs associated with IPTs for genes encoding mating pair 
formation (MPF) proteins and relaxases, which are vital for pilus formation and DNA 
mobilization in conjugative transposition, respectively (Materials and Methods) (29). Our 
results showed that the class of MPF proteins varied substantially between phyla, where 
all included types could be found in proteobacterial genomes, while the classes FA and 
FATA were, almost exclusively, found in Firmicutes, Actinobacteria, and Bacteroidetes (Fig. 
3A). Relaxases were, generally, more spread, where four types (MOBF, MOBP, MOBQ, and 
MOBV) were commonly found in two or more phyla.

We, furthermore, investigated if ARGs transferred between two phyla were associated 
with the same type of conjugative elements in their respective host genomes (Materials 
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and Methods). For MPF proteins, no clear general pattern could be identified (Fig. 3A, P = 
0.071, permutation test); however, relaxases showed a significant similarity (Fig. 3B, P = 
0.0068, permutation test) where the same type of MOB gene was often co-localized with 
the same ARG in hosts from both phyla. This could, for example, be seen for 

FIG 2 Analysis of the transfer of ARGs. (A) A network representation of the IPTs between Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, 

Acidobacteria, Verrucomicrobia and Bacteroidetes. (B) The most common IPTs are stratified based on the involved ARGs. (C–F) Gene-specific transfer networks. 

The letters in the brackets after the gene names indicate the class of antibiotics for which they provide resistance: A for aminoglycosides, B for beta-lactams, M for 

macrolides, and T for tetracyclines.
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Actinobacteria and Firmicutes (MOBP, MOBQ, and MOBV) and Proteobacteria and 
Bacteroidetes (MOBP) (Fig. S20). Even more distinct similarities could be seen for the co-
localization of the IPT-associated ARGs with other ARGs (Fig. 3C, P = 6.0 × 10−4, permuta­
tion test). Here, the co-localization of tetracycline ARGs in IPT between Actinobacteria 
and Firmicutes was most prominent. These results suggest that IPTs may be mediated by 
non-conjugative plasmids carrying relaxases that are compatible over large evolutionary 
distances. It also suggests that transfers often include larger genomic regions containing 
more than a single ARG.

Inter-phylum transfers are overrepresented and more recent in the human 
microbiome

Next, the isolation sources of the bacterial genomes carrying ARGs involved in IPT 
were examined to assess where these bacteria are especially common. The human 
microbiome was found to be the most frequent isolation source, from which 52.8% of 
the genomes carrying an ARG involved in IPT were isolated. This was followed by soil 
(19.4%), water (12.0%), animal (10.0%), and, finally, sediment (2.5%). Statistical analysis 
showed that IPTs of ARGs were significantly enriched with specific environments (Fig. 
4). In particular, Mph, class B1/B2 and D β-lactamases, and tetracycline RPGs were all 
found in sequenced genomes isolated from multiple environments, while the genomes 
carrying the ARGs involved in IPTs were highly overrepresented in the human micro­
biome (P < 10−15 for all cases, Fig. 4B). In contrast, IPTs involving AAC(6′) and APH(6) 
aminoglycoside-modifying enzymes, class A β-lactamases, and tetracycline efflux pumps 
were underrepresented in the human microbiome (P < 10−15 for all cases).

Several ARGs involved in IPT were also carried by bacterial genomes that were 
overrepresented in the external environments. For example, the hosts carrying AAC(6′) (P 
< 10−15), APH(6) (P = 1.6 × 10−14), and class B3 β-lactamases (P < 10−15) involved in IPTs 
were overrepresented in water, while the IPT-involved hosts for class A β-lactamases (P < 
10−15) and tetracycline efflux pumps (P < 10−15) and, to a lesser extent, also AAC(6′) and 
APH(6) (P < 10−15 and P = 4.7 × 10−14, respectively) were overrepresented in soil. 

FIG 3 The distribution of genes involved in conjugation and co-localized ARGs in the genetic context of ARGs involved in IPTs. The proportion of (A) MPF genes, 

(B) relaxases, and (C) co-localized ARGs identified in the genetic context of the ARGs involved IPTs for different pairs of phyla.
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Interestingly, the IPTs for two ARGs—AAC(3) (type 2) and class A β-lactamases—were 
significantly associated with hosts isolated from “food” and “milk” (P < 10−15 for both 
gene classes).

Finally, we noted that the sequence similarity of ARGs involved in IPTs varied 
significantly between different phyla across environments (Fig. 5). Most similar ARGs 
were found in the human and animal microbiome (median similarity of 99.22% and 
98.98%, respectively), suggesting that these transfers are more recent. Compared to the 

FIG 4 Heatmaps describing the distribution and enrichment of hosts carrying ARGs involved in IPT stratified based on 

isolation source and gene class. In panel A, the distribution of hosts involved and not involved in IPTs is shown. In panel 

B, the enrichment score describing the statistical overrepresentation (red) and underrepresentation (blue) of hosts involved in 

IPTs is shown. The overrepresentation was assessed by Fisher’s exact test. Tests with P > 0.05 were marked in white and not 

considered to be significant. The letters in the brackets after the gene names indicate the class of antibiotics for which they 

provide resistance: A for aminoglycosides, B for beta-lactams, M for macrolides, and T for tetracyclines.
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human microbiome, the ARG transfers in water, sediment, and soil showed significantly 
lower sequence similarity within their respective phyla, which may suggest that recent 
transfers are less common (median similarity 56.33% [P = 2.41 × 10−10], 53.03% [P < 1.76 × 
10−8], and 53.42% [P < 6.93 × 10−14], respectively, Wilcoxon’s rank-sum test).

DISCUSSION

Antibiotic resistance genes are transferred from distantly related bacteria into patho­
gens, which makes them harder to treat. Inter-phylum transfers of ARGs have been 
repeatedly documented in the literature (30–32), but the knowledge of which genes, 
bacteria, and environments are involved in these gene flows has so far been limited. 
In this study, we systematically investigated ARGs that have undergone horizontal 
transfer between phyla, representing the highest taxonomic level within the bacterial 
domain. The analysis, which was based on almost 1 million ARGs identified in more 
than 400,000 bacterial genomes, showed that the majority of the 22 analyzed ARG 
classes were subjected to IPTs. The results also showed that the frequency of IPTs varied 
substantially between antibiotic and ARG classes, with high frequencies observed for 
aminoglycoside, tetracycline, and macrolide ARGs. Here, AAC(3) showed the highest 
relative frequency, where 1 out of every 100 encountered genes was associated with 
an IPT. All classes of ARGs were, furthermore, associated with recent events where the 
gene sequences present in both involved phyla were identical, or close to identical. 
However, for several resistance mechanisms—particularly β-lactamases—we observed 
fewer similar sequences in evolutionarily distant hosts. This may be an effect of inter-
phylum ARG transfers done over a longer evolutionary timescale, which is in line with 
previous findings (33).

FIG 5 ARGs involved in inter-phylum transfers are more similar between their different phyla in the human and animal microbiome compared to the 

environment. Genomes were classified into environments based on their isolation source: human microbiome, animal microbiome, water, sediment, soil, and

others. The box plots represent the distribution of the sequence identity across each environment. The individual data points, shown as red jittered dots, 

illustrate the distribution within each group.
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All major bacterial phyla were involved in the inter-phylum transfer of ARGs. 
An especially large number of gene transfers were associated with Proteobacteria, 
Firmicutes, and Actinobacteria, which are highly abundant in the genome databases, 
but IPTs were also detected for less frequently sequenced bacteria, such as Bacter­
oidetes, Chloroflexi, Cyanobacteria, and Verrucomicrobia. For several of the analyzed 
ARGs, Proteobacteria acted as a central hub with connections to multiple phyla. These 
connections were, to a large extent, associated with bacterial hosts from human and 
animal microbiomes but also include genomes isolated from the external environment, 
such as soil and water (Fig. S21 to S38). These results, thus, reaffirm the plasticity 
of many proteobacterial genomes and show their ability to share ARGs over large 
evolutionary distances. Indeed, pathogens from Proteobacteria, such as Escherichia 
coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, commonly carry ARGs that 
are hypothesized to originate from other phyla [e.g., erm(B)] (23, 34, 35). Proteobacte­
ria harbor broad host-range conjugative elements, some of which are known to be 
able to move across large evolutionary distances. This includes, for example, plasmids 
carrying class T mate-pair forming genes, which have previously been documented 
in Actinobacteria (28). We found that class T MPFs were commonly co-localized with 
ARGs associated with IPT between Proteobacteria and Actinobacteria, indicating that it 
may be one of the mechanisms that mediate gene transfers between these phyla. In 
contrast, there are currently no documented conjugative plasmids that are commonly 
present in both Proteobacteria and Firmicutes (28). This is also in line with our findings, 
where plasmids carrying FA and FATA MPF, which are common in Firmicutes, were 
rare in Proteobacterial hosts. Despite this, we detected a large gene flow between 
Proteobacteria and Firmicutes, suggesting that other mechanisms may be used for these 
transfers. Thus, while conjugation likely remains the main driver of ARG dissemination 
at lower taxonomic levels, its host-range limitations likely explain its reduced role for 
transferring ARGs between bacterial phyla. Instead, other means for horizontal gene 
transfer, such as natural transformation or other forms of mobile genetic elements with 
broader host ranges, may facilitate inter-phylum transfers. We noted, however, that the 
genetic context of ARGs associated with IPTs displayed similarities, frequently showing 
co-localization of relaxases and other ARGs across different phyla. This suggests that 
the horizontal transfer between phyla, including those between Proteobacteria and 
Firmicutes, likely includes larger genetic regions and, potentially, involves non-conjuga­
tive plasmids.

Bacteroidetes were involved in a low number of inter-phylum transfers. The few 
IPTs involving Bacteroidetes included, in addition to the β-lactamases transferred to 
and/or from Proteobacteria, a diverse set of ARGs that were also shared with Firmi­
cutes. Interestingly, this included genes conferring resistance to aminoglycosides [e.g., 
APH(3′) and APH(6)], a class of antibiotics for which many Bacteroidetes are known 
to be intrinsically resistant (36). These transfers may result from co-selection, poten­
tially through co-localization of aminoglycoside ARGs and other ARGs on the same 
MGE. Another possibility is that aminoglycoside ARGs still provide a significant fitness 
advantage in Bacteroidetes—a hypothesis that is supported by a recent study that 
showed that aminoglycoside ARGs from Bacteroidetes can provide clinical levels of 
resistance in Escherichia coli (14). We, furthermore, only observed two IPTs between 
Bacteroidetes and Actinobacteria, even though bacteria from these phyla are common 
in both host-associated and external environments (37, 38). Indeed, Bacteroidetes (e.g., 
Bacteroides spp.) and Actinobacteria (e.g., Bifidobacterium spp.) are integral parts of the 
human gut microbiome, suggesting that they are commonly co-occurring in environ­
ments that recurrently are under strong selection pressures for antibiotic resistance (39). 
The lack of detected transfers suggests that there are barriers that limit the exchange 
of ARGs between these phyla. We found that Actinobacteria and Bacteroidetes both 
carried conjugative elements with class FA and FATA MFP; however, previous studies 
have shown that they are generally rare on plasmids in Bacteroidetes (28). Genomes 
from Bacteroidetes are, furthermore, typically AT-rich, while Actinobacteria are typically 
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GC-rich, suggesting that low gene compatibility may make it hard to find ARGs that 
have the necessary efficiency in both phyla (8). Indeed, many ARGs depend on high 
expression to induce a sufficiently strong resistance phenotype, and an inefficient codon 
configuration may, thus, result in too high fitness costs (40, 41). Nevertheless, Bacteroi­
detes have been estimated to have a substantially higher rate of horizontal gene transfer 
than other common members of the human gut microflora (37). Still, our results suggest 
that this does not include inter-phylum transfers of ARGs.

Strong selection pressures likely govern the flow of ARGs between phyla. This 
was seen for all classes of β-lactamases, which are enzymes that break down β-lac­
tams, and the primary means of resistance against these antibiotics in gram-nega­
tives (42). Our results showed that β-lactamases were almost exclusively transferred 
between Proteobacteria, Acidobacteria, Bacteroidetes, and Verrucomicrobia, all of which 
predominantly include gram-negative bacteria. A similar pattern could be seen for 
aminoglycoside resistance transferred between Proteobacteria and the two Firmicute 
classes, Bacilli and Clostridia. Aminoglycosides use active electron transport to enter the 
cell (43) and are therefore highly effective against aerobes, such as Bacilli, while the 
potency against anaerobes, such as Clostridia (44), is typically low. This was reflected 
in the gene flow, where the transfer of aminoglycoside ARGs [especially APH(3′)] was 
observed between Proteobacteria and Bacilli but not between Proteobacteria and 
Clostridia. Our results also suggest that IPTs of some classes of ARGs may be associ­
ated with specific environments. For example, the macrolide resistance enzyme Mph 
was detected in both the human microbiome and the external environment. A similar 
pattern was seen for tetracycline RPG, which was associated with IPTs involving hosts 
that were highly overrepresented in the human microbiome. Interestingly, our results 
also indicated that the ARGs involved in IPT were more similar between phyla in the 
human and animal microbiome compared to the external environment. Strong selection 
pressures have been shown to promote horizontal gene transfer (45), suggesting that the 
IPTs seen between bacteria present in the host-associated bacterial communities may be 
a consequence of the last 80 years of mass consumption of antibiotics.

We, finally, noticed that the transfer of RPGs was particularly common between 
Proteobacteria and Firmicutes (especially between Clostridia and Epsilonproteobacteria), 
Actinobacteria and Firmicutes, but, interestingly, very rare between Proteobacteria and 
Actinobacteria (Fig. 2A). Successful inter-phylum transfer requires that the involved hosts 
are physically present in the same bacterial community. It is, in this context, worth 
noting that Epsilonproteobacteria and Clostridia are both common in the microbiome of 
poultry (46, 47), for which a significant proportion of the produced tetracyclines is used 
for growth promotion (48). We could, however, not statistically assess overrepresentation 
for this particular environment due to relatively few bacterial isolates with a specified 
isolation source.

In this study, we use phylogenetic trees reconstructed from half a million ARG 
sequences to detect horizontal transfers between bacterial phyla. In contrast to 
many previous studies of horizontal gene transfer, our method is not dependent on 
the identification of known MGEs and is thus more general. Indeed, many of the 
MGEs associated with horizontal transfer of ARGs can excise themselves from the 
genome, leaving no or very few changes in the nucleotide sequence of the host. 
Furthermore, many MGEs are still uncharacterized and thus not properly annotated 
in existing sequencing databases, which often makes the association between horizon­
tal gene transfers and MGEs difficult to establish (2). Our method also depends on 
correct taxonomic affiliations. Since erroneously annotated sequences and genomes are 
common in GenBank, we applied three independent methods (alignment to the SILVA 
16S database, Metaxa2, and GTDB-Tk) to scrutinize the taxonomic affiliation (49–51). To 
minimize the proportion of incorrectly annotated genomes—and thus the number of 
falsely predicted IPTs—we excluded all genomes for which the phylum was uncertain. 
Moreover, our results are highly dependent on the content in the genome databases. 
Indeed, we can only report transfers that are documented, and thus, the number of IPTs 
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is likely underestimated for many parts of the taxonomic tree. Throughout the paper, 
we, therefore, represent the number of IPTs in relative terms, either compared to the 
total number of ARGs or, as in Fig. 5, in relation to the genomes not associated with 
IPTs. Considering that current databases only reflect a small part of the total microbial 
diversity on Earth, our estimates, therefore, should be considered conservative and 
revisited as more genomes become available in the sequence repositories.

ARGs are often transferred from evolutionarily distant species before they are 
acquired by pathogens. We know, however, little about this process, especially regarding 
the transfers between the most divergent bacterial hosts. In this study, we provide a 
comprehensive and systematic analysis of the inter-phylum transfer of ARGs reflecting 
the body of knowledge currently available in sequence repositories. We demonstrate 
that inter-phylum transfer is a widespread phenomenon in most parts of the bacterial 
tree of life and encompasses multiple clinically relevant resistance mechanisms. Recent 
inter-phylum transfers were, furthermore, found to be especially common in the human 
microbiome, likely promoted by decades of antibiotic mass consumption. Our study, 
thus, provides new insights into the evolutionary processes that result in multiresistant 
pathogens through the accumulation of ARGs. We conclude that the development of 
management strategies that efficiently limit the spread of ARGs is vital to ensure the 
potency of both existing and future antibiotics.

MATERIALS AND METHODS

Prediction of antibiotic resistance genes in bacterial genomes

A total of 427,495 bacterial genomes encompassing 47,582,748 sequences were 
downloaded from NCBI GenBank (October 2019) (52) and analyzed using fARGene 
(version 0.1, default parameters) (53). fARGene uses hidden Markov models specifically 
optimized to distinguish between known and novel ARGs and homologous genes that 
do not confer antibiotic resistance (20). This enables us to study ARGs beyond those 
that are present in the sequence repositories, which are known to be far from complete 
(16). fARGene was executed using 22 profile hidden Markov models (HMMs) (53, 54) 
built to identify genes encoding 18 resistance mechanisms against five major classes 
of antibiotics: β-lactamases (class A, B1 + B2, B3, C, and D); macrolides (Erm 23S rRNA 
methyltransferases and Mph macrolide 2′-phosphotransferases); tetracyclines (efflux 
pumps, ribosomal protection genes, and drug-inactivating enzymes); fluoroquinolones 
(Qnr), and aminoglycosides [aminoglycoside-modifying enzymes including AAC(2′), 
AAC(3)-class 1, AAC(3)-class 2, AAC(6′), APH(2″), APH(3′), and APH(6)]. All matches above 
the default conservative profile-specific significance threshold were putative ARGs and 
stored for further analysis.

Phylogenetic analysis and prediction of inter-phylum transfers

The ARGs predicted by each gene model were aligned using Clustal Omega (version 
1.2.4, default parameters) (54). Each alignment was then used to calculate an unrooted 
phylogenetic tree using the maximum-likelihood algorithm implemented in FastTree 
(version 2.1.10, all other parameters set to default) (55). The taxonomy for each sequence 
was retrieved from the NCBI taxonomy database using “accessionToTaxa” and “getTaxon­
omy” from the R package “taxonomizr” (version 0.5.3) (56). The least common ancestor 
of most ARG classes is unknown (15), and the trees could, therefore, not be consistently 
rooted based on an outgroup. Note, however, that our methodology utilizes the tree 
topology, which is independent of the root.

Inter-phylum transfers were detected through a custom-built algorithm by identifying 
node points within the tree where the descendant hosts belong to at least two different 
phyla. Node points that contained an IPT in one of its subtrees were removed to avoid 
including the same leaves in multiple transfers and keep only the evolutionarily most 
recent IPT for each gene. The algorithm was implemented in a custom-made script (57). 
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The total list of host genome sequences descending from each node was obtained using 
the “Descendant” function from the “phangorn” R package (version 2.5.5) (58). Nodes 
were labeled from root to leaves using the “makeNodeLabel” function from the “ape” R 
package (version 5.3) (59). IPTs were visualized in phylogenetic trees plotted using the 
“ggtree” and “gheatmap” functions from the “ggtree” R package (version 1.16.6) (60).

The taxonomic information reported in NCBI GenBank is known to occasionally 
suffer from misannotations. We, therefore, ensured that our analysis would be robust 
by scrutinizing the host taxonomy for IPTs where one or both phyla were represented 
by a limited number of genomes, and thus, false positives may have a large effect (three 
or fewer genomes). All contigs from the genomes involved in these IPTs were aligned 
to the SILVA 16S database (version 138) (49) to quickly detect large-scale taxonomic 
inconsistencies. Subsequently, Metaxa2 (version 2.2) (46) and GTDB-Tk (release 89) (56) 
were used to provide additional and complementary taxonomic classifications based on 
marker genes and genome-wide phylogeny, respectively. Finally, all genomes annota­
ted as “candidatus” were excluded from analysis but kept in the alignment and tree 
construction. By default, the NCBI taxonomy information was assigned to all contigs 
in an assembly project. If any of the SILVA, Metaxa2, or GTDB-Tk results indicated a 
taxonomy different from NCBI, the assembly was removed from the remaining analysis. 
The genomes excluded due to questionable annotations can be found in Table S1.

For each predicted ARG sequence, the sequence similarity to well-characterized 
ARGs was calculated using “tblastn” from BLAST (version 2.2.31+) (61), using ResFinder 
(downloaded on 1 October 2019) as the reference database (19). IPT networks were 
created based on the number of IPTs observed between different phylum pairs, either 
as an aggregate for all ARGs or as individual networks for each of the studied gene 
classes. Networks were plotted using the MapEquation InfoMap software (version 1.1.2) 
(62) with “--ftree” and “--no-infomap” parameters. To increase readability, the networks 
were pruned. In the general network (Fig. 2A), only edges corresponding to six or 
more observed IPTs were included. Similarly, in the gene class-specific networks (Fig. 2B 
through F), only edges with three or more observed IPTs were included. The number of 
predicted ARGs from each mechanism was visualized as bar plots for the taxonomic level 
phylum and class using the R packages “ggplot2” (version 3.3.2) (63) and “ggalluvial” 
(version 0.12.3) (64). In parallel, genetic distances between species from both branches of 
a certain node were compared at the amino acid level using “blastp” from BLAST (version 
2.2.31+) (61). The maximum percent sequence identity for each node was saved and 
visualized as a histogram.

Retrieval of isolation source information

For each identified host genome, information about its isolation source was retrieved 
from the NCBI nucleotide summary using the “esearch” function in the Entrez soft­
ware (version 11.8 [23 July 2019]) (65). The reported isolation sources were manually 
scrutinized and categorized into five major groups: soil, sediment, water, human, animal, 
and others (Table S2). Since some terms could be assigned to different categories and 
we wanted to preserve the individuality of the terms among the groups, we created an 
exclusion list to avoid misclassification (Table S3).

Fisher’s exact test was used to assess the overrepresentation of genomes in their 
isolation source. Results were mapped using the “heatmap.2” function from the “gplots” 
(version 3.6.3) (66) R package. Only results with a P-value < 0.05 were included in the 
final heatmap. Differences in ARG similarity between phyla across environments were 
assessed using the Wilcoxon rank-sum test.

Genetic context analysis

Genetic context analysis was used to assess the mobility of the transferred ARGs. For 
each ARG included in an IPT, a region of up to 10 kb up- and downstream of the 
gene was retrieved from its host genome using GEnView version 0.2 (67). After retrieval, 
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the genetic contexts were screened for the presence of genes associated with mobile 
genetic elements. Genes involved in plasmid conjugation (based on the nomenclature 
introduced by Smillie et al. [29]) were identified by translating the genetic contexts 
in all six reading frames using EMBOSS Transeq version 6.5.7.0 (68) and analyzing the 
translated sequences with 124 HMMs from MacSyfinder Conjscan version 2.0 (69), using 
HMMER version 3.1b2 (70). Co-localized mobile ARGs were identified by finding the best 
among overlapping hits produced by “blastx” from BLAST (version 2.10.1) (71), using a 
reference database of well-characterized ARGs based on ResFinder version 4.0 (19), with 
the alignment criteria that hits should display >90% amino acid identity to a gene in 
ResFinder. The similarity of the distributions of MGEs and co-localized ARGs between 
phyla was tested using a permutation test. A similarity score was derived by adding the 
individual scores for each combination of phyla, which were calculated using Pearson’s 
χ2 test statistic. Phyla with very few (<5) observations (MGEs or ARGs) were excluded 
when calculating the similarity score to ensure a high statistical power. Significances 
were assessed from a null distribution derived by randomly permuting genomes within 
the same phyla 10,000 times.
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