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To leverage the full potential of quantum error-correcting stabilizer codes it is crucial to have an efficient
and accurate decoder. Accurate, maximum likelihood, decoders are computationally very expensive whereas
decoders based on more efficient algorithms give sub-optimal performance. In addition, the accuracy will depend
on the quality of models and estimates of error rates for idling qubits, gates, measurements, and resets, and will
typically assume symmetric error channels. In this work, we explore a model-free, data-driven, approach to
decoding, using a graph neural network (GNN). The decoding problem is formulated as a graph classification
task in which a set of stabilizer measurements is mapped to an annotated detector graph for which the neural
network predicts the most likely logical error class. We show that the GNN-based decoder can outperform a
matching decoder for circuit level noise on the surface code given only the simulated data, while the matching
decoder is given full information of the underlying error model. Although training is computationally demanding,
inference is fast and scales approximately linearly with the space-time volume of the code. We also find that
we can use large, but more limited, datasets of real experimental data for the repetition code, giving decoding
accuracies that are on par with minimum weight perfect matching. The results show that a purely data-driven
approach to decoding may be a viable future option for practical quantum error correction, which is competitive
in terms of speed, accuracy, and versatility.

DOI: 10.1103/PhysRevResearch.7.023181

I. INTRODUCTION

Quantum Error Correction (QEC) is foreseen to be a vital
component in the development of practical quantum comput-
ing [1–5]. The need for QEC arises due to the susceptibility
of quantum information to noise, which can rapidly accu-
mulate and corrupt the final output. Unlike noise mitigation
schemes where errors are reduced by classical post-processing
[6–8], QEC methods encode quantum information in a way
that allows for the detection and correction of errors without
destroying the information itself. A prominent framework for
this is topological stabilizer codes, such as the surface code,
for which the logical failure rates can be systematically sup-
pressed by increasing the size of the code if the intrinsic error
rates are below some threshold value [9–13].

Stabilizer codes are based on a set of commutative, typ-
ically local, measurements that project an n-qubit state to
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a lower dimensional code space representing one or more
logical qubits. Errors take the state out of the code space and
are then indicated by a syndrome, corresponding to stabilizer
violations. The syndrome needs to be interpreted in order
to gauge whether a logical bit or phase flip may have been
incurred on the logical qubit. Interpreting the syndrome, to
predict the most likely logical error, requires both a decoder
algorithm and, traditionally, a model of the qubit error chan-
nels. The fact that measurements may themselves be noisy,
makes this interpretation additionally challenging [10,13].

Efforts are under way to realize stabilizer codes experi-
mentally using various qubit architectures [14–30]. In [28],
code distance 3 and 5 surface codes were implemented, using
17 and 49 superconducting qubits, respectively. After initial-
ization of the qubits, repeated stabilizer measurements are
performed over a given number of cycles capped by a final
round of single qubit measurements. The results are then
compared with the initial state to determine whether errors
have caused a logical bit- (or phase-) error. The decoder
analyses the collected sets of syndrome measurements in post-
processing, where the fraction of correct predictions gives a
measure of the logical accuracy. The better the decoder, the
higher the coherence time of the logical qubit, and in [28]
a computationally costly tensor network based decoder was
used to maximize the logical fidelity of the distance 5 code
compared to the distance 3 code. However, with the objective
of moving from running and benchmarking a quantum mem-
ory to using it for universal quantum computation, it will be

2643-1564/2025/7(2)/023181(14) 023181-1 Published by the American Physical Society

https://orcid.org/0000-0001-7995-6432
https://orcid.org/0009-0002-4154-0233
https://orcid.org/0000-0002-4972-4216
https://orcid.org/0009-0008-9013-7460
https://orcid.org/0000-0003-3185-2014
https://ror.org/01tm6cn81
https://ror.org/040wg7k59
https://ror.org/027bh9e22
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.7.023181&domain=pdf&date_stamp=2025-05-23
https://doi.org/10.1103/PhysRevResearch.7.023181
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


MORITZ LANGE et al. PHYSICAL REVIEW RESEARCH 7, 023181 (2025)

necessary to do error correction both with high accuracy and
in real time.

In the present work, we explore the viability of using a
purely data-driven approach to decoding, based on the po-
tential of generating large amounts of experimental data. We
use a graph neural network (GNN) which is well suited for
addressing this type of data. Namely, a single data point, as in
[28], consists of a set of “detectors”, i.e., changes in stabilizer
measurements from one cycle to the next, together with a
label indicating the measured logical bit- or phase-flip error.
This can be represented as a labeled graph with nodes that
are annotated by the information on the type of stabilizer and
the space-time position of the detector, as shown in Fig. 1.
The maximum degree of the graph can be capped based on re-
moving edges between distant detectors, keeping only a fixed
maximum number of neighboring nodes. The latter ensures
that each network layer in the GNN (see Fig. 2) performs a
number of matrix multiplications that scales linearly with the
number of nodes, i.e., linearly with the number of stabilizer
measurements and the overall error rate. We have trained this
decoder on simulated data for the surface code using Stim [31]
as well as real experimental data on the repetition code [28].
For both of these, the decoder is on par with, or outperforms,
state-of-the-art matching decoders [32,33], suggesting that
with sufficient data and a suitable neural network architecture,
model-free machine learning based decoders trained on exper-
imental data can be competitive for future implementations of
quantum error-correcting stabilizer codes.

II. STABILIZER CODES AND DECODING

A stabilizer code is defined through a set of commuting
operators constructed from products of Pauli operators acting
on a Hilbert space of n data qubits [3]. With nS independent
stabilizers the Hilbert space is split into sectors of dimen-
sion 2n−nS , specified by the parity under each stabilizer. For
concreteness we will consider the case nS = n − 1, such that
each of the sectors represent a single qubit degree of freedom.
Each syndrome measurement is performed with the help of
an ancilla qubit following a small entangling circuit with
the relevant data qubits. The measured state of the ancilla
qubits provide a syndrome S = {si, i = 1, ..., nS | ∈ 0, 1}, and
projects the density matrix of the n qubit state into a single
2-dimensional block, a Pauli frame [34,35]. Given uncertain-
ties in the measurements, a number of rounds are typically
performed before the information is interpreted by means of a
decoder.

Defining a pair of anticommuting operators ZL and XL that
commute with the stabilizer group, provides the logical com-
putational space through ZL|0〉L = |0〉L and |1〉L = XL|0〉L.
Assuming a fixed pair of logical operators for a given code
defines the corresponding logical states in each Pauli frame.
Thus, a number of subsequent rounds of stabilizer measure-
ments, during which the code is affected by decoherence,
transforms the density matrix from the initial state

ρ =
∑

i, j∈{0,1}
ρi j |i〉L〈 j|L (1)

FIG. 1. Memory experiment on the distance d = 5 surface code.
Data qubit initialization is followed by dt = 2 stabilizer measure-
ment rounds and a final data qubit measurement round. Data qubits
are on the vertices of plaquettes (circles, shown in the bottom and top
planes). Ancilla qubits (not shown) at the center of plaquettes provide
stabilizer measurements outcomes. The detector graph has nodes
corresponding to changes in stabilizers from the previous time step.
(Not all edges shown.) Nodes are annotated by the type of stabilizer
and the space-time coordinate. The label, here λZ = 1, corresponding
to a change of 〈ZL〉, measured along the northwest edge. Also shown,
bottom layer, are some example stabilizers, and the logical XL (not
measured).

to the final state

ρ ′ =
∑

i, j∈{0,1}
ρ ′

i j |i〉′L〈 j|′L , (2)
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FIG. 2. Schematic of the GNN decoder. It takes as input an annotated detector graph, cf. Fig. 1. Several layers of graph convolutional
operations [following Eq. (7)] transform each node feature vector. (The empty circle shows the message passing to this particular node from
neighboring nodes on the graph.) Next, a mean-pooling operation averages all the node feature vectors into a single graph embedding, which
is independent of the size of the graph. Finally, the latter is passed through two separate dense networks to give two binary class predictors,
corresponding to the logical X and Z labels, respectively. (For details, see Appendix A.)

where |0/1〉L (|0/1〉′L) are the logical qubit states in the
initial (final) Pauli frame. The logical error channel is
approximated by

ρ → ρ ′ = εL(ρ)

= (1 − P)ρ̃ + PX XLρ̃XL + PZZLρ̃ZL + PY YLρ̃YL , (3)

with YL = −iZLXL and P = ∑
i=X,Y,Z Pi. Here ρ̃ =

C(s, s′)ρC(s, s′), where C(s, s′)|0/1〉L = |0/1〉′L, is an
arbitrary Pauli string that effectuates the change of Pauli
frame and commutes with the logical operators. In general
there may be additional nonsymmetric channels (see for
example [19]), but we will assume that the data (as in [28])
does not resolve such channels.

The probabilities of logical error, Pi, will be quantified by
the complete set of syndrome measurements and depend on
single and multi-qubit error channels as well as measurement
and reset errors. It is the task of the decoder to quantify
these in order to maximize the effectiveness of the error
correction. Traditionally this is done through computational
algorithms that use a specific error model. The framework
that most decoders are based on uses independent and identi-
cally distributed symmetric noise acting on individual qubits,
possibly, for circuit-level noise, complemented by two-qubit
gate errors, faulty measurements and ancilla qubit reset er-
rors. Maximum-likelihood decoders [36–41] aim to explicitly
account for all possible error configurations that are consistent
with the measured syndromes, with their respective proba-
bilities given by the assumed error model. The full set of
error configurations fall in four different cosets that map to
each other by the logical operators of the code, thus directly
providing an estimate of the probabilities Pi that is limited
only by the approximations involved in the calculation and
the error model. Even though such decoders may be useful for
benchmarking and optimizing the theoretical performance of
stabilizer codes [28], they are computationally too demanding
for real time operation, even for small codes.

An alternative type of decoder is based on the minimum
weight perfect matching (MWPM) algorithm [10,42–46]. The
objective is to find the single, most likely, configuration of
errors consistent with the set of measured stabilizers. De-
tectors are mapped to nodes of a graph with edges that
are weighted by the (negative log) probability of the pair
of nodes. For codes where nodes appear in pairs (such as
the repetition or surface code), the most likely error corre-
sponds to pairwise matching such that the total weight of
the edges is minimized. This algorithm is fast, in practice
scaling approximately linearly with the size of the graph.
Nevertheless, it has several short-comings that limits accuracy
and applicability: 1) Approximate handling of crossing edges
(such as coinciding X and Z errors) means that the effective
error model is oversimplified. 2) Degeneracies of less likely
error configurations are ignored. 3) For models where a sin-
gle error may give rise to more than two detector events,
more sophisticated algorithms are needed [47–53]. These
shortcomings can be partially addressed by more sophisti-
cated approaches such as counting multiplicity or using belief
propagation [33,54–56], but often at the cost of added compu-
tational complexity. Other examples of decoder algorithms are
based on decoding from small to large scale, such as cellular-
automata [57–59], renormalization group [60], or union-find
[49,61]. The latter, in particular, is very efficient, but at the
cost of sub-optimal performance.

A. Related work

A number of different deep learning based decoder al-
gorithms have also been formulated, based on supervised
learning, reinforcement learning, and genetic neural algo-
rithms [62–82]. Focusing on the works on the surface code
and based on supervised learning, these can roughly be
separated according to whether they primarily consider per-
fect stabilizers [62–64,71,76,77,80], or include measurement
noise or circuit-level noise [65,68,79,81,82], and whether they
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are purely data-driven [62,64,65,68,80,82] or involve some
auxiliary, model-informed, algorithm or multi-step reduction
of decoding [63,71,76,77,79,81].

The present work is in the category, realistic (circuit-level)
noise, and purely data-driven. It is distinguished primarily in
that we: 1) Use graph neural networks and graph structured
data, and 2) Train and test the neural network decoder on
real experimental data. In addition, as in several of the earlier
works [65,67,68], we emphasize the use of a model-free,
purely data-driven, approach. By using experimental stabilizer
data, the approximations of traditional model-based decoder
algorithms can be avoided. The fact that the real error chan-
nels at the qubit level may be asymmetric, due to amplitude
damping, have long-range correlations, or involve leakage
outside the computational space, is intrinsic to the data. This
is also in contrast to other data-driven approaches [21,28,83–
85] that use stabilizer data to learn the detailed Pauli chan-
nels, optimize a decoder algorithm through the edge weights
of a matching decoder, or the individual qubit and measure
error rates of a tensor network based decoder, as these are all
constrained by a specific error model.

B. Repetition code and surface code

The decoder formalism that we present in this work can
be applied to any stabilizer code, requiring only a dataset of
measured (or simulated) stabilizers, together with the logical
outcomes. Nevertheless, to keep to the core issues of train-
ing and performance we consider only two standard scalable
stabilizer codes: the repetition code and the surface code.

The bit-flip detecting repetition code is defined on a one-
dimensional grid of qubits with neighboring pair-wise Zi ⊗
Zi+1 stabilizers. In the Pauli frame with all +1 stabilizers,
the code words are |0〉L = |0〉⊗n and |1〉L = |1〉⊗n. Consider
a logical qubit state |ψ〉 = α|0〉L + β|1〉L, with complex am-
plitudes |α|2 + |β|2 = 1. The logical bit-flip operator is given
by XL = ⊗

i Xi, which sets the code distance dX = n. As-
suming perfect stabilizer measurements and independent and
identically distributed single qubit bit-flip error probabilities,
decoding the repetition code is trivial. For any set of stabi-
lizer violations, i.e., odd parity outcomes, there are only two
consistent configurations of errors that map to each other by
acting with XL. A decoder (maximum-likelihood in the case
of this simple error model) would suggest the one with fewer
errors. The repetition code, set up to detect bit-flip errors, is
insensitive to phase flip errors, as is clear from the fact that
a phase-flip (Z) error on a single qubit also gives a phase-flip
error (β → −β) on the logical qubit, corresponding to a code
distance dZ = 1. To detect and correct both bit- and phase-flip
errors, we need a more potent code, the most promising of
which may be the surface code.

We consider the qubit-efficient “rotated” surface code
[86–88] (see Fig. 1), constructed from weight-4, Z⊗4, and
X ⊗4, stabilizers (formally stabilizer generators), with comple-
mentary weight-2 stabilizers on the boundary. On a square
grid of d × d data qubits, the d2 − 1 stabilizers give one
logical qubit. We define the logical operator XL as a string of
X ′s on the southwest edge, and a string of Z ′s on the northwest
edge, as shown in Fig. 1. These are the two (unique up to

products of stabilizers) lowest-weight operators that commute
with the stabilizer group, without being part of said group.

Stabilizer measurements are performed by means of entan-
gling circuits between the data qubits and an ancilla qubit.
Assuming hardware with one ancilla qubit per stabilizer, and
the appropriate gate schedule, these can all be measured
simultaneously, corresponding to one round of stabilizer mea-
surements.

C. Memory experiments on the surface code

To train and test our decoder we consider a real or simu-
lated experimental setup, illustrated schematically in Fig. 1,
to benchmark a surface code as a quantum memory. The
following procedure can be used for any stabilizer code:

(i) Initialize the individual qubits: Data qubits in a fixed
or random configuration in the computational basis |0〉 and
|1〉. Ancilla qubits in |0〉. The initial data qubit configuration
is viewed as a 0′th round of measurements that initialize the
Z-stabilizers sZ,i,t=0. This also corresponds to an effective
measurement 〈ZL〉t=0 = ∏

i∈ZL
Zi = ±1. (Northwest row of

qubits in Fig. 1.)
(ii) A first round, t = 1, of actual stabilizer measurements

is performed, with outcomes sZ,i,t=1 and sX,i,t=1. This provides
the first round of Z-detectors corresponding to changes in sZ,i

from the inititalization step. The X-stabilizers sX,i,t=1 have
randomized outcome, projecting to an even or odd parity state
over the four (or two) qubits in the Hadamard (|+〉, |−〉)
basis. The value of these stabilizers form the reference for
subsequent error detecting measurements of the X-stabilizers.
Ancilla qubits are reset to 0 after this and subsequent rounds.

(iii) Subsequent rounds t = 2, ..., dt of Z and X stabilizer
measurements provide the input for corresponding detectors
based on changes from the previous round.

(iv) Finally, data qubits are measured individually in the
Z-basis, which provides a final measurement, 〈ZL〉t=dt +1. The
measurements also provide Z-stabilizers, which, being calcu-
lated from the actual qubit outcomes rather than by measuring
an ancilla, are perfect stabilizers by definition.

The outlined experiment provides a single data point D =
({VZ}, {VX }, λZ ) consisting of a set of Z- and X-detectors {VZ}
and {VX }, together with a logical label λZ . The detectors are
defined as the nonzero outcomes of

VZ,i,t = sZ,i,t−1 ⊕ sZ,i,t (4)
and

VX,i,t = sX,i,t−1 ⊕ sX,i,t , (5)

i.e., corresponding to a change in a stabilizer measurement
from one-time step to the next. In addition to the stabilizer
type, each detector is tagged with its space-time coordinate,
(xi, yi, t ), with 0 � x, y � d and 1 � t � dt ± 1 for Z and X
detectors respectively. The logical label is given by

λZ = 1
2 |〈ZL〉t=0 − 〈ZL〉t=dt +1| ∈ {0, 1} . (6)

The probability of λZ = 1 is, according to Eq. 3, given by
PX + PY , and the probability of λZ = 0 by PI + PZ , corre-
sponding to a logical bit-flip or not.

What has been described is a “memory-Z” experiment
[31], i.e., one in which we detect logical bit-flips. Qubits
are initialized in the computational basis |0〉 and |1〉. A
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FIG. 3. Logical failure rate versus number of rounds of stabilizer
measurements dt , with simulated circuit-level noise [31] (error rate
p = 1 · 10−3), on the surface code. Comparing Graph neural network
(GNN) decoder to MWPM decoder [32] and belief-matching (BM)
decoder [33]. Each data point is evaluated over 108 samples (107 for
d < 7). Error bars are smaller than the markers.

“memory-X” experiment prepares the qubits in the Hadamard
basis, with the role of X- and Z-stabilizers reversed. Physi-
cally, in the laboratory, one cannot do both experiments in the
same run, as ZL and XL do not commute. This also implies that
each data point only has one of the two binary labels, λZ or λX ,
even though there is information in the detectors about both
labels. The neural network will be constructed to predict both
labels for a given set of detectors, which implies that the learn-
ing framework is effectively that of semi-supervised learning,
with partially labeled data. Thus, in contrast to a matching
based decoder, which breaks the surface code detectors into
two independent sets with a corresponding graph for each,
the GNN decoder can make use of the complete information.
This, in addition to the fact that it is not constrained by the
limitations of the matching algorithm itself, provides a possi-
ble advantage in terms of prediction accuracy.

We have also assumed that there is no post-processing to
remove leakage. Assuming there is some mechanism of relax-
ation back to the computational qubit subspace, including the
last round of measurements, leakage events will be be handled
automatically by the neural network decoder, based on the
signature they leave in the detector data.

III. GRAPH NEURAL NETWORK DECODER

A graph neural network (GNN) can be viewed as a train-
able message passing algorithm, where information is passed
between the nodes through the edges of the graph and pro-
cessed through a neural network [89–91]. The input is data
in the form of a graph G = (V, E ), with a set of nodes V =
{i | i = 1, .., N} and edges E = {(i, j) | i 	= j ∈ V }, which is

FIG. 4. Logical failure rate versus error rate p, with simulated
circuit-level noise, on the surface code with code distance d and dt =
d stabilizer measurement cycles. Else as in Fig. 3.

annotated by n-dimensional node feature vectors 
Xi and edge
weights ei j . The data flow for our GNN-implementation is
outlined in Fig. 2, with input in the form of an annotated
detector graph and output in the form of two binary predic-
tions. The basic building blocks are the message passing graph
convolutional layers which take a graph as input and output an
isomorphic graph with transformed feature vectors. Specifi-
cally, in this work we have used a standard graph convolution
[92], where for each node i the din-dimensional feature vector

Xi is transformed to new feature vector 
X ′

i with dimension dout

according to


X ′
i = σ

(
W1 
Xi + W2

∑
j

ei j 
Xj + 
b
)

, (7)

where nonexistent edges are indicated by ei j = 0. Here W1

and W2 are dout × din dimensional trainable weight matrices,

b is a dout-dimensional trainable bias vector. The nonlinear
activation function, σ , acts element-wise, outputting the new
feature vector. A standard form, used in this work, is the
rectified linear unit, σ (x) = ReLU(x) = max(0, x).

For the task at hand, which is graph classification, a number
of subsequent graph convolutions are followed by a pooling
layer that contracts the information to a single vector, a graph
embedding, which is independent of the dimension of the
graph. In this work, we use a simple mean-pooling layer


Xmean = N−1
∑

i


Xi , (8)

where N is the number of nodes in the graph. For the
classification we use two structurally identical, but inde-
pendent, multi-layer perceptrons (MLP), i.e. standard dense
feed-forward neural networks, where each layer acts acts as


X ′ = σ (W 
X + 
b) , (9)
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FIG. 5. GNN training and test accuracy versus number of train-
ing epochs for circuit-level noise, comparing different code distances
(dt = d). Each epoch amounts to training on a freshly generated
dataset with 107 samples using an error rate randomly selected from
p = [0.001, 0.002, ..., 0.005]. The test set is a fixed dataset of the
same type containing 5 · 104 data points. The discrepancy with ac-
curacies in Fig. 3 is due to the exclusion of empty graphs (trivial
syndromes) from the training data.

with a trainable weight matrix W and bias vector 
b. The input
to the two MLPs is the pooled output from the graph convo-
lution layers, 
Xmean. Each MLP ends with a single node with
sigmoid activation, σ (x) = 1/(1 + e−x ) ∈ [0, 1], that acts as
a binary classifier. The weights and biases of the complete
network are trained using stochastic gradient descent with a
loss function which is a sum of the binary cross entropy loss
of the network output with respect to the binary labels. Since
the experimental data, or simulated data, only has one of the
two binary labels (λZ , λX ) for each complete detector graph,
gradients are only calculated for the provided label.

To avoid overfitting to the training data we employ two
different approaches depending on the amount of available
data. In using experimental data from [28], we use a two-way
split into a training set and a test set. To avoid diminishing
the training data further, we do not use a validation set, and
instead train for a fixed number of epochs. We observe (see
Fig. 7) that the test accuracy does not change significantly
over a large number of epochs, even though the network
continues to overfits.

For the case with simulated data (Fig. 5), we avoid over-
fitting by not reusing data. Each batch of the training data
consists of freshly generated, labeled detector graphs. A fixed
test set is used to gauge the performance.

The GNN training and testing is implemented in PyTorch
Geometric [93], simulated data is generated using Stim [31],
the MWPM decoding results use PyMatching [32,94], and the
belief-matching results uses the code provided with [33]. The
Adam optimizer is used for stochastic gradient descent, using
manual learning rate decrements when the training accuracy
has leveled out. Details on the training procedure can be found
in Appendix A. Several other graph layers were experimented
with, including graph attention for both convolutions [95] and
pooling [96,97], as well as topk pooling [98,99]. These were

FIG. 6. Decoding experimental data [28] on the repetition code
with code distance d , over 50 rounds of stabilizer measurements.
Comparing GNN decoder, using a dataset containing (26 − d ) · 5 ·
107 graphs, with a MWPM decoder with “device-optimized” edge
weights [28] and a simple model-free MWPM decoder with 1-norm
edge weights. The training-test split of the dataset is 99 to 1, and the
logical failure rate is mapped to an error rate per round. Results for
two different random training-test splits are shown.

found not to improve results. The width and depth of the
final network was arrived at after several rounds of iterations,
but no systematic ablation studies were done. We expect that
larger code distances, i.e., larger graphs, will require scaling
up the network, following the increased complexity of the
decoding problem. We use a fixed-size network for d � 7, and
a somewhat-larger network for d = 9 (see also Sec. IV D).

A. Data structure

As discussed previously, the data is in a form D =
({VZ}, {VX }, λZ/X ), consisting of a set of detectors VZ/X , spec-
ified by a space-time coordinate, together with a binary label.
Based on this, we construct a single graph. Each node corre-
sponds to a detector event, and is annotated by a 5-vector (for
the surface code with circuit-level noise) 
X = (b1, b2, x, y, t )
containing the space-time coordinate (x, y, t ) and two exclu-
sive binary (one-hot encoded) labels with 
b = (1, 0) for an
X-stabilizer and 
b = (0, 1) for a Z-stabilizer. (The encoding of
the type of stabilizer may be superfluous, as it can be deduced
from the coordinate.) We initially consider a complete graph,
with edge weights given by the euclidean distance between the
detectors, ei j = 1/

√
(xi − x j )2 + (yi − y j )2 + (ti − t j )2. The

edge weights give a rough measure of the likelihood that
two detectors are triggered due to the same error or set of
errors and are used to prune edges in the graph. Lower weight
edges are removed, leaving only a fixed maximal node degree,
reducing the size of each data point such that it grows lin-
early with the number of nodes. The pruning using euclidean
distance is efficiently implemented in the integrated data gen-
eration and training pipeline as a data-preprocessing step.
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FIG. 7. Training curves for the GNN decoder on repetition code,
following Fig. 6. Each epoch trains through the whole training set,
which eventually leads to overfitting, where the training accuracy
starts to significantly surpass the test accuracy. To maximize the
amount of training data, no validation set was used. No early stopping
was implemented in order to avoid optimizing results to the test set.

IV. RESULTS

The GNN-based decoder has been implemented, trained,
and tested on the surface code and the repetition code. The
main focus is on using simulated data or experimental data,
presented in Secs. IV A and IV B, respectively. We also
present some results on the surface code with perfect stabi-
lizers, Sec. IV C, where we are able to train the network for
larger code distances.

A. Surface code with circuit-level noise

We use Stim to generate data with circuit-level noise.
Simulated circuits use standard settings for the surface code,
containing Hadamard single qubit gates, controlled-Z (CZ)
entangling gates, and measure and reset operations. All of
these operations, and the idling, contain Pauli noise, scaled
by an overall error rate p (see Appendix B). Datasets are gen-
erated in batches of varying sizes (see Appendix A), that each
give a single gradient descent update of the neural network
weights. For presentation purposes, the batches are grouped
into epochs containing 107 data points in total, after which
the test accuracy is evaluated. As discussed previously, to
eliminate overfitting to the training data, no data is reused.
This is feasible as the data generation is very fast.

Figure 3 shows test results evaluated at p = 1.0 · 10−3

for decoders trained with data using an even mix of error
rates p = {1.0, 2.0, 3.0, 4.0, 5.0} · 10−3 and memory-Z exper-
iments. The logical failure rate is thus approximately 50% of
the true failure rate (up to correlations between failures in
XL and ZL), but consistent with the type of data that would
be experimentally accessible. (We have also tried training
and testing with a mix of memory-Z and memory-X exper-
iments, which works as well but takes longer to train to the
same accuracy.) The rationale for using larger error rates
during training is to include a relatively larger fraction of
graphs with many nodes, under the assumption that these

will generally be harder to decode. We compare to MWPM
and belief-propagation augmented MWPM (belief-matching).
Both these decoders use the information provided by the sim-
ulated error model to optimize edge weights on the decoding
graph, where the BM algorithm additionally propagates infor-
mation within and between the Z- and X-detector graphs for
each instance. Despite the fact that the GNN decoder uses only
the data provided by the simulated measurements, we find
that with sufficient training the GNN decoder outperforms the
matching decoders. For the largest code-distance considered,
d = 9, a larger network was used (see Appendix A), and the
training has not converged to consistently outperform BM for
all cycle depths considered. Figure 4 also shows the perfor-
mance of the GNN under varying error rates versus MWPM.
We find that the networks have good performance within the
whole range of error rates over which it was trained.

A different network is trained for each code distance d
and for each number of rounds of stabilizer measurements dt .
Figure 5 shows a representative plot of the training and test
accuracy, evaluated on the mixed error rate dataset. No data is
reused, which implies that the network cannot overfit and that
the test accuracy closely follows the training accuracy. Further
details are given in Appendix A.

B. Repetition code using experimental data

Having trained GNN based decoders on simulated data in
the previous section, we now turn to real experimental data.
We use the public data provided together with [28]. This
contains data on both the d = 3 and d = 5 surface codes as
well as the d = 25 bit-error correcting repetition code. All
datasets are of the form described in Sec. II C, thus readily
transferred to the annotated and labeled graphs used to train
the GNN, as described in Sec. III A. The datasets contain
approximately 106 data points for the different codes, code
distances, and varying number of stabilizer rounds.

Our attempts to train a GNN on the data provided for
the various implementations of surface code were generally
unsuccessful. While it gave good results on the training data,
the logical failure rate on the test set was poor. Given the fact
that on the order of 109 data points were used for the simulated
circuit-level noise on the surface code (Sec. IV A), it is not
surprising that the significantly smaller dataset turned out to
be insufficient. The network cannot achieve high accuracy
without overfitting to the training data given the relatively
small dataset.

For the repetition code, the data which is provided is of a
single type, for a d = 25 code measured over dt = 50 rounds.
Each round thus contains the measurement of 24 ancilla qubits
for the ZZ stabilizers of the two neighboring data qubits along
a one-dimensional path. As done in [28] this data can be split
up into data for smaller repetition codes, by simply restricting
to stabilizers over a subset of d subsequent data qubits. In this
way the dataset can be increased by a factor 25 − (d − 1), and
used to train a single GNN for each code distance. It should
be noted that this is suboptimal, compared to generating the
same amount of data on single distance d device, as variations
in the performance of the constituent qubits and gates will be
averaged out in the dataset. Nevertheless, using this scheme
we successfully trained GNN decoders for short distance rep-
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FIG. 8. Decoding the rotated surface code with perfect stabilizers
and code distance d . Logical failure rate versus error rate p, for depo-
larizing noise, evaluated over failures with respect to both XL (λX ) and
ZL (λZ ). Comparing the GNN decoder with MWPM decoder that has
full information of the data-generating error model. Each data point
is evaluated over 105 data points (108 for p < 10−2). Dashed lines
is the accuracy using a matrix product state (MPS) decoder [100]
at code distances 3 to 7. Inset shows low-p failure rates for d � 7,
where open markers are based on sampling only the lowest weight
errors that fail.

etition codes, with test accuracies shown in Fig. 6. Results
for (what we refer to as) “Device-optimized MWPM” is taken
from [28]. The GNN decoder performs almost on par with
this sophisticated matching decoder for d = 3. As expected,
the relative performance deteriorates with increased code dis-
tance. We expect that we would need more training data for
larger code distance, but instead we have access to less.

As the comparison with the matching decoder that uses a
device specific error model may be biased compared to using
training data from different devices, as mentioned above, we
also give results for an “uniformed” matching decoder with
edge weights based on the 1-norm distance between space-
time coordinates. It may also be noted that using MWPM
corresponds to a near optimal decoder for the repetition code,
at least for the case of phenomenological measurement noise
where it is equivalent to bit-flip error surface code. This is in
contrast to the surface code, for which MWPM is suboptimal,
even in the case of perfect stabilizers. Thus, outperforming
MWPM for the repetition code may be more challenging than
for the surface code.

C. Surface code with perfect stabilizers

To complement the results on circuit-level noise and ex-
perimental data we have also trained the GNN decoder on
the surface code with perfect stabilizers under depolarizing
noise. The same network (see Appendix A) is used as for
circuit-level noise, but trained at p = [0.01, 0.05, 0.1, 0.15].
For this problem, both labels, corresponding to logical bit-
and/or phase-flips, are used for training and testing.

Results up to code distance d = 21 are shown in Fig. 8
and found to significantly outperform MWPM. We also com-

pare to a tensor network based [100] maximum likelihood
decoder (MLD), showing that for code distance d � 5 the
GNN decoder has converged to the level of being an approxi-
mate MLD. For very low error rates and larger code-distances
d > 7, we find that the networks still fail for some low weight
errors that should be correctable, making the asymptotic be-
havior worse than MWPM. Nevertheless, we expect that more
training, and training tailored to low error rates, could resolve
this.

We do not attempt to derive any threshold for the GNN
decoder. Given a sufficiently expressive network we expect
that the decoder would eventually converge to a maximum
likelihood decoder, but in practice the accuracy is limited
by the training time. It gets progressively more difficult to
converge the training for larger code distances, which means
that any threshold estimate will be a function of the training
time versus code distance. In fact, in principle, since the
threshold is a d → ∞ quantity, we would not expect that a
supervised learning algorithm can give a proper threshold if
trained separately for each code distance, as is done in this
work. Using GNN’s (as opposed to a network acting on a
fixed-size grid) it is, in principle, quite natural to use the same
network to decode any distance code, as the data objects (de-
tector graphs) have the same structure. We have investigated
training the same network for different code distances and
different number of rounds. This shows some promise, but has
not achieve accuracy levels that can match MWPM.

D. Scalability

We are limited to relatively small codes in this work. For
the repetition code using experimental data, it is quite clear
that main limitation to scaling up the code distance is the size
of the available dataset. For the surface code using simulated
data it is challenging to increase the code distance while
still surpassing MWPM. As the logical failure rates decrease
exponentially with code distance, the test accuracy of the
supervised training needs to follow. One way to counter this
is to increase the number of stabilizer cycles, dt , but this also
increases the graph size, making the training more challenging
from the perspective of increased memory requirements as
well as the increased complexity of the data.

Nevertheless, it is interesting to explore the intrinsic scala-
bility of the algorithm, by quantifying how the decoding time
using a fixed size GNN scales with the code size. In Fig. 9
we present results on the decoding time per syndrome for the
surface code, as a function of code volume d2dt , at fixed error
rate, compared to PyMatching 2 [94]. The network is fixed to
the smaller network described in Appendix A. In line with ex-
pectations, the GNN inference scales approximately linearly
with the code volume, i.e., average graph size, T ∼ d2dt . The
number of matrix operations per graph convolutional layer,
following Eq. (7), is proportional to the number of nodes
multiplied by the number of edges. The number of layers is
fixed, multiplying this by a constant factor. The feature vec-
tor pooling is proportional to the number of nodes, whereas
the subsequent dense network classifiers are independent of
the graph size. We find that inference scales slightly better
than the highly optimized matching decoder. However, several
caveats are in order. 1) The size of the GNN is fixed. Larger
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FIG. 9. Scaling of average decoding time per syndrome versus
code volume d2dt for GNN and MWPM using PyMatching 2 [94].
Circuit level noise sampled at p = 10−3. Dotted lines show a re-
gression according to the ansatz: T = C · (d2 · dt )α , with the GNN
showing sub-linear scaling.

code will require scaled-up networks, unless the error rate is
scaled down accordingly; 2) The network has not been trained
on code distances larger than d = 9. It is only a test of the
decoding time, not the accuracy. 3) Data (for both algorithms)
is batched for fast inference. Treating batched data doesn’t
seem viable for real time decoding. Moving to other types of
hardware (see, e.g., [101]), such as field-programmable gate
arrays (FPGA) or an application-specific integrated circuits
(ASIC), will be necessary for real-time decoding of supercon-
ducting devices, requiring μs per cycle decoding times, using
neural networks.

V. CONCLUSION AND OUTLOOK

In this paper we develop a model-free, data-driven, ap-
proach to decoding quantum error correcting stabilizer codes,
using graph neural networks. A real or simulated memory
experiment is represented as a single detector graph, with
annotated nodes corresponding to the type of stabilizer and
its space-time coordinate, and a binary label corresponding
to whether or not a logic bit-flip has occurred. The maximal
node degree is capped by cropping edges between distant
nodes. The data is used to train a convolutional GNN for
graph classification, with classes corresponding to logical
Pauli operations, and used for decoding. We show that we
can use experimental and simulated data, for the repetition
code and surface code respectively, to train a decoder with
logical failure rates on par with minimum weight perfect
matching, despite the latter having detailed information about
the underlying real or simulated error channels. The use of a
graph structure provides an efficient way to store and process
the syndrome data. Training the GNN requires significant
amounts of training data, but as shown in the case of simula-
tions, data can be produced in parallel with training. Network
inference, i.e., using the network as a decoder, is fast, scaling
approximately linearly with the space-time dimension of the
code.

As an extension of this work there are several interest-
ing possibilities to explore. One example is to use a GNN
for edge-weight generation within a hybrid algorithm with a
matching decoder (similar to [21]). This would depart from
the pure data-driven approach pursued in this paper, with peak
performance limited by the matching decoder, but with the
potential advantage of requiring less data to train. An alter-
native to this, to potentially improve performance and lower
data requirements, is to use device specific input into edge
weights, or encode soft information on measurement fidelities
into edge or node features.

Going beyond the most standard codes considered in this
paper, we expect that any error correcting code for which
labeled detector data can be generated can also be decoded
with a GNN. This includes Clifford-deformed stabilizer codes
[102–106], color codes [107,108], hexagonal stabilizer codes
[109–112], and quantum low-density parity check (LDPC)
codes [113–115], where syndrome defects are not created in
pairs, but potentially also Floquet type codes [116,117]. In ad-
dition, heterogeneous and correlated noise models [118,119]
would also be interesting to explore, where in particular
the latter is difficult to handle with most standard decoders.
Adding soft information, e.g., the estimated reliability of a
stabilizer measurement, is also a natural next step for this type
of decoder [120]. The software code for the project can be
found at [121].

Shortly after posting the preprint for this paper, related
work, Varbanov et al. [122], using a recurrent neural network
architecture was presented. That network was trained on sim-
ulated data and tested on experimental data [28], but did not
implement training exclusively on experimental data. Related
work has subsequently been presented in Bausch et al. [123],
using a transformer-augmented recurrent architecture.
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APPENDIX A: GNN ARCHITECTURE AND TRAINING

Figure 10 displays the architecture of the GNN decoder.
The node features are sent through seven subsequent graph
convolutional layers [Eq. (7)]. The node features are passed
through a rectified linear unit (ReLU) activation function
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FIG. 10. Schematic of the GNN architecture, with details in Ta-
ble I. The same architecture is used for all the results, except that
for the repetition code there is only one output head. The input
dimension is two (2D space-time coordinate) for the repetition code
and four (two types of stabilizers, and 2D spatial coordinate) for the
surface code with perfect stabilizers.

(which corresponds to chopping negative values) after each
layer. After the graph convolutional layers, the node features
from all nodes are pooled into one high-dimensional vec-
tor by computing the mean across all nodes. This vector is
then cloned and sent to two identical fully connected neural
networks. Both heads consist of several dense layers, which
map the pooled node feature vector down to one real-valued
number which is mapped to the range 0 to 1 through a sigmoid

TABLE I. Input and output dimensions of each layer in the GNN
decoder. Left: d � 7, total parameters: 1.36 × 106. Right: d = 9,
total parameters: 2.35 × 106.

d � 7 d = 9

Layer din dout din dout

GraphConv1 5 32 5 32
GraphConv2 32 128 32 128
GraphConv3 128 256 128 256
GraphConv4 256 512 256 512
GraphConv5 512 512 512 512
GraphConv6 512 256 512 512
GraphConv7 256 256 512 512
Dense1 256 256 512 512
Dense2 256 128 512 256
Dense3 128 64 256 128
Dense4 64 1 128 64
Dense5 – – 64 32
Dense6 – – 32 16
Dense7 – – 16 1

FIG. 11. Quantum circuit for measuring the weight-four stabi-
lizer Zabcd under circuit-level noise.

function. The input and output dimension din and dout of the
graph convolutional and dense layers can be found in Table I.

Networks are trained on NVIDIA Tesla A100 HGX GPU’s
using the pytorch geometric knn module to generate graphs in
parallel. For gradient descent, samples are batched in batches
of sizes ranging from 6 · 103 for the biggest code instances
(d = dt = 9) to 26 · 103 for the smallest code instances (d =
dt = 3). The batch sizes are chosen to fully utilize the GPU
during training. The learning rate is set to 10−4 and decreased
manually to 10−5, whenever the validation accuracy reached
a plateau. The training scripts, trained models and details on
all hyper-parameters are available at [121].

APPENDIX B: STABILIZER CIRCUITS AND ERROR
MODEL FOR CIRCUIT-LEVEL NOISE

Quantum circuits for weight-four Z- (X -) stabilizers of
the surface code are displayed in Fig. 11 (12). The gate
set used for the stabilizer measurements consists of the
Hadamard gate (H ), and the CNOT gate. Under circuit-level
noise, single-qubit depolarizing noise gate Dp (which applies
gate σi, i ∈ {X,Y, Z} where any of the gates is applied with
probability p/3, and I with probability 1 − p) acts on the data
qubits before each stabilizer measurement cycle and on each
target qubit after single-qubit gates. Two-qubit depolarizing
noise gates (which apply gate σiσ j, i, j ∈ {I, X,Y, Z},
where II is acted on with probability 1 − p, and the rest
with probability p/15) act on the two qubits involved
after every two-qubit gate. Furthermore, each qubit suffers
from reset- and measurement-error with probability p,
displayed by operators Xp when measuring and resetting in
the computational basis. The precise model is specified
in stim.Circuit.generated(‘‘surface_code:
rotated_memory_z’’).

FIG. 12. Quantum circuit for measuring the weight-four stabi-
lizer Xefgh under circuit-level noise.
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