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As an extension of isotropic Gaussian random fields
and Q‑Wiener processes on d‑dimensional spheres,
isotropic Q‑fractional Brownian motion is introduced
and sample Hölder regularity in space‑time is shown
depending on the regularity of the spatial covariance
operator Q and the Hurst parameter H. The processes
are approximated by a spectral method in space for
which strong and almost sure convergence are shown.
The underlying sample paths of fractional Brown‑
ian motion are simulated by circulant embedding
or conditionalized random midpoint displacement.
Temporal accuracy and computational complexity are
numerically tested, the latter matching the complexity
of simulating a Q‑Wiener process if allowing for a
temporal error.
This article is part of the theme issue ‘Partial

differential equations in data science’.

1. Introduction
The approximation of stochastic partial differential equa‑
tions (SPDEs) and corresponding error analysis have been
performed for the last 25 years to efficiently compute so‑
lutions to models with uncertainty. In most models, the
equations are driven by Wiener processes, which yield
SPDE solutions with Hölder regularity in time limited
by 1/2. One option to get more flexible smoothness in
time is to consider infinite‑dimensional fractional Brow‑
nian motions. Theoretical results on the properties of so‑
lutions are available in Euclidean space and in abstract
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Hilbert and Banach spaces, see [1] for an overview. At the same time, analysis and numerical
approximations on non‑Euclidean domains are still rare. Motivated by applications in environ‑
mental modelling and astrophysics, first analysis and approximations for fractional equations on
the sphere have been considered in [2,3]. An overview over space‑timemodels in Euclidean space
and on the sphere is given in [4].

In this work, we take a step back to carefully analyse and efficiently simulate fractional Brow‑
nian motion on spheres in any dimension as an important building block and input for the later
simulation of SPDEs. In the first part, we construct isotropic Q‑fractional Brownian motion with
varying space regularity described by the covariance operatorQ based on theHilbert‑space frame‑
work of [5,6], and the theory of isotropic Gaussian random fields (GRFs) on spheres developed
in [7,8]. We show the existence of a continuous modification with optimal Hölder regularity in
space, depending on Q, and in time, bounded by the Hurst parameter H∈ (0, 1).

In the second part, we approximate Q‑fractional Brownian motion by a spectral method in
space and show strong and almost sure convergence with rates determined by the smoothing
properties of Q. The temporal behaviour is then determined by independent sample paths of
real‑valued fractional Brownian motion. For their simulation, we exploit an exact method using
circulant embedding (CE) and fast Fourier transforms with computational complexity𝒪(N logN)
in the number of time steps N (cf., e.g. [9], and references therein) and compare it with an
approximate method, called conditionalized random midpoint displacement, of computational
complexity𝒪(N) [10]. The latter allows for the generation of the correlated increments of fractional
Brownian motion with the same asymptotic speed as the independent increments of Brownian
motion. Therefore, we achieve the same complexity for the simulation of Q‑fractional Brownian
motion as forQ‑Wiener processes on the sphere. We also compare their performance with respect
to the constants in the 𝒪‑notation and numerically show the decay rate of the error of the mid‑
point displacement method. In figure 1, we show sample paths generated with the same noise for
Hurst parameter H= 0.1, 0.5, 0.9 at times T= 1, 2, 3. We observe that while the spatial regularity
is similar, the temporal behaviour depends on H. For H= 0.1, the correlation between temporal
increments is negative, so the process stays close to 0 for large T. For H= 0.9, this correlation is
positive, so we observe a consistent temporal trend. In the middle row, H= 0.5 is the standard
Q‑Wiener process with independent increments.

This article is organized as follows: In §2, we briefly introduce the necessary background
on real‑valued fractional Brownian motion and GRFs on the unit sphere 𝕊2, to then define Q‑
fractional Brownianmotion on 𝕊2 and analyse its space‑time regularity in §3. In §4 we present the
the generalization of the results to d‑dimensional spheres. In the second part of the paper, in §5,
we introduce a fully discrete approximation by a spectral method in space and CE or conditional‑
ized random midpoint displacement in time. Strong and almost sure errors are analysed and the
performance and accuracy is shown numerically. The code that was used to generate the samples
and numerical examples is available at [11].

2. Real-valued stochastic processes and spherical Gaussian random fields
Q‑fractional Brownian motion on the sphere is a space‑time stochastic process, which is con‑
structed based on properties of a spatial GRF on the sphere and real‑valued fractional Brownian
motions. In this section, we first introduce the temporal processes and the spatial fields separately
with their properties as basis for the Q‑fractional Brownian motion in the next section.

Let us consider stochastic processes on the probability space (𝛺,𝒜,ℙ) and on the finite time
interval 𝕋= [0,T]. We recall that a real‑valued fractional Brownian motion (fBm) 𝛽H with Hurst
parameter H∈ (0, 1) is a continuous Gaussian process with mean zero and covariance:

𝜙H(s, t) = 𝔼
[
𝛽H(t)𝛽H(s)

]
= 1
2 (t

2H + s2H − |t − s|2H).
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Figure 1. Samples of Q-fBm for H= 0.1, 0.5, 0.9 at time T= 1, 2, 3.

This process is Hölder continuous of order 𝛼 ∈ (0,H), which we abbreviate by H−‑Hölder con‑
tinuous or 𝛽H ∈CH− (𝕋), in what follows. It generalizes Brownian motion, which we recover for
H= 1∕2.

We next consider properties of spatial processes or random fields on the sphere. We follow
closely the introduction in [8] and denote the unit sphere by

𝕊2 = {x∈ℝ3|x21 + x22 + x23 = 1}

and equip it with the geodesic distance, defined for all x, y∈𝕊2 by d𝕊2 (x, y) = arccos(⟨x, y⟩ℝ3 ).
Let L2(𝕊2) be the space of all real‑valued square‑integrable functions on 𝕊2 and use the real‑

valued spherical harmonic functions (Y𝓁,m,𝓁∈ℕ0,m=−𝓁,… ,𝓁) as orthonormal basis. A cen‑
tred L2(𝕊2)‑valued isotropic GRF Z on 𝕊2 is given by the basis expansion, or Karhunen–Loève
expansion,

Z=
∞∑

𝓁=0

𝓁∑

m=−𝓁

√
A𝓁 z𝓁,m Y𝓁,m, (2.1)

where (A𝓁,𝓁∈ℕ0), A𝓁 ≥ 0 for all 𝓁∈ℕ0, is called the angular power spectrum and (z𝓁,m,𝓁∈ℕ0,m=
−𝓁,… ,𝓁) is a sequence of independent, real‑valued standard normally distributed random vari‑
ables, as shown in [8, Corollary 2.5]. The expansion (2.1) converges in L2(𝛺 × 𝕊2) and for all x∈𝕊2
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in L2(𝛺) [7, Theorem 5.13]. The results for the real‑valued spherical harmonics follow from the
complex‑valued expansion by [8, Lemma 5.1].

The covariance kernel of Z is given by

𝜙Q(x, y) = 𝔼
[
Z(x)Z(y)

]
=

∞∑

𝓁=0

𝓁∑

m=−𝓁
A𝓁Y𝓁,m(x)Y𝓁,m(y),

and the corresponding non‑negative and self‑adjoint covariance operator Q is characterized by
its eigendecomposition

QY𝓁,m =A𝓁Y𝓁,m

with finite trace TrQ=
∑∞
𝓁=0(2𝓁 + 1)A𝓁, since Z is an L2(𝕊2)‑valued Gaussian random variable.

While there exists a generalized theory that holds for Q with infinite trace, the corresponding
random fields would be of lower regularity than L2(𝕊2). Instead, we are interested in a higher
regularity, namely, Hölder regularity, and therefore assume a scale of summability conditions on
the angular power spectrum of Q, as given in [8].

Assumption 2.1. Assume that the angular power spectrum (A𝓁,𝓁∈ℕ0) of the covariance
operator Q satisfies for some 𝜂 > 0 that

∑∞
𝓁=0 A𝓁𝓁

1+𝜂 <∞.

Under this assumption, Z has a continuous modification that is in C(𝜂∕2)− (𝕊2), i.e. there exists a
C(𝜂∕2)− (𝕊2)‑valued random field Y such that ℙ(Z(x) =Y(x)) = 1 for all x∈𝕊2, as shown by [8]. We
use, for 𝜂 > 2, the standard extension of Hölder spaces to orders greater than 1.

3. Q-fractional Brownian motion on the sphere
Combining the temporal properties of real‑valued fBm and spatial properties of isotropic GRFs
on 𝕊2, we are now ready to define Q‑fractional Brownian motion on L2(𝕊2) following [2,5].

Definition 3.1. An L2(𝕊2)‑valued continuous Gaussian process (BHQ(t))t∈𝕋 with Hurst parame‑
terH∈ (0, 1) is called a (standard) isotropic Q‑fractional Brownianmotion (Q‑fBm), if there exists an
operatorQ satisfying assumption 2.1, such that for all u, v∈ L2(𝕊2) and s, t∈𝕋,𝔼[⟨BHQ(t),u⟩L2(𝕊2)] =
0 and

𝔼
[
⟨BHQ(t),u⟩L2(𝕊2)⟨B

H
Q(s), v⟩L2(𝕊2)

]
= 𝜙H(t, s)⟨Qu, v⟩L2(𝕊2).

By the definition, we see that BHQ is centred and the covariance splits into the temporal properties
of real‑valued fBm and the spatial description of isotropic GRFs on 𝕊2. This becomes even more
evident when citing the existence and uniqueness ofQ‑fBm and its series expansion from [5,6,12].

Theorem 3.2. Let Q satisfy assumption 2.1 and H∈ (0, 1). Then, Q‑fBm exists with basis expansion

BHQ(t) =
∞∑

𝓁=0

𝓁∑

m=−𝓁

√
A𝓁𝛽H𝓁,m(t)Y𝓁,m,

where (𝛽H𝓁,m,𝓁∈ℕ0,m=−𝓁,… ,𝓁) is a sequence of independent real‑valued fBms with Hurst parameter
H. Furthermore, BHQ ∈CH− (𝕋;L2(𝕊2)).

We remark that [6] and [12] only state the existence forH> 1∕2 but the existence proof of [6] ex‑
tends to allH∈ (0, 1) sinceQ‑fBm is aGaussian process. Thus, theKolmogorov–Chentsov theorem
is still applicable for H≤ 1∕2, since for all n∈ℕ, s, t∈𝕋:

𝔼
[
‖BHQ(t) − BHQ(s)‖

2n
L2(𝕊2)

]
≤ |t − s|2nHCn(TrQ)n
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for some constant Cn by [13, Proposition 2.19]. Choosing n such that 2nH> 1, this allows us to
apply [14, Theorem 4.23].

We note that the series expansion in theorem 3.2 matches for H= 1∕2 the expansion of an
isotropic Q‑Wiener process on 𝕊2 as introduced in [8].

Having consideredQ‑fBm so far as L2(𝕊2)‑valued, i.e. function‑valued over 𝕊2, we are next in‑
terested in the spatial properties and in Q‑fBm as a space‑time process. For this, we first observe
that

BHQ(t, x) =
∞∑

𝓁=0

𝓁∑

m=−𝓁

√
A𝓁𝛽H𝓁,m(t)Y𝓁,m(x) (3.1)

is an isotropic GRF for fixed t (see [8]) that converges in L2(𝛺;ℝ) pointwise in x by a version of the
Peter–Weyl theorem, see [7, Theorem 5.13]. It follows then that BHQ is a Gaussian process on 𝕋 × 𝕊2

since the linear combination
∑n

k=1 𝛼kB
H
Q(tk, xk) is Gaussian for any coefficients (𝛼k, k= 1,… ,n) and

((tk, xk), k= 1,… ,n) given the independent Gaussian processes 𝛽H𝓁,m.
We compute, as in [2], the covariance kernel k from equation (3.1)

k(t, x, s, y) = 𝔼
[
BHQ(t, x)B

H
Q(s, y)

]
=

∞∑

𝓁=0

𝓁∑

m=−𝓁
A𝓁𝔼

[
𝛽H𝓁,m(t)𝛽

H
𝓁,m(s)

]
Y𝓁,m(x)Y𝓁,m(y)

= 𝜙H(t, s)𝜙Q(x, y),

with 𝜙H and 𝜙Q given in §2.
Let us denote by C𝛼,𝛽(𝕋 × 𝕊2) the subspace of functions f∈Cmin{𝛼,𝛽}(𝕋 × 𝕊2) such that for

all x∈𝕊2, f(⋅, x) ∈C𝛼(𝕋), and for all t∈𝕋, f(t, ⋅) ∈C𝛽(𝕊2). Note that we interpret min{𝛼−, 𝛽−} as
min{𝛼, 𝛽}−. We are now ready to state our main result on the space‑time regularity of BHQ.

Theorem 3.3. Let Q satisfy assumption 2.1, then BHQ has a continuous modification on 𝕋 × 𝕊2 which
is in CH−,(𝜂∕2)− (𝕋 × 𝕊2).

To prove this theorem, we will first need to prove joint continuity in space‑time with non‑
optimal parameters. For this, consider the compact Riemannian manifold M=𝕋 × 𝕊2 of dimen‑
sion 3 equipped with the (topological) product metric

dM((t, x), (s, y)) = |t − s| + d𝕊2 (x, y)

for all (t, x), (s, y) ∈𝕋 × 𝕊2. By [15, Remark 2], the Kolmogorov–Chentsov Theorem 1.1 in [15]
applied to a Gaussian process onM becomes:

Theorem 3.4. Let Z be a centred Gaussian process indexed by M. Assume there exist C> 0 and 𝜉 ≤ 1
such that for all (t, x), (s, y) ∈M,

𝔼
[
|Z(t, x) − Z(s, y)|2

]1∕2
≤CdM((t, x), (s, y))𝜉 . (3.2)

Then, Z has a continuous modification on M, which is in C𝜉− (M).

The proof uses a standard argument to compute p‑th moments of Gaussian random variables
based on the variance. For completeness, we give the proof in appendix A.

Applying this theorem to BHQ, we obtain the following result.

Corollary 3.5. Assume that Q satisfies assumption 2.1. Then, BHQ has a continuous modification on M,
which is in Cmin{H,𝜂∕2}− (M).
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Proof. We start the proof by splitting

𝔼 [
(
BHQ(t, x) − BHQ(s, y)

)2
]
1∕2

≤ 𝔼 [
(
BHQ(t, x) − BHQ(s, x)

)2
]
1∕2

+ 𝔼 [
(
BHQ(s, x) − BHQ(s, y)

)2
]
1∕2

.

The first term satisfies

𝔼 [
(
BHQ(t, x) − BHQ(s, x)

)2
]=

(
𝜙𝛽(t, t) + 𝜙𝛽(s, s) − 2𝜙𝛽(t, s)

)
𝜙Q(x, x)≤CQ|t − s|2H,

where CQ = 𝜙Q(x, x)<∞ is constant since BHQ is isotropic. The second term is the increment of a
GRF with angular power spectrum (𝜙𝛽(s, s)A𝓁,𝓁∈ℕ0), which by [8, Lemma 4.3] and 𝜙𝛽(s, s) =
s2H ≤ T2H is bounded by

𝔼 [
(
BHQ(s, x) − BHQ(s, y)

)2
]≤C𝜂𝜙𝛽(s, s)d𝕊2 (x, y)min{𝜂,2} ≤C𝜂T2Hd𝕊2 (x, y)min{𝜂,2}.

Setting 𝜁 =min{H, 𝜂∕2}< 1,we obtain, since z𝜁 is concave, for some constants C̃ and C

𝔼 [
(
BHQ(t, x) − BHQ(s, y)

)2
]
1∕2

≤ C̃
(
|t − s|𝜁 + d𝕊2 (x, y)𝜁

)
≤CdM((t, x), (s, y))𝜁 ,

and applying theorem 3.4 finishes the proof. ■

Without loss of generality, we denote by BHQ this unique continuous modification. For now,
we have found the best possible (joint) Hölder exponent if we take the underlying space to be
(M, dM). The next lemma will be used in the proof of theorem 3.3 to obtain the ideal exponent for
space and time separately.

Lemma 3.6. Assume that Q satisfies assumption 2.1. Then, for all t∈𝕋, BHQ(t, ⋅) has an indistinguish‑
able modification that is in C(𝜂∕2)− (𝕊2), and similarly, for all x∈𝕊2, BHQ(⋅, x) has an indistinguishable
modification that is in CH− (𝕋).

Proof. Since two continuous modifications are indistinguishable, the first claim follows from
[8, Theorem 4.6]. In the proof of corollary 3.5, we showed that

𝔼
[
(BHQ(t, x) − BHQ(s, x))

2
]
≤CQ|t − s|2H.

Combining this with bounds of the p‑th moments of Gaussian distributions as in the proof of
theorem 3.4 and applying [14, Theorem 4.23] yields the claim. ■

Remark 3.7. Given the continuity, we conclude that for a fixed x, BHQ(⋅, x) is a rescaled real‑
valued fBm since it is a Gaussian process satisfying 𝔼[BHQ(t, x)] = 0 and 𝔼[BHQ(t, x)B

H
Q(s, x)] =

𝜙𝛽(t, s)𝜙Q(x, x).

Now we have all results at hand to prove our main result on the space‑time regularity of BHQ.

Proof of theorem 3.3. The theorem is now a direct consequence of corollary 3.5 and
lemma 3.6. The only remaining concern is if the indistinguishable process in lemma 3.6 with the
higher regularity than in corollary 3.5 introduces intractable null sets depending on t or x, re‑
spectively. However, since BHQ is space‑time continuous, the union of these null sets is another
null set. This is shown by considering the null set obtained on a dense subset of 𝕋 or 𝕊2, respec‑
tively, and exploiting continuity. Therefore, we obtain an indistinguishable modification that is
in CH−,(𝜂∕2)− (𝕋 × 𝕊2).
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4. Q-fractional Brownian motion on𝕊d−1

Analogous results hold when considering the hypersphere 𝕊d−1 in ℝd instead of 𝕊2. In the
framework of [16], we denote the real‑valued spherical harmonics on 𝕊d−1 by (S(d−1)𝓁,m ,𝓁∈ℕ0,m=
1,… , h(𝓁, d))with h(𝓁, d) = (2𝓁 + d − 2) ⋅ (𝓁 + d − 3)!∕((d − 2)!𝓁!).

Let (𝛽H𝓁,m,𝓁∈ℕ0,m= 1,… , h(𝓁, d)) be a sequence of independent real‑valued fBms. Assum‑
ing

∑∞
𝓁=0 h(𝓁, d)A𝓁 <∞, we obtain, combining the results on 𝕊2 in §3 with Karhunen–Loève

expansions on 𝕊d−1 for isotropic GRFs from [8], the expansion

BHQ(t) =
∞∑

𝓁=0

h(𝓁,d)∑

m=1

√
A𝓁𝛽H𝓁,m(t)S

(d−1)
𝓁,m . (4.1)

To substitute 𝕊2 by 𝕊d−1 in §3, we only need to apply the corresponding results for 𝕊d−1 from [8].
For that the generalized version of assumption 2.1 becomes:

Assumption 4.1. Assume that the angular power spectrum (A𝓁,𝓁∈ℕ0) of the covariance
operator Q in 𝕊d−1 satisfies for some 𝜂 > 0 that

∑∞
𝓁=0 A𝓁𝓁

d−2+𝜂 <∞.

Replacing d𝕊2 by d𝕊d−1 and applying [8, Theorem 4.7], the regularity results in theorem 3.3
extend to Q‑fBm on 𝕊d−1, which we state for completeness in the following theorem.

Theorem 4.2. Let Q satisfy assumption 4.1, then BHQ has a continuous modification which is in
CH−,(𝜂∕2)− (𝕋 × 𝕊d−1).

5. Efficient simulation of Q-fractional Brownian motion
In the past sections, we have characterized the regularity properties of Q‑fBm in terms of its
parameters Q and H. From the opposite perspective, we can now construct Q‑fBms with given
regularity properties by prescribing Q and H through theorem 3.3. To use the process in appli‑
cations, we need to be able to simulate it. This section constructs and analyses an approximation
to the expansion (3.1) by truncating it and simulating independent sample paths of real‑valued
fBms.

(a) Spectral approximation in space
We return here to 𝕊2 and truncate the basis expansion (3.1) at the parameter 𝜅 ∈ℕ to obtain the
finite sum

BH,𝜅Q (t, x) =
𝜅∑

𝓁=0

𝓁∑

m=−𝓁

√
A𝓁𝛽H𝓁,m(t)Y𝓁,m(x). (5.1)

This sum can be interpreted analogously to a discrete Fourier transform (DFT), whereY𝓁,m are the
basis functions instead of complex exponentials. In fact, it can be rephrased in terms of DFTs and
there exist implementations of the so‑called Spherical Harmonics Transform based on fast Fourier
transforms (FFTs). Since these FFT‑based implementations allow for fast evaluation of Q‑fBm on
the sphere, we used them to generate the visualizations in figure 1.

A spatial convergence analysis of the spectral approximation has been performed in [8, Propo‑
sitions 5.2 and 5.3] for a time‑independent GRF on 𝕊2 in L2(𝛺;L2(𝕊2)) and Lp(𝛺;L2(𝕊2)) as well as
ℙ‑a.s. in [8, Corollary 5.4]. For a fixed t, their proofs apply to our situation up to a constant factor
of tH < TH, noting that 𝔼[𝛽H𝓁,m(t)

2] = t2H. This yields immediately the following theorem.

Theorem 5.1. Let the angular power spectrum (A𝓁,𝓁∈ℕ0) of the covariance operator Q decay alge‑
braically with order 𝛼 > 2, i.e. there exist constants C> 0 and 𝓁0 ∈ℕ such that A𝓁 ≤C ⋅ 𝓁−𝛼 for all 𝓁> 𝓁0.
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Then, the sequence of approximations (BH,𝜅Q , 𝜅 ∈ℕ) converges to BHQ in Lp(𝛺;L2(𝕊2)) for any finite p≥ 1
uniformly in 𝕋, and the error is bounded by

sup
t∈𝕋

‖BHQ(t) − BH,𝜅Q (t)‖Lp(𝛺;L2(𝕊2)) ≤ Ĉp TH 𝜅−(𝛼−2)∕2

for 𝜅 ≥ 𝓁0, where Ĉp depends on p, C and 𝛼. This impliesℙ‑a.s. convergence such that for all 𝛽 < (𝛼 − 2)∕2,
the error is asymptotically bounded by 𝜅−𝛽 , i.e. there exists a random variable 𝜅0(t) such that for all
𝜅 > 𝜅0(t),

‖BHQ(t) − BH,𝜅Q (t)‖L2(𝕊2) ≤ 𝜅−𝛽 , ℙ−a.s..

A similar result is obtained on 𝕊d−1 when truncating the expansion (4.1) instead. The rate of
convergence in Lp(𝛺;L2(𝕊d)) becomes 𝜅(𝛼−d+1)∕2 and therefore, 𝛽 < (𝛼 − d + 1)∕2 in ℙ‑a.s. sense.
This is proven in the same way as Proposition 5.2 and Theorem 5.3 in [8], where we also use that
h(𝓁, d)≤C𝓁d−2 by Stirling’s inequality.

(b) Simulation of real-valued fractional Brownian motion
Computing the above spectral approximation requires the simulation of independent sample
paths of fBm. Since fBm does not have independent increments as Brownian motion does, differ‑
ent simulation methods are required. This is a widely explored topic (e.g. [17,18], and references
therein). A widely usedmethod is the CEmethod (e.g. [9], and references therein). If we accept an
approximating algorithm, the conditionalized random midpoint displacement method [10] can
simulate a sample path of length N in 𝒪(N) time. We describe both methods here and do a per‑
formance comparison. Both algorithms simulate the correlated increments of fBm which need to
be added up to obtain sample paths.

(i) Circulant embedding

The principle of the circulant embedding (CE) method is the same as that of the well‑known
Cholesky method: multiplying a standard Gaussian vector by the square root of the desired co‑
variance matrix. However, it makes use of the structure of the covariance matrix by employing
the FFT to multiply a vector by the matrix square root.

To explain the method in the context of fBm, let 𝕋N be an equidistant time grid with 0=
t0 <⋯< tN = T and step size h and denote by 𝛥𝛽H(tj) = 𝛽H(tj+1) − 𝛽H(tj) the correlated but sta‑
tionary increments of 𝛽H. Setting 𝛾(|j − k|h) = 𝛾(|tj − tk|) = 𝔼[𝛥𝛽H(tj)𝛥𝛽H(tk)], the covariance ma‑
trix 𝛴 = (𝛾(|tj − tk|))N−1j,k=0 (top left block of the matrix below) is a Toeplitz matrix which can be
embedded into the circulant matrix:

C=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛾(0) 𝛾(h) ⋯ 𝛾((N − 1)h) 𝛾((N − 2)h) 𝛾((N − 3)h) ⋯ 𝛾(h)

𝛾(h) 𝛾(0) ⋯ 𝛾((N − 2)h) 𝛾((N − 1)h) 𝛾((N − 2)h) ⋯ 𝛾(2h)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱

𝛾((N − 1)h) 𝛾((N − 2)h) ⋯ 𝛾(0) 𝛾(h) 𝛾(2h) ⋯ 𝛾((N − 2)h)

𝛾((N − 2)h) 𝛾((N − 1)h) ⋯ 𝛾(h) 𝛾(0) 𝛾(h) ⋯ 𝛾((N − 3)h)

𝛾((N − 3)h) 𝛾((N − 2)h) ⋯ 𝛾(2h) 𝛾(h) 𝛾(0) ⋯ 𝛾((N − 4)h)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝛾(h) 𝛾(2h) ⋯ 𝛾((N − 2)h) 𝛾((N − 3)h) 𝛾((N − 4)h) ⋯ 𝛾(0)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

that is again a covariance matrix, as shown in [9]. The description of the algorithm below follows
[17] and [9].
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We observe that C=U𝛬U∗ has an eigendecomposition, where U consists of the eigenvectors
which are the Fourier modes and 𝛬 is a diagonal matrix with eigenvalues (𝜆k, k= 0,… , 2N − 3)
computed exactly by a DFT of the first row of C. These eigenvalues only need to be precom‑
puted once for the generation of an arbitrary number of sample paths. The square root of C
is then given by C1∕2 =U𝛬1∕2U∗ and 𝒩(0,C)‑distributed random samples can be generated by
computing C1∕2W for W∼𝒩(0, Id2N−2) via two DFTs and a matrix multiplication, which can be
performed in 𝒪((2N − 2) log(2N − 2)) time via FFT. To omit one FFT, one can compute the dis‑
tribution of U∗W as exploited, e.g. in [17,19]. Alternatively, one chooses, as in [9], W=V1 + iV2
for independent V1,V2 ∼𝒩(0, Id2N−2) and computes Z=U𝛬1∕2W by a single FFT of the vec‑
tor (

√
𝜆k∕(2N − 2)wk, k= 1,… , 2N − 2). Then, Z contains independent𝒩(0,C)‑distributed random

samples in the real and imaginary part. The firstN entries of the random vectors Re(Z) and Im(Z)
are the increments of fBm sample paths.

(ii) Conditionalized randommidpoint displacement

The conditionalized random midpoint displacement (CRMD) method is based on Lévy’s con‑
struction of Brownian motion using the Brownian bridge, and we introduce it following [10].

Similarly to §5b(i), we want to simulate a sample path of 𝛽H on the equidistant time grid
𝕋N with T= 1, N= 2n0 and n0 ∈ℕ. The initialization step is to simulate the increment X0,1 =
𝛽H(1) − 𝛽H(0) ∼𝒩(0, 1). The discretization grid is then dyadically refined such that in the n‑th
step for n≤ n0, we want to generate the increments (Xn,k = 𝛽H(k2−n) − 𝛽H((k − 1)2−n), k= 1,… , 2n)
given by the recursive relationship

Xn−1,k =Xn,2k−1 + Xn,2k, k= 1,… , 2n−1.

Assume now that we have simulated refinement step n − 1 and Xn,1,… ,Xn,2k−2. In contrast to
the Markovian structure of Brownian motion, where the next increment to be simulated, Xn,2k−1,
only depends on Xn−1,k, the long‑range dependence of fBm requires to condition on all previ‑
ously known increments Mn,2k−1 = (Xn−1,k,… ,Xn−1,2n−1 ,Xn,1,… ,Xn,2k−2). As computed in detail
in [10], Xn,2k−1 is a Gaussian random variable with conditional mean 𝔼[Xn,2k−1|Mn,2k−1] and
variance Var[Xn,2k−1|Mn,2k−1] that can be computed via the covariance matrix of the extended vec‑
tor (Xn,2k−1,Mn,2k−1). Once Xn,2k−1 has been sampled, we compute Xn,2k =Xn−1,k − Xn,2k−1. This
procedure is exact but of computational complexity 𝒪(N2).

To decrease the complexity to 𝒪(N), we need to compute the conditional distributions more
efficiently while accepting that the resulting samples are approximate sample paths. For that,
let us reduce the maximal number of increments to condition on from the right and left by in‑
troducing 𝜈, 𝜇 ∈ℕ and set M𝜈,𝜇

n,2k−1 = (Xn−1,k,… ,Xn−1,min(k+𝜈,2n−1),Xn,max(2k−1−𝜇,1),… ,Xn,2k−2). We
sample now Xn,2k−1 based on the approximate conditional mean 𝔼[Xn,2k−1|M

𝜈,𝜇
n,2k−1] and variance

Var[Xn,2k−1|M
𝜈,𝜇
n,2k−1]. This is illustrated in figure 2. Note that𝔼[Xn,2k−1|M

𝜈,𝜇
n,2k−1] can be computed as

a dot product of a fixed vector ewithM𝜈,𝜇
n,2k−1 and Var[Xn,2k−1|M

𝜈,𝜇
n,2k−1] = v is a scalar value that only

needs to be rescaled. Only for points near the boundary, up to 𝜈 ⋅ 𝜇 different e and v are required,
which can also be precomputed. The vectors e are of size at most 𝜇 + 𝜈, and therefore the compu‑
tational complexity is reduced to 𝒪((𝜇 + 𝜈)N), i.e. linear in N. This makes CRMD asymptotically
faster than CE.

Theoretical error bounds in 𝜈 and𝜇 are to the best of our knowledge unknown.Dieker [17] com‑
pares the covariance functions for different 𝜇 and 𝜈 and performs statistical tests on the obtained
sample distributions. To estimate the strong error numerically, we set 𝜈 = ⌈𝜇∕2⌉ due to the sym‑
metry in the algorithm, and simulate sample paths with different values of 𝜇 but using the same
random numbers as input. Denoting by 𝛽H,𝜇 the approximation of fBm by CRMD, figure 3 shows
how the error supt∈𝕋N

‖𝛽H,𝜇(t) − 𝛽H(t)‖L2(𝛺) decays as 𝜇 increases, based onM= 104 Monte Carlo
samples for varying H with N= 512. The exact (reference) solution 𝛽H is computed with 𝜇=N.
Table 1 lists in more detail the empirically obtained decay rates of this error for a larger number
of values of H. Note that we decided to estimate the rates in the range 𝜇= s,… , 128, s= 10, 20, 50,
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Figure 2. Visual representation of the CRMD method (𝜇= 2, 𝜈 = 1). X3,5 is simulated conditional on X2,3, X3,3, and X3,4,
ignoring its dependence on X2,4, X3,1, and X3,2.

Figure 3. Empirical decay of the error of CRMD.

Table 1. Empirical decay rates rH of the error supt∈𝕋‖𝛽
H,𝜇(t) − 𝛽H(t)‖L2(𝛺) .

H 0.01 0.05 0.1 0.2 0.3 0.4 0.45 0.49 0.51 0.55 0.6 0.7 0.8 0.9
rH ,
s= 10

0.88 0.85 0.80 0.81 0.89 1.03 1.17 1.59 1.95 0.87 0.96 1.14 1.26 1.37

rH ,
s= 20

0.92 0.86 0.81 0.81 0.88 1.00 1.12 1.53 1.88 0.84 1.01 1.16 1.28 1.39

rH ,
s= 50

0.96 0.88 0.83 0.83 0.85 0.95 1.06 1.42 1.54 0.92 1.05 1.19 1.30 1.40

to exclude the less regular behaviour for 𝜇 < s. Given this data, we estimate for 0≪𝜇≪N that
the error decays with rates rH around 1 that depend on H and are bounded from below by 0.8.
Therefore, we obtain the empirical error bounds:

sup
t∈𝕋N

‖𝛽H,𝜇(t) − 𝛽H(t)‖L2(𝛺) ≤C𝜇−rH . (5.2)

The constant C depends on H but appears to be independent of N, provided N≫𝜇.
The fully discrete approximation of the Q‑fBm (3.1) on the sphere based on the spectral

approximation (5.1) and CRMD is then given by

BH,𝜅,𝜇Q (t, x) =
𝜅∑

𝓁=0

𝓁∑

m=−𝓁

√
A𝓁 𝛽

H,𝜇
𝓁,m (t)Y𝓁,m(x).
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Figure 4. Performance comparison of CE and CRMD.

Its strong error can be split into

‖BHQ(t) − BH,𝜅,𝜇Q (t)‖L2(𝛺;L2(𝕊2))

≤ ‖BHQ(t) − BH,𝜅Q (t)‖L2(𝛺;L2(𝕊2)) + ‖BH,𝜅Q (t) − BH,𝜅,𝜇Q (t)‖L2(𝛺;L2(𝕊2)),

where the first term is bounded by theorem 5.1. The second term satisfies based on equation (5.2)

‖BH,𝜅Q (t) − BH,𝜅,𝜇Q (t)‖L2(𝛺;L2(𝕊2)) ≤C
√
TrQ𝜇−rH .

This allows us to conclude the analysis of CRMD with the following corollary.

Corollary 5.2.Under the assumptions of theorem 5.1 and equation (5.2) with 𝜇≪N, the strong error
of the fully discrete spectral and CRMD approximation of equation (3.1) is bounded by

sup
t∈𝕋N

‖BHQ(t) − BH,𝜅,𝜇Q (t)‖L2(𝛺;L2(𝕊2)) ≤C(𝜅−(𝛼−2)∕2 +
√
TrQ𝜇−rH ).

(iii) Comparison of computational performance

We have seen that the computational costs of CE behave asymptotically as 𝒪(N logN) while
CRMD performs with linear complexity. In this section, we compare their performance for rel‑
evant choices ofN based on our implementation in Julia. We check when the constants hidden by
the 𝒪‑notation matter compared with the extra logN factor in the asymptotics.

Figure 4 shows the computation time required by both methods for the simulation of sample
paths of varying length N, ranging from 215 to 224 ≈ 1.68 ⋅ 107, with H= 0.8. Note that both meth‑
ods perform optimally when N is a power of 2 and allow for the precomputation of certain steps
that depend only on N (and 𝜇 for CRMD) and do not need to be repeated for every new sample
path. The time taken by this was excluded in our analysis here. The computation was performed
single‑threaded on an Intel Core™ i5‑1245U system with 16 GB of RAM.

A slowdown of CRMD for higher values of 𝜇 is observed, since the computational cost per
increment increases due to the required evaluation of wider dot products. For small values of 𝜇,
the CRMDmethod is faster than the CE method, while for larger 𝜇, CRMD becomes slower than
CE.

We remark that CRMD can be implemented to only require memory for the N floating point
values representing the resulting sample path and 𝒪(𝜇3) values to store the vectors e and scalars
v that are used to compute the conditional mean and variance. On the other hand, CE requires
approximately 6N floating point values to be stored since the 2N (real‑valued) eigenvalues of the
covariance matrix C need to be stored and the output is a complex vector of length 2N.

Considering the results in figure 4, the choice of method is a trade‑off between accuracy and
computational performance. If low accuracy is sufficient, better performance can be obtained by
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using CRMDwith small 𝜇. On the other hand, if higher accuracy is required, CE is the method of
choice. Our tests show that, on our system, it is not advisable to use CRMD with 𝜇= 20 since we
can obtain distributionally exact sampleswith the same computational costs using theCEmethod.
Dieker [17] performed a similar comparison of computational cost, albeit including the precom‑
putation steps, and reported similar relative costs. However, we note a significant speedup of all
computations.

Finally,we note that CE can be expressed quite simply in terms of Fourier transforms, forwhich
highly optimized library implementations of FFT are available. On the other hand, CRMD is a sig‑
nificantlymore complex algorithm.Hence, from an implementation and usability perspective, CE
is preferred.
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Appendix A. Proof of Theorem 3.4
This theorem arises from [15, Theorem 1.1] by the standard argument on finiteness of all moments
of a Gaussian distribution. By assumption, we know that Z(t, x) − Z(s, y) ∼𝒩(0, 𝜎2) for some 𝜎.

Then, the standard deviation is 𝔼
[
|Z(t, x) − Z(s, y)|2

]1∕2
= 𝜎 since the Gaussian is centered. We

further know that

𝔼
[
|Z(t, x) − Z(s, y)|p

]
= 𝔼 [|𝜎U|p] = 𝜎p𝔼 [|U|p] =C(p)𝜎p

for some U∼𝒩(0, 1) and all p∈ℕ. Now, by equation (3.2), 𝜎 ≤CdM(x, y)𝜉 and hence

𝔼
[
|Z(t, x) − Z(s, y)|p

]
≤C(p)CpdM(x, y)p𝜉 = C̃pdM(x, y)p𝜉 .

Choose p> d
𝜉
arbitrary, and q= 𝜉p. This yields

𝔼
[
|Z(t, x) − Z(s, y)|p

]
≤ C̃pdM(x, y)q,

and the assumptions of [15, Theorem 1.1] are satisfied, where our C̃p is their M. Note that our
space M is a compact Riemannian manifold of dimension 3, cf. [15, Remark 2]. Thus, we obtain
the desired bounds and a modification that is 𝛽‑Hölder continuous for all 𝛽 ∈ (0, q∕p − d∕p) =
(0, 𝜉 − d∕p). Letting p tend to infinity, we obtain that there is a modification that is in C𝜉− (M). ■
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