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We revisit the cluster expansion for Ising lattice gauge theory on Z
m, m � 3, with Wilson’s action,

at a fixed inverse temperature β in the low-temperature regime. We prove existence and analyticity
of the infinite volume limit of the free energy and compute the first few terms in its expansion in
powers of e−β . We further analyze Wilson loop expectations and derive an estimate that shows how
the lattice scale geometry of a loop is reflected in the large β asymptotic expansion. Specializing to axis
parallel rectangular loops γT,R with side-lengths T and R, we consider the limiting function Vβ(R) :=
limT→∞ − 1

T log 〈WγT,R 〉β , known as the static quark potential in the physics literature. We verify the
existence of the limit (with an estimate on the convergence rate) and compute the first few terms in
the expansion in powers of e−β . As a consequence, a strong version of the perimeter law follows. We
also treat − log 〈WγT,R 〉β/(T + R) as T, R tend to infinity simultaneously and give analogous estimates.

1 Introduction
Given a hypercubic lattice Z

m and a choice of structure group G, a (pure) lattice gauge theory models
a random discretized connection form on a principal G-bundle on an underlying discretized m-
dimensional smooth manifold. More concretely, after restricting to a finite box, it is a Gibbs probability
measure on gauge fields, that is, G-valued discrete 1-forms σ defined on edges of the lattice. The
probability measure is defined relative to the product Haar measure on G. The action can be taken to be
of the form S(σ ) = −∑

p Ap(σ ), where for some choice of representation ρ, Ap(σ ) = Re tr(ρ(σe1 σe2 σe3 σe4 ))

captures the microscopic holonomy around the plaquette p whose boundary consists of the edges
e1, . . . , e4. The coupling parameter β acts as the inverse temperature. In a formal scaling limit, one
recovers the Yang–Mills action while the model enjoys exact gauge symmetry on the discrete level.
In contrast to the corresponding continuum Yang–Mills theories, the discrete measure is defined
rigorously, and its analysis becomes a problem in statistical mechanics. Lattice gauge theories were
introduced independently by Wegner and Wilson in the 1970s [20, 21].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/12/rnaf163/8161752 by guest on 22 June 2025


 13281 16710 a 13281
16710 a
 
mailto:palo@chalmers.se
mailto:palo@chalmers.se


2 | M. P. Forsström and F. Viklund

Despite the presence of local symmetries, lattice gauge theories can exhibit non-trivial phase
structure, but one has to consider non-local observables. Given a nearest-neighbor lattice loop γ , the
Wilson loop variable Wγ records the random holonomy of the gauge field as γ is traversed. Starting with
the original paper of Wilson [21], it has been argued in the physics literature that the decay rate of its
expectation 〈Wγ 〉β (in an infinite volume limit) as the loop grows encodes information about whether or
not “static quarks” are “confined” in the model; see, for example, [17, Sect. 3.5] for a textbook discussion.
Let γT,R be a rectangular loop with axis parallel sides and, taking its existence for granted, consider the
limit

Vβ(R) = − lim
T→∞

1
T

log
∣∣〈WγT,R 〉β

∣∣.
The function Vβ(R) is called the static quark potential and is interpreted as the energy required to
separate a static quark-antiquark pair to distance R; see, for example, [17, Sect. 3.2]. Wilson’s criterion for
quark confinement can then be formulated as follows: confinement occurs at β if and only if the energy
Vβ(R) diverges as R → ∞. However, except in the special case of planar theories, it seems that detailed
mathematical proofs of such statements are not available in the literature, even for finite abelian G.
Instead, the two phases are rigorously separated via estimates: confinement occurs at β if there exists
some function V(R), unbounded as R → ∞, such that lim infT→∞ − 1

T log |〈WγR,T 〉β | � V(R), and in this
case, Wilson loop expectations are said to follow the area law. If, on the other hand, there is a constant
c > 0 independent of R such that lim supT→∞ − 1

T log |〈WγR,T 〉β | < c, the Wilson loop expectations are said
to follow the perimeter law. (The terminology comes from the expectation that a priori bounds of the
form e−cRT � |〈WγR,T 〉β | � e−C(R+T) should be essentially saturated in the two phases.) See [6] for a precise
formulation of a condition for confinement and a general discussion from a probabilistic perspective,
and Section 1.3 below for a brief discussion of other related work.

Here we will consider lattice gauge theory with structure group G = Z2 on Z
m, m � 3, also known as

Ising lattice gauge theory, for β in the subcritical regime. See Section 1.1 for the precise definition. This
model was first studied by Wegner [20] and can be viewed as a version of the standard Ising model on
Z

m, where the global spin-flip symmetry has been “upgraded” to a local symmetry. We employ a cluster
expansion to study the free energy, static quark potential, and related quantities. This classical method
has been used in the past to analyze lattice gauge theories; see Section 1.3. While we only work with
G = Z2, we believe our results can be generalized to any choice of finite abelian structure group with
minor modifications.

To state our main results, we need to provide some definitions.

1.1 Ising lattice gauge theory and Wilson loop expectations
Let m � 3. The lattice Z

m has a vertex at each point x ∈ Z
m with integer coordinates and a non-

oriented edge between each pair of nearest neighbors. To each non-oriented edge ē in Z
m we associate

two oriented edges e1 and e2 = −e1 with the same endpoints as ē and opposite orientations.
Let e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , em := (0, . . . , 0, 1) be oriented edges corresponding to

the unit vectors in Z
m.

If v ∈ Z
m and j1 < j2, then p = (v + ej1 ) ∧ (v + ej2 ) is a positively oriented 2-cell, also known as a

positively oriented plaquette. We let BN denote the set [−N, N]m of Zm, and we let VN, EN, and PN denote
the sets of oriented vertices, edges, and plaquettes, respectively, whose end-points are all in BN.

We let �1(BN,Z2) denote the set of all Z2-valued 1-forms σ on EN, that is, the set of all Z2-valued
functions σ : e �→ σe on EN such that σe = −σ−e for all e ∈ EN. We write ρ : Z2 → C, g �→ eπ ig for the natural
representation of Z2.

When σ ∈ �1(BN,Z2) and p ∈ PN, we let ∂p denote the four edges in the oriented boundary of p and
define

(dσ)p :=
∑
e∈∂p

σe.

Elements σ ∈ �1(BN,Z2) are referred to as gauge field configurations.
The Wilson action functional for pure gauge theory is defined by (see, e.g., [21])

S(σ ) := −
∑
p∈PN

ρ
(
(dσ)p

)
, σ ∈ �1(BN,Z2).
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The Ising lattice gauge theory probability measure on gauge field configurations is defined by

μβ,N(σ ) := Z−1
β,Ne−βS(σ ), σ ∈ �1(BN,Z2).

Here for N ∈ N,

Zβ,N =
∑

σ∈�1(BN ,Z2)

e−βS(σ )

is the partition function and while we only consider the probability measure for positive β, the partition
function is defined for β ∈ C when N < ∞. For β � 0, the corresponding expectation is written Eβ,N. Let
γ be a nearest neighbor loop on Z

m contained in BN. Given σ ∈ �1(BN,Z2), the Wilson loop variable for
Ising lattice gauge theory is defined by

Wγ = ρ
(
σ(γ )

) =
∏
e∈γ

ρ
(
σ(e)

) = eπ i
∑

e∈γ σ (e).

For β � 0, let 〈Wγ 〉β denote the infinite volume limit of its expected value:

〈Wγ 〉β := lim
N→∞

Eβ,N[Wγ ].

See, for example, [9] for a proof of the existence of this limit.

1.2 Main results
Our first result concerns the free energy for free boundary conditions. For m � 3, we let β0 := β0(m) > 0
be defined by (5). Let |P+

N| be the number of positively oriented plaquettes in the restriction of Zm to the
set [−N, N]m. Note that |P+

N| ∼ (m
2

)
(2N)m as N → ∞.

Theorem 1.1 (Free energy). Suppose m � 3 and Re β > β0(m). Then

F(β) := lim
N→∞

1
|P+

N| log Zβ,N

defines an analytic function, and

F(β) = 2
m − 1

e−8(m−1)β + 12(m − 1) − 8
2(m − 1) − 1

e−4(4(m−1)−2)β + O(e−16(m−1) Re β). (1)

We next consider Wilson loop expectations. Given a loop γ let 	 := | supp γ | be its length, that is, the
number of edges of γ . Further, let 	c := 	c(γ ) denote the number of pairs of non-parallel edges that are
both in the boundary of some common plaquette (corners), and let 	b := 	b(γ ) denote the number of
pairs (e, e′) of parallel edges that are both in the boundary of some common plaquette (bottlenecks). Set

vβ := 2e−8(m−1)β + 12(m − 1)e−4(4(m−1)−2)β .

Theorem 1.2. Suppose m � 3 and β > β0(m). There exists C < ∞ depending only on m such that
for any loop γ with length 	, 	c corner edges, and 	b bottleneck edges,∣∣∣∣− 1

	
log 〈Wγ 〉β −

(
vβ − 4

	c + 	b

	
e−4(4(m−1)−2)β

)∣∣∣∣ � Ce−16(m−1)β . (2)

Notice how the lattice scale geometry of the loop enters into the estimate (2). Given a continuum loop,
we see that the expansion is sensitive to the way the loop is embedded and discretized. For instance,
the term (	c + 	b)/	 is very different for an axis-parallel square compared to the natural discretization
of the same square rotated by 45◦.

The main idea of the proofs of Theorem 1.1 and 1.2 is to use a cluster expansion to rewrite log Zβ,N and
log 〈Wγ 〉β as a sum over vortex clusters and the interaction of vortex clusters with the loop, respectively.
We then show that the main contribution to these sums comes from very small clusters, and in fact, the
logarithm of the contribution of a cluster of vortices of a certain size is proportional to its size. Hence,
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4 | M. P. Forsström and F. Viklund

Fig. 1. The above table shows projections of the supports of the non-trivial and irreducible plaquette
configurations in Z

4 which has the smallest support (up to translations and rotations).

the main contribution comes from very small clusters, and the smallest such cluster consists of exactly
one vortex with small support. These smallest clusters, which give the main contribution, are the so-
called minimal vortices, and the next-order contribution comes from clusters of the second smallest
possible size (see Figure 1). The terms appearing in (1) and (2) hence correspond to the smallest vortices
that can appear in the model. In particular, the term 2e−8(m−1)β in vβ correspond to minimal vortices
(having support of size 2 · 2(m − 1)), and the term 12(m − 1)e−4(4(m−1)−2)β corresponds to the smallest
vortices that are not minimal vortices (having support of size 2 · (4(m − 1) − 2)); see Figure 1. The main
effort of the proof is to confirm this picture and also to give upper bounds on the contribution of larger
clusters of vortices.

Remark 1.3. Using the methods of the proof of Theorem 1.2, it is, in principle, straightforward to
obtain estimates with higher precision in terms of the expansion in powers of e−β . If higher-
order terms are included in (2), the constants of the corresponding polynomial in e−β will
further depend on the lattice scale geometry of the loop.

Our next result concerns the static quark potential Vβ(R).

Theorem 1.4 (Quark potential and perimeter law). Suppose m � 3 and β > β0(m). There exists a
function Vβ(·) and a constant C < ∞ such that the following holds. Let R � 2 be an integer and
for T = 1, 2, . . . let γR,T be a rectangular loop with side lengths R and T and axis-parallel sides.
Then, ∣∣∣∣− 1

T
log 〈WγR,T 〉β − Vβ(R)

∣∣∣∣ � C
T

.

The limit Vβ := limR→∞ Vβ(R) exists and

Vβ = 4e−8(m−1)β + 24(m − 1)e−4(4(m−1)−2)β + O(e−16(m−1)β ).

By the theorem, Vβ(R) exists for all sufficiently large β and is bounded as R → ∞ so we obtain a proof
of the perimeter law. Moreover, using the convergence rate estimate we also obtain the up-to-constants
estimate

〈WγR,T 〉β � e−TVβ (R), T → ∞.
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Remark 1.5. At fixed R, we have the expansion as β → ∞

Vβ(R) = 4e−8(m−1)β + 24(m − 1)e−4(4(m−1)−2)β + OR(1)e−16(m−1)β .

Remark 1.6. We use a cluster expansion to prove Theorem 1.4, including the existence part.
Alternatively, one could prove the existence of Vβ(R) using Griffith’s second inequality to
deduce subadditivity and then appeal to Fekete’s lemma. However, this method would give no
quantitative information as in the theorem. Moreover, it cannot be used to obtain Propositions
7.3 and 7.4, which shows the existence of the limit in some generality and is needed for
Theorem 1.7 below.

Our next result is a version of Theorem 1.4 in the setting where the two sides of the loop grow
uniformly.

Theorem 1.7. Suppose m � 3 and β > β0(m), let r, t � 1 be integers and for n = 1, 2, . . . let γn be an
axis-parallel rectangular loop with side lengths Rn = rn and Tn = tn. Then

lim
n→∞ − 1

Rn + Tn
log 〈Wγn 〉β = Vβ ,

where Vβ = limR→∞ Vβ(R).

Note that Vβ = 2vβ + O(e−16(m−1)β ). We have chosen to state Theorem 1.7 for a rectangle but with
small modifications the proof is also valid for any fixed loop for which the proportion of corners and
bottlenecks in the scaled loop tend to zero as n → ∞ and the corresponding Vβ is the same.

Remark 1.8. It would be interesting to relate the confinement phase transition to analyticity
properties of the functions β �→ F(β) and β �→ Vβ .

1.3 Related work and further comments
We refer to [4] for a thorough discussion of classical works on area and perimeter law estimates in
various settings, including [12, 14–16, 18, 19]. Among more recent results, we mention [13], which
considers the 4D U(1) theory with Villain action. In the perimeter law regime, for sufficiently regular
loops, it was shown that

C0

2β
(1 + Cβe−2π2β)(1 + o(1)) � − 1

|γ | log |EVil
β [Wγ ]| � C0

2β
(1 + ε(β))(1 + o(1)),

where the upper bound was due to Fröhlich and Spencer [12]. Here, C0 is a constant related to the
discrete Gaussian free field. The infinite volume free energy for this model was also considered in [13],
and an upper bound was obtained for the “internal energy”, that is, its derivative with respect to β.

In the important paper [5], Chatterjee studied 4-dimensional Ising lattice gauge theory. Using a
resampling argument, it was proved that

〈Wγ 〉β � e− 1−	c/	

1+e−4(m−1)β 2	e−4(m−1)β

. (3)

(We caution that 2β in the present paper is equal to the parameter β used in [5].) This estimate is valid
for all β > 0. Using (3), the inequalities

∣∣〈Wγ 〉β − e−2	e−8(m−1)β ∣∣ � Ce
−2

1+e−16(m−1)β 	e−8(m−1)β (
e−8β + √

	c/	
)

(4)

and

∣∣〈Wγ 〉β − e−2	e−8(m−1)β ∣∣ � C1
(
e−8β + √

	c/	
)C2

were obtained. The ideas introduced in [5] spurred several recent works, and analogous estimates
have now been given in more general settings, including for arbitrary finite structure groups and for
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6 | M. P. Forsström and F. Viklund

corresponding lattice Higgs models; see [1, 3, 8–10]. The methods used in these papers produce error
terms that will generally be larger than the estimate for 〈Wγ 〉 if one does not have a relation of the type
	e−2	e−8(m−1)β 
 ∞. That is, one needs the size of the loop to tend to infinity at a rate tuned to β → ∞. (Of
course, one sees different exponents for different choices of structure group G; this case corresponds to
Ising lattice gauge theory.) As a consequence, it is not clear (to us) how to use those methods to prove
a perimeter law (lower bound) estimate at fixed β or, for example, how to analyze limits such as the
one defining the quark potential. Moreover, we do not know how they can easily be modified to obtain
higher precision, even if the loop grows with β at an appropriate rate.

Here we instead carry out the analysis based on the cluster expansion of the partition function, which
provides information on log 〈Wγ 〉β . One still needs β to be sufficiently large, but it does not need to grow
with 	 for the error bounds to be small, and the drawbacks discussed above can be circumvented. The
method yields, in principle, arbitrary precision for the logarithm of the Wilson loop expectation and
also allows to quantify the behavior of 〈Wγ 〉 when 	e−8(m−1)β 
 ∞. This partly resolves one of the open
problems in [5]. However, the work here does not directly imply the results of [5] but does give alternative
proofs of several of the key lemmas therein.

The use of cluster expansions in the context of lattice gauge theories is certainly not new; see, in
particular, Seiler’s monograph [19] (and the references therein), where, for example, perimeter law
estimates were obtained to first order for large β. However, besides basic facts about the cluster
expansion as presented in the recent textbook of Friedly and Velenik [11] and some results from [8,
9], our discussion is self-contained, and we carry out all the needed estimates here. We mention that
using these estimates, the cluster expansions used in this paper can also be used to get an alternative
and very short proof of exponential decay of correlations (see [7] and [2]). However, to keep this paper
short, we do not include such an argument here.

We only consider G = Z2 in this paper. We expect that one can extend the results to any finite
cyclic group G = Zk, k � 3, without too much additional effort, as well as to the corresponding lattice
Higgs models. The cluster expansion based on vortices crucially relies on the fact that gauge field
configurations can be decomposed into discrete components. Therefore, we do not expect the methods
in this paper to work in the general case of compact subgroups of U(N).

2 Preliminaries
Although we will later work with G = Z2, in this section, we allow G to be a general finite abelian group,
as this entails no additional work.

2.1 Notation and standing assumptions
In the rest of this paper, we assume that m � 3 is given. We define the dimension-dependent constant

M = M(m) := 10(m − 2).

Next, we define

β0(m) := 1
2

(B0(m) + log M), (5)

where

B0(m) := inf
{
B > 0: ∃α ∈ (0, B) s.t.e4(α−B)(m−1) < α(1 − e2(α−B))

}
.

2.2 Discrete exterior calculus
To keep the presentation concise, and since these definitions have been introduced in several recent
papers, we will refer to [9] for details on some of the basic notions of discrete exterior calculus that are
useful in the present context.

• We will work with the square lattice Z
m, where we assume that the dimension m � 3 throughout.

We write BN = [−N, N]m ∩ Z
m.
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• We write Ck(BN) and Ck(BN)+ for the set of unoriented and positively oriented k-cells, respectively
(see [9, Sect. 2.1.2]). Note that in the introduction, we used VN = C0(BN), EN = C1(BN), and PN = C2(BN).
An oriented 2-cell is called a plaquette.

• Formal sums of positively oriented k-cells with integer coefficients are called k-chains, and the
space of k-chains is denoted by Ck(BN,Z) (see [9, Sect. 2.1.2]).

• Let k � 2 and c = ∂

∂xj1

∣∣
a ∧ · · · ∧ ∂

∂xjk

∣∣
a ∈ Ck(BN). The boundary of c is the (k − 1)-chain ∂c ∈ Ck−1(BN,Z)

defined as the formal sum of the (k − 1)-cells in the (oriented) boundary of c. The definition is
extended to k-chains by linearity. See [9, Sect. 2.1.4].

• If k ∈ {0, 1, . . . , n − 1} and c ∈ Ck(BN) is an oriented k-cell, we define the coboundary ∂̂c ∈ Ck+1(BN) of c
as the (k + 1)-chain ∂̂c := ∑

c′∈Ck+1(BN)

(
∂c′[c]

)
c′. See [9, Sect. 2.1.5].

• We let �k(BN, G) denote the set of G-valued (discrete differential) k-forms (see [9, Sect 2.3.1]); the
exterior derivative d : �k(BN, G) → �k+1(BN, G) is defined for 0 � k � m − 1 (see [9, Sect. 2.3.2]); and
�k

0(BN, G) denotes the set of closed k-forms, that is, ω ∈ �k(BN, G) such that dω = 0.
• We write supp ω = {c ∈ Ck(BN) : ω(c) �= 0} for the support of a k-form ω. Similarly, we write

(supp ω)+ = {c ∈ Ck(BN)+ : ω(c) �= 0}.
• A 1-chain γ ∈ C1(BN,Z) with finite support supp γ is called a loop if for all e ∈ �1(BN), we have that

γ [e] ∈ {−1, 0, 1}, and ∂γ = 0. We write |γ | = | supp γ |. (In [9] this object was called a generalized
loop.)

• Let γ ∈ C1(BN,Z) be a loop. A 2-chain q ∈ C2(BN,Z) is an oriented surface with boundary γ if ∂q = γ .

2.3 Plaquette adjacency graph
Let G2 be the graph with vertex set C2(BN)+ and an edge between two distinct vertices p1, p2 ∈ C2(BN)+ if
and only if supp ∂̂p1 ∩ supp ∂̂p2 �= ∅.

Since any plaquette p ∈ C2(BN)+ in BN is in the boundary of at most 2(m − 2) 3-cells, and any such
3-cell has exactly five plaquettes in its boundary that are not equal to p, it follows that there are at
most 5 · 2(m − 2) = 10(m − 2) = M plaquettes p′ ∈ C2(BN)+ � {p} with supp ∂̂p ∩ supp ∂̂p′ �= ∅. Therefore,
it follows that each vertex in G2 has degree at most M.

2.4 Vortices
Definition 2.1 (Vortex). A closed 2-form ν ∈ �2

0(BN, G) is said to be a vortex if (supp ν)+ induces a
connected subgraph of G2.

The set of all vortices in �2(BN, G) is denoted by �. We note that the definition of vortex we use here
is not exactly the same as the definition used in [7–10], but agrees with the definition used in [3, 5].

When ω, ν ∈ �2(BN, G), we say that ν is a vortex in ω if ν is a vortex and supp ν corresponds to a
connected subgraph of the subgraph of G2 induced by supp ω.

Lemma 2.2 (The Poincaré lemma, Lemma 2.2 in [5]). Let k ∈ {1, . . . , m} and let B be a box in Z
m.

Then the exterior derivative d is a surjective map from the set �k−1(B ∩ Z
m, G) to �k

0(B ∩ Z
m, G).

Moreover, if G is finite, then this map is an
∣∣�k−1

0 (B ∩ Z
m, G)

∣∣-to-1 correspondence. Lastly, if
k ∈ {1, 2, . . . , m − 1} and ω ∈ �k

0(B ∩Z
m, G) vanishes on the boundary of B, then there is a (k − 1)-

form ω′ ∈ �k−1(B ∩ Z
m, G) that also vanishes on the boundary of B and satisfies dω′ = ω.

Lemma 2.3 (Lemma 2.4 of [7]). Let ω ∈ �2
0(BN, G). If ω �= 0 and the support of ω does not contain

any boundary plaquettes of BN, then either
∣∣(supp ω)+

∣∣ = 2(m−1), or
∣∣(supp ω)+| � 4(m−1)−2.

In [7], we proved Lemma 2.3 only in the case m = 4, but since the proof for general m � 2 is analogous
we do not include it here.

In Figure 1, we illustrate the only two possibilities for (supp ω)+ if
∣∣(supp ω)+

∣∣ = 4(m − 1) − 1 when
m = 4. For general m � 2, the situation is analogous.

Lemma 2.4 (Lemma 4.6 in [9]). Let ω ∈ �2
0(BN, G). If the support of ω does not contain any

boundary plaquettes of BN and
∣∣(supp ω)+

∣∣ = 2(m − 1), then there is an edge e ∈ C1(BN) and
g ∈ G � {0} such that

ω = d
(
g 1e − g1−e

)
. (6)
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8 | M. P. Forsström and F. Viklund

If ω ∈ �2(BN, G) is such that (6) holds for some e ∈ C1(BN) and g ∈ G � {0}, then we say that ω is a
minimal vortex around e.

Lemma 2.5. Let ω ∈ �2
0(BN, G), and assume that the support of ω does not contain any boundary

plaquettes of BN and
∣∣(supp ω)+

∣∣ = 4(m − 1) − 2. Then there are two distinct edges e, e′ ∈ C1(BN)

with (∂̂e)+ ∩ (∂̂e′)+ �= ∅ and σ ∈ �1(BN, G) with (supp σ)+ = {e, e′} such that dσ = ω.

For a proof of Lemma 2.5, see the proof of [7, Lemma 2.4].

Lemma 2.6. Let q be an oriented surface with ∂q = γ . Further, let ω ∈ �2(BN, G) be such that
dω = 0 and ω(q) �= 0. Then any box which contains supp ω must intersect an edge in supp γ .

Proof. Let B be a box that contains supp ω. Since dω = 0, by the Poincaré lemma (see, e.g., [9, Lemma
2.2] there is σ ∈ �1(BN, G) whose support is contained in B such that dσ = ω. Moreover, we have ω(q) =
σ(γ ) (see, e.g., [9, Section 2.4]). Consequently, if B does not intersect supp γ , then ω(q) = σ(γ ) = 0, a
contradiction. �

Lemma 2.7. Let ν ∈ �2(BN, G) satisfy dν = 0, let B be a box that contains the support of ν and let
p ∈ supp ν. Then there is at least one 1-cell in supp ∂p that is not in the boundary of B.

Proof. Assume for contradiction that all edges in supp ∂p are in the boundary of B. Then there is a 3-cell
c ∈ ∂̂p that is not contained in B. Since B is a box, p must be the only plaquette in supp ∂c that is in B.
Since the support of ν is contained in B, it follows that

dν(c) =
∑
p′∈∂c

ν(p′) = ν(p) �= 0.

Since this contradicts the assumption that dν = 0, the desired conclusion follows. �

The following lemma is elementary.

Lemma 2.8. There is a constant Cm > 0 such that for any e ∈ C1(BN)+ and j � 0, we have∣∣{p ∈ C2(BN)+ : dist(p, e) = j}∣∣ � Cm max(1, j)m−1.

Lemma 2.9. Let j � 1, let p ∈ C0(BN) and let B be a box with side lengths s1, s2, . . . , sm that contains
p and is such that every face of the box contains at least one point on distance at least j from
p. Then

∑m
i=1 si � jm/(m − 1).

Proof. Without loss of generality we can assume that the box B has corners at (0, 0, . . . 0) and
(s1, s2, . . . , sm), that p = (x1, x2, . . . , xm), and that 0 � xi � si/2 for i = 1, 2, . . . , m. Then the assumption on
B is equivalent to that

xi +
∑
k �=i

(sk − xk) � j

for each i ∈ {1, 2, . . . , m}. Summing over i, we obtain

m∑
i=1

(
xi +

∑
k �=i

(sk − xk)
)

� mj ⇔
m∑

i=1

xi + (m − 1)

m∑
i=1

si − (m − 1)

m∑
i=1

xi � mj

⇔ (m − 1)

m∑
i=1

si � mj + (m − 2)

m∑
i=1

xi.

From this the desired conclusion immediately follows. �
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Lemma 2.10. There is a constant Ĉm > 0 such that for any oriented surface q, any let j � 1, and
any ν ∈ � with ν(q) = 1 and dist(supp ν, γ ) = j, we have |(supp ν)+| � Ĉm(j + 1).

Proof. Let B be the (unique) smallest box that contains the support of ν, and assume that the side
lengths of B are s1, . . . , sm. Since ν(q) = 1, it follows from Lemma 2.6 that B intersects an edge of supp γ .
Consequently, there is some edge in γ whose both endpoints are contained in B. Fix one such edge e.
Note that, by assumption, we have dist(supp ν, e) � j. Since B is a minimal box containing supp ν, there
must be one edge on each face of the box which is contained in the boundary of some plaquette in
supp ν. At the same time, by Lemma 2.7, since dν = 0, no plaquette in supp ν can be in the boundary
of B. This implies in particular that each plaquette in p ∈ (supp ν)+ must have an edge in its boundary
that is not in the boundary of B. Since for each such plaquette we must have dist(p, e) � j, it follows
from Lemma 2.9 that

m∑
i=1

(si − 2) � (j + 1)m
m − 1

⇔
m∑

i=1

si � (j + 1)m
m − 1

+ 2m.

Since ω ∈ �, the set (supp ω)+ induces a connected subgraph of G2. Since each face of B contains at least
one edge that is in the boundary of some plaquette in (supp ω)+, the desired conclusion immediately
follows. �

We end this section by introducing some additional notation for vortices. Recall that � denotes the
set of vortices in �2

0(BN, G). For p ∈ C2(BN), q ∈ C2(BN,Z), and j � 1, we define

�j := {
ν ∈ � : |(supp ν)+| = j

}
and �j+ := {

ν ∈ � : |(supp ν)+| � j
}
,

�j,p := {
ν ∈ �j : p ∈ supp ν

}
and �j+ ,p := {

ν ∈ �j+ : p ∈ supp ν
}
,

and

�j,q := {
ν ∈ �j : ν(q) �= 0

}
and �j+ ,q := {

ν ∈ �j+ : ν(q) �= 0
}
.

Further, we let

�j+ := {
ν ∈ � : |(supp ν)+| � j} and �j− := � � �j+ .

We will always use the notation p for a single plaquette and q for a 2-chain, so the notation above should
not cause confusion when used below. We note that the sets defined above depend on N but usually
suppress this in the notation. When we want to emphasize this we write �j(BN), �j+(BN), etc.

2.5 Vortex clusters
If ν1, ν2 ∈ �, we write ν1 ∼ ν2 if there is p1 ∈ (supp ν1)

+ and p2 ∈ (supp ν2)
+ such that p1 ∼ p2 in G2.

Consider a multiset

V = { ν1, . . . , ν1︸ ︷︷ ︸
nV (ν1) times

, ν2, . . . , ν2︸ ︷︷ ︸
nV (ν2) times

, . . . , νk, . . . , νk︸ ︷︷ ︸
nV (νk) times

} = {νn(ν1)

1 , . . . , νn(νk)

k },

where ν1, . . . , νk ∈ � are distinct and n(ν) = nV (ν) denotes the number of times ν occurs in V . Following
[11, Chapter 3], we say that V is decomposable if there exist non-empty and disjoint multisets V1,V2 ⊂ V
such that V = V1 ∪ V2 and such that for each pair (ν1, ν2) ∈ V1 × V2, we have ν1 � ν2. If V is not
decomposable, it is by definition a vortex cluster. We stress that a vortex cluster is unordered and may
contain several copies of the same vortex.

Given a vortex cluster V , let us define

|V| =
∑
ν∈�

nV (ν)
∣∣(supp ν)+

∣∣, n(V) =
∑
ν∈�

nV (ν), and suppV =
⋃
ν∈V

supp ν.
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10 | M. P. Forsström and F. Viklund

For a 2−chain q ∈ C2(BN,Z), we define

V(q) =
∑
ν∈�

nV (ν)ν(q).

We write � for the set of all vortex clusters of �. To simplify notation, for p ∈ C2(BN), q ∈ C2(BN,Z),
and j � 1, we define

�j := {
V ∈ � : |V| = j

}
and �j+ := {

V ∈ � : |V| � j
}
,

�j,p := {
V ∈ �j : p ∈ suppV

}
and �j+ ,p := {

V ∈ �j+ : p ∈ suppV
}
,

and

�j,q := {
V ∈ �j : V(q) �= 0

}
and �j+ ,q := {

V ∈ �j+ : V(q) �= 0
}
.

Further, we let

�j+ := {
V ∈ � : |V| � j} and �j− := �1+ � �j+ .

As before, the sets defined above depend on N but we usually suppress this. When we want to emphasize
the dependence we write �j(BN), �j+(BN), etc.

The following lemma gives an upper bound on the number of vortices of a given size that contains a
given plaquette p. This lemma will later be used to upper bound the total weight of all such clusters.

Lemma 2.11. Let k � 1 and let p ∈ C2(BN)+. Then,

|�k,p| � M2k−1.

Proof. Let P be the set of all paths in G2 that starts at p and has length 2k − 1. Since each vertex in G2

has degree at most 10(m − 2) = M, we have |P| � M2k−1.
For ν ∈ �k,p, let Gν be the subgraph of G2 induced by the set (supp ν)+. Then Gν is connected, and

hence Gν has a spanning path Tν ∈ P of length 2
∣∣(supp ν)+

∣∣ − 1 = 2k − 1 which starts at p. Since the
map ν �→ Tν is an injective map from �k,p to P and |P| � M2k−1, the desired conclusion immediately
follows. �

2.6 The activity
For β � 0 and g ∈ G with a unitary, one-dimensional representation ρ, we set

φβ(g) := eβ Re(ρ(g)−ρ(0)).

Since ρ is unitary, for any g ∈ G we have ρ(g) = ρ(−g), and hence Re ρ(g) = Re ρ(−g). In particular, for
any g ∈ G

φβ(g) = eβ(Re ρ(g)−ρ(0)) = eβ(Re ρ(−g)−ρ(0)) = φβ(−g). (7)

For ω ∈ �2(BN, G) and β � 0 we define the activity of ω by

φβ(ω) :=
∏

p∈C2(BN)

φa
(
ω(p)

)
.

Note that for σ ∈ �1(BN, G), the Wilson action lattice gauge theory probability measure can be written

μβ,N(σ ) = φβ(dσ)∑
σ∈�1(BN ,G) φβ(dσ)

. (8)
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Moreover, in the case when G = Z
2 for ω ∈ �2(BN,Z2), we have

φβ(ω) =
∏

p∈C2(BN)

φβ

(
ω(p)

) =
∏

p∈C2(BN)

e−2β1

(
ω(p)=1

)
= e−2β

∑
p∈C2 (BN ) 1

(
ω(p)=1

)
= e−2β| supp ω|.

We note that, by definition, if ω, ν ∈ �2(BN, G) and ν is a vortex in ω, then φβ(ω) = φβ(ν)φβ(ω − ν).
We extend the notion of activity to vortex clusters V ∈ � by letting

φβ(V) =
∏
ν∈�

φβ(ν)nV (ν) = e−4β|V|.

3 Low Temperature Cluster Expansion
In this section we review the cluster expansion for the relevant Ising lattice gauge theory partition
functions defined on a finite box BN. The material here is for the most part well known. See [11] for a
text book presentation for the standard Ising model and [19] for a discussion in the context of lattice
gauge theories.

3.1 Ursell function
We will work with the Ursell function corresponding to the choice of vortices as polymers and hard core
interaction: two vortices are compatible if and only if they correspond to separate components in the
graph G2. Before defining the Ursell function, we need some additional notation. For k � 1, we write
G ∈ Gk if G is a connected graph with vertex set V(G) = {1, 2, . . . , k}. Let E(G) be the (undirected) edge set
of G. Recall that we write ν1 ∼ ν2 if there is p1 ∈ (supp ν1)

+ and p2 ∈ (supp ν2)
+ such that p1 ∼ p2 in G2,

where G2 was defined in Section 2.3.

Definition 3.1 (The Ursell function). For k � 1 and ν1, ν2, . . . , νk ∈ �, we define

U(ν1, . . . , νk) := 1
k!

∑
G∈Gk

(−1)|E(G)| ∏
(i,j)∈E(G)

1(νi ∼ νj).

Note that this definition is invariant under permutations of the vortices ν1, ν2, . . . , νk.
For V ∈ � with n(V) = k and any enumeration ν1, . . . , νk (with multiplicities) of the vortices in V , we

define

U(V) = k! U(ν1, . . . , νk). (9)

Note that for any V ∈ � with n(V) = 1, we have U(V) = 1, and for any V ∈ � with n(V) = 2, we have
U(V) = −1.

3.2 Partition functions
The partition function for Ising lattice gauge theory, viewed as a model for plaquette configurations can
be written as follows:

Zβ,N =
∑

ω∈�2
0(BN ,G)

eβ
∑

p∈C2 (BN ) Re(ρ(ω(p))−ρ(0)) =
∑

ω∈�2
0(BN ,G)

φβ(ω).

See, for example, Section 3 of [9]. This is a finite sum and the definition extends to β ∈ C. An alternative
representation for Zβ,N is given by the vortex partition function which is defined by the following (formal)
expression:

Zv
β,N = exp

(∑
V∈�

�β(V)

)
, (10)
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12 | M. P. Forsström and F. Viklund

where for V ∈ �, we define

�β(V) := U(V)φβ(V),

and U is the Ursell function defined in Definition 3.1.
Recall the definition of β0 = β0(m) from (5). It is not obvious that the series in the exponent of (10)

is convergent but this follows from the next lemma, assuming Re β > β0. We verify below that, with
this assumption, log Zβ,N = log Zv

β,N. In addition, the lemma below gives us an upper bound on a sum
over clusters that will be crucial in all of the other estimates of this type throughout the paper. The
conclusion of the lemma follows from [11, Theorem 5.4] after verifying that the assumptions of this
theorem hold, and doing this is the main step of the proof.

Lemma 3.2. Let G = Z2. Suppose Re β > β0(m). Then there is α > 0 such that for any ν ∈ �, we
have

∑
V∈� : V�ν

∣∣�β(V)
∣∣ � eα| supp ν|φβ(ν).

Moreover, the series in (10) is absolutely convergent.

Proof. Let α > 0 be such that

M2e−2(2 Re β−α) < 1

and

(
M2e−2(2 Re β−α)

)2(m−1)

1 − M2e−2(4 Re β−α)
� α.

Note that by the choice of β0, such α exists. We have, for each ν ∈ � we have

∑
ν′∈�

|φβ(ν ′)|eα| supp ν′ |1(ν ∼ ν ′) � α| supp ν|.

Given this, the conclusion follows from Theorem 5.4 of [11] by choosing a(ν) := α| supp ν|. To this end,
let ν ∈ �. Then,

∑
ν′∈�

|φβ(ν ′)|eα| supp ν′ |1(ν ∼ ν ′) =
∑

ν′∈� : ν∼ν′
|φβ(ν ′)|eα| supp ν′ |

=
∑

ν′∈� : ν∼ν′
e−(2 Re β−α)| supp ν′ |

�
∑

p∈(supp ν)+

∑
p′∈C2(BN)+ :

p′∼p

∞∑
j=2(m−1)

|�j,p′ |e−(2 Re β−α)2j.

Using Lemma 2.11 and the definition of M, it follows that

∑
ν′∈�

|φβ(ν ′)|eα| supp ν′ |1(ν ∼ ν ′) �
∣∣(supp ν)+

∣∣ ∞∑
j=2(m−1)

M2je−(2 Re β−α)2j

= |(supp ν)+|
(
M2e−2(2 Re β−α)

)2(m−1)

1 − M2e−2(2β−α)
.

The desired conclusion now follows from the choice of α. �
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The next lemma, Lemma 3.3, is the key lemma which connects the two partition functions Zβ,N and
Zv

β,N.

Lemma 3.3. Let G = Z2. Suppose Re β > β0(m). Then

log Zβ,N = log Zv
β,N =

∑
V∈�

�β(V), (11)

and log Zβ,N is an analytic function of β.

Proof. Let A be the set of all subsets �′ of � with the property that the vortices in �′ are not connected
in G2. Then set �2

0(BN, G) is in bijection with A. Therefore, we can write

Zβ,N =
∑
�′⊂�

φβ(�′)
∏

{ν,ν′ }⊂�′
1(ν � ν ′)

and this holds for any choice of β. On the other hand, if Re β > β0(m), we can apply Proposition 5.3 of
[11] to see that the right-hand side in the last display equals log Zv

β,N as defined in (10). �

We now assume β is real. When β > β0 we write Zβ,N also for the vortex partition function Zv
β,N (since

in this case, they are equal by Lemma 3.3). We wish to express the Wilson loop expectation using the
logarithm of the partition function. For this, we fix a loop γ and an oriented surface q such that γ = ∂q
and recall the following fact; see [9, Section 3].

Lemma 3.4. Let G = Z2. Let β � 0 and let q be an oriented surface with ∂q = γ . Then for all N
such that supp q ⊆ BN

Eβ,N[Wγ ] = Z−1
β,N

∑
ω∈�2

0(BN ,G)

φβ(ω)ρ
(
ω(q)

)
.

Consider now the weighted vortex partition function

Zβ,N[q] := exp

(∑
V∈�

�β,q(V)

)
, (12)

where

�β,q(V) := �β(V)ρ
(
V(q)

) = U(V)φβ(V)ρ
(
V(q)

)
.

The series on the right-hand side of (12) is absolutely convergent when β > β0(m) by the proof of
Lemma 3.2 since

∣∣ρ(
V(q)

)∣∣ = 1 for each V ∈ �. As in the proof of Lemma 3.3, using [11, Proposition
5.3], replacing the weight φβ(V) by φβ(V)ρ

(
V(q)

)
, we have

log Zβ,N[q] =
∑

ω∈�2
0(BN ,G)

φβ(ω)ρ
(
ω(q)

)
.

The following result is the main reason that cluster expansions are helpful to us, as it enables us to
express the logarithm of the Wilson loop observable as a sum over clusters interacting with the loop.
The rest of the paper is then concerned with understanding the sum in the right-hand side of (13).

Proposition 3.5. Let G = Z2. Let β > β0(m) and let q be an oriented surface with ∂q = γ . Then for
all N such that supp q ⊆ BN,

− logEβ,N[Wγ ] =
∑
V∈�

(
�β(V) − �β,q(V)

) =
∑
V∈�

�β(V)
(
1 − ρ

(
V(q)

))
. (13)
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14 | M. P. Forsström and F. Viklund

Proof. Using Lemma 3.4 and then Lemma 3.3 and (12) we conclude that

logEβ,N[Wγ ] = log
Zβ,N[q]

Zβ,N
,

which is what we wanted to prove. �

Remark 3.6. Notice that Proposition 3.5 implies that Eβ,N[Wγ ] ∈ (0, 1] when β > β0(m). This
fact is not clear from the start since Wγ ∈ {−1, 1} for every σ ∈ �1(BN,Z2). The positivity of
Eβ,N[Wγ ] was pointed out in [5] and proved there as a consequence of duality. Here we obtain
the conclusion as a result of the convergence of the cluster expansion.

4 Estimates for the Cluster Expansion
Throughout this section, we assume that γ is a simple loop, and that q is an oriented surface with ∂q = γ .
Recall that we use the notation 	 = |γ |. Recall also that 	c denotes the number of corners of γ , that is,
pairs of non-parallel edges in γ that are both in the boundary of some common plaquette, and that 	b

denotes the number of bottlenecks in γ , that is, pairs (e, e′) of parallel edges in γ that are both in the
boundary of some common plaquette. From now on, we also assume G = Z2.

The main goal of this section is to provide proofs of the three propositions below, which all deal with
parts of the sum

∑
V∈�

(
�β(V) − �β,q(V)

)
, whose relevance stems from (13) of Proposition 3.5. The first

of the three propositions, Proposition 4.1 below, gives upper and lower bounds for the contribution to
the sum caused by clusters that contain exactly one vortex.

Proposition 4.1. Let ε > 0. There exists D1 < ∞ such that for any β > β0(m) + ε,

0 �
∑

V∈� : n(V)=1

(
�β(V) − �β,q(V)

) − 	Hm,β(γ ) � D1	e−16(m−1)β ,

where

Hm,β(γ ) = e−8(m−1)β + (
6(m − 1) − 2	c − 2	b

	

)
e−4(4(m−1)−2)β .

The second main result of this section, Proposition 4.2 below, gives an upper bound to the contribution
to the sum

∑
V∈�

(
�β(V) − �β,q(V)

)
from clusters which contain at least two vortices.

Proposition 4.2. Let ε > 0. There exists D1 < ∞ such that for any β > β0(m) + ε,∑
V∈� : n(V)�2

∣∣∣�β(V) − �β,q(V)

∣∣∣ � 2D1	e−16(m−1)β .

The last main result of this section, Proposition 4.3, gives an upper bound to the contribution to∑
V∈�

(
�β(V) − �β,q(V)

)
from clusters whose support is larger than some integer k.

Proposition 4.3. Let ε > 0. For any β > β0(m) + ε =: β∗ and k � 1,

∑
V∈�k+

∣∣�β(V) − �β,q(V)
∣∣ � CmCβ∗ 	

∞∑
j=0

max(1, j)m−1e−4(β−β∗) max(k,Ĉm(j+1)),

where Cβ∗ is defined in (14).

Before giving the proofs of Propositions 4.1, 4.2, and 4.3, we need several auxiliary results. The first of
these results is the following lemma, which exactly quantifies the total contribution of minimal vortices
to the sum on the right-hand side of (13). Since all other types of vortices are larger, these will give the
leading order term in the sum

∑
V∈�

(
�β(V) − �β,q(V)

)
, and hence in log〈Wγ 〉β . We further note that this
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leading order term will exactly match the leading order term of Wilson loop observables found in, for
example, [3, 5, 9].

Lemma 4.4. Let β � 0. Then,

∑
ν∈�2(m−1),q

φβ(ν) = 	e−8(m−1)β .

Proof. Let ν ∈ �2(m−1). Then φβ(ν) = e−8(m−1)β . By Lemma 2.4, we have ν(q) �= 1 if and only if ν is a minimal
vortex around some edge e ∈ γ . Combining these observations, the conclusion immediately follows. �

The next lemma is similar to Lemma 4.4 above, but instead of considering minimal vortices, consider
the contribution to the right-hand side of (13) of the vortices that are as small as possible while not being
minimal.

Lemma 4.5. Let β � 0. Then,

∑
ν∈�4(m−1)−2,q

φβ(ν) = (
6(m − 1)	 − 2	c − 2	b

)
e−4(4(m−1)−2)β .

Proof. Let ν ∈ � be such that |(supp ν)+| = 4(m − 1) − 2. Then φβ(ν) = e−4(4(m−1)−2)β . By Lemma 2.5,
there is σ ∈ �1(BN, G) such that dσ = ν and (supp σ)+ = {e1, e2}, where e1 and e2 are distinct edges and
supp ∂̂e1 ∩ supp ∂̂e2 �= ∅. Since

ν(q) = σ(γ ) =
∑
e∈γ

σ (e),

and G = Z2, it follows that

ν(q) =
⎧⎨
⎩1 if

∣∣supp γ ∩ {e1, e2}
∣∣ = 1

0 else.

From this it follows that ν(q) �= 1 if and only if one of the following hold:

(i) The edges e1 and e2 are parallel (see Figure 1(b)), and exactly one of e1 and e2 are in supp ∂q =
supp γ .

(ii) The edges e1 and e2 are not parallel (see Figure 1(c)), and exactly one of e1 and e2 are in supp ∂q =
supp γ .

We will now count the number of vortices ν ∈ � with |(supp ν)+| = 4(m − 1) − 2 which correspond
to each of the two cases (i) and (ii). To this end, consider first the set A1 of all vortices ν ∈ � with
|(supp ν)+| = 4(m − 1) − 2 that corresponds to the case (i). By the above, this set is in bijection with
the set of all pairs {e1, e2} of distinct parallel edges that are both in the boundary of some common
plaquette, exactly one of which is in γ . For each e ∈ γ , there are exactly 2(m − 1) positively oriented
plaquettes that has e in its boundary. Hence, given e ∈ γ , there are exactly 2(m − 1) positively oriented
edges, distinct from e, that are parallel to e and are in the boundary of some plaquette that also has
e in its boundary. Hence, if γ has no bottleneck edges, meaning that 	b = 0 then the cardinality of A1

is 2(m − 1)	. If 	b �= 0, then the cardinality of A1 is 2(m − 1)	 − 2	b as the above argument counts each
pair {e1, e2} corresponding the two parallel edges in a bottleneck twice. By an analogous argument, the
cardinality of the of all vortices ν ∈ � with |(supp ν)+| = 4(m − 1) − 2 that corresponds to the case (ii)
and for which exactly one of the edges e1, e2 is in γ is 4(m − 1)	 − 2	c. From this, the desired conclusion
immediately follows. �
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16 | M. P. Forsström and F. Viklund

The next lemma gives an upper bound on the total weight of all sufficiently large clusters with a given
plaquette in its support. This lemma will be important in proving our main results, as it will provide
upper bounds on the error terms that appear.

Lemma 4.6. Let β > β0(m), k � 1 and p ∈ C2(BN). Further, let β∗ ∈ (
β0(m), β

)
. Then

∑
V∈�k+ ,p

∣∣�β(V)
∣∣ � Cβ∗ e−4(β−β∗)k,

where Cβ∗ is defined by

Cβ∗ := sup
N�1

∑
V∈�1+ ,p

∣∣�β∗ (V)
∣∣ < ∞. (14)

Proof. By Lemma 3.2, for any ν ∈ �, we have

∑
V∈� : V�ν

�β(V) � e| supp ν|/3φβ(ν),

and hence

∑
V∈�1+ ,p

∣∣�β(V)
∣∣ �

∑
ν∈�1+ ,p

∑
V∈� : V�ν

∣∣�β(V)
∣∣ �

∑
ν∈�1+ ,p

e| supp ν|/3φβ(ν) =
∑

ν∈�1+ ,p

e−(2β−1/3)| supp ν|. (15)

Using Lemma 2.3, it follows that

∑
ν∈�1+ ,p

e−(4β−1/3)| supp ν| =
∞∑

k=2(m−1)

∑
ν∈�k,p

e−(2β−1/3)| supp ν|

=
∞∑

k=2(m−1)

|�k,p|e−(2β−1/3)2k.

(16)

Combining (15) and (16) and using Lemma 2.11, we obtain

∑
V∈�1+ ,p

∣∣�β(V)
∣∣ �

∞∑
k=2(m−1)

M2k−1e−2(2β−1/3)k.

In particular, this implies that Cβ∗ < ∞, and hence Cβ∗ is well defined.
For any V ∈ �, we have φβ(V) = e−2β|V| and �β(V) = U(V)ψβ(V), where U(V) does not depend on β,

and hence

�β(V) = e−2(β−β∗)|V|�β∗ (V).

Using this observation, we obtain

∑
V∈�k+ ,p

∣∣�β(V)
∣∣ � e−4(β−β∗)k

∑
V∈�k+ ,p

∣∣�β∗ (V)
∣∣ � e−4(β−β∗)k

∑
V∈�1+ ,p

∣∣�β∗ (V)
∣∣.

This concludes the proof. �

The next lemma is similar to Lemma 4.6 above, but instead gives an upper bound on the total weight
of sufficiently large clusters that interact with a given oriented surface q.
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Lemma 4.7. Let β > β0(m), and let k � 1. Further, let β∗ ∈ (β0(m), β). Then

∑
V∈�k+ ,q

∣∣�β(V)
∣∣ � CmCβ∗ 	

∞∑
j=0

max(1, j)m−1e−4(β−β∗) max(k,Ĉm(j+1)),

where Cβ∗ is defined in (14), Cm is defined in (2.8), and Ĉm is defined in (2.10).

Proof. Note first that

∑
V∈�k+ ,q

|�β(V)| =
∞∑

j=0

∑
V∈�k+ ,q

dist(suppV,γ )=j

|�β(V)|. (17)

Using Lemma 2.10, we can write

∞∑
j=0

∑
V∈�k+ ,q

dist(suppV,γ )=j

|�β(V)| �
∞∑

j=0

∑
p∈C2(BN)+ :
dist(p,γ )=j

∑
V∈�max(k,Ĉm (j+1))+ ,p

|�β(V)|.
(18)

By using Lemma 2.8 and Lemma 4.6, the right-hand side of the previous equation can be bounded from
above by

∞∑
j=0

CmCβ∗ 	 max(1, j)m−1e−4(β−β∗) max(k,Ĉm(j+1)).

Combining this observation with (17) and (18), we obtain the desired conclusion. �

Remark 4.8. Lemmas 4.6 and 4.7 remain valid for complex β, assuming Re β > β0(m). Indeed, the
proofs work verbatim replacing β by Re β.

We are now ready to give the proof of Proposition 4.1, which gives the leading order term and error
estimates for the contribution to the sum

∑
V∈�

(
�β(V)−�β,q(V)

)
from clusters V that consist of exactly

one vortex. The proof has two main steps. The first step is to note that the contribution from clusters
with large support is very small (using Lemma 4.7). The second step of the proof is to carefully look at the
contributions of the smallest vortices (see Figure 1). Doing this, we obtain the term 	Hm,β(γ ). Combining
the two steps, we obtain the desired conclusion.

Proof of Proposition 4.1. Set β∗ = β0 + ε. Note first that

∑
V∈� :

n(V)=1

(
�β(V) − �β,q(V)

) =
∑
ν∈�

U
({ν})�β(ν)

(
1 − ρ

(
ν(q)

)) = 2
∑

ν∈�1+ ,q

�β(ν) = 2
∑

ν∈�1+ ,q

φβ(ν). (19)

Using Lemma 2.3, we get

∑
ν∈�1+ ,q

φβ(ν) =
∑

ν∈�2(m−1),q

φβ(ν) +
∑

ν∈�4(m−1)−2,q

φβ(ν) +
∑

ν∈�4(m−1)+ ,q

φβ(ν). (20)

Now note that if V ∈ �1, then �(V) = φβ(V) > 0. Using Lemma 4.7, applied with k = 4(m − 1), we thus
obtain

0 �
∑

ν∈�4(m−1)+ ,q

φβ(ν) �
∑

V∈�4(m−1)+ ,q

∣∣�β(V)
∣∣ � D1	e−16(m−1)β , (21)
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18 | M. P. Forsström and F. Viklund

where

D1 := CmCβ∗ e16(m−1)β∗
∞∑

j=0

max(1, j)m−1e−4(β−β∗) max(0,Ĉm(j+1)−4(m−1)). (22)

We see that D1 = Oβ(1). At the same time, by combining Lemma 4.4 and Lemma 4.5, we have

∑
ν∈�2(m−1),q

φβ(ν) +
∑

ν∈�4(m−1)−2,q

φβ(ν)

= 	e−8(m−1)β + (
6(m − 1)	 − 2	c − 2	b

)
e−4(4(m−1)−2)β = 	Hm,β(γ ).

(23)

Combining (19), (20), (21), and (23), we obtain the desired conclusion. �

We now prove Proposition 4.2. The main idea of the proof is to first note that any cluster with V(q) = 0
makes a zero contribution to the sum on the right-hand side of (13). Next, we make the observation that
if a cluster contains at least two vortices, then it must necessarily have support at least 4(m − 1). From
this, the desired conclusion will follow by using Lemma 4.7.

Proof of Proposition 4.2. Set β∗ = β0 + ε. Note first that given V ∈ �, we have ρ
(
V(q)

) �= 1 if and only if
ρ
(
V(q)

) = −1 and hence V(q) �= 0. This implies in particular that

∑
V∈� :

n(V)�2

(
�β(V) − �β,q(V)

) =
∑
V∈� :

n(V)�2

�β(V)
(
1 − ρ

(
V(q)

)) = 2
∑

V∈�1+ ,q :
n(V)�2

�β(V).

Consequently, using Lemma 2.3, we find that

∑
V∈� :

n(V)�2

∣∣∣�β(V) − �β,q(V)

∣∣∣ � 2
∑

V∈�1+ ,q :
n(V)�2

∣∣�β(V)
∣∣ � 2

∑
V∈�4(m−1)+ ,q

∣∣�β(V)
∣∣.

(24)

Using Lemma 4.7, applied with k = 4(m − 1), we thus obtain

∑
V∈� :

n(V)�2

∣∣∣�β(V) − �β,q(V)

∣∣∣ � 2D1	e−16(m−1)β ,
(25)

where D1 is given by (22). This concludes the proof. �

We now prove Proposition 4.3, which follows almost immediately from Lemma 4.7.

Proof of Proposition 4.3. By Lemma 2.3, without loss of generality, we can assume that k � 2(m − 1).
Given V ∈ �, if ρ

(
V(q)

) �= 1 then ρ
(
V(q)

) = −1 and V(q) �= 0. This implies in particular that

∑
V∈�k+

∣∣�(V) − �q(V)
∣∣ =

∑
V∈�k+

∣∣�β(V)
∣∣(1 − ρ

(
V(q)

)) = 2
∑

V∈�k+ ,q

∣∣�β(V)
∣∣. (26)

Applying Lemma 4.7, the desired conclusion immediately follows. �

5 Proof of Theorem 1.1
This section proves Theorem 1.1. First, however, we need two additional lemmas. These are then
combined with results from previous sections to yield a proof of Theorem 1.1.
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To simplify the notation in this section, we fix some p0 ∈ C2(B1)
+. Note that C2(B1) is contained in

C2(Bj) for every j � 1. For Re β > β0(m) and N � 1, we define

FN(β) :=
∑

V∈�1+ ,p0
(BN)

�β(V)

|V| .

Lemma 5.1. Let Re β > β0(m). Then

lim
N→∞

∣∣∣∣ log Zβ,N

|C2(BN)+| − FN(β)

∣∣∣∣ = 0

locally uniformly in β.

Proof. Write �1+ ,p0 = �1+ ,p0 (BN). By Lemma 3.3 (using also Lemma 2.3), we have

log Zβ,N =
∑
V∈�

�β(V) =
∑

p∈C2(BN)+

∑
V∈�2(m−1)+ ,p

�β(V)

|V| .

Let k � 2(m − 1) be arbitrary. Without loss of generality, can assume that N is large enough to ensure
that dist(p0, ∂BN) > k. Then, by Lemma 4.6, using also Remark 4.8, it follows that for any p ∈ C2(BN), we
have

∑
V∈�k+ ,p

∣∣�β(V)
∣∣

|V| � 1
k

∑
V∈�k+ ,p

∣∣�β(V)
∣∣ � ε(β, m, k) := Cβ∗ k−1e−4(Re β−β∗)k. (27)

Note that

lim
k→∞

ε(β, m, k) = 0

uniformly on compact subsets of the halfplane Re β > β0(m). Now fix some p ∈ C2(BN)+ with
dist(p, ∂BN) > k. Since dist(p0, ∂BN) > k and dist(p, ∂BN) > k, for each i < k there is a bijection �i,p0 → �i,p

which maps each V ∈ �i,p to a translation of V in �i,p. Consequently,

∑
V∈�,k− ,p

�β(V)

|V| =
∑

V∈�k−,p0

�β(V)

|V| ,

and hence ∣∣∣∣ ∑
V∈�1+ ,p

�β(V)

|V| − FN(β)

∣∣∣∣ =
∣∣∣∣ ∑
V∈�1+ ,p

�β(V)

|V| −
∑

V∈�1+ ,p0

�β(V)

|V|
∣∣∣∣ � 2ε(β, m, 1).

Finally, we note that there is a constant C′
m such that∣∣∣{p ∈ C2(BN)+ : dist(p, ∂BN) � k

}∣∣∣ � C′
mkNm−1. (28)

We now combine the above observations as follows. By (27) and (28), we have

∣∣∣∣log Zβ,N −
∑

p∈C2(BN)+ :
dist(p,∂BN)>k

∑
V∈�1+ ,p

�β(V)

|V|
∣∣∣∣ � C′

mkNm−1ε(β, m, 1).

Using (27), it follows that

∣∣∣∣log Zβ,N −
∑

p∈C2(BN)+ :
dist(p,∂BN)>k

FN(β)

∣∣∣∣ � 2ε(β, m, k)
∣∣C2(BN)+

∣∣ + C′
mkNm−1ε(β, m, 1).
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20 | M. P. Forsström and F. Viklund

Again using (27) and (28), we get

∣∣∣∣log Zβ,N − ∣∣C2(BN)+
∣∣FN(β)

∣∣∣∣ � 2ε(β, m, k)
∣∣C2(BN)+

∣∣ + 2C′
mkNm−1ε(β, m, 1).

Dividing both sides by |C2(BN)+| and letting N → ∞, we finally obtain

lim
N→∞

∣∣∣∣ log Zβ,N

|C2(BN)+| − FN(β)

∣∣∣∣ � 2ε(β, m, k)

and this bound is decreasing in Re β > β0. Since k was arbitrary, the desired conclusion follows. �

Lemma 5.2. Let Re β > β0(m). Then FN(β) converges as N → ∞ locally uniformly.

Proof. Let k � 1. Then we can write

FN(β) =
∑

V∈�,k− ,p0
(BN)

�β(V)

|V| +
∑

V∈�k+ ,p0
(BN)

�β(V)

|V| .

Note that if j � N, then we have �j,p0 (BN) = �j,p0 (Bj). By Lemma 4.6 and Remark 4.8, we have

∣∣∣∣ ∑
V∈�k+ ,p0

(BN)

�β(V)

|V|
∣∣∣∣ � 1

k

∑
V∈�k+ ,p0

(BN)

∣∣�β(V)
∣∣ � Cβ∗ k−1e4(Re β−β∗)k.

Note in particular that this upper bound does not depend on N, is decreasing in Re β, and tends to zero
as k → ∞. From this the desired conclusion immediately follows. �

Proof of Theorem 1.1. As in Lemma 5.2, write FN(β) = ∑
V∈�1+ ,p0

(BN) �β(V)/|V| which for each N, by

Lemma 3.3, is analytic in the half plane Re β > β0(m). By Lemma 5.2 FN converges locally uniformly
as N → ∞ to a limiting function which is also analytic. By Lemma 5.1, log Zβ,N also converges locally
uniformly to the same limit. On the other hand, if q = 1 · p then, using Lemma 4.4, we have∑

V∈�2(m−1),p(BN) :
n(V)=1

φβ(V) =
∑

ν∈�2(m−1),p(BN)

φβ(ν) =
∑

ν∈�2(m−1),q

φβ(ν) = 4e−8(m−1)β , (29)

for all N sufficiently large. Similarly, using Lemma 4.5, we have∑
V∈�1,4(m−1)−2,p(BN) :

n(V)=1

φβ(V) =
∑

ν∈�4(m−1)−2,q(BN)

φβ(V) = (
24(m − 1) − 16

)
e−4(4(m−1)−2)β . (30)

At the same time, by Lemma 4.6, and Remark 4.8 we have∑
V∈�4(m−1)+ ,p(BN)

∣∣�β(V)
∣∣ � Cβ∗ e−4(β−β∗)k (31)

for all N. We conclude by combining (29), (30), and (31). �

6 Proof of Theorem 1.2
In this section, we give a proof of Theorem 1.2, which will essentially follow immediately by combining
Proposition 4.1 and Proposition 4.2.

Proof of Theorem 1.2. By combining Proposition 4.1 and Proposition 4.2, we obtain

− 3D1	e−16(m−1)β � 	H(	) +
∑
V∈�

(
�β,q(V) − �β(V)

)
� 2D1	e−16β(m−1).

Using Proposition 3.5, the proof is complete. �
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Fig. 2. In the figures above, we illustrate γ 0 and γ R, as well as the oriented surfaces q0 and qR.

Fig. 3. In the figures above, we draw a loop γ and a corresponding path γc,j.

7 Proof of Theorem 1.4 and Theorem 1.7
In this section, we state and prove Proposition 7.3 and Proposition 7.4, which are the more technical
versions of the two main results Theorem 1.4 and Theorem 1.7. The main tool in the proofs of these
results is Lemma 7.1 below.

We now introduce some additional notation. Fix a mapping ν �→ σ ν from � to �1(BN, G) which satisfies
the following:

1. For each ν ∈ �, we have dσ ν = ν.
2. For each ν ∈ �, the support of σ ν is contained in the smallest box Bν that contains the support of

ν.
3. If τ is a translation or rotation of the lattice with the property that supp ν ◦ τ ⊆ C2(BN), then

σ ν◦τ = σ ν ◦ τ .

Note that such a mapping exists by Lemma 2.2.
Given V ∈ �, let EV = ⋃

ν∈V supp σ ν . Given an edge e ∈ C1(BN)+ and m � 1, let

Ξm,e := {
V ∈ �m : e ∈ EV

}
.

Define Ξe and Ξm+,e as before. Finally, we let Ξm−,e = Ξ1+ ,e � Ξ,m+,e.
Fix any e0 ∈ C1(BN) and let γ 0 be the bi-infinite line through e0. Given R � 1, let γ̂ 0 be an axis-parallel

translation of −γ 0 such that the distance between γ 0 and γ̂ 0 is R, and let γ R = γ 0 + γ̂ 0. Let qR be the
bi-infinite strip with boundary γ R, and let q0 be a half-plane with boundary γ 0 (see Figure 2). We use
the same notations for the restrictions of γ 0, γ R, q0, and qR to C1(BN) and C2(BN), respectively.

Given a rectangular loop γ and j � 1, let γc,j be the restriction of γ to the set of edges that are on
distance at most j from a corner of γ (see Figure 3). Note that if γ is a rectangular loop, then |γc,j| � 8j.

We now describe the main idea of the proofs of Theorem 1.4 and Theorem 1.7. From Proposition 3.5,
we have an expansion of logEβ,N[Wγ ] as a convergent infinite sum over vortex clusters. From the
estimates in Section 4, it follows that most of the contribution to this sum comes from vortex clusters of
finite (fixed) size. In this sum, there are many vortex clusters that either translations or rotations of each
other. For this reason, we pick any vortex cluster V . Then V(q) depends on q only through the geometry
of γ = ∂q close to the support of V . As max(Rn, Tn) → ∞, close to the support of V the rectangular loop
γRn ,Tn will look like a straight path (or as two straight paths if only one of the sides of γn grows with n). At
the same time, the number of translations and rotations of V that affect V(q) grows linearly with γ . The
main work of the proof is to show that vortex clusters whose support is close to the corners of γRn ,Tn has
little effect on the sum in the limit. This is done in Lemma 7.1. Together with the technical Lemma 7.2,
we then give proofs of Proposition 7.3 and Proposition 7.4, which are the more technical versions of the
two main results Theorem 1.4 and Theorem 1.7.
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Lemma 7.1. Let β > β0(m). Let γ be a rectangular loop with axis-parallel sides with lengths R and
T, respectively, where R � T. Let q be the unique flat oriented surface with ∂q = γ . Let k � R
and k′ � T. Assume that N is large enough to ensure that supp γ ⊂ C1(BN−k). Then,∣∣∣∣ ∑

V∈�k′−

�β(V)1 − ρ
(
V(q)

)
(32)

− |γ |
∑

V∈Ξk−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))
(33)

− 2R
∑

V∈Ξk′−,e0
�Ξk−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))
(34)

− 2T
∑

V∈Ξk′−,e0
�Ξk−,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))∣∣∣∣ (35)

� 4
k′−1∑
j=0

|γc,j|
∑

V∈Ξj,e0

∣∣�β(V)
∣∣.

Before proving Lemma 7.1, we explain the interpretation of the sums in (32)–(35). The sum in (32)

describes the contribution to
∑

V∈� �β(V)
(
1 − ρ

(
V(q)

))
from clusters whose support is smaller than k′.

The sums in (33) and (34) essentially describe the contribution to this sum of the vortices that are small
enough, and at the same time far enough from the corners of γ , to interact with exactly one of the sides
of γ . Finally, the sum in (33) describes the contribution of the vortices that are small enough not be able
to interact with two different sides of the rectangle on distance T, but possibly large enough to interact
with two of the opposite sides of the rectangle on distance R. The right-hand side of the same equation
then corresponds to the contribution to

∑
V∈� �β(V)

(
1 − ρ

(
V(q)

))
from vortices which are very close to

one of the corners of the loop.

Proof of Lemma 7.1. Since γ is a rectangular loop and q is a flat oriented surface with boundary γ , we
have supp q ⊂ C2(BN−k). Let γR be the restriction of γ to the two sides of γ that are on distance R, and
let γT = γ − γR be the restriction of γ to the two sides of the rectangle that are on distance T. Note that
| supp γR| = 2T and that | supp γT| = 2R.

Fix j ∈ {1, 2, . . . , k′ − 1}. Then,

∑
V∈�j

�β(V)1 − ρ
(
V(q)

) =
∑
e∈γ

∑
V∈Ξj,e

|EV ∩ supp γ |−1�β(V)
(
1 − ρ

(
V(q)

))

=
∑

e∈γc,k′

∑
V∈Ξj,e

|EV ∩ supp γ |−1�β(V)
(
1 − ρ

(
V(q)

))

+
∑

e∈γ�γc,k′

∑
V∈Ξj,e

∣∣EV ∩ supp γ
∣∣−1

�β(V)
(
1 − ρ

(
V(q)

))
.

(36)

Since j < k′ � T,for any e ∈ γR � γc,j, we have

∑
V∈Ξj,e

∣∣EV ∩ supp γ
∣∣−1

�β(V)
(
1 − ρ

(
V(q)

))

=
∑

V∈Ξj,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))
,

(37)

and for any e ∈ γT � γc,j, we have

∑
V∈Ξj,e

∣∣EV ∩ supp γ
∣∣−1

�β(V)
(
1 − ρ

(
V(q)

))

=
∑

V∈Ξj,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))
.

(38)
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Since k � R, for any V ∈ Ξk−,e0 we have

∣∣EV ∩ supp γ R
∣∣ = ∣∣EV ∩ supp γ 0

∣∣ and V(qR) = V(q0). (39)

Combining the above equations, we obtain the desired conclusion. �

Lemma 7.2. For any k � 1 and any e ∈ C1(BN)+, we have

∑
V∈Ξk+ ,e

∣∣�β(V)
∣∣ � 2Cβ∗

(
m
2

) ∞∑
j=k

(j + 1)me−4(β−β∗)j
(40)

and

k−1∑
j=0

j
∑

V∈Ξj,e

∣∣�β(V)
∣∣ � 2Cβ∗

(
m
2

) k−1∑
j=2(m−1)

j
∞∑
i=j

(i + 1)me−4(β−β∗)i. (41)

Proof. Let j � k, and let Pj be the set of all positively oriented plaquettes that are at distance at most j
from e. If V ∈ Ξj,e, then we must have suppV ∩ Pj �= ∅. From this it follows that

∑
V∈Ξk+ ,e

∣∣�β(V)
∣∣ �

∞∑
j=k

∑
p∈Pj

∑
V∈�j+ ,p

∣∣�β(V)
∣∣.

Note that |Pj| � (m
2

)
2(j + 1)m. Using Lemma 2.8 and Lemma 4.6, we thus obtain (40). Finally, using first

Lemma 2.3, we note that.

k−1∑
j=0

j
∑

V∈Ξj,e

∣∣�β(V)
∣∣ �

k−1∑
j=2(m−1)

j
∑

V∈Ξj+ ,e

∣∣�β(V)
∣∣.

Using (40), we obtain (41) as desired. This concludes the proof. �

We now state and prove Proposition 7.3 and Proposition 7.4, which are the more technical versions
of the two main results Theorem 1.4 and Theorem 1.7.

Proposition 7.3. Let β > β0(m). Let (Rn)n�1 and (Tn)n�1 be non-decreasing sequences of positive
integers with limn→∞ min(Rn, Tn) = ∞. For each n � 1, let γn be a rectangular loop with axis-
parallel sides with lengths Rn and Tn, respectively. Then the limit limn→∞ − log〈Wγn 〉β/|γn| exists
and is given by

V̂β := Vβ/2 := lim
N→∞

∑
V∈Ξ1+ ,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))
.

Moreover, for any n � 1, we have

∣∣∣∣− log〈Wγn 〉β
|γn| − V̂β

∣∣∣∣ �32m2|γn|−1
∞∑

j=2(m−1)

(3M)2j−1(j + 1)m+12j/(2(m−1))e−4βj

+ 4m2
∞∑

j=min(Rn ,Tn)

(3M)2j−1(j + 1)m2j/(2(m−1))e−4βj.
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Proof. Note that for any k � 1 and N large enough to ensure that dist(e0, ∂BN) > k, we have Ξ,k,e0 (BN) =
Ξk,e0 (Bk). By Lemma 7.2, it follows that the sum

V̂β,N :=
∑

V∈Ξ1+ ,e0
(BN)

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))

is well defined and absolute convergent, uniformly in N, and hence V̂β is well defined.
Fix n � 1. Let qn be the unique 2-form with ∂qn = γn that minimizes | supp qn|. By Proposition 3.5, we

have

− logEβ,N[Wγn ] =
∑
V∈�

�β(V)
(
1 − ρ

(
V(qn)

)) =
∞∑

j=1

∑
V∈�j

�β(V)
(
1 − ρ

(
V(qn)

))
.

Let (kn)n�1 be a sequence of non-negative integers such that for each n � 1, kn � min(Rn, Tn), and
limn→∞ kn/|γn| = 0. Then, for each n � 1, by applying Lemma 7.1 with k = k′ = kn, we obtain

∣∣− logEβ,N[Wγn ] − |γ |V̂β,N
∣∣ � 4

kn−1∑
j=1

|γc,j|
∑

V∈Ξj,e0

∣∣�β(V)
∣∣ + 4|γ |

∑
V∈Ξkn+,e0

∣∣�β(V)
∣∣.

Using Lemma 2.3, we note that for any j � 2(m − 1), we have Ξj−,e0 = ∅. Also, we note that since γn is
rectangular for each n � 1, we have |γc,j| � 8j for each j � 1. Using Lemma 7.2, we thus obtain

∣∣∣∣− logEβ,N[Wγn ]
|γn| −

∑
V∈Ξ1+ ,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))∣∣∣∣
� 4|γn|−1

∞∑
j=2(m−1)

|γc,j|
∑

V∈Ξj,e0

∣∣�β(V)
∣∣ + 4

∑
V∈Ξkn+,e0

∣∣�β(V)
∣∣

� 32|γn|−1
∞∑

j=2(m−1)

j
∞∑
i=j

(
m
2

)
2(i + 1)mCβ∗ e−4(β−β∗)i

+ 4
∞∑

j=kn

(
m
2

)
2(j + 1)mCβ∗ e−4(β−β∗)j.

Letting first N and then n tend to infinity, the desired conclusion immediately follows. �

Proposition 7.4. Let β > β0(m). Let R � 1, and let (Tn)n�1 be a non-decreasing sequence of positive
integers with Tn � R and limn→∞ Tn = ∞. For each n � 1, let γn be a rectangular loop with axis-
parallel sides with lengths R and Tn, respectively. Then the limit limn→∞ − log〈Wγn 〉β/|γn| exists
and is given by

V̂β(R) := Vβ(R)/2 := lim
N→∞

∑
V∈ΞR−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))

+
∑

V∈ΞR+,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))
.

Moreover, for any n � 1, we have

∣∣∣∣− log〈Wγn 〉β
|γn| − V̂β(R)

∣∣∣∣ �|γn|−1
(
64Cβ∗

(
m
2

) k−1∑
j=2(m−1)

j
∞∑
i=j

(i + 1)me−4(β−β∗)i

+ 16R Cβ∗

(
m
2

) ∞∑
j=R

(j + 1)me−4(β−β∗)j
)
.

(42)
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Finally, we have

∣∣V̂β(R) − V̂β

∣∣ � 4
∞∑

j=R

(3M)2j−1(j + 1)m2je−4βj (43)

and hence limR→∞ V̂β(R) = V̂β .

Proof. Note that for any k � 1 and N large enough to ensure that dist(e0, ∂BN) > k, we have Ξ1+ ,k,e0 (BN) =
Ξ1+ ,k,e0 (Bk). By Lemma 7.2, it follows that the sum

V̂β,N(R) :=
∑

V∈ΞR−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))

+
∑

V∈ΞR+,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))

is well defined and absolute convergent, uniformly in N, and hence V̂β(R) = limN→∞ Vβ,N(R) is well
defined.

Fix n � 1. By Proposition 3.5, we have

− logEβ,N[Wγn ] =
∑
V∈�

�β(V)
(
1 − ρ

(
V(qn)

) =
∞∑

j=1

∑
V∈�j

�β(V)
(
1 − ρ

(
V(qn)

))
.

Consequently,

∣∣∣− logEβ,N[Wγn ] − |γn|V̂β(R)

∣∣∣
�

∑
V∈�Tn+

�β(V)
(
1 − ρ

(
V(q)

)) +
∣∣∣ ∑
V∈�Tn−

�β(V)
(
1 − ρ

(
V(q)

)) − |γn|V̂β(R)

∣∣∣
�

∑
V∈�Tn+

∣∣∣�β(V)
(
1 − ρ

(
V(q)

))∣∣∣
+

∣∣∣∣ ∑
V∈�Tn−

�β(V)
(
1 − ρ

(
V(q)

)) − |γn|
∑

V∈ΞR−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))

− 2R
∑

V∈ΞTn−,e0 �ΞR−,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

))

− 2Tn

∑
V∈ΞTn−,e0 �ΞR−,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))∣∣∣∣
+ |γn|

∑
V∈ΞTn+,e0 �ΞR−,e0

∣∣EV ∩ supp γ R
∣∣−1

∣∣∣�β(V)
(
1 − ρ

(
V(qR)

))∣∣∣
+ 2R

∑
V∈ΞTn−,e0 �ΞR−,e0

∣∣EV ∩ supp γ R
∣∣−1

∣∣∣�β(V)
(
1 − ρ

(
V(qR)

))∣∣∣
+ 2R

∑
V∈ΞTn−,e0 �ΞR−,e0

∣∣EV ∩ supp γ 0
∣∣−1

∣∣∣�β(V)
(
1 − ρ

(
V(q0)

))∣∣∣.

By applying Lemma 7.1 with k = R and k′ = Tn, we obtain

∣∣∣− logEβ,N[Wγn ] − |γn|V̂β(R)

∣∣∣
� 4

∞∑
j=0

|γc,j|
∑

V∈Ξj,e0

∣∣�β(V)
∣∣ + 4|γn|

∑
V∈ΞTn+,e0

∣∣�β(V)
∣∣ + 8R

∑
V∈ΞR+,e0

∣∣�β(V)
∣∣.
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Since γn is rectangular for each n � 1, we have |γc,j| � 8j for each j � 1. Using Lemma 7.2, we thus obtain∣∣∣− logEβ,N[Wγn ] − |γn|V̂β(R)

∣∣∣
� 64Cβ∗

(
m
2

) k−1∑
j=2(m−1)

j
∞∑
i=j

(i + 1)me−4(β−β∗)i + 8Cβ∗ |γn|
(

m
2

) ∞∑
j=Tn

(j + 1)me−4(β−β∗)j

+ 16R Cβ∗

(
m
2

) ∞∑
j=R

(j + 1)me−4(β−β∗)j.

Letting first N and then n tend to infinity, this completes the proof of (42).
To see that (43) holds, we first note that

∣∣∣V̂β,N − V̂β,N(R)

∣∣∣
�

∣∣∣ ∑
V∈ΞR+ ,e0

∣∣EV ∩ supp γ 0
∣∣−1

�β(V)
(
1 − ρ

(
V(q0)

)) −
∑

V∈ΞR+,e0

∣∣EV ∩ supp γ R
∣∣−1

�β(V)
(
1 − ρ

(
V(qR)

))∣∣∣
� 4

∑
V∈ΞR+ ,e0

∣∣�β(V)
∣∣.

Using Lemma 7.2, we thus obtain

∣∣∣V̂β,N − V̂β,N(R)

∣∣∣ � 8Cβ∗

(
m
2

) ∞∑
j=R

(j + 1)me−4(β−β∗)j.

Letting first N and then n tend to infinity, the desired conclusion immediately follows. �

Proof of Theorem 1.4. By Proposition 7.4 applied with Tn = n, Tn = R, the limit

lim
T→∞

− 1
T

log 〈WγR,T 〉β = lim
T→∞

lim
N→∞

− 1
T

logEβ,N[Wγn ] = lim
n→∞ lim

N→∞
− 2

|γn| logEβ,N[Wγn ]

exists and is equal to 2Vβ(R). Using Theorem 1.2, the desired conclusion follows. �

Proof of Theorem 1.7. By Proposition 7.3 applied with Rn = Hn and Tn = Ln, the limit

lim
n→∞ − 1

Rn + Tn
log 〈Wγn 〉β = lim

n→∞ lim
N→∞

− 2
|γn| logE[Wγn ]N,β .

exists and is equal to 2V̂β . We conclude using Theorem 1.2. �
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