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Model-Based Generation of Representative
Rear-End Crash Scenarios Across the Full

Severity Range Using Pre-Crash Data
Jian Wu , Carol Flannagan , Ulrich Sander , and Jonas Bärgman

Abstract— To quantitatively estimate the safety impact of
driving automation systems through simulation, it is crucial to use
representative baseline pre-crash scenarios. However, such base-
lines generated through existing methods are generally biased
towards either non-severe or severe crashes, as the underlying
data used are biased. This study sought to address this issue by
combining rear-end pre-crash kinematics data from naturalistic
driving and in-depth crash data to create a representative dataset
of rear-end crash characteristics across the full severity range in
the United States. Multivariate distribution models were built
for the combined dataset, and a driver behavior model for
the following vehicle was created by combining two existing
models. Simulations were conducted to generate a set of synthetic
rear-end crash scenarios, which were then weighted to create
a representative synthetic rear-end crash dataset. Finally, the
synthetic dataset was validated by comparing the distributions
of parameters and the outcomes (Delta-v, the total change in
vehicle velocity over the duration of the crash event) of the
generated crashes with those in the original combined dataset.
The synthetic crash dataset can be used for the safety impact
assessments of driving automation systems and as a benchmark
when evaluating the representativeness of scenarios generated
through other methods.

Index Terms— Rear-end crash, pre-crash data, crash scenario
generation, data combination, virtual safety assessment.

I. INTRODUCTION

DRIVING automation systems [1], including the
Advanced Driver Assistance Systems (ADAS) and

Automated Driving Systems (ADS), have the potential
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to improve traffic safety significantly [2]. However, evaluating
the safety performance of such systems remains a challenge.
Currently, virtual safety assessment is the primary procedure
due to its low cost and high efficiency compared to
conventional field tests [3], [4], [5], [6].

There are two main types of assessment of driving automa-
tion systems: safety assurance and impact assessment. Safety
assurance involves ensuring the systems operate without pos-
ing unreasonable safety risks to drivers and other road users.
This typically includes, but is not limited to, testing the
system in extreme or boundary-case scenarios to verify that
it can handle rare but potentially catastrophic events [7],
[8], [9]. Conducted both within companies [10] and as part
of regulatory requirements [11], safety assurance safeguards
against worst-case outcomes by verifying the performance
of the system under a variety of conditions. However, most
aspects of safety assurance do not aim to quantitatively esti-
mate the safety impact of the systems, such as the percentage
reduction in the risk of crashes or injuries. Therefore, although
safety assurance may use crash data from various sources
(e.g., naturalistic driving and crash databases), it is in most
parts of the safety assurance process not necessary to consider
the probability of crash occurrence across outcome severity
and combine these data into a dataset representative of real-
world crashes.

On the other hand, safety impact assessment, which is the
focus of this study, is solely about quantitatively estimating
the safety impact of the system under assessment (e.g., with
respect to crash avoidance or injury risk reduction) consid-
ering the probability of each individual event’s occurrence.
Typically, such an assessment compares the ‘baseline’ and
‘treatment’ to assess a technology. The baseline is a set
of scenarios to be analyzed without the technology under
assessment, and these scenarios must match the assessment
objective and include all relevant elements that may impact
the performance of the technology under assessment [12].
A large number of baseline scenarios is essential for making
a statistically significant comparison between the baseline
and treatment [12]. Further, the baseline scenarios (typically
crashes) must be representative of the real world. There
are two main approaches to creating a large number of
baseline scenarios: traffic-simulation-based [13], [14], [15]
and in-depth-crash-data-based (referred to as IDC-based) [10],
[16], [17], [18], [19].

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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The traffic-simulation-based approach aims to replicate
daily driving activities to generate virtual crashes in a nat-
uralistic driving environment [13], [14], [15]. Typically, this
approach uses road-user behavior models created using natu-
ralistic driving data (NDD) that contain a limited number of
crashes, often of minor severity. The simulations are carried
out over an extended period, measured in millions of sim-
ulated driving hours. Often, it is only the crash avoidance
performance of the system that is assessed – by comparing
the number of crashes generated through simulations in which
the subject vehicle is equipped with the specific ADAS or
ADS under assessment to the number of crashes from traffic
simulations without the system [20].

The IDC-based approach, on the other hand, uses detailed
real-world crash information. This information includes recon-
structed or recorded data, such as the pre-crash kinematics
of the involved road users. Virtual crashes are generated by
sampling from distributions of the parameterized pre-crash
kinematics and/or other relevant crash characteristics. The
crashes generated serve as the baseline for assessing the safety
performance of the ADAS or ADS. Treatment simulations are
then executed using the baseline crashes as a starting point
but with the ADAS or ADS under assessment included. The
outcomes of the baseline and treatment simulations are then
compared to assess (for example) the system’s crash avoidance
and injury mitigation performance [10], [16], [17], [18], [19].

Both approaches have their own set of challenges. As noted,
the traffic-simulation-based approach takes extensive time to
simulate [13]. Also, using NDD as the initial condition for
generating crash scenarios may lead to crash characteris-
tics that are significantly different than those in real-world
crashes [21]. For example, few higher-severity crashes are
typically generated, biasing the assessment towards a base-
line/treatment comparison of low-severity crashes (or even
to crash surrogates [22]). In addition, crashes generated by
the traffic-simulation-based approach rely heavily on multiple
accurate models of road-user behaviors that can produce
realistic crashes, representing the real world. However, there
is typically a lack of proof of similarity (i.e., validation)
between the generated and real-world crashes regarding the
characteristics of individual crashes and the characteristics’
distributions.

In contrast, the IDC-based approach requires substantial in-
depth pre-crash kinematics data regarding both amount and
coverage. This information is seldom available for most types
of scenarios—and when it is, it is typically biased towards
severe crashes due to the selection criteria of conventional
crash databases. As a result, relying solely on these databases
to create synthetic crashes skews the crash generation models,
potentially distorting the overall analysis [23], [24], [25].

This study aims to address these challenges (especially the
severity biases in the generated crashes) by combining both
approaches, creating a dataset of synthetic, passenger-vehicle-
involved, rear-end crash scenarios that are representative of
the population of such crashes with respect to severity in
the United States, referred to as the ‘reference dataset’ with
notation 8̃. (In fact, we have not found any previous literature
doing this or describing how this can be done.) The dataset

is intended for use in the safety impact assessment of driving
automation systems and as a benchmark for evaluating the rep-
resentativeness of scenarios generated through other scenario
generation methods.

A synthetic rear-end crash scenario consists of three main
components: a speed profile of the lead vehicle, a behavior
model of the following vehicle (how it responds to the
behavior of the lead vehicle), and the initial states of the
scenario. We used the speed profile of the lead vehicle, which
is a vehicle kinematics model (instead of a behavior model)
because the lead vehicle’s behavior is mostly independent of
the following vehicle’s behavior [26]. The initial states include
the speeds of both vehicles and the following distance at the
beginning of the scenario.

For the first component, we turned to our previous
study [26] in which we modeled the pre-crash lead-vehicle
kinematics in rear-end crash scenarios and produced a syn-
thetic dataset of lead-vehicle speed profiles representative of
crashes across all severity levels.

The second component, a following-vehicle behavior model,
was created by merging two existing driver behavior mod-
els [27], [28]. For the third component, data from multiple
rear-end crash datasets from various sources were combined
and weighted to create a reference dataset of the initial states
of rear-end crash scenarios and minimum accelerations of
both vehicles. Distributions were then built for this reference
dataset.

Once the three components were complete, simulations
were conducted to obtain a set of synthetic rear-end crash
scenarios. The scenarios were weighted to match the obtained
reference datasets, creating a representative synthetic rear-end
crash dataset. Finally, this dataset was validated by comparing
the parameter distributions of the generated crashes with the
reference datasets, as well as by comparing the lead-vehicle
Delta-v (i.e., the total change in vehicle velocity over the
duration of the crash event) distributions of the two.

II. DATA

A. Data Sources

The datasets used are from four sources: the Crash
Investigation Sampling System (CISS), the Second Strategic
Highway Research Program (SHRP2) Naturalistic Driving
Study (NDS), the German In-Depth Accident Study (GIDAS)
Pre-Crash Matrix (PCM), and our prior study [26].

CISS is a nationally representative sample of crashes in
the United States in which at least one light vehicle was
towed away from the scene [29], [30]. The data were obtained
from comprehensive crash investigations, encompassing exam-
inations of damaged vehicles and crash sites as well as
assessments of crash kinematics. CISS includes Event Data
Recorder (EDR) data whenever available.

The SHRP2 NDS provides recorded pre-crash information
originating from the United States. Over 3,300 passenger
vehicles were equipped with a data acquisition system (DAS)
to capture four distinct video perspectives, coupled with
information extracted from vehicle networks and sensors.
Between 2010 and 2013, naturalistic driving data were col-
lected from participants’ instrumented vehicles in six locations
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TABLE I
DATASETS IN THE STUDY

across the United States. The SHRP2 dataset includes a
continuum of conflicts, from near-crashes to (a few) high-
severity crashes. The incidents were identified by applying a
set of event identification algorithms to the accumulated trip
records. In a subsequent manual annotation step, the identified
instances were classified by severity level [31].

The GIDAS dataset is a renowned German dataset that
comprehensively investigates traffic accidents with personal
injury in Germany. The PCM subset of the GIDAS dataset
contains reconstructed pre-crash time-series data that describes
the pre-crash trajectories and provides digitized information
about the road layout and potential sight obstructions. Since
its inception in 2011, the PCM dataset has provided time-series
data of the phases leading up to a diverse array of crash sce-
narios, encompassing a temporal span of at least five seconds
before the events [32]. Note, however, that the reconstructions
of the pre-crash phase are based on evidence from the accident
site and eyewitnesses; detailed driver behavior is unknown.

Among the three datasets, the SHRP2 dataset (with a
frequency of 10 Hz) covers incidents from near-crashes
to severe crashes, while the GIDAS-PCM dataset (with a
frequency of 100 Hz) only includes crashes resulting in
personal injury, and the CISS dataset (with a frequency varying
from 1 to 10 Hz) only contains accidents involving towed
vehicles. Consequently, the latter two datasets exclude low-
severity crashes, and the censoring boundary is not obvious to
quantify.

B. Datasets

Table I shows the datasets used in this study. Seven datasets
derived from the four sources were used as input. Four inter-
mediate datasets were created from these to obtain three output
datasets. Datasets other than those used as input are introduced
later (in Section III). Each dataset is named according to the
source type, with a postfix indicating the kind of information
included. (See Table I for details).

CISS_m (n = 748) includes all CISS rear-end crash records,
which contain the curb weight of the lead and following
vehicle, m f and ml (kg). CISS_f (n = 408) comprises

EDR-based pre-crash data from CISS rear-end crashes in
which the subject vehicle (SV) was the striking/following
vehicle. Signals extracted from the CISS_f dataset were the
following-vehicle speed v f (m/s) and Delta-v of the lead
vehicle 1vl (m/s). SHRP2_f (n = 116) consists of SHRP2
rear-end pre-crash events recorded by the striking vehicles.
The signal v f and its derivative signal, the following vehicle’s
Delta-v 1v f (m/s), were the signals used in the dataset.
SHRP2_b (n = 37) was generated by further annotating a
subset of the SHRP2 rear-end crashes included in SHRP2_f.
For each crash, the following distance d (m) was estimated by
Victor et al. [34] using image processing, and the lead-vehicle
speed vl (m/s) was deduced based on v f and d. PCM_b
(n = 861) contains reconstructed rear-end crash data from
the GIDAS-PCM dataset, including v f , vl , d , and 1vl sig-
nals. (Note that we excluded one pedal misapplication case
in which the driver of the following vehicle accidentally
pushed the acceleration pedal when approaching the lead
vehicle.)

In our previous study [26], we fitted the lead-vehicle speed
profiles five seconds before the impact in recorded rear-end
crashes from the SHRP2 and CISS datasets into a piecewise
linear model. This model simplifies a speed profile as a
sequence of, at most, three straight lines; the slopes of the
lines are the fitted accelerations. (Note that there can be
cases with fewer than three segments.) Each lead-vehicle
speed profile was parameterized as a six-dimensional vector:
[vc, a1, a2, τs, τ1, τ2]. Fig. 1 shows an example with three
segments (going backward in time from time zero, the impact
moment):
• Segment S: The lead vehicle maintains a steady speed in

this segment. τs is the segment duration, and vc is the
lead vehicle’s estimated speed at time zero.

• Segment 1: The lead vehicle keeps a non-zero constant
acceleration in this segment. τ1 is the segment duration,
and a1 is the fitted constant acceleration.

• Segment 2: The lead vehicle keeps a constant acceleration
in this segment. τ2 is the segment duration, and a2 is the
fitted constant acceleration.
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Fig. 1. Three selected segments of the lead-vehicle speed profile in a rear-end
crash.

This piecewise linear model will be reintroduced in
Section III-C.

REF_l and REF_sl were also derived from our previous
study [26]. REF_l (n = 132) contains 132 rear-end crash
lead-vehicle speed profiles, of which 83 and 49 come from
the SHRP2 and CISS datasets, respectively. The samples
in the dataset were weighted to create a reference dataset of
the lead-vehicle kinematics covering the full range of crash
severity (from non-severe to severe). In this study, the lead
vehicle’s Delta-v (1vl ) was obtained by either extracting
the signal (for CISS crashes) or estimating it as the differ-
ence between the post- and pre-impact lead-vehicle speed
(for SHRP2 crashes). REF_sl (n = 10,000) is a dataset of
10,000 synthetic lead-vehicle speed profiles generated by the
distribution models built on REF_l. The two datasets can be
considered reference datasets of lead-vehicle kinematics in
rear-end crashes.

C. Event Data Extraction

CISS pre-crash data typically include five seconds before the
impact, while SHRP2 and GIDAS-PCM data cover a longer
duration. The start time of all events was thus set to five
seconds before the impact (defined as time zero) to make all
events equivalent.

For each crash event in CISS_f, only the following vehicle’s
initial speed (i.e., the speed at t = −5 s) was extracted.
In contrast, we extracted the whole events (all the time-
series data) for SHRP2- and GIDAS-PCM-sourced datasets.
As in the previous study [26], the extracted event duration for
datasets SHRP2_f, SHRP2_b, and PCM_b spanned from −5
to −0.3 s, ending just before impact to avoid a possible sharp
acceleration pulse.

III. METHODOLOGY

In this study, the following six steps were performed in
order:

1) Following-vehicle behavior model creation
2) Rear-end crash parameterization
3) Data combination
4) Distribution modeling
5) Simulation and sample weighting
6) Validation

Fig. 2 shows how these steps are interconnected. Step 0
(the lead-vehicle kinematics model) was performed in our
previous study [26]. Steps 0 and 1 (the following-vehicle

Fig. 2. Flowchart of the methodology. Step 0 (the lead-vehicle kinematics
model) was performed in our previous study [26].

behavior model) provided the basis for Step 2, which sim-
plified a rear-end crash event by representing it as a set of
parameters. Then, Step 3 created a reference dataset of a subset
of parameters (initial states of rear-end crash scenarios and
minimum accelerations of both vehicles), and Step 4 built a
distribution model on the reference dataset. The simulation
and sample weighting step (Step 5) was carried out using the
distribution model and the following-vehicle behavior model,
as well as the lead-vehicle kinematics model from the previous
study [26]. The step resulted in the synthetic rear-end crash
dataset. Finally, we validated the synthetic dataset in Step 6.

A. Step 1: Following-Vehicle Behavior Model Creation

The following-vehicle behavior model is a combination of
two existing driver behavior models: 1) the modified intelligent
driver model [27], which describes the longitudinal vehicle
control behavior during car following, and 2) the driver
pre-crash brake response model [28], which predicts when
and how the driver brakes in the rear-end pre-crash phase.
Additionally, the model includes the possibility of generating
abnormal driver acceleration behavior under some conditions,
which is introduced later in this sub-section.

1) Modified Intelligent Driver Model: The modified intel-
ligent driver model is a modification of the Intelligent Driver
Model (IDM), a time-continuous car-following model fre-
quently used in traffic flow modeling. In this model, only
longitudinal movement is considered. The acceleration of
vehicle α, aα (m/s2), is computed as

aα = a · [1− (
vα

v0
)4
− (

d∗α
dα

)2
], (1)

where vα (m/s) is the speed of vehicle α, a (m/s2) is the
maximum acceleration, v0 (m/s) is the desired speed of vehicle
α in free traffic, dα (m) is the following distance, and d∗α
(m) is the desired minimum following distance, which is
defined as

d∗α = d∗(vα, 1vα) = d0 + vαT + c
v2
α

b
−

vα1vα

2
√

ab
, (2)
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where 1vα (m/s) is the relative speed of the lead vehicle of
vehicle α, d0 (m) is the jam distance, T (s) is the minimum
time headway to the vehicle in front, b (m/s2) is the comfort-
able braking deceleration, and c is the coefficient added in the
modified model to increase the desired minimum following
distance. v0 was set as the road speed limit. As suggested by
Derbel et al. [27], in this work a, b, and c were set to 3 m/s2,
4 m/s2, and 0.4, respectively, and T ∼ N (1.5, 0.16) s.

2) Driver Pre-Crash Brake Response Model: This model,
proposed by Svärd et al. [28], [35] (denoted as model BW Lrc
in their paper), is a driver model that quantitatively predicts
how and when the driver will initiate and modulate the
pre-crash brake response. The model uses the accumulation
of the prediction error of looming (the relative expansion rate
of the lead vehicle’s image on the retina of the following
vehicle [36]) as the basis for the driver’s braking response.
In addition, the model considers the driver’s off-road glance
behavior. Specifically, the model applies an off-road glance
looming weight parameter to account for the driver’s partial
perception of looming during off-road glances. The driver’s
brake responses can thus occur quickly since the driver accu-
mulates evidence even when not looking directly at the road.
The model parameters in this study were set the same as
the fitting results calibrated for the 13 SHRP2 rear-end pre-
crash events [28]. The model’s inputs are looming, the glance
off-road signal, and the minimum acceleration (or maximum
deceleration) of the following vehicle a f,min (m/s2). The
model outputs a non-positive acceleration ab (m/s2).

Research [34], [37], [38] has shown that the role of distrac-
tion in rear-end crashes is influenced by situational urgency.
This influence is operationalized by emphasizing off-road
glances after the time to collision (T T C) falls below a certain
threshold instead of focusing on off-road glances throughout
the event. Therefore, to describe the glance-off-road behavior
of the following vehicle’s driver, we used the parameter
suggested in the reference study [37]: the glance off-road
overshoot tg (s) after T T C−1

= 0.2 s−1. The overshoot
is the off-road glance that occurs after T T C−1

= 0.2 s−1

(hereafter called the anchor point) and continues for a duration
of tg seconds. T T C−1 is the inverse time to collision (s−1).
The same process in the reference study was followed to create
the reference distribution for tg , using glance behavior for
normal driving from the SHRP2 dataset.

3) Abnormal Acceleration Behavior: In the PCM_b dataset,
there are crashes in which both the lead and following vehicles
were initially stationary. Then, after a while, the following
vehicle started accelerating until it hit the lead vehicle. Unlike
the excluded case of pedal misapplication, the driver of the
following vehicle seemed to ignore the lead vehicle completely
in these cases, possibly due to distraction.

Two parameters, aa and ta , were added to the following-
vehicle behavior model to account for these ‘abnormal’
acceleration behaviors. When the behaviors occurred, the fol-
lowing vehicle was assumed to keep a constant acceleration aa ,
which was set to 1.8 m/s2 (the mean of the acceleration values
in the abnormal acceleration cases in the PCM_b dataset).
ta is the time duration from the event’s start (t = −5 s)
to the beginning of the abnormal behavior of the following

vehicle’s driver (s). If ta is equal to or greater than five seconds,
then no abnormal acceleration behavior is present (i.e., the
following vehicle does not have time to initiate acceleration
before the crash). However, if ta is less than five seconds,
then the lead vehicle will not be taken into account (i.e., the
model will act as if there is no lead vehicle) in the calculation
of ai,a after ta from the event’s start (i.e., t = ta − 5). The
reference distribution of ta was obtained by fitting the data
of ta in cases with abnormal acceleration behaviors into a
normal distribution (see Section IV-B1 for further information
regarding the fitting process).

4) Combined Following-Vehicle Behavior Model: We com-
bined the modified IDM, the driver pre-crash brake response
model, and the two abnormal acceleration behavior parame-
ters to create a combined following-vehicle behavior model
(referred to as ‘the following-vehicle behavior model’). In the
combined model, when abnormal acceleration behavior occurs,
the output acceleration is the acceleration of the modified
IDM, ignoring the lead vehicle. Otherwise, the modified IDM
only describes the driver’s acceleration behavior, and the brake
response model describes the braking behavior. Hence, the
acceleration of vehicle i (ai , m/s2) is computed as

ai =


0, if t < ta − 5 < 0
aa, if ta < 5 & t > ta − 5
max(ai,a, 0), if ai,b = 0 & ta ≥ 5
ai,b, otherwise.,

(3)

where ai,b is the output acceleration of the driver pre-crash
brake response model, ai,a is the output acceleration of the
modified IDM, and aa is the constant acceleration of the
following vehicle when the abnormal acceleration behav-
ior occurs. In summary, four parameters are used in the
following-vehicle behavior model: a f,min , tg , T , and ta .

B. Step 2: Rear-End Crash Parameterization

In this step, we parameterized a rear-end crash as a
twelve-dimensional vector which considers the initial states
of rear-end crash scenarios, the following-vehicle behav-
ior model, and the parameterized lead-vehicle speed profile
(see Table II). The parameters can be divided into three
types: 1) both-vehicle-related (dini t ), 2) following-vehicle-
related (v f,ini t , a f,min, T, tg, ta,), and 3) lead-vehicle-related
(vl,ini t , a1, a2, τs, τ1, τ2). The rationale is that, for instance,
a f,min and tg affect the following vehicle’s braking behavior,
while T and ta affect the following vehicle’s acceleration
behavior.

C. Step 3: Data Combination

It would be ideal to create a reference dataset for the
parameterized rear-end crashes directly from a single source of
crash data. However, none of the available datasets alone could
serve as a reference dataset since they all have limitations.
For instance, only SHRP2_b and PCM_b contain informa-
tion about both vehicles, allowing for joint distribution of
the twelve parameters. The other datasets either contain
information about only one vehicle’s pre-crash dynamics
(e.g., SHRP2_f) or general crash data without detailed vehicle
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TABLE II
DEFINITIONS OF THE TWELVE PARAMETERS

Fig. 3. Flowchart of the data combination. Reference and raw datasets are marked by solid and dashed lines, respectively. Colored arrows and numbers
indicate sub-steps. The outcome is the dataset REF_b, the reference dataset of dini t , v f,ini t , a f,min , vl,ini t , and al,min .

dynamics (CISS_m). SHRP2_b, for example, has a relatively
small sample size, and the quality of the lead-vehicle speed
signal in the dataset is limited since it was deduced by
the following distance, which was estimated using image
processing on relatively low-quality video. Further, as previ-
ously mentioned, PCM_b is biased towards severe crashes.
Also, in the reconstruction process for the cases in PCM_b,
it is usually assumed that the lead vehicle was moving with
constant acceleration or deceleration before the crash when
the evidence for a detailed speed profile is lacking. However,
our previous study [26] has shown that lead-vehicle speed
profiles can take more forms in the pre-crash phase. Since
both SHRP2_b and PCM_b lack a high-quality lead-vehicle
speed signal, the initial speed and minimum acceleration of
the lead vehicle (vl,ini t and al,min) were selected to represent
the lead-vehicle kinematics for the two datasets.

Consequently, it is not feasible to create a reference dataset
of all twelve parameters directly from the available datasets.
We then created several reference datasets of subsets of
parameters as an intermediate step in building the final
reference database. As mentioned in Section I, a synthetic

rear-end crash scenario consists of three main components:
the lead-vehicle speed profile, the following-vehicle behavior
model, and the initial states of the scenario. The synthetic
lead-vehicle speed profile dataset (REF_sl) from our previous
study [26] serves as a reference dataset of lead-vehicle-related
parameters. Therefore, the challenge is to create another
reference dataset containing the remaining parameters,
which can be linked to REF_sl so that we can combine
them to create synthetic crash scenarios. The final dataset,
REF_b, is a reference dataset of the initial states of the
crash scenarios and minimum accelerations of both vehicles:
8̃(dini t , v f,ini t , a f,min, vl,ini t , al,min). The parameters dini t ,
v f,ini t , and vl,ini t are used for setting the initial states of the
overall scenario; a f,min is required for the following-vehicle
model. The parameters vl,ini t and al,min are common to both
REF_b and REF_sl, so they can be used to link any data
point in the distribution to a set of synthetic lead-vehicle
speed profiles in REF_sl.

Fig. 3 shows the data combination process applied to obtain
REF_b; the five sub-steps are numbered and color-coded.
Sub-step 1 extracts relevant signals from each dataset.
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Sub-step 2 deduces the Delta-v of the lead vehicle and com-
bines the following-vehicle-related and both-vehicle-related
datasets, respectively. To finally obtain REF_b, sub-steps 3-5
apply sample weight adjustments to reduce biases in the
datasets.

1) Sub-Step 1 (Extract Signals): Relevant signals from
each dataset were extracted: specifically, the speed profiles
of the lead and following vehicles in SHRP2_b and PCM_b
were fitted into the six-parameter piecewise linear model
and simplified as (at most) three consecutive straight lines
(see Fig. 1). The minimum fitted acceleration for all segments
was also extracted for each speed profile. Finally, the following
parameters were extracted for each crash event in SHRP2_b
and PCM_b: dini t , v f,ini t , a f,min , vl,ini t , and al,min . The
lead vehicle’s minimum fitted acceleration (al,min) was also
extracted in REF_l.

2) Sub-Step 2 (Deduce Delta-v): 1vl is used as the indica-
tor of crash severity. REF_l contains the reference distribution
of 1vl , 8̃(1vl), which was further used to mitigate the
severity level bias in other raw datasets (such as CISS_f
and SHRP2_f) in later sub-steps. However, SHRP2_f and
SHRP2_b can only provide Delta-v of the following vehi-
cle, 1v f . Therefore, in this sub-step, the mass ratio (m f /ml )
data extracted from CISS_m was fitted into a generalized
gamma distribution, which was then used to transform the
1v f signal in the two datasets (SHRP2_f and SHRP2_b) to
1vl based on conservation of momentum:

1vl = −
m f

ml
1v f . (4)

After obtaining 1vl for SHRP2_f and SHRP2_b, we combined
CISS_f and SHRP2_f into one dataset (referred to as COM_f).
We also combined SHRP2_b and PCM_b into another dataset
(COM_b).

3) Sub-Step 3 (Obtain REF_f): The dataset COM_f is
biased towards severe crashes because some of the data
come from CISS. Thus, this sub-step developed case weights
that adjust the COM_f representation to match the reference
distribution of 1vl from REF_l using the k-nearest neigh-
bors (KNN) sample weighting method to assign weights to
the samples in COM_f. (See Appendix A for further infor-
mation regarding this method.) The new weighted dataset is
called REF_f.

4) Sub-Step 4 (Obtain REF_i): This sub-step created an
intermediate reference dataset (REF_i, as shown in Fig. 3) with
as many parameters as possible, which was used for weighting
COM_b to reduce bias in those parameters. REF_i was created
by combining two reference datasets: REF_f, obtained in the
previous sub-step, and the reference dataset of lead-vehicle
kinematics (REF_l). The resulting dataset contains the Delta-v
and minimum fitted acceleration of the lead vehicle, as well
as the initial speeds of both vehicles (1vl , al,min , v f,ini t ,
and vl,ini t ).

To obtain REF_i, we randomly selected (with replacement)
an equal number of samples from both reference datasets
(REF_f and REF_l). Then, we employed a pairing algorithm
to pair the selected samples from the two datasets one by
one so that the pairs would preserve the correlation structure
among the parameters (1vl , al,min , v f,ini t , and vl,ini t ).

To design the pairing algorithm, we first investigated the
correlation structure among the parameters. We computed the
correlations among the three parameters in REF_l: the lead
vehicle’s Delta-v, initial speed, and minimum fitted accelera-
tion (1vl , vl,ini t , and al,min). The results show that the initial
speed of the lead vehicle (vl,ini t ) is highly correlated with
the minimum fitted acceleration of the lead vehicle (al,min).
However, 1vl is only weakly correlated with the other two
parameters. (A Pearson correlation coefficient [39] with an
absolute value smaller than 0.3 indicates a weak correlation;
see Section IV for further information regarding the corre-
lation assessment.) In this study, for the sake of simplicity,
we ignored the weak correlation and considered 1vl to be
independent of the other two parameters (vl,ini t and al,min).
Since REF_f also contains 1vl , we can simply sample vl,ini t
and al,min (instead of all three parameters) from REF_l.
Then, the pairing algorithm must pair those samples of the
two parameters with samples from REF_f (i.e., the reference
dataset of the following vehicle’s initial speed and Delta-v
of the lead vehicle), in order to preserve the correlation
structure among those parameters. Since the samples were
randomly drawn from the two reference datasets, the cor-
relations between parameters sampled jointly within each
dataset (i.e., the correlations between v f,ini t and 1vl and
between vl,ini t and al,min) should be preserved naturally.
Therefore, we only need a pairing process to preserve the
correlations between v f,ini t and vl,ini t and between v f,ini t
and al,min .

The pairing process starts with computing the correlation
values. Since no reference dataset containing v f,ini t , vl,ini t ,
and al,min was available, we gathered information on both
vehicles from the COM_b dataset, the only dataset that con-
tains the three parameters and 1vl . However, we observed
that COM_b has substantial biases in the Delta-v of the lead
vehicle (1vl ) and the initial speed of the following vehi-
cle (v f,ini t ). For 1vl , the bias is inherited as COM_b contains
the dataset PCM_b. For v f,ini t , 15% of the cases in COM_b
(mostly cases from PCM_b) have a v f,ini t of exactly 50 km/h.
This may be because the following vehicle was assumed to be
driven at the speed limit (i.e., 50 km/h) during the reconstruc-
tion, as no detailed information was available. To mitigate
the biases in these two parameters, the samples in COM_b
were weighted using the KNN sample weighting method
to match REF_f. We then used the “weights” package in
R [40] to compute the two (Pearson) correlation coefficients
for the weighted data: r̃(v f,ini t , vl,ini t ) = 0.78 and r̃(v f,ini t ,

al,min) = −0.54. (Note that, before weighting, those two
correlations were 0.53 and −0.20, respectively.) In addition
to the strong correlation between the initial speeds of both
vehicles, we observed that vl,ini t is no larger than v f,ini t in
most cases, as shown in Fig. 4.

Based on these observations, Algorithm 2 was developed to
pair samples from two datasets, preserving the two correla-
tions, and ensuring that vl,ini t is no larger than v f,ini t in most
cases. (Algorithm 2 is described in detail in Appendix B.)
The pairing results (i.e., REF_i) were used as an approx-
imation for the reference dataset of the four parameters
(8̃(v f,ini t , 1vl , vl,ini t , al,min)).
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Fig. 4. Scatter plot of v f,ini t and vl,ini t for COM_b. In most cases, vl,ini t
is no larger than v f,ini t .

5) Sub-Step 5 (Obtain REF_b): At this point REF_i and
COM_b were in place, so we created the target dataset REF_b,
the reference dataset of the initial states and the two minimum
fitted accelerations (dini t , v f,ini t a f,min , vl,ini t , and al,min).
Again, we weighted samples in COM_b with the KNN sample
weighting method to match REF_i, in order to mitigate biases
in the four parameters (v f,ini t , 1vl , vl,ini t , and al,min).

D. Step 4: Distribution Modeling

This step constructed a comprehensive distribution model
for REF_b and used the model to generate a synthetic dataset,
which is used in the next step to generate representative rear-
end crashes.

Because of the large number of parameters and the complex-
ity of the distribution (such as the presence of point masses
which are particular values with more observations than a
continuous distribution can describe), REF_b was divided
into six sub-datasets (referred to as S1-6) that were modeled
separately, using the multivariate distribution modeling method
proposed in our previous study [26]. The six sub-datasets
were categorized based on the relationship between the ini-
tial speeds of both vehicles, whether the following vehicle
braked, and whether any vehicle was initially at a standstill
(see Section IV for further information). The overall distri-
bution model for REF_b, which can be seen as a mixture
distribution model, was derived by combining the distribution
models for all sub-datasets according to their relative pro-
portions in REF_b. A synthetic dataset containing synthetic
both-vehicle information (referred to as REF_sb) with a sam-
ple size of 10,000 was then built with samples generated from
the overall distribution model.

E. Step 5: Simulation and Sample Weighting

This step created a set of synthetic rear-end crashes rep-
resentative of the population of such crashes with respect to
severity based on REF_sl, REF_sb, and the reference marginal
distributions for the three parameters T , tg , and ta (obtained in
the previous steps). We first ran simulations of rear-end con-
flicts under different kinematic parameter settings drawn from
the distribution(s) developed in the previous steps. Second,
we selected valid simulations (defined in the following sub-
section) from the simulated set. Finally, the selected crashes

were weighted using Iterative proportional fitting (IPF) [41] so
that the marginal distributions of parameters for the selected
crashes matched the reference distributions. We describe these
three sub-steps (simulation setup, generation of synthetic rear-
end crashes, and creation of a representative set of synthetic
rear-end crashes) in more detail below.

1) Simulation Setup: The simulation frequency is 20 Hz,
and tsim is the simulation time (s). At the start of each simu-
lation (tsim = 0 s), the initial states are set according to these
three parameters: the initial following distance and the initial
speeds of both vehicles (dini t , v f,ini t , and vl,ini t ). The lead
vehicle follows its synthetic speed profile (the six-parameter
model; [vl,ini t , a1, a2, τs, τ1, τ2]) until the simulation time
reaches five seconds (tsim = 5 s), after which it will keep
its speed constant. Meanwhile, the following vehicle follows
the acceleration computed by the following-vehicle behavior
model (see Section III-A). The simulation stops if a crash
happens or a maximum simulation time is reached.

To be consistent with the input data of this study, a valid
simulation must fulfill two conditions: 1) a crash happens and
2) the crash moment tc is approximately five seconds after
the start of the simulation (as the five seconds pre-crash data
were extracted for all crashes in the original datasets). That
is, as noted earlier, not all simulations met the conditions;
some produced crashes that did not belong to the final dataset.
However, it is unnecessarily stringent to have the crash occur
exactly five seconds after starting the simulation. To provide
some margin for the crash timing, a crash moment error
te (= tc−5) was created. The second condition then becomes
|te| ≤ te,thd , where te,thd is a predefined threshold value, set
to 0.2 s in this work. (See Section IV for further information
regarding the choice of te,thd .) In addition, the maximum
simulation time was set to six seconds.

2) Generation of Synthetic Rear-End Crashes: This sub-
step ran simulations and searched for the valid ones, in order
to create a set of synthetic rear-end crashes. A matching
algorithm was used to (first) create combinations of param-
eters among REF_sl and REF_sb (the synthetic datasets of
lead-vehicle speed profiles, initial states, and minimum fitted
accelerations) and marginal distributions of the three parame-
ters (T , tg , and ta) for simulation and (second) to search for
valid simulations (defined in the previous sub-step). REF_sl
contains seven parameters: vl,ini t , al,min , a1, a2, τs , τ1, and
τ2. The parameter al,min was computed for REF_sl the same
way it was for REF_l. REF_sb contains five parameters: dini t ,
v f,ini t , a f,min , vl,ini t , and al,min . Because vl,ini t and al,min
are common to both, they were used to link samples from the
two datasets. We could not simulate all potential parameter
combinations due to the high computational load. Therefore,
for each sample drawn from REF_sb, a matching algorithm
was designed to stop looping after obtaining a valid simulation
or reaching a predefined maximum number of iterations. The
algorithm is briefly described below (with further information
in Appendix C).

1) Draw N samples, with replacement, from REF_sl and
REF_sb: U = {Ui | i ∈ [1, N ]} and V = {V j |

j ∈ [1, N ]}.
2) For j = 1 to N :
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a) Compute the Euclidean distance (based on the
common parameters vl,ini t and al,min) between V j
and each sample in set U , select the samples with
a Euclidean distance no larger than a predefined
threshold de,thd as the pairing candidates of V j ,
and save the samples as set W .

b) Update set W according to the sub-dataset which
V j belongs to. For instance, a V j from sub-
dataset 1 (S1) requires that v f,ini t > vl,ini t > 0.

c) Create sets of candidates for the three parame-
ters T , tg , and ta : T̄ ∗, t̄∗g , and t̄∗a . Note that, in those
sets, the samples are ordered randomly.

d) Loop through W , T̄ ∗, t̄∗g , and t̄∗a until a valid
simulation is obtained or the predefined maximum
number of iterations is reached. Save the log when
there is a valid simulation.

3) Creation of a Representative Set of Synthetic Rear-End
Crashes: A synthetic rear-end crash dataset (REF_ss) was
created, which includes all valid simulations. The next step
was weighting samples in the synthetic dataset to match the
two reference datasets (REF_sl and REF_sb) and the reference
marginal distributions of the remaining three parameters (T , tg ,
and ta) in the following-vehicle behavior model. It is important
to note that when modeling the two reference datasets, each
one was split into multiple sub-datasets so that simpler models
could be used for each sub-dataset. The overall distribution
model was then derived by combining the distribution models
for the sub-datasets according to the sub-dataset proportions.

The objectives of this sample weighting were to retain 1) the
reference marginal distribution of each of the three parameters
(T , tg , and ta), 2) the proportion of each sub-dataset, and 3) the
marginal distribution of each parameter for each sub-dataset
instead of the whole. Iterative proportional fitting (IPF) [41]
was used to achieve these objectives. In the algorithm, the
Kolmogorov–Smirnov (KS) statistic was used to measure the
difference between each weighted marginal distribution and
its corresponding reference distribution. The implementation
consisted of the following steps:

1) Set initial weight for all samples to 1: w
(0)
i = 1,

∀i ∈ [1, N ].
2) For iteration number k = 1 to 100:

a) For each parameter other than the three parameters
(T , tg , and ta) of each sub-dataset, update the
weights for samples in the sub-dataset using IPF.

b) For each of the three parameters (T , tg , and ta),
update the weights for all samples using IPF.

c) Scale the weights so that
∑N

i=1 w
(k)
i = N .

d) Compute the KS statistic between the weighted
synthetic crash dataset and corresponding reference
distributions using the “Ecume” package in R [42]:
{s(k)

j |∀ j ∈ [1, n]}, where n is the total number of
comparisons.
i) For each sub-dataset, compute the KS statis-

tic between the marginal distribution in the
sub-dataset and the reference distribution for
each parameter other than the three parameters
(T , tg , and ta).

ii) For each of the three parameters (T , tg , and ta),
compute the KS statistic between the weighted
marginal distribution in the overall synthetic
crash dataset and the reference dataset.

e) Compute the loss: L(k)
w =

∑n
j=1[(s

(k)
j )2 ∑

w
(k)
l j
],

where w
(k)
l j

is the weight for the corresponding

sample of s(k)
j .

3) Select the optimal weights with the minimum loss:
{w

(k∗)
i |i ∈ [1, N ]}, where k∗ = arg min

k
({L(k)

w |k ∈

[1, 100]}).

F. Step 6: Validation

In terms of validation, firstly, all three objectives of
the sample weighting in the last step must be achieved.
Consequently, the proportion of each sub-dataset was checked,
and two-sample KS tests were conducted for each parameter
in each sub-dataset to compare the marginal distributions in
the weighted synthetic crash dataset with their corresponding
reference distributions.

Secondly, for each sub-dataset containing multiple param-
eters, we needed to verify the similarity of the overall
multivariate distributions between the synthetic and reference
datasets. To do this, we utilized the t-distributed stochastic
neighbor embedding (t-SNE) technique [43] to transform
the multidimensional data into unidimensional data and then
conducted a two-sample KS test on the transformed data.

Lastly, the crash severity levels between the synthetic
and reference datasets also needed to be compared. For
each synthetic crash, the Delta-v of the lead vehicle (1vl )
was computed using the Kudlich-Slibar rigid body impulse
model [44], in which the coefficient of restitution e (the
ratio of the post-impact vehicle-velocity-difference to the pre-
impact vehicle-velocity-difference between the two vehicles)
was computed as suggested in an existing study [45]:

e = 0.47477− 0.26139 log10 1vpre

. . .+ 0.03382 (log10 1vpre)
2

. . .− 0.1139 (log10 1vpre)
3, (5)

where 1vpre is the pre-impact vehicle-velocity-difference
(m/s). The weighted distribution of 1vl was then compared
with the reference distribution of 1vl (obtained in REF_l),
using the weighted two-sample KS test.

IV. RESULTS

A. Data Combination

1) Fitting of Speed Profiles: The speed profiles of both vehi-
cles in SHRP2_b and PCM_b were fitted into the piecewise
linear model. 84.2% (1540 out of 1828) of the speed profiles
have an adjusted R-squared R̄2 greater than 0.9: see Fig. 5(a).
Of the remaining 15.8% (288), 93.1% (268) showed a speed
change (i.e., the difference between the maximum and min-
imum speed) of less than 0.5 m/s. For those 268 profiles
with only minor speed changes, the piecewise linear model
simplified the speed profile as a straight line, which led to a
lower R̄2: see Fig. 5(b). The remaining 6.9% (20) of the cases
have an adjusted R-squared R̄2 greater than 0.75.
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Fig. 5. Examples of speed profile fit results. nb is the number of breakpoints.

Fig. 6. Fitting of the mass ratio distribution in CISS_m. KS test results:
sample size n = 748, statistic = 0.04, p-value = 0.79.

Fig. 7. KNN sample weighting results of the raw dataset COM_f according
to the reference distribution of 1vl : (a) 1vl , and (b) v f,ini t . The legend
consists of the data type and name of the corresponding dataset. The purple
(“Weighted”) and orange (“Reference”) lines are almost identical in (a).
The weighted two-sample KS test results between the weighted samples and
reference distribution of 1vl : valid sample size (i.e., the sum of weights) of
the weighted distribution n = 324, sample size of the reference distribution
nr = 10,000, statistic = 0.03, and p-value = 1.00.

2) Mass Ratio Distribution: The generalized gamma distri-
bution was selected for fitting the mass ratio data in CISS_m.
A two-sample KS test was conducted between the raw and the
fitted distributions. The results do not indicate any significant
difference (see Fig. 6).

3) Reference Datasets: The samples in the raw dataset
COM_f (n = 524) were weighted using the KNN sample
weighting method according to 8̃(1vl) from REF_l. There
were 324 samples with a weight value larger than zero. The
cumulative distribution functions (CDFs) of 1vl and v f,ini t
are shown in Figs. 7 (a)-(b), respectively. The weighted v f,ini t
distribution was then used as the reference distribution
of v f,ini t . The weighted two-sample KS test between the

Fig. 8. Joint distribution of v f,ini t and vl,ini t before (a) and after (b) pairing
samples from 8̃(vl,ini t , al,min) and 8̃(v f,ini t , 1vl ).

TABLE III
COMPARISON BETWEEN THE WEIGHTED AND REFERENCE MARGINAL

DISTRIBUTIONS FOR FOUR WEIGHTING PARAMETERS

weighted samples and the reference distribution of 1vl shows
no significant difference. Compared with the raw distribu-
tion, the weighted distribution 8̃(1vl , v f,ini t ) has a higher
proportion of low-severity (i.e., small 1vl ) and low-speed
(i.e., small v f,ini t ) crashes.

The reference dataset REF_i was created by pairing an equal
number of samples randomly selected (with replacement) from
two reference datasets using the pairing algorithm described
in Appendix B. Fig. 8 shows the joint distribution of the initial
speeds of both vehicles before and after pairing the selected
samples. The target correlations to preserve were: r̃(v f,ini t ,
vl,ini t ) = 0.78 and r̃(v f,ini t , al,min) = −0.54. The pairing
algorithm effectively retained the correlations among rele-
vant parameters in the pairing results (i.e., REF_i): r(v f,ini t ,
vl,ini t ) = 0.78 and r(v f,ini t , al,min) = −0.54.

REF_b (i.e., the reference dataset of the initial states and
minimum fitted accelerations of both vehicles) was created
by weighting samples in COM_b (the combined dataset of
both vehicles) using the KNN sample weighting method
according to the intermediate reference dataset REF_i. There
were 852 samples (out of 913) with a weight value larger than
zero. The weighted two-sample KS tests were conducted to
test whether the weighted and the reference data are from the
same distribution. The results in Table III do not indicate any
significant difference. However, it is worth noting that the lack
of significance does not necessarily imply that the datasets are
from the same distribution. Nonetheless, a visual comparison
of the well-aligned weighted CDFs for each of the four
parameters (v f,ini t , 1vl , vl,ini t , and al,min) in the weighted
and reference distributions indicates substantial similarities
(see Fig. 9).

B. Modeling of REF_b

1) Data Categorization: REF_b, the reference dataset of
the initial speeds and minimum fitted accelerations of both
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Fig. 9. KNN sample weighting results of the raw combined dataset COM_b
(obtained by combining SHRP2_b and COM_b) according to REF_i. The
legend consists of the data type and name of the corresponding dataset.

TABLE IV
SIX SUB-DATASETS

vehicles and the initial distance, was divided into six sub-
datasets (based on the relationship between the initial speeds
of both vehicles, whether the following vehicle braked, and
whether either vehicle was initially stationary).

Table IV shows the six sub-datasets (S1–S6), including their
corresponding proportions.

In both S1 and S2, the following vehicle initially approached
the moving lead vehicle (i.e., vini t, f > vini t,l > 0 m/s). The
following vehicle braked in S2 (i.e., a f,min < 0 m/s2), but not
in S1 (i.e., a f,min ≤ 0 m/s2).

In S3, the following vehicle initially approached the
stationary lead vehicle – while in S4, both vehicles were ini-
tially stationary. Abnormal acceleration behaviors are present
in 56.2% of the cases in S4 (9.2% of all cases).

In S5 and S6, the lead vehicle initially moved away from
the moving following vehicle. In S6, the following vehicle
braked (i.e., a f,min < 0 m/s2), while in S5 it did not
(i.e., a f,min ≤ 0 m/s2).

It is important to note that some of the five parameters
in certain sub-datasets can be constant. For instance, the fol-
lowing vehicle’s minimum fitted acceleration (a f,min) is zero
for all cases in S1 since the following vehicle did not brake.

Fig. 10. Weighted CDFs for each of the five parameters in the reference and
synthetic datasets: (a) dini t , (b) v f,ini t , (c) a f,min , (d) vl,ini t , and (e) al,min .
The legend consists of the data type and name of the corresponding dataset.

Only the non-constant parameters in each sub-dataset were
modeled.

2) Comparison Between the Synthetic and Reference
Datasets of Selected Parameters: A mixture distribution
model was constructed for REF_b by combining all distribu-
tion models built for each sub-dataset according to sub-dataset
proportions. The model was used to create a synthetic dataset
containing 10,000 samples of initial states and minimum fitted
accelerations of both vehicles (REF_sb). Table V compares
the five parameters for the synthetic and reference datasets
(REF_sb and REF_b). Although there are minor differences
in the weighted mean and standard deviation (SD) of each
parameter between the reference and synthetic datasets, the
two datasets underwent a weighted two-sample KS test to test
if there are significant differences in each of the five parame-
ters. The p-values in Table V indicate no significant differences
between the compared datasets. Additionally, Fig. 10 shows
that the weighted CDFs for each of the five parameters in
the two datasets are well aligned, demonstrating substantial
similarities between the two datasets.

C. Simulation

We ran the matching algorithm for the two reference
datasets (REF_sl and REF_sb) and selected 5,000 valid
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TABLE V
COMPARISON BETWEEN THE SYNTHETIC AND REFERENCE DATASETS OF SELECTED PARAMETERS

Fig. 11. The CDFs for the two tests that have significant differences: a) the
marginal distributions of dini t in REF_b sub-dataset 4 (“Reference”) and the
corresponding sub-dataset in REF_ss (“Synthetic”), b) the marginal distribu-
tions of al,min in REF_b sub-dataset 5 (“Reference”) and the corresponding
sub-dataset in REF_ss (“Synthetic”).

simulations to create a synthetic rear-end crash dataset. The
sample weighting method outlined in Section III-E3 was used
to assign a weight for each sample in the synthetic crash
dataset.

Table VI shows the results of the weighted two-sample KS
tests between the synthetic crash dataset and the reference
datasets (REF_sl, REF_sb, and the reference marginal dis-
tributions of the remaining three parameters T , tg and ta).
There were, in total, 61 tests. At a significance level of 0.05,
approximately three (≈ 61 × 0.05) tests are likely to be
incorrectly tested to be significant when they should not be.
In our situation, two (less than three) tests show a significant
difference at the 0.05 significance level. We looked into those
two tests (i.e., the marginal distribution test for dini t in REF_b
S4 and the marginal distribution test for al,min in REF_b S5)
and analyzed the possible cause.

Fig. 11 shows the CDFs for the two tests that have sig-
nificant differences. Specifically, Fig. 11(a) shows that fewer
valid simulations have a small initial distance (dini t ), and
Fig. 11(b) shows that there are fewer valid simulations in
which the lead vehicle did not brake at all during the event
(i.e., in which the minimum acceleration al,min = 0 m/s2).
These differences can be explained by a limitation in the
following vehicle’s acceleration model, the modified IDM; it
cannot imitate accelerations as aggressive as those in the real
world. For instance, in the cases in Fig. 11(a), the following
vehicle was stationary and would not start to move forward
unless the distance to the lead vehicle was large enough.
(See Section V-B for more discussion.)

Fig. 12 compares the weighted synthetic crash and reference
datasets for 1vl . The results of the weighted two-sample

Fig. 12. Comparison between the reference and synthetic crash datasets
for 1vl : a) CDFs, and b) histograms. The legend consists of the data type
and name of the corresponding dataset. The weighted two-sample KS test
results between the distributions of 1vl in the synthetic and reference datasets:
sample size of the synthetic dataset n = 5,000; sample size of the reference
dataset nr = 130; statistic = 0.12, p-value = 0.27.

KS test indicate that there is no significant difference between
the two datasets. Although the CDFs in Fig. 12(a) are sub-
stantially similar, the histograms in Fig. 12(b) illustrate a
higher proportion of low values in the reference distribution
of 1vl . This discrepancy could be due to the way that 1vl was
estimated for SHRP2 crashes (in REF_l). During the impact
in a rear-end crash, the lead vehicle has a rapid speed increase
followed by a swift speed decrease. For these SHRP2 crashes,
1vl was calculated as the difference between the post- and pre-
impact lead-vehicle speed. The frequency of the lead-vehicle
speed signal was 10 Hz; at such a low frequency, the speed
signal is unlikely to accurately capture the true post-impact
(peak) speed, thereby resulting in an underestimation of 1vl .

V. DISCUSSION AND CONCLUSION

Unlike other studies focusing mainly on injury-involved
or policed-reported rear-end crashes [16], [24], [25], this
study created a representative synthetic rear-end crash dataset
encompassing the full severity range, from physical contact to
high severity.

The process of generating synthetic rear-end crash sce-
narios consists of three main steps: 1) parameterizing the
rear-end crashes through modeling the following and lead
vehicles, 2) building reference datasets from the parameterized
crash data, and 3) generating representative synthetic crash
scenarios.

In the first step, a following-vehicle behavior model was
developed by combining two existing driver models. The
model also included the potential for generating ‘abnor-
mal’ driver acceleration behavior, a phenomenon observed
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TABLE VI
COMPARISON BETWEEN THE SYNTHETIC CRASH DATASET AND REFERENCE DISTRIBUTIONS
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in 9.2% of all crashes. Using this model and the lead-vehicle
kinematics model (created in a previous study [26]), we sought
to emulate vehicle behaviors that are as similar as possible to
those in real-world rear-end crash scenarios. Combining the
two vehicle models and the initial states of rear-end crash
scenarios created a twelve-dimensional vector representing a
rear-end crash.

In the second step, parameterized crash data from mul-
tiple crash datasets were combined and weighted to create
a reference dataset of the initial states (and minimum fitted
accelerations of both vehicles) (REF_b). A synthetic dataset
containing these data (REF_sb) was then created by sampling
from the distribution model built for REF_b.

At last, simulations were conducted using the
following-vehicle behavior model and the two synthetic
datasets, REF_sb and REF_sl (a representative synthetic
rear-end crash lead-vehicle speed profile dataset created in
a previous study [26]). valid simulations were gathered and
weighted using an IPF-based weighting algorithm to create a
representative synthetic rear-end crash dataset.

In terms of validation, a more comprehensive valida-
tion process than in other studies was conducted. Non-
parametric statistic tests were implemented for the marginal
distributions—not only for the crash outcomes (e.g., Delta-v
of the lead vehicle) but also for each of the twelve param-
eters. Specifically, as mentioned in Section III-F, we used
t-SNE to transform the multidimensional data into unidimen-
sional data to compare the overall multivariate distributions
between the synthetic and reference datasets for sub-datasets
containing multiple parameters. This is because t-SNE effec-
tively preserves local structures and captures non-linear
relationships in high-dimensional data. Compared with other
dimensionality reduction methods (such as Principal Compo-
nent Analysis [46] and Uniform Manifold Approximation and
Projection [47]), t-SNE is particularly effective for revealing
subtle differences in the data, which is essential when applying
the two-sample KS test to the transformed data.

A. Contributions

This study created a representative dataset of synthetic
rear-end crashes covering the full range of severity levels. This
dataset is publicly available online [33]. It can be used to
assess the safety impact of driving automation systems, pri-
marily crash avoidance technologies. For instance, the dataset
can be used directly to assess the safety impact of Automated
Emergency Braking (AEB) systems, and, if a behavior model
of driver responses to warnings is included in the assessment,
also Forward Collision Warning (FCW) systems. Additionally,
since the lead vehicle’s behavior is mostly independent of the
following vehicle, the data can also be partially utilized by
making a set of assumptions (e.g., constant speed) to assess
longitudinal conflict avoidance systems, such as Adaptive
Cruise Control (ACC) or ADS. One approach to do this is
to extend the scenario backward in time by setting the lead
vehicle to maintain a constant speed equal to its initial speed
in the original scenario. Then, the following vehicle would
approach the lead from a far enough distance that the following
vehicle’s ACC or ADS would adjust its distance to the lead

Fig. 13. CDF curves for 1vl in rear-end crashes among various datasets.

vehicle and achieve a steady state (i.e., default car-following)
according to its specific configuration. Once a steady state is
reached, the lead vehicle would follow its speed profile in
the raw scenario, allowing the following vehicle’s conflict and
crash avoidance systems to respond. However, this method
involves several assumptions, and the representativeness of
the original scenarios may not be preserved. Therefore, the
relevance of such safety impact assessments must be evaluated
on an assessment-by-assessment basis and should only be seen
as a complement to other safety impact assessment approaches.
Most importantly, the assumptions and their potential impli-
cations on the results must be thoroughly documented.

In addition to being used to assess crash avoidance systems
(and, to some extent, conflict avoidance systems), the dataset
can serve as a benchmark when evaluating the representative-
ness of scenarios generated through other methods (such as
traffic-simulation-based and machine-learning-based). Fig. 13
compares the CDF curves of the lead vehicle’s Delta-v in
rear-end crashes from various datasets. Compared to the refer-
ence dataset, the CISS and GIDAS datasets are biased towards
severe crashes. Although the SHRP2 dataset is similar to the
reference dataset, it lacks high-severity cases (the maximum
1vl in the SHRP2 dataset is 7.4 m/s). In contrast, the syn-
thetic crash dataset (REF_ss), mirroring the reference dataset
(REF_l), encompasses crashes with 1vl reaching 13.8 m/s.
As mentioned in Section IV-C, the synthetic dataset exhibits
a strong resemblance to the reference dataset regarding the
distribution of Delta-v of the lead vehicle.

The methodological contributions of this study mainly lie in
the data combination (including sample weighting) methods.
In the study, none of the available crash datasets contain all
necessary signals without substantial bias; this shortcoming
is common in data-driven studies. We used a set of methods
to combine and weight data from multiple crash datasets to
mitigate the biases. Among these methods, the KNN sample
weighting method is particularly noteworthy because, unlike
conventional post-stratification methods, it can be used to
weight biased data to match a reference dataset even when
omitted strata exist. In the future, these data combination
methods can be applied when creating a multivariate joint
distribution is needed and the only datasets available contain
biased data or incomplete signals.
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B. Limitations and Future Work
As noted in our previous study [26], modeling the lead vehi-

cle’s speed with a piecewise linear approach results in sudden
acceleration changes—instantaneous jerk—when transitioning
between segments. This can affect in-vehicle technologies that
are sensitive to the jerk of the lead-vehicle. If the dataset
provided here is used as is, a sensitivity analysis should be
conducted to assess how the system under assessment reacts
to instantaneous changes in speed. Future work should aim
to smooth the lead vehicle’s acceleration profile, possibly by
introducing jerk during transitions.

In addition, our previous study [26] relied on pre-crash
data from the United States to establish the reference dataset
of lead-vehicle kinematics. However, we faced a shortage
of crash data involving both vehicles: SHRP2_b contained
only 37 samples. Therefore, we had to use the available
data from the GIDAS-PCM dataset (PCM_b), even though
it was from Germany. We assumed that rear-end crashes in
the US and Germany have similar mechanisms, although their
distributions may differ. Moreover, during data combination,
the KNN sample weighting method was applied to reduce
bias in the merged raw data (SHRP2_b and PCM_b) so
that the weighted data could match the reference dataset
created using the US crash data. In addition, in Sub-step 4 of
the data combination step, we used the optimal pairing
results of samples from the two reference datasets REF_l
and REF_f as an approximation for the reference dataset of
the four parameters (v f,ini t ). This compromise was neces-
sary because no such reference dataset is available (at least
not to us).

It should be noted that this study focuses exclusively on
longitudinal vehicle movements in rear-end crashes, primar-
ily because data on adjacent lanes and lateral dynamics
(like lateral speed and lane positioning) were not available.
Consequently, the generated scenarios do not account for
lateral movements such as lane changes, merges, or steering-
based evasive maneuvers. This limitation restricts the appli-
cability of our dataset to the assessment of longitudinal
driving automation systems, such as AEB, FCW, and ACC.
Future research could apply the developed method for merging
datasets to create crashes across all severity levels to more
complicated crash scenarios to assess a broader range of
driving automation systems.

In our study, we divided the dataset into sub-datasets to
manage the large number of parameters and the complexity
of the distribution, particularly due to the presence of point
masses. Depending on the actual data distribution, extending
our distribution modeling method to other crash scenarios,
which may be parameterized by more or fewer parameters than
the rear-end scenario, is likely to require dividing the dataset
into sub-datasets. It is important to note that this process
should be undertaken after a thorough analysis to ensure
that the dividing process effectively captures the complexities
of each specific scenario and ensures sufficient samples in
each sub-dataset. Each new scenario will have to be studied
in detail to enable the proper generation of representative
reference data and modeling across all levels of crash outcome
severity.

Algorithm 1 KNN Sample Weighting Algorithm

Set wi = 0 ∀ i ∈ [1, n]
Generate N samples from 8̃(x1, . . . , xm):
{[x̃ ( j)

1 , . . . , x̃ ( j)
m ]

T
| j ∈ [1, N ]}

For j = 1 to N :
d(i)

j =

√∑m
p=1(x̃ ′( j)

p − x ′(i)p )2 ∀ i ∈ [1, n]

ω
(i)
j = 1/d(i)

j if all(d(i)
j > 0) else I

{d(i)
j =0} ∀ i ∈ [1, n]

H = arg max
i

({ω
(i)
j | i ∈ [1, n]}, k)

whl ← whl +
ω

(hl )
j∑k

l=1 ω
(hl )
j

∀ hl ∈ H

wi ←
wi∑n

i=1 wi

∑n
i=1 I{wi >0} ∀ i ∈ [1, n]

The modified IDM was used to simulate the acceleration
behavior of the following vehicle. However, the model was
designed and calibrated to replicate naturalistic car-following
behaviors rather than crashes. As a result, this model can-
not accurately mimic highly aggressive accelerations, which
often occur in real-world situations. Thus, as mentioned
in Section IV-C, a subset of crash scenarios in REF_b sub-
datasets S4-5 was missing. To address this limitation, future
research should try calibrating the modified IDM acceleration
model using pre-crash data for scenario generation.

As mentioned in Section IV-C, the low-frequency speed
signal used to estimate the Delta-v of the lead vehicle in
the SHRP2 dataset might underestimate the true value. Future
research should either find a better estimation method or use
data with a higher frequency.

APPENDIX A
KNN SAMPLE WEIGHTING ALGORITHM

Since raw distributions from datasets can often be biased
with respect to one or more parameters, the sample weighting
process aims to assign weights to samples in raw distributions
{Xi |i ∈ [1, n]} (where Xi = [x

(i)
1 , . . . , x (i)

K ]
T ) so that the

weighted data matches the known reference distribution of a
subset of parameters 8̃(x1, . . . , xm) (m < K ).

Post-stratification weighting [48] is one possibility. It is
a statistical technique commonly used in survey research to
reduce bias and improve the accuracy of population estimates.
It involves dividing the target population into strata based
on certain characteristics or variables, collecting data within
each stratum, and then assigning weights to the observations
based on the target population distribution within each stratum.
Typically, binning is used to create strata when the variables
are continuous. The weight for observations in each stratum
is the target population total divided by the number of obser-
vations in the stratum. In our situation, the raw samples (i.e.,
observations) {Xi |i ∈ [1, n]} should be grouped into discrete
bins designed based on the known reference distribution
(i.e., target population) 8̃(x1, . . . , xm). However, this method
assumes that no strata are omitted. In other words, observations
within all bins must correspond to the reference distribution.
In our case, omitted strata did exist in the combined data.
One possible cause could be the bias in the combined data.
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Algorithm 2 Pairing Algorithm

Sample with the replacement of N samples from 8̃(v f,ini t , 1vl) and 8̃(vl,ini t , al,min), respectively:

A = {Ai | i ∈ [1, N ]}, B = {B j | j ∈ [1, N ]}, where Ai = [ṽ
(i)
f,ini t , 1̃v

(i)
l ]

T and B j = [ṽ
( j)
l,ini t , ã( j)

l,min]
T

For η = 0 : 2 : 100 [%]:
Select randomly η samples out of A
Create a copy of B: B̂ = B
For each selected sample Ai , select its corresponding B̂i from B̂:

If ṽ
( j)
l,ini t > ṽ

(i)
f,ini t + vr,thd ∀ B j ∈ B̂:

Select the one with the minimum ṽl,ini t
Else:

Select based on fvl,ini t (vl,ini t |vl,ini t ≤ ṽ
(i)
f,ini t + vr,thd)

Drop B̂i from B̂
Sort the remaining samples in A in ascending order of ṽ f,ini t : {Ap| p ∈ P}
For each Ap, select its corresponding B̂p from B (same as for Ai )
Compute correlations for paired samples:

r(v f,ini t , vl,ini t ), r(v f,ini t , al,min), r(1vl , vl,ini t ), and r(1vl , al,min)

Compute the loss for paired samples:
If |r(1vl , vl,ini t )| < 0.3 & |r(1vl , al,min)| < 0.3:

L(η) = |r(v f,ini t , vl,ini t )− r̃(v f,ini t , vl,ini t )| + |r(v f,ini t , al,min)− r̃(v f,ini t , al,min)|

Else:
L(η) = +∞

η∗ = arg min
x

(L)

For instance, datasets sourced from CISS and GIDAS-PCM
contain only severe crashes. Therefore, a novel method, the
k-nearest neighbors (KNN) sample weighting method, was
proposed to handle this issue.

The KNN sample weighting method can be seen as a
post-stratification weighting method with a dynamic binning
strategy. Each sample extracted from the known reference
distribution carries a weight of one. For each extracted sample,
the k-nearest raw samples are grouped into one bin to share
the weight (see Step 3c in the following algorithm). It is also
worth mentioning that samples that have never been selected
as the nearest neighbors of any extracted sample will have a
weight of zero.

As shown in Algorithm 1, the KNN sample weighting
method contains four main steps.

1) Set the initial sample weight for each raw sample to
zero: wi = 0 ∀ i ∈ [1, n].

2) Sample N samples from the known reference distribu-
tion 8̃(x1, . . . , xm).

3) For any generated sample X̃ j :

a) Compute the Euclidean distance between X̃ j and
Xi , d(i)

j , for all i ∈ [1, n]. (x̃ ′( j)
p and x ′(i)p are the

standardized values of x̃ ( j)
p and x (i)

p , respectively.)
b) Compute the distributing weight of the raw sample

Xi for X̃ j , ω
(i)
j , for all i ∈ [1, n]. (A smaller

Euclidean distance correlates to a higher distribut-
ing weight.)

c) Distribute a weight value of one among the top k
raw samples with the highest distributing weights
({Xhl |hl ∈ H}).

4) Scale the weights so that
∑n

i=1 wi = n.

Fig. 14. Pairing algorithm parameter setting: a) CDF of the lead vehicle’s
initial relative speed (vl,ini t − v f,ini t ), and b) Loss of the pairing as a
function of η.

The value of k is determined by minimizing the loss,∑m
l=1 s(k)

l , where s(k)
l is the KS statistic for xl conditioned on

k computed with the weighted two-sample KS tests between
the weighted xl data and the reference data {x̃ ( j)

l | j ∈ [1, N ]}.

APPENDIX B
PAIRING ALGORITHM

The pairing algorithm was mainly based on the relationship
between the initial speeds of both vehicles (v f,ini t and vl,ini t )
because these two parameters have a stronger correlation than
the one between the following vehicle’s initial speed (v f,ini t )
and the lead vehicle’s minimum fitted acceleration (al,min).
We also observed that vl,ini t is no larger than v f,ini t in most
cases.

As shown in Algorithm 2, η is the percentage of randomly
selected samples from set A, vr,thd(= vl,ini t − v f,ini t ) is the
threshold of the lead vehicle’s initial relative speed (m/s),
fvl,ini t is the probability density function of vl,ini t (estimated
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Algorithm 3 Matching Algorithm

Sample with the replacement of N samples from REF_sl and REF_sb, respectively:
U = {Ui | i ∈ [1, N ]}, where Ui = [ṽ

(i)
l,ini t , ã(i)

l,min, ã(i)
1 , ã(i)

2 , τ̃
(i)
s , τ̃

(i)
1 , τ̃

(i)
2 ]

T

V = {V j | j ∈ [1, N ]}, where V j = [d̃
( j)
ini t , ṽ

( j)
f,ini t , ã( j)

f,min, ṽ
(∗ j)
l,ini t , ã(∗ j)

l,min]
T

For j = 1 to N :
Set default values: valid = False, log = None, ni ter = 0

d(i)
j =

√
(ṽ
′(i)
l,ini t − ṽ

′(∗ j)
l,ini t )

2 + (ã
′(i)
l,min − ã

′(∗ j)
l,min)2 ∀ i ∈ [1, N ]

W = {Ui | d(i)
j ≤ de,thd , i ∈ [1, N ]}

W ← update_candidates_W (W )

While (not valid) and (n(W ) > 0) and (ni ter < ni ter,max ):
ni ter ← ni ter + 1
Create candidates for the three parameters: T̄ ∗, t̄∗g , t̄∗a
Select randomly Wl from W and drop it from W
While (not valid) and (n(T̄ ) > 0):

If log is not None:
T̄ ∗← update_candidates_T (log, T̄ ∗)
If n(T̄ ∗) = 0: break

Select randomly T (m) from T̄ ∗ and drop it from T̄ ∗

While (not valid) and (n(t̄∗g ) > 0):
If log is not None:

t̄∗g ← update_candidates_tg(log, t̄∗g )
If n(t̄∗g ) = 0: break

Select randomly t (h)
g from t̄∗g and drop it from t̄∗g

If abnormal_acceleration(V j ):
While (not valid) and (n(t̄∗a ) > 0):

If log is not None:
t̄∗a ← update_candidates_ta(log, t̄∗a )
If n(t̄∗a ) = 0: break

Select randomly t (q)
a from t̄∗a and drop it from t̄∗a

valid, log = sim(Vi , Wl , T (m), t (h)
g , t (q)

a )

Else:
valid, log = sim(Vi , Wl , T (m), t (h)

g ,+∞)

If valid: Save log

using the marginal distribution of vl,ini t from REF_l), L is the
loss, and η∗ is the optimal η with minimum loss. A smaller η

leads to a stronger correlation between v f,ini t and vl,ini t (as
for v f,ini t and al,min). vr,thd was set to 1.31 m/s, the elbow
point in its CDF curve: see Fig. 14(a). η∗ was set to 0.16 with
a minimum loss of 0.01: see Fig. 14(b).

APPENDIX C
MATCHING ALGORITHM

The algorithm is shown in Algorithm 3. ni ter is the current
number of iterations in terms of lead-speed profile, ni ter,max
is the maximum number of iterations (set to 10 in this study),
d(i)

j is the Euclidean distance between V j and Ui , W is the
set of candidates in U that can pair with V j . T̄ and T̄g
are the sets of percentiles {πp| p ∈ {0.01, 0.02, . . . , 0.99}}
from their marginal distributions. T̄ ∗, t̄∗g , and t̄∗a are sets
containing corresponding parameter candidates. The function
update_candidates_W updates W according to the sub-dataset
that V j belongs to. (For instance, a V j from S1 requires that
v f,ini t > vl,ini t > 0.) The functions update_candidates_T ,

Fig. 15. Selection of te,thd and de,thd .

update_candidates_tg and update_candidates_ta update T̄ ∗, t̄∗g
and t̄∗a , respectively. These functions were designed based
on the monotonous correlation between the parameter (T , tg ,
or ta) and the crash moment tc. (For instance, a larger T would
result in the vehicle maintaining a longer following distance,
delaying any potential crash.) Therefore, if the current tc is
less than five seconds, the T candidates for the next iteration
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must be larger than the current value of T . The simulation
function sim is described in Section III-E1.

To determine the two threshold values te,thd and de,thd ,
a subset with a sample size of 200 was randomly extracted
from REF_sl and REF_sb, respectively (U and V ). For each
Ui ∈ U and each V j ∈ V , we looped through T̄ ∗ and T̄ ∗g to
find the event with the minimum crash moment error te. The
total number of valid simulations ns is a function of te,thd
and de,thd (see Fig. 15). The elbow point in the surface was
selected: de,thd = 1.0, te,thd = 0.2 s.
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