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The concept of personalised medicine in cancer therapy is becoming increasingly important. There
already exist drugs administered specifically for patientswith tumours presentingwell-definedgenetic
mutations. However, the field is still in its infancy, and personalised treatments are far from being
standard of care. Personalised medicine is often associated with the utilisation of omics data. Yet,
implementation ofmulti-omics data has proven difficult, due to the variety and scale of the information
within the data, as well as the complexity behind themyriad of interactions taking place within the cell.
An alternative approach to precision medicine is to employ a function-based profile of cells. This
involves screening a range of drugs against patient-derived cells (or derivative organoids and
xenograft models). Here we demonstrate a proof-of-concept, where a collection of drug screens
against a highly diverse set of patient-derived cell lines, are leveraged to identify putative treatment
options for a ‘new patient’. We show that this methodology is highly efficient in ranking the drugs
according to their activity towards the target cells. We argue that this approach offers great potential,
as activities can be efficiently imputed from various subsets of the drug-treated cell lines that do not
necessarily originate from the same tissue type.

A profound shift towards personalised cancer therapies is underway. This
transformation is driven by thewidespread recognition of the heterogeneity
that characterises cancer, which is now considered to be amyriad of diseases
united by uncontrolled growth. The diverse array of treatment strategies
under development to treat cancer is a testament to the complexity of the
disease.

Precision medicine is a transformative approach, tailoring treatments
to the individual patients, while considering their unique genetic, environ-
mental and lifestyle factors. This approach offers the potential for enhanced
patient care and a reduction in the healthcare burden associated with these
diseases. Nevertheless, a significant challenge still lies in the need for
improved predictivemodels that can anticipate patient responses to specific
treatments.

Recent breakthroughs in cultivating patient-derived cells in laboratory
settings enable the establishment of in vitro models as valuable tools for
advancing precision medicine. This methodology has the potential to
inform on patient responses to treatment, deepening our under-
standing of underlying disease mechanisms, uncovering novel drug

targets and ultimately enabling the development of more efficient
treatment strategies.

Obtaining valuable insights from such models remains a challenge.
While omics data has been used to varying degrees of success in this area, it
often falls short of providing the versatility required for the diverse spectrum
of available drugs and their mechanism of action.

An alternative approach to omics is the utilisation of functional assays1.
Studies have demonstrated that patient-derived xenografts (PDX) can yield
drug responses that correlate with the outcomes of patient responses in
clinic2. However, the direct application of PDX models for precision med-
icine is often impractical due to the significant cost, time, and resources
necessary to generate results3.

Addressing the relationship between ex vivo responses and those
observed in clinical settings remains a central and ongoing challenge in the
realm of precision medicine. While studies correlating patient responses
with those observed in patient-derived cell culture (PDC) are limited, they
are steadily increasing4–6. Notably, certain studies have demonstrated
improved outcomes for blood cancer patients treated with drugs selected
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based on their ex vivo performance, as opposed to standard treatments7–9.
Addressing this challenge with vigour is paramount if we are to realise the
full potential of this approach.

An essential step involves establishing an efficient methodology for
precision medicine grounded in patient-derived cancer cell cultures.
Growing cells in organoids provides a closer resemblance to the patient's
tumour than conventional tissue culture10–12. However, they often lack cells
from the tumour microenvironment (TME) and can be costly to grow4,13.
Whole-tumour cell culture is proposed as another alternative, which
includes representation of cells from the TME at a lower cost than con-
ventional organoids4. The large array of approved cancer drugs, coupled
with numerous FDA-approved drugs available for consideration, presents a
complex therapeutic landscape. While the straightforward approach of
testing all drugs for all patients may seem ideal, it is prohibitively expensive
and resource-intensive, particularly given the substantial number of cancer
patients requiring screening.

An alternative, more practical approach is to harness the predictive
capabilities of machine learning (ML). Machine learning has been suc-
cessfully applied in drug selection for amultitude of targets, as evidenced by
a large number of publications in the field14,15.

Various methods have been developed for the prediction of bioactiv-
ities in cell lines and other cellular and molecular targets. The Quantitative
Structure Activity Relationship approach, rooted inmachine learning, is the
most prevalent. It leverages molecular fingerprints based on chemical
substructures to establish correlations with bioactivity in specific targets.

A different approach geared towards precision medicine makes use of
omics data to predict the activity of drugs in individual patients. This
method has demonstrated success for some drugs with clear correlations to
specific dysregulated or dysfunctional genes16,17. However, a notable chal-
lenge remains, asno suchmethodhas yet successfully predicted the outcome
of a diverse range of drugs across a varied patient population18,19.

Here we introduce a promising approach that is rooted in bioactivity
fingerprints and high-throughput screening fingerprints, closely related to
transformational machine learning (TML)20–22. This method relies on his-
torical screeningdata asdescriptors.These descriptors,much like bioactivity
fingerprints, consist of bioactivities towards various targets. The key dis-
tinction is that a significant portion of these activities are actual

measurements rather than mere predictions, enhancing the reliability and
applicability of the methodology.

In our methodology, patient samples first undergo a comprehensive
screening of a drug library. A subset of this library is then selected as a
probing panel. Subsequently, a newpatient-derived cell line is screened only
against this smaller panel. Machine learning is employed to learn rela-
tionships between drug responses found in historical samples and those in
thenew sample. Thismodel, trainedon the responses from thedrugpanel, is
then applied to predict drug responses across the entire library for the new
cell line. Experimental validation can then be conducted on the top hits, and
any confirmed hits represent potent candidates for a targeted drug cocktail
tailored to the patient’s cancer (Fig. 1).

In this scenario, we predict drug sensitivities for patient-derived
cell lines through analysis of ‘historical’ profiles of cell lines derived
from other patients. Our findings demonstrate the significant effi-
ciency of this approach in predicting drugs that exert a substantial
impact on cancer cells. Moreover, we also establish the method’s
applicability in addressing the considerably more challenging task of
identifying highly selective drugs for specific cancer cell lines. We
provide additional evidence of the method’s utility by applying it to a
library of FDA-approved drugs. Finally, this methodology is also
applied to a unique dataset with 24 patient-derived tissue cultures
screened against a limited panel of 35 FDA-approved drugs shortly
after the biopsies were performed.

Results
To develop an efficient methodology for predicting drug responses in
patient-derived cell lines we performed a few initial probing experiments
using a dedicated validation set from the GDSC1 dataset (Fig. 2). These
provided the foundation for establishing parameters necessary to construct
a viable prototype ‘recommender system’, capable of predicting drug
responses in unseen patient cell lines.

Based on the outcomes of these experiments outlined in supplemen-
tary materials, we used TML to fill in missing values in the training datasets
(Table S2 and Fig. S1), we employed a random forest with 50 trees (default
parameters) (Table S3), we used an initial ‘probing’drug panel of 30 selected
drugs for all ‘unseen’ cell lines (Tables S4 and S5), and we included 100

Drug panel

Drug library

Cell line panel

Drug panel

2. Treat a new cell line with the drug 
panel to generate bioac�vity data.

3. Generate predic�ve models rela�ng 
response pa�erns between cell line panel 
and new cell line using ML. Predict 
responses for full library in new cell line.

4. Validate the top predicted 
molecules in the new cell line.

1. Treat a cell line panel with the drug panel and drug library to generate bioac�vity data.

Fig. 1 | Illustration of themachine learning-based drug prediction and validation
process. A small drug panel is first tested on a patient-derived cell line. Using
historical screening data (comprising a panel of cell lines screened against both a

drug panel and a larger drug library), a machine learning model predicts drug
responses for the full library. The top-ranked drug candidates are then experi-
mentally validated.
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randomly selected patients (cell lines) when training themodels (Table S6).
These choices constitute the foundation of our prototype system.

Predictive performance in the GDSC1 dataset
The prototype outlined above was applied to a dedicated test set, containing
81 patient-derived cell lines. The performance was evaluated through var-
ious metrics. In addition to Rpearson, Rspearman and RMSE, we also included
four accuracy metrics.

We reported the fraction of accurate predictions within the top 10, 20
and 30 drugs, providing an indication of the predictive accuracy. For
instance, if 7 out of the 10 predictions matched the actual top 10 drug
responses, we reported a fraction of 0.7. Additionally, we reported the hit
rate among the top 10 predictions, offering a direct insight into the number
of these recommendations that accurately identified hits.

All the results are reported as amean offive experiments, accompanied
by the resultant standard deviations (Table 1). For the sake of comparison,
the average hit rate among the entire set of test set drugs was 17.8% for all
drugs and 5.0% for ‘selective’ drugs (those active in less than 20% of the
cell lines).

The prototype recommender system demonstrated excellent perfor-
mance, with high correlations between predicted and actual drug activities
for both the entire drug library and selective drugs alike (Table 1). When
considering the entire library, we found that the recommender system
performed very well. On average, 6.6 out of the top 10 predictions were
correctly identified, with 15.26 and 22.65 accurate predictions for the top 20

and 30, respectively. Even when agnostic towards the exact ranking of the
drugs and aiming for 10 recommended hits, the system consistently pre-
dicted almost exclusively hits.

In the more challenging task of predicting selective drugs, the results
remained strong in terms of overall bioactivity ranking (Rpearson = 0.781,
Rspearman = 0.791).When specifically aiming to identify the top 10, 20 and30
drugs, the system provided an average of 3.6, 10.5 and 17.6 accurate pre-
dictions, respectively. The hit rate amongst the top 10 drugs was slightly
higher, averaging at 4.3. It is important to note that, for the selective drugs,
50% of all cell lines had 12 or less hits in total out of the 236 available for
prediction, demanding a nearly perfect system to pick them out. If one were
to only consider the 41 cell lines with more than 12 hits present, the hit rate
would increase to 6.1.

To further assess the accuracy of the top predictions, we conducted two
additional experiments (Tables S9 and S10). First, we evaluated whether at
least one of the top-3 drugs appeared among the system’s top-3 predictions,
and also assessed how many of the top-3 predicted drugs were actual hits,
regardless of their true rank. In both the all-drug and selective-drug sce-
narios, the system successfully captured top-performing drugs with high
reliability (Table S9). Second, we extended the evaluation to the top-15
predictions, a realistic number for practical applications, examining how
often the actual top-3 drugs were identified and whether the best-
performing drug was correctly predicted. Again, the system demonstrated
strongpredictiveperformance, evenwhenconsidering themore challenging
selective-drug subset (Table S10).

Fig. 2 | Overview of the study workflow, from data
collection to model evaluation. Four datasets
(GDSC1, GDSC2, PRISM, RX) were pre-processed
to remove missing values and imputed where
necessary. The data were randomly split into train-
ing (80%), validation (10%), and test (10%) sets, with
RX using leave-one-out cross-validation. Amachine
learning model was trained on historical drug
response data to predict drug sensitivities for new
patient-derived cell lines. Model performance was
evaluated using Pearson correlation, Spearman
correlation, RMSE, accuracy, and hit rate metrics.

Table 1 | Predictive performance of the prototype drug recommender system on the GDSC1 dataset

Rpearson Rspearman RMSE Top 10 Top 20 Top 30 Hit rate

Selective drugs 0.781/0.021 0.791/0.020 0.469/0.018 0.36/0.086 0.524/0.060 0.588/0.052 0.426/0.075

All drugs 0.885/0.008 0.865/0.010 0.507/0.017 0.66/0.063 0.763/0.027 0.755/0.028 0.978/0.011

Metrics reported areRpearson,Rspearman, RMSE, and accuracy of predictionswithin the top 10, 20 and30drugs, aswell as hit rates among the top 10 recommendations.Results are presented asmean/stdev
based on five experiments.
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Looking closer at the performances across individual cell lines in
terms of Spearman R coefficients, which indicates how well drugs are
ranked in terms of their activity, we observed a minimum score of 0.76
for all drugs and 0.39 for selective drugs (Fig. S2). Notably, among the
selective drugs, which are more difficult to predict, only 8 cell lines
performed below 0.7 and only two fell below 0.65. These results illustrate
the overall strong performance of the prototype recommender system
while highlighting the increased complexity of predicting responses for
selective drugs. An additional experiment comparing our approach to
the use of standard molecular fingerprints was also performed and
comparative results show that this approach is far superior on this
dataset (Table S11).

Predictive performance in the GDSC2 dataset
The parameters selected for the GDSC1 dataset were applied to the GDSC2
dataset, demonstrating consistent high performance across all drugs. In the
GDSC2 test set, the hit rate for all drugs was 13.2%, whereas for selective
drugs, it was 2.5%. These values are notably lower than those of the GDSC1
dataset. When considering all drugs, the hit rate amongst the top 10
recommendations was high, with ~9/10 drugs being active on average
(Table 2). However, the hit rate for selective drugs in the top 10 predictions
was 0.193, significantly lower than in GDSC1 (Table 1). This decline can
again be attributed to the small number of hits available in the dataset,
averaging 3.38 across all cell lines. Consequently, the system's performance
is constrained by this limit, achieving amaximumaverage of 3.38 hits per 10
recommendations.With this limit inmind, the system’s performance canbe
adjusted to 57% in accuracy when compared to the theoretical maximum.
Furthermore, 21 cell lines lacked any hits at all; if these are removed, the
average hit rate goes up to 2.72, still standing at 57% of the maximum
available hit rate (now averaging 4.77). There were only 8 cell lines that had
10 or more hits, averaging at 13.25, and for these cell lines, the average hit
rate was 6.6/10.

Predictive performance for an FDA-approved drug library
The PRISMdataset differs significantly fromprevious datasets as it contains
a larger library of FDA-approved drugs. Due to the unique and diverse
nature of this dataset, we again investigated the optimal size for the probing
drug panel, as well as the impact of the number of cell lines included in the
training onmodel performance.We excluded the two compounds ‘mg-132’
and ‘bortezomib’ from our studies, as the authors of the PRISM study
indicated their use as positive controls.

First,we explored the effect of thenumberof patients used in training the
models. The experiments were performed using a drug panel containing 90
drugs (~2% of the dataset). Surprisingly, we found that reducing the number

of patients from 418 (all patients) to 30 patients still retained a significant
amountof informationnecessaryefficientpredictions (TableS7). Intriguingly,
even when working with 10 patients, correlations remained relatively close to
thoseof the largerpatient subsets.However, for thisminimal cohort, therewas
a marked drop in accuracy amongst the top-performing drugs, as well as hit
rates among the top 45 selections. Nonetheless, our study demonstrates that
reducing thenumberofpatients to~10%of the entiredataset still yields strong
predictions and a substantial number of hits in the recommendations. Based
on our findings, we chose to proceed with 100 patients, as the performance
was nearly identical to that of 200 and 418 patients.

Next, we investigated the impact of drug panel size on performance.
We conducted experiments with drug panels consisting of 23, 45 and 90
drugs, representing ~0.5%, 1% and 2% of the dataset, respectively. We
observed that there was a marked improvement with each size increase.
However, considering that testing 90 drugs for every new patient could be
quite substantial, we recommend using a panel of 45 drugs (or less). This
smaller panel still yielded competitive results and a substantial number of
compounds active against the cell lines, ~30 hits present among 45
recommendations (Table S8).

The calibration work above was performed using a validation set.
Subsequently, we tested the samepanel sizes using an independent test set of
52 patients and observed very similar performance (Table 3). It became
evident that thehit rates (amongst the top 45predicteddrugs) corresponded
to increases of ~1000–1600%compared to screening the entire library (5.2%
hit rate). This gives rise to 45 recommendations containing ~25–38 active
compounds on average depending on the chosen panel size.

Predictive performance for RX dataset
The RX dataset was acquired from a range of tumour types. The drug
screens were conducted on cultured biopsies of cancer patients shortly after
their arrival at a laboratory. Due to the limited number of drugs and cells in
the dataset resulting from the stringent inclusion criteria (see methods), we
employed leave-one-out cross-validation for this dataset. This involved
predicting the viability of patient-derived cells when treated with a drug,
based on their resultant viabilities when treatedwith the remaining drugs in
the dataset as well as those of other patients. In this scenario, the unknown
activities illustrated in Fig. 1 would pertain to a single drug, while the
remaining drugs would be part of the drug panel.

Approximately 30 different drugs were tested against each cell line; the
average resultant viability across cell lines for this library was 87.55%
(Table 4). In contrast, when selecting the five drugs predicted to be most
effective towards each cell line, the mean viability of the cancerous cells
dropped to 33.45%. Using the threshold of <30% viability as an indication
for a hit, the average number of hits available per cell line was 4.36. On

Table 2 | Predictive performance of the prototype drug recommender system on the GDSC2 dataset

Rpearson Rspearman RMSE Top 10 Top 20 Top 30 Hit rate

Selective drugs 0.775/0.026 0.767/0.025 0.460/0.021 0.543/0.084 0.680/0.046 0.744/0.035 0.193/0.042a

All drugs 0.892/0.010 0.841/0.016 0.526/0.020 0.737/0.051 0.824/0.026 0.804/0.024 0.890/0.019

The reported metrics encompass Rpearson, Rspearman, RMSE, accuracy for the top 10, 20 and 30 predicted drugs, and hit rates among the top 10 recommendations. Results are presented as mean/stdev
derived from five experiments.
aMaximum possible hit rate is 3.38.

Table 3 | Impact of the different drug panel sizes on predictive performance on the PRISM dataset using a test set of 52 PDCs

Panel size Rpearson Rspearman RMSE Top 0.5% Top 1% Top 2% Hit rate (top 45)

23 0.530/0.045 0.394/0.035 0.776/0.012 0.067/0.036 0.169/0.059 0.368/0.087 0.559/0.103

45 0.609/0.024 0.444/0.022 0.742/0.009 0.083/0.046 0.215/0.070 0.437/0.078 0.662/0.099

90 0.687/0.019 0.473/0.015 0.684/0.010 0.159/0.064 0.345/0.074 0.567/0.054 0.845/0.063

The reportedmetrics includeRpearson,Rspearman, RMSE, accuracy for the top 0.5%, 1%, and 2%of predicted drugs, and hit rates among the top 45 recommendations. Results are presented asmean/stdev
derived from five experiments.
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average, the methodology recommended 4.87 drugs for testing and 3.60 of
these were identified as hits. Three of the cell lines never experienced a
viability decrease of <30% and were excluded from the hit analysis. The
resultant average hit rate across all cell lines was 69.40%, and our approach
managed to identify an average of 68.78% of all available hits across all cell
lines. For three cell lines, the resultant hit rateswere 0%, and in each case, the
total hits amongst the 30+ compoundswere low, at 1 or 2 hits.However, the
methodology always managed to rank drugs in the library so that the top 5
predicted drugs resulted in a significantly lower viability than that of the
library. Complete results can be found in Table S12.

Discussion
The future of cancer therapy is moving towards a personalised approach,
aiming to align treatment strategies with the needs of the individual patient.
Current efforts in this area are focused on linking specific treatment options
to genetic markers, but the choices of such personalised drugs are relatively
few, and this approach only benefits ~10% of all patients23. The challenge
only becomes greater when selecting medications that lack a direct link to
specific gene defects.

Efforts to connect therapy choices to geneticmakeuphave encountered
limitations in their success18,19. Most promising studies have concentrated
on a select few drugs rather than a larger library or a panel of currently
available drugs. These limitations are rooted in the complexity of the cell and
its dynamicmolecular regulation atmultiple levels, rendering it challenging
to predict drug outcomes based on such complex and interconnected
information.

In this context, the methodology presented in this work set out to
circumvent this complexity by shifting the focus away from a static depic-
tion of a cell’s state and its potential response. Instead, it explores the cell’s
ability to respond to a diverse drug panel, aiming to understand its inter-
action with drugs outside this panel.

This study delves into drug response profiles as predictors in precision
medicine, seeking to establish fundamental principles for constructing
robust machine learning models for recommending drugs effective against
patient-derived cancer cells. The correlations between the number of
patient-derived cells, the drug panel size and model performance provide
valuable insights into the key parameters influencing model performance.
The experiments indicate that the optimal range for achieving efficient
predictions falls within 100–200 patients in the training data, with incre-
mental gains in performance beyond this (Tables S5 and S6).As for the drug
panel, depending on the type of library one wants to extract recommen-
dations from, one will have to use varying numbers of drugs in the probing
panel. For instance, the experiments demonstrate that even a probing panel
as small as 20 drugs can yield highperformance inpredicting activities in the
GDSC1 dataset consisting of ~300 anti-cancer compounds (Table S4). The
experiments also showed that a small probing panel of 23 drugs resulted in
an average of 25 hits amongst 45 selected from an FDA-library of ~4500
compounds (Table 3).

Notably, this methodology exhibits a remarkable level of agnosti-
cism towards the specific type of cancer tissue from which the cells are
derived. This finding is further underscored when investigating the
composition of the ten most informative cancer cells (according to their
tissue types) when predicting example cell lines from different tissues of
origin (Fig. S3 and Fig. 3). Only haematopoietic and lymphoid tissue
cancer appears to prefer similar cancer types for efficient prediction. In
addition, we found that the specific selection of drugs that is included in

the panel, as well as the size of the panel, have a profound impact on how
patients cluster (Fig. S4), consistent with previous studies24. The clus-
tering becomes more robust when increasing the size of the panels,
suggesting that overall, specific cell lines tend to be similar in their
general response (hints at the concept of digital twins in precision
medicine).

Lastly, this methodology demonstrated strong performance on the RX
dataset, which includes tissue cultures exposed to drugs shortly after biopsy.
This serves as a crucial validation, highlighting the approach’s potency with
clinical samples, even when the drug library is limited and the number of
patients is small. In nearly every case where hits were present, at least one of
these was identified. Only in 3 out of 21 cell lines, where there were only 1 or
2 hits, did the approach fail to identify one. However, the methodology was
still successful; for every cell line, the mean viability of the top 5 hits was
significantly lower than that of the entire library, suggesting that the
methodology correctly identified effective compounds from this library
(Table S12).

Clinicians have already seen promising outcomes using PDC data to
guide treatment decisions, particularly regarding drug resistance. Our
methodology offers a streamlined and cost-effective solution, requiring only
a fraction of a drug library for initial screening and capable of delivering a
tailored selection of effective drugs within a week, revolutionising treatment
timelines. Recognising the diverse drug susceptibilities of cancer cell lines,
ourmethod supports the formulation of strategic drug cocktails to optimise
treatment, minimise redundancy, and prevent resistance.

It is important to note that the methodology presented in this work is
based on data from cell-based assays. This means that challenges may arise
when studying certain classes of drugs such as immunomodulators.
Acknowledging the growing significance of modulators influencing the
microenvironment and immune system, future iterations of this workmust
address these nuances. Strategic drug cocktails, including modulators and
various therapeutic agents, are likely to be at the core of future precision
medicine. Our methodology stands poised to contribute to these efforts by
facilitating potent and tailored therapies.

Methods
The RX dataset constituted tissue cultures derived from 24 patients with
different cancer types screened against a drug library of 35 FDA-approved
drugs using a cell viability assay (Table S1).

Tissue collection and drug screening
This study was conducted in accordance with relevant UK guidelines and
regulations, and the ethical principles of theDeclaration of Helsinki. Ethical
approval was provided by the North West - Greater Manchester South
Research Ethics Committee (Reference22:/NW/0237). Informed consent
was obtained from all participants (or their parent/legal guardian in case of
minors).

Fresh samples of tumour specimen were acquired from hospitals
and clinics in the UK. Upon arrival, the samples were washed and
processed according to the dissociation kit’s instructions (Miltenyi
Biotec, cat. 130-095-929) and gentleMACSdissociator (Miltenyi Biotec).
After washing in PBS and centrifugation, the cell pellet was resuspended
in prewarmed medium and incubated for 48 h at 37 °C, 5% CO2. Med-
ium was changed to growth medium, and cells were grown to ~1 × 106

cells. Growth medium was changed every second day. Drugs were
transferred to 384-well plates (Grenier cat. 781091) to result in a final

Table 4 | Performance on RX dataset

Rspearman Library (viability) Top 5 ranked (viability) n hits available n hits predicted n hits identified n drugs available

0.62/0.02 87.55 33.45/2.83 4.36 4.87/0.27 3.60/0.11 33.00

For the 24 cell lines, themean Spearman rank is given for the entire library of 30+ drugs. The average viability resulting from the entire drug library is reported, alongwith that foundwhen selecting the top 5
predicted drugs. Defined as reducing cell viability to less than thirty percent, the average number of hits available per cell line is shown, as well as the average number of drugs predicted to be hits, and the
averagenumber of thesecorrectly identifiedas such. Theaveragenumberof drugs testedper cell line is found in the last column ‘ndrugsavailable’. The results from five independentexperiments are shown
as mean/standard deviation.
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concentration of 1 μM using a D300e digital dispenser (Tecan). Cell
suspension was transferred to the wells with a density of 2000 cells per
well in 50 μL growth medium. Cells were incubated with the drugs for
72 h at 37 °C, 5%CO2.Hoechst was used to stain the cells and acquire cell
counts. The resultant values were used to calculate viability in relation to
negative DMSO and positive Benzethonium chloride controls. The
generated dataset was named RX.

Datasets
Four datasets were used in this study; the publicly available sets GDSC1,
GDSC2 and PRISM25,26 datasets, as well as the additional dataset (RX)
described above.

Processing datasets
In the case of GDSC1 and GDSC2, we excluded cell lines with more than
20% missing drug measurements from the analysis. Similarly, drugs
untested in over 20% of the remaining cell lines were also removed from
the study. For the larger PRISM dataset, we applied a more stringent
threshold of 10% for cell line exclusion and 20% for drug exclusion. The
resulting number of cell lines and drugs after this data pruning is sum-
marised in Table 5. For the RX dataset, given the limited size, we excluded

cell lines with over five missing values, and drugs missing in over five
cell lines.

Target values
For GDSC1 andGDSC2, we transformed target values to log (IC50)−1, with
activity values above 6 (IC50 ≤ 1 µM) considered active. In the case of
PRISM, we utilised log2 (fold-change)−1 values as the target values, with
activity values above 1.7 considered active. For RX, the dataset contained
viability values normalised against DMSO controls, a value of 100 corre-
sponded to 100% viability compared to DMSO controls. An active com-
pound was indicated by the reduction of viability to ≤30%.

Data completion
Since all the drug response datasets were incomplete, we considered two
approaches for addressing this issue. The first involved filling the missing
values in the matrices with zeros. Alternatively, we employed imputation
using TML, an approach that generates a predictivemodel based on available
values in thematrix to predictmissing values. In this latter approachwe used
the sci-kit learn implementation GradientBoostingRegressor (n_estima-
tors = 50, max_depth = 1). We excluded all test and validation samples (cell
lines) ensuring data integrity. The remaining cell lines were designated as
samples, and drugs were treated as features.Missing drug response values for
each drug were predicted. For each drug under prediction, we generated a
model based on all other drugs with fewer than 20 missing entries, any such
entrieswerefilledwithzeros, and themissingvalues for the relevantdrugwere
predicted and incorporated into a newly imputed ‘TML-matrix’.

Model training and validation
To train the predictivemodels, we split the datasets into training, validation,
and test sets. GDSC1, GDSC2, and PRISM followed predefined splits to
prevent data leakage. The data was randomly split into 80% training, 10%
validation, and 10% test sets.We performed cell and drug panel selection on
the training set using a correlation-based approach. Samples with the lowest

Table 5 | Number of patients anddrugspresent in eachdataset
after data pruning according to specified thresholds

Dataset n-patients n-drugs n-drugs (selective)

GDSC1 809 322 266

GDSC2 707 165 137

PRISM 522 4515 4199

RX 24 35 -

All drugs were used for the RX dataset as the drug library only constituted 35 compounds.

Fig. 3 | Feature selection results. For each of 10 cell lines being predicted (defined by their tissue of origin), themost influential cell lines were identified, and their respective
tissue of origin reported. Fifty percent of the drug library was used in the probing panel.
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50% variance were first excluded. A Pearson correlation matrix was com-
puted across all remaining samples, which were then ranked by median
correlation. Starting with the sample exhibiting the lowest median corre-
lation, any samples exceeding a user-defined correlation threshold relative
to it were excluded. The next available sample in the original ranking was
then evaluated in the same manner, and the process was repeated until no
samples remained. The low-redundancy and diverse samples selected
through this process constituted thefinal panel. Due to its small size, RXwas
analysed using leave-one-out cross-validation.

Regression
We conducted a comparison of regression models using the Sci-kit learn
implementations RandomForestRegressor and GradientBoostingRe-
gressor, both of which have shown strong performance in similar tasks27–30.
We explored a predefined set of configurations, including varying the
number of trees for both learners and adjusting the max_depth parameter
for GradientBoostingRegressor. This exploration was sufficient to build
effective prototype systems. More comprehensive parameter optimisation
across a wider range of learners can be performed in future studies. Feature
importance scores were obtained using the random forest model to identify
influential input features.

Evaluation metrics
To assess the performance of these regressionmodels, we employed a range
of evaluation metrics. These metrics included Spearman R, Pearson R, root
mean squared error (RMSE), standard deviation, hit rates and the accuracy
of top n selections. These metrics served to provide a comprehensive eva-
luation of themodel's predictive accuracy, robustness and suitability for the
given task. Due to the smaller size of the RX dataset, leave-one-out cross-
validation was used, and the metrics we chose were Spearman R, mean
viability of the top 5 predicted hits, number of drugs predicted as hits as well
as how many of these that were actual hits.

Data availability
The RX dataset can be found at https://github.com/abbiAR/
DrugResponsePrediction. The GDSC1/2 datasets are available at https://
www.cancerrxgene.org/, we used the datasets with calculated IC50 values.
The PRISM datasets are available at https://depmap.org/repurposing/, we
used the primary screen dataset with collapsed replicates and calculated
logfold change values.

Code availability
The code can be found at https://github.com/abbiAR/Drug
ResponsePrediction.
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