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Fine-Tuning Myoelectric Control Through
Reinforcement Learning in a Game Environment

Kilian Freitag

Abstract—Objective: Enhancing the reliability of myo-
electric controllers that decode motor intent is a pressing
challenge in the field of bionic prosthetics. State-of-the-
art research has mostly focused on Supervised Learning
(SL) techniques to tackle this problem. However, obtaining
high-quality labeled data that accurately represents muscle
activity during daily usage remains difficult. We investigate
the potential of Reinforcement Learning (RL) to further im-
prove the decoding of human motion intent by incorporat-
ing usage-based data. Methods: The starting point of our
method is a SL control policy, pretrained on a static record-
ing of electromyographic (EMG) ground truth data. We then
apply RL to fine-tune the pretrained classifier with dynamic
EMG data obtained during interaction with a game envi-
ronment developed for this work. We conducted real-time
experiments to evaluate our approach and achieved sig-
nificant improvements in human-in-the-loop performance.
Results: The method effectively predicts simultaneous fin-
ger movements, leading to a two-fold increase in decoding
accuracy during gameplay and a 39% improvement in a
separate motion test. Conclusion: By employing RL and
incorporating usage-based EMG data during fine-tuning,
our method achieves significant improvements in accuracy
and robustness. Significance: These results showcase the
potential of RL for enhancing the reliability of myoelectric
controllers, which is of particular importance for advanced
bionic limbs.

Index Terms—Deep learning, electromyography, hu-
man computer interaction, prosthetic limbs, reinforcement
learning.
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[. INTRODUCTION

OUGHLY 58 million people were living with limb ampu-
R tation worldwide, as of 2017 [1]. Even though extensive
research efforts have gone into developing better prosthetic
devices, these are still far from human-level performance. As
a consequence, the adoption of prostheses is effortful, and aban-
donment rates are high, with one of the main factors being a lack
of reliable functionality [2], [3]. The performance of a prosthesis
greatly depends on the accuracy with which the user’s motion
intent can be decoded to determine the appropriate bionic joint
actuation. There are several biological signals that can be used to
determine human motion intent, such as electroencephalography
(EEG) or electromyography (EMG) measurements. The latter
has been shown to be more practical, is more widely adopted [4],
[5], and is therefore used in this work.

In myoelectric control, there are two main approaches used to
decode motor intent for actuating bionic limbs: (i) direct control
and (ii) pattern recognition control. Direct control, involves
mapping individual muscle signals — often on a one-to-one ba-
sis — to a specific bionic joint. When a mapped muscle contracts
and its signal value surpasses a predetermined threshold, the cor-
responding bionic joint is actuated. This approach is appealing
due to its simplicity however, the few signals available from
people with amputation are often not easily separable and thus
cannot always be mapped in a one-to-one fashion. In practice,
direct control frequently involves mapping only two antagonistic
muscle groups, with mode switching employed to control more
than one Degree of Freedom (DOF), making it impractical
to use as the number of DOFs grow. Pattern recognition
control, leverages Machine Learning (ML) to train a function
approximator that automatically maps biological signals to an
intended motion [6]. This control method thus bypasses the
need to solve the signal separability problem through hand
engineering efforts. According to Mereu et al. [7], this approach
is preferred over direct control by people with amputation due
to its more intuitive usability. While in this paper we focus on
the classification problem of myoelectric control, meaning that
a finite set of movements or DOFs are considered to either be
active or not, one can also frame it as a regression problem,
referred to as proportional myoelectric control. In particular,
both direct and pattern recognition methods can be employed to
map the EMG input to the magnitude of the control output.

Though pattern recognition control has shown promising re-
sults, online usability of ML-based controllers remains limited,
especially for hand gestures [5]. Many ML approaches have

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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Fig. 1.

Selected finger movements, grouped by number of simultaneous DOFs. Top row consists of finger extension movements, while bottom

row consists of finger flexion movements. Each movement is labeled as m; with i = 0,..., 12 and with m referring to “Rest”.

been tested to decode motor intent, from classical algorithms
such as support vector machines [8], to deep learning algorithms
using Artificial Neural Networks (ANNs). Most work on pattern
recognition control has focused on Supervised Learning (SL)
with different ANN architectures, such as feed-forward [9],
recurrent [10], [11], convolutional [12] and transformers [13].
However, much of this research is confined to offline evaluations,
which does not guarantee the same online performance, with a
human in the loop [14]. We, on the other hand, investigate the
potential of Reinforcement Learning (RL) methods to increase
the online performance of a bionic limb controller, by fine-tuning
an initial ANN policy trained via SL.

Other works have attempted to improve ML-based motor
intent decoding by combining multiple signals through sensor
fusion. Mouchoux et al. [15], proposed integrating inertial units
and a camera to obtain context information to improve the
performance of a myoelectric controller, in an augmented reality
setup. In contrast, our work aims to maximize the utilization of
EMG signals, without additional sensors or hardware, making
it a more affordable strategy. Moreover, recent research has
explored procedures to improve the EMG signal quality, by
implanting electrodes directly in the muscles [16] instead of
placing them on the surface of the skin, which further encourages
pursuing EMG-based strategies.

A key limitation of ML-based control is the need to collect
labeled EMG data. This typically involves instructing the user
to repeatedly contract their muscles to generate activation pat-
terns for each movement that is to be learned during a lengthy
recording session. Collecting such ground-truth data becomes
increasingly cumbersome as the number of DOFs grows. The
problem is exacerbated when simultaneous movements are also
considered (e.g. open hand while rotating wrist) since each
movement combination needs to be present in the data. Tommasi
et al. [17] proposed using transfer learning, with data from sev-
eral able-bodied subjects, to reduce the amount of data needed
when training a control policy for a new subject. This approach
presents challenges when applied to people with amputations

due to substantial variations in residual muscle profiles. Fur-
thermore, data from such recording sessions can differ from
natural muscle activity during daily usage. This discrepancy
between training data and real-life usage can further hinder
robust control and thereby impact the functionality of ML-based
prostheses. To address these problems, we propose training a
control policy within an interactive game setting, which can
be more representative of daily-life scenarios. This also helps
reduce the length of the initial recording session, since additional
data can be collected during gameplay.

In this work, we present an RL-based approach that leverages
data collected in an interactive game environment, to close the
gap between offline evaluations and online performance. By
having users interact with a game through a myoelectric policy,
we can get valuable human feedback about its performance. It
then becomes possible to iteratively improve the policy towards
better online performance directly, rather than only trying to
copy recorded behaviors by minimizing the offline error, as
in SL approaches. We refer to this iterative improvement of
a pretrained policy as fine-tuning, where the purpose is to
align the learning objective towards better performance on real
usage data, with the human in the loop. While we present a
specific case study, our approach can be generalized to any
myoelectric control task from which a reward signal can be
derived. To validate our methods, we developed a simplified
game environment that allows for a quantifiable measure of
improvement. The environment is inspired by Guitar Hero which
requires precise timing, duration, and motion control, much like
everyday movements. The task was developed especially with a
simultaneous finger control setting in mind, representative of
common movement and grasp patterns encountered in daily
life. Our online experimental results demonstrate the efficacy
of RL in improving the decoding of motor intent across 15
subjects, with a more than two-fold increase in normalized
cumulative reward. The results are further validated through
testing on a separate task, also revealing a significant increase in
performance.
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Il. RELATED WORK

We contextualize our motor intent decoding approach within
the broader landscape of advancements in this field, categorizing
recent developments into three key areas: a) network architec-
tures, b) data quality and quantity, and c) learning methodolo-
gies. We review relevant work in each category, highlighting
connections to our proposed method.

a) Neural network architectures: There has been a substantial
amount of work to investigate the impact of neural network ar-
chitectures on decoding performance. For instance, Bakircioglu
and Ozkurt [18] performed offline tests with a convolutional
neural network (CNN) and compared it with a feed-forward
fully-connected neural network (FFNN) on 6 different hand
movements. Chen et al. [12] showed that using a Long Short-
Term Memory (LSTM) classification head after a CNN encoder
slightly surpassed a fully-connected classification head. Zbinden
et al. [19], utilizing the same setup as our study, compared
fully-connected neural networks with a CNN and Temporal
Convolutional Network (TCN) in online experiments. While it is
conceivable that more sophisticated network architectures could
further enhance motor intent decoding, they also introduce in-
creased complexity. Moreover, we posit that data collection and
training methods are at least as crucial as network architecture,
yet these areas remain underexplored.

b) Data: Tt has been demonstrated in recent studies that
increasing the data quantity can lead to generalization [20].
Nevertheless, work by CTRL-1abs at Meta Reality Labs [20] also
showed that additional personalized fine-tuning can improve
performance. Moreover, iterative online data collection with
fine-tuning has been shown to facilitate learning control tasks in
sequence labeling [21] and myoelectric control [22]. Building
upon the latter findings, we examine how iterative fine-tuning
using a gameplay-based approach can improve a policy in an
engaging way. In other words, we investigate how data quality
impacts learning.

c) Learning methodologies: Here, we consider both previous
work on transfer learning as it employs arelated, yet distinctively
different, idea of fine-tuning and, the more closely related work
on RL for EMG decoding.

Transfer learning for EMG control has shown promising
results in recent work to enable effective usage of additional
data. For example, Ketyko et al. [23] and Tommasi et al. [17]
demonstrated improved generalization across sessions and
subjects through fine-tuning on target data. Chen et al. [24]
demonstrated that transfer learning is also beneficial when the
target set contains movements that were not present in the source
set. Other work has eliminated the need for labeled source
data in domain adaptation [25], [26], extending the applicability
and amount of potential data for the aforementioned methods.
We diverge from these approaches by exploring the impact of
changing the training environment, and thus the training data dis-
tribution, towards tasks that resemble daily usage. Furthermore,
we propose using reinforcement learning to facilitate training
without requiring labeled data, which rather than being fully
unsupervised, still provides guidance through a reward function
that reflects task performance. While we solely investigate the
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Fig.2. EMG recording setup, with sliding window over 8 input channels
from surface electrodes. The Hudgins features [9] — mean absolute
value (MAV), waveform length in time-domain (TWL), number of zero
crossings (ZC), and slope changes (SLPCH) — are extracted for each
recorded channel and stacked in a one-dimensional vector.

benefit of iterative online fine-tuning with RL, it would be
possible to integrate transfer learning and domain adaptation
techniques into our proposed method to leverage the advantages
of both approaches and enable more efficient usage of additional
offline data. We leave this for future work.

Even though EMG classification via SL has been exten-
sively studied, RL methods have received limited exploration.
Nevertheless, some promising approaches have emerged in the
literature that we want to highlight. Pilarski et al. [27] proposed
an RL method that predicts arm movements using EMG and
robot state information. The agent learned to match the human
arm angle using velocity-based control. They initially guided
the learning through a reward based on proximity to the desired
angle and, subsequently through sparse human feedback. Sim-
ilarly, Vasan et al. [28] presented a system that allows for the
control of 3 simultaneous DOFs, of a prosthetic limb. This was
achieved by employing RL, to train an ANN while recording
EMG data of hand movements. Their method was able to predict
proportionality for each DOF and was successfully tested on
three able-bodied subjects. While these studies demonstrate
the feasibility of directly predicting proportional values, our
approach focuses on predicting movement intention, which we
believe to be more stable and easier to tune for home use. To the
best of our knowledge, employing RL for motion intent decoding
in this context has not been done before.

I1l. MYOELECTRIC CONTROL SCHEME

When designing a myoelectric controller, a key choice is
to decide on the specific movements to control. This decision
hinges on the participant’s amputation level; more proximal limb
loss precludes control of movements tied to now-absent muscles.
Although our method is broadly applicable, we focus on finger
movements corresponding to common grasp patterns, shown in
Fig. 1. Incongruent articulations (flex + extend combinations)
are not selected as there is evidence that natural control of such
motions is not simultaneous [29]. This selection of finger move-
ments would be feasible for people with trans-radial amputation.
Alternatively, they would be reasonable for patients who have
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Fig. 3.

The proposed RL framework consists of obtaining EMG signals from users, that are given to the policy to perform actions in an environment.

This environment then gives a reward based on how successful an action was. Note that before interacting with the environment, the policy is
pretrained through SL, using data from a recording session. Further, note that the reward signal is only used during RL training and not once the

policy is deployed.

lost the limb more proximally but underwent nerve transfer
surgery to create additional myoelectric sites [30], [31].

To acquire EMG signals, eight surface electrode pairs are
placed along two rings around the forearm of the participant,
with an additional electrode for ground, as illustrated in Fig. 2.
The electrodes are placed in a bipolar configuration, i.e. for each
channel, two adjacent signals are subtracted from one another
to reduce noise. The upper ring consists of one electrode pair
targeting the extensor carpi ulnaris and three additional equally
spaced pairs around the proximal side of the forearm. The lower
ring includes two electrode pairs targeting the flexor pollicis
longus and extensor indicis, and two equally spaced pairs around
the distal side of the forearm. Finally, a single electrode placed
on the ulnar styloid serves as ground reference. Surface EMG
signals are captured at a sampling rate of 1000 Hz and filtered
using analog and digital filters. These consist of an analog
low-pass filter at 500 Hz, a digital butterworth high-pass filter
at 20 Hz, and a second-order notch filter at 50 Hz. The EMG
data stream of the eight channels is split with a sliding window
approach, into 200 ms windows with 150 ms overlap, equating
to an update frequency of 20 Hz.

While there have been works that use raw EMG data to
directly train an ANN [32], such high-dimensional data can
make learning more challenging when limited data is available
and it increases computational load. A common approach to
overcome the problem is to extract a set of four features proposed
by Hudgins et al. [9] from the windowed EMG data. The features
in question are: mean absolute value (MAV), waveform length in
time-domain (TWL), number of zero crossings (ZC), and slope
changes (SLPCH). In our myoelectric control scheme, the input
to the policy is the stacked vector of these features for each
channel, as shown in Fig. 2.

Note how for each DOF (Thumb, Index, and Middle, see
Fig. 1), there are two movements (Flex and Extend). Clinically,
sequential myoelectric control is prevalent. This means that for
each possible DOF that a prosthesis can actuate, only one can
be active at any given time (m; to mg). In such cases, the ML
problem is formulated as a simple classification task. However,
since dexterous manipulation requires simultaneous actions,

there have been attempts to control multiple DOFs at the same
time [19], [33], [34]. The most straightforward approach is to
treat each movement combination as a new class. Alternatively,
we formulate the ML problem as a multi-label classification
task. To that end, each movement is encoded into a binary vector
m; € {0,1}2POF+L with DOF = 3. For example, simultaneous
thumb and index flexion is encoded as:

mg=[01 01 00
Middle

Ll
Rest

{

Index

The control policy is chosen to be a relatively small feed-
forward, fully-connected (6 hidden layers with ReL.U activation,
each with 128 neurons) ANN architecture (see [19] for more
details). Note that our methodology is versatile and can be
employed on any network architecture. Considering our pri-
mary objective of testing with individuals who have undergone
amputation, we strategically selected a network architecture
that can be seamlessly integrated into a take-home embedded
device, facilitating a smooth transition from research to practi-
cal implementation. The output layer has a sigmoid activation
function, outputting values between [0,1]. At test time, outputs
are rounded to be exactly {0, 1}.

All design choices prioritize hardware simplicity and compu-
tational efficiency for practical patient deployment. Importantly,
our proposed RL-based method is independent of this spe-
cific myoelectric control scheme, requiring only an ANN-based
policy and real-time human-in-the-loop operation. Thus, the
improvements demonstrated here should be replicable in other
myoelectric control setups. Higher offline classification accu-
racy can be achieved with different myoelectric control setups,
for example: by selecting sequential gross movements instead of
our simultaneous fine finger movements [8]; using high-density
EMG [35]; using more advanced features (e.g. phasor-based
methods [36]); and employing deeper ANN architectures [20].
However, this goes beyond our scope, and we instead focus
on the relative improvement achieved with our limited control
scheme in online experiments.
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[V. REINFORCEMENT LEARNING

The idea behind RL is to learn a control policy from trial-
and-error while interacting with the environment which pro-
vides a reward signal (see Fig. 3). More formally, RL prob-
lems are formulated as Markov Decision Processes (MDPs).
In this work, we consider an episodic MDP setting, defined as
a tuple (S, A, p,r,7y), where r : S — R is a reward function
and v € (0,1] is the discount factor. S and A are the state
and action spaces, respectively. The probability density function
p(8¢41]8¢, ar) represents the probability of transitioning to state
S¢11, given the current state s; and action a;, with sy, $;41 € S
and a; € A.

We aim to learn an ANN policy my(s:) = ay, i.e. the actor,
parameterized by . The long-term objective function is defined
by the return, which is the sum of discounted future rewards:
Gy = Zg:t y*~tr(sk, ai). RL algorithms aim to maximize the
expected return conditioned on states, i.e. the state-value V'(s),
or state-action pairs, i.e. the action-value Q(s,a). In deep RL
Qs(s,a), also referred to as the critic, is modeled by an ANN
parameterized by ¢. Typically in actor-critic methods, the actor
is updated such that Q(s, a) is maximized:

O = argmax B [Qu(s, 7o, (5)) @

A. RL With Human in the Loop

For our application, the RL agent is a combination of the hu-
man and the ANN policy. The former contracts their muscles to
execute an intended movement, and the latter maps the recorded
EMG signals to the correct movement. Collaboration becomes
essential as no single entity can solve tasks independently.

Online RL presents unique challenges when humans are in-
volved. Firstly, participants having to adapt to policy changes
can lead to a less satisfactory experience due to inconsistency
between policies. Secondly, the interaction between the human
and the environment needs to be real-time, since significant lags
between the commands of the human and the game would lead
to actions a; in response to earlier states s;_;, where [ is the
lag. Applying online RL could slow down the game interface,
creating such lags.

An alternative that has been gaining interest in the literature
is offline RL [37], which aims to learn from a static dataset, D.
This solves the aforementioned problems but brings its own chal-
lenges. Because pure offline RL assumes no additional online
data collection, it usually cannot reach acceptable online results
without further fine-tuning. The recent Advantage Weighted
Actor-Critic (AWAC) algorithm proposed by Nair et al. [38]
aims to accelerate such online fine-tuning with offline datasets.
AWAC trains an off-policy critic and an actor with an implicit
policy constraint. This leads to the modified policy update,
described as:

Op+1 = argmgLX]E {logmg exp <)1\A(s,7r9,€(s)))} 3)

where A(s,a) = Qq(s,a) — V(s), is the advantage function
and A is the Lagrangian multiplier for the constraint. By implic-
itly constraining the actor to stay close to the actions observed in
the data, this algorithm was shown to be able to both effectively

Score: 799

Thumb ndex Middle Seo : nl ndex Middle

Fig. 4. Game interface. Each vertical line refers to a controlled DOF:
Thumb (red), Index (yellow), and Middle (blue). The arrows point-
ing up or down refer to extension and flexion, respectively. Desired
movements are shown along the vertical lines, whereas predictions are
displayed on the diamonds by short arrows, indicating the direction and
DOF that is activated. When the agent executes the desired movement,
a green arrow appears over the diamond of the specific DOF (left).
Conversely, when the movement is incorrect the arrows are shown in
white (right).

train offline and continue improving with experience, on real-
world robotic problems. Given these particular characteristics,
we opted to use AWAC to train the myoelectric control policy, but
our method can be combined with other offline RL algorithms.

B. MDP Formulation

The state space S € R3? is defined as the stacked vector of
4 features for all 8 channels, as illustrated in Fig. 2. The action
space A € {0, 1} is the binary vector described in (1). We select
the discount factor to be v = 0.89, through a hyperparameter
search (see Appendix A in supplementary material for more
details). Furthermore, the reward function is defined as:

1, ifw(s) =aj ANaj #mo
r(se,ae) =90,  ifw(sy) =af ANaj =mg 4)
—1, otherwise.

The reward function plays a crucial role in the effectiveness of
RL for any given task. Our objective is to train a policy that can
accurately predict all movements made by the participant. As
described by (4), we assign a reward of 1 to correct predictions
and a reward of —1 to incorrect predictions. Furthermore, when
no movement is desired. i.e. a; = my, and the “Rest” class is
predicted we assign zero reward. We found this important since
the “Rest” class is over-represented in the data and preliminary
tests without zero reward resulted in policies that were biased
towards not moving. This reward formulation assumes an ideal
participant intention, aligning with the indicated movement, a;,
determined by the song.

The final element of our MDP formulation is the environment
itself, whose dynamics are represented by the probability density
function p(s;+1|s¢, a;). To avoid ambiguous results and make it
easier to evaluate the performance of the policy-human agent,
we designed a task that involves distinct movements at defined
times. This simplifies the credit assignment problem (i.e. what
action contributes to which reward), when learning the policy.
Moreover, in order to make the training process more engaging,
we developed a serious game environment similar to Guitar
Hero, shown in Fig. 4. Note that gamification has been shown
to increase participant engagement in previous studies [39].
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The serious game involves synchronizing movements to the
beat of a song and displaying them in a way that mimics playing
notes. The timing and correctness of the movements can be easily
tested in this way. Each song corresponds to one RL episode,
with movements lasting for 0.5, 1.0, 1.5, and 2.0 seconds.
These lengths were chosen to align with the time needed for
the average prosthetic hand to move, with 2 seconds being the
maximum time elapsed from one extreme to the other. Each
movement appears once for each length in one song, thus with
4 repetitions overall. Every repetition uses the same song to
allow for a fair comparison. Each episode lasts for 137 seconds,
with 60 seconds of these filled with notes. For this setting, each
episode’s undiscounted (v = 1) return falls within the range
Gy € [—2740,1200].

However, seeing a negative score could demotivate the par-
ticipants while interacting with the game. Therefore, we defined
a scoring system that is always positive but follows the same
trend as the episode’s return. The score was displayed on the
top left of the user interface to help participants keep track
of their performance. In addition to explicit feedback in the
form of scores, participants receive implicit feedback through
observation of the policy’s predictions. This mechanism allows
a participant to adapt to policies and to positively reinforce
movement patterns that are accurately decoded by a policy, thus
enabling more refined muscle activation.

V. TRAINING PROCEDURE

While Section IV presented our RL formulation and interac-
tive game, this section aims to introduce the proposed training
procedure designed to experimentally validate our approach.
The first step is to execute the traditional procedure for training
an SL policy. That is, we perform a recording session where
the subject is prompted to repeatedly execute each movement.
The resulting raw EMG data is then processed as described in
Section III and labeled with the corresponding binary vector
m; for each movement class 7, to create an initial dataset,
Do ~ (S, A). A policy 7 is subsequently trained through SL
using Dy.

This initial policy is then fine-tuned by playing the serious
game described in Section IV-B. After the participant finishes
the first song, the new EMG data recorded during the game form
adataset Dy ~ (S, A,{—1,0, 1}). This new dataset is then used
to train a policy 7 through offline RL, with policy 7y as the
starting point. The resulting policy replaces the previous one
to play the song again. This process is repeated n times, with
each repetition being appended to the dataset i.e. Dy C Dy C
... C D,. For our experiments, we repeated the procedure n =
8 times.

A. SL Pretraining

To pretrain a policy, each movement (see Fig. 1) is recorded
6 times, with a duration of 3 s for each repetition. The first
and last 10% of each recording is discarded to omit transient
EMG. Subsequently, the resulting D, dataset is used to train the
ANN described in Section III. The second and fifth recordings
are exclusively reserved as the validation set to determine the
best model. Following 500 training epochs, the model with the

highest F1 macro score on the validation set is selected as the
baseline policy and will be referred to as the pretrained model,
ie.m 0-

Typically, multi-label classification problems treat each out-
put as the probability of each class being present in the input, by
minimizing the sum of binary cross-entropy losses of all classes.
Instead, we use a simple RMSE loss, which is more generally
used in Behavior Cloning applications [40] (i.e. SL for control
applications).

B. RL Fine-Tuning

Based on the proposed RL formulation, we apply the AWAC
algorithm introduced in Section IV-A to train the myoelectric
control policy. As one episode provides relatively little data, we
include all recorded gameplay data in the replay buffer. In order
to enhance the dataset and introduce exploration, we randomize
certain actions within dataset D,,. To ensure a smoother playtime
experience, the randomization process occurs after each episode,
before training rather than in real-time. This randomization
happens with a probability € = 0.9 (see hyperparameter search
in Appendix A) for samples with negative rewards. If triggered, a
movement from Fig. 1 is selected based on a uniform probability
distribution. Subsequently, a new reward is calculated for the
selected movement.

V1. EXPERIMENTAL SETUP

This study consists of a preliminary investigation of the poten-
tial of our RL-based procedure for improving prosthetic control.
Therefore, we first carry out our experiments on able-bodied
individuals before moving on to amputees in future work. We
recruited 15 participants to perform the experiments, with ages
ranging from 21-29. The study protocols were carried out in
accordance with the declaration of Helsinki. Signed informed
consent was obtained from each participant before conducting
the experiments. The study was approved on February 14, 2023,
by the Regional Ethical Review Board in Gothenburg (Dnr.
2022-06513-01).

A. Experimental Procedure

Each experiment was carried out in a single session, lasting
between 1-2 hours. The participants were seated comfortably
in front of the computer and instructed to rest their arm on the
armrest of a chair to avoid any signal disturbances due to motion
artifacts or electrode shift. For each participant, we began by
pretraining a policy, as described in Section V-A. During this
step, we instructed the user to perform movements at approxi-
mately 50-70% of their maximum voluntary contraction. For all
subsequent steps, we did not explicitly specify the contraction
level. Notably, data collected from each participant was not used
for other participants, as this type of transfer learning is outside
the scope of this paper.

Once the SL policy is trained, we let participants play one
song without recording data to familiarize themselves with the
game and then go through the fine-tuning procedure introduced
in Section V. In the iterative setting, each repetition has a dual
purpose: it first validates the latest policy trained on past data,
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and then serves as training data itself. Once RL fine-tuning is
completed, i.e. after the n-th repetition, the participants are asked
to play the song one last time using the initial policy, 7. This
is important to be able to distinguish the impact of RL learning
from just human learning.

Finally, to not only evaluate our approach on gameplay data,
which the pretrained policy was not trained on, we also perform a
separate online Motion Test [41]. The participants are prompted
to execute each movement for a given number of trials before
a timeout, and the classification results are recorded at every
time step. Each trial terminates if the correct movement is
predicted 40 times (i.e. for 2 seconds) or after a timeout. In
this phase, the participants do not get any other instructions
than to complete the movements to their best ability. This is
performed at the end of each session for both 7y and 7g, where
either my or 7y is picked at random, to compare the SL policy
with the final RL policy. The participants are not informed
of which policy was selected. Although we do not anticipate
any confounders, randomly selecting the testing order should
mitigate potential effects arising from motion artifacts, electrode
shifts, or fatigue. We have the participants repeat each movement
3 times in random order, and set a timeout of 10 seconds.
See our project page for visual examples of the experiments:
https://sites.google.com/view/bionic-limb-rl.

B. Evaluation Metrics

The most straightforward way to measure gameplay perfor-
mance differences between policies is to record the return of
each episode/repetition. The undiscounted return (cumulative
reward) is normalized based on the range of the game score,
presented in Section I'V-B:

Go = ZtTZOT(st,at) + 2740
3940
where ¢t and T are the current and terminal state’s indices,
respectively. Note that the normalized return is only used during
gameplay and not considered during a Motion Test.

To further evaluate a policy’s capability of decoding motor
intent, we also calculate the exact match ratio (EMR) and the F1
macro scores. In the context of ML classification tasks, the EMR
corresponds to the classification accuracy, however, in a multi-
label setting, this terminology can be ambiguous since there
can be partially correct classifications. For this reason, we refer
to the EMR instead, which measures the proportion of correct
predictions out of all predictions made by the classifier. When
computing the EMR, even partially correct classifications are
considered completely incorrect, emphasizing the requirement
for precise and accurate predictions. The EMR is defined as:

1 T
72 Mar = ap) (©6)
t=1

where 1 is the indicator function, a; the movement predicted
and a; the correct movement at time ¢, which is determined by
the song being played.

Nevertheless, if some but not all of the target labels are
predicted, one could argue that this is more accurate than a case in
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Fig. 5. Normalized average cumulative reward over all subjects for RL

training repetitions. The first and last repetition is done with the initial
pretrained SL policy 7o, so RL training is only done between repetitions
0 and 8 using the most recent policy 7;. For one participant our method
did not seem to find patterns and thus performed poorly. The lower
outliers in most repetitions belong to this participant. The outliers in
repetition 7 and 8 belong to another participant whose initial policy
was underperforming, but RL did increase performance. Additionally,
there are some over-performing outliers. For one participant pretraining
worked exceptionally well as seen in repetition 0 and 9. The outliers
in repetition 1 and 2 belong to another participant where RL training
improved motor decoding faster than usual. The normalized average
cumulative reward significantly increases in most repetitions. The dif-
ferences between repetitions 3-4, 5-6, and 7-8 were not statistically
significant.

which none of the target labels are predicted. Therefore we also
consider the F1 score for evaluation, which offers a class-wise
assessment of performance and is a commonly used indicator
for multi-label classification tasks [42]. The F1 score for each
class, i =1,..., N, is computed as:

TP;
TP; + 0.5(FP; + FN;)
where TP denotes True Positives, FP represents False Positives,

and FN corresponds to False Negatives. The F1 macro score is
obtained by taking the macro average:

Z Fl, (8)

Together, these evaluation metrics provide comprehensive in-
sights into the effectiveness of the policy for multi-label classi-
fication tasks.

Fl; =

)

F1 macro —

C. Model Selection

When performing our experiments there is a need to select
the policy to be tested with the participants. This is due to the
stochasticity of RL algorithms which leads to non-monotonic
improvement of the learned policies. Indeed, determining if
under- or over-fitting occurs is still an open problem [43].
Thus, in each training repetition, the best result may not be
the final policy. While the best procedure for model selection
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measure in all scenarios improves with RL, especially for movements that performed poorly before, namely 1 DOF classes. Similar to before, the
lower outliers in RL belong to the same individuals for whom RL failed to enhance performance or showed poor performance under . Columns

marked with a star (*) demonstrated a statistically significant improvement.

is to have the participant test each policy online, we want to
minimize the amount of tests one must carry out, to prevent
fatigue. Consequently, intermediate policies are tested offline
based on all recorded game data so far. During training, the
song is simulated every 10 gradient steps, using the recorded
data as input for each intermediate model to assess improve-
ments in episodic return. For each repetition, we select the
policy with the highest simulated episode return after 2000
gradient steps. This showed superior performance compared
to training for a predefined length and selecting the final

policy.

D. Statistical Analysis

After completing the experimental procedure with all par-
ticipants, we conducted a statistical analysis to evaluate the
significance of our findings. Since our results are paired (for each
participant), we utilized the Wilcoxon signed-rank test [44]. This
testis appropriate for our setting as the metrics should come from
the same distribution, though they are not necessarily normally
distributed.

The metrics introduced in Section VI-B were evaluated for
significance in both gameplay and Motion Test data. If p-value <
0.05, we considered a change to be significant, which is in
accordance with common literature standards.

TABLE |
COMPARISON OF CLASSIFICATION RESULTS DURING GAMEPLAY AND
Mortion TEST, USING PoLicy g (IN REPETITION 8) AND THE INITIAL
PoLIcY, 7y (IN REPETITION 9)

GAMEPLAY MOTION TEST
EMR FImacro EMR Flmacro
m 0.36+£0.19 0.55+£0.14 043+0.18 0.53+0.10
mg  0.78+0.09 0.75+£0.16 0.60+0.18 0.71+0.07

Results are presented as the mean value and standard deviation, across all
participants. Results are rounded to two decimal places.

VIl. RESULTS & DISCUSSION

The average gameplay return for each repetition across all
participants from our experiments can be found in Fig. 5. In
addition, Fig. 6, shows the EMR and F1 macro results for
both gameplay and Motion Test data, separated by number of
simultaneous DOFs. For an overall comparison between the
pretrained SL policy and the final RL policy, numerical results
are summarized in Table I.

As can be seen in Fig. 5, the normalized return increased
across nearly all repetitions. We found that it increased by more
than 2.5 times (from 0.293 4+ 0.136 to 0.775 4+ 0.137) from the
initial SL policy, g, to the last RL repetition, 7g. While results
appear to plateau, the observed increase between repetitions 7
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and 8 implies that additional training could yield further benefits.
Moreover, while the normalized average return of the initial SL
policy, 7, in the final repetition is higher than in repetition 0
(0.348 £ 0.188 compared to 0.293 + 0.136), it is still less than
half of that from the final RL policy, 7g. This indicates that the
RL approach had a significant impact in improving performance
(p-value = 6.1 x 107°), despite the fact that participants also
learned to play the game better. These results were corrobo-
rated by the EMR more than doubling (from 0.36 + 0.19 to
0.78 +0.09 with p-value = 6.1 x 107, see Fig. 6(a)) and a
40% increase in F1 scores (from 0.55 + 0.14 to 0.75 £ 0.16
with p-value = 6.1 x 1075, see Fig. 6(b)).

In order to understand if the aforementioned improvements
were still observed outside the game environment, an addi-
tional comparison was performed based on the final Motion
Test results. Indeed, the mean EMR of the RL policy 7g also
improved significantly (p-value = 1.83 x 10~*) by 39% (from
0.43 £ 0.18 to 0.60 £ 0.18, see Fig. 6(c)) compared to the SL
policy, my. Moreover, significant improvements were observed
in the F1 macro score (p-value = 6.1 x 1075), with an increase
of 35% (from 0.53 £ 0.10 to 0.71 £ 0.07, see Fig. 6(d)).

However, the EMR improvements in the Motion Test were
slightly lower, when compared with gameplay data. One pos-
sible reason for this discrepancy could be the difference in the
participant’s focus between the two settings. During gameplay,
the primary focus is on the game, requiring correct timing,
duration, and execution of movements, while in the Motion Test,
the participant’s sole focus is on how to execute one movement at
each prompt. This shift in attention may result in altered muscle
activation, potentially contributing to the variations in observed
metrics. Indeed the procedure of the Motion Test is more similar
to how the initial recording session is carried out. Nevertheless,
it is evident that 7g still clearly outperforms 7y across all
measures. Confusion matrices for policies 7y (repetition 9) and
mg (repetition 8), indicating conflicting classes can be found
in Appendix B4 in supplementary material. These results show
that our method tends to be relatively conservative and predicts
“Rest” instead of other wrong classes.

A. How Do Our Findings Relate to the Broader
Landscape?

Here, we aim to contextualize our results in relation to recent
advances in EMG signal classification.

When focusing on the network architecture, Bakircioglu and
Ozkurt [18] outperformed a FFNN with a CNN by 4% for
6 different hand movements in offline tests. Chen et al. [12]
showed that an LSTM classification head after a CNN encoder
slightly surpassed a fully connected classification head (97.34%
vs 93.32% accuracy). Similarly, Zbinden et al. [19] showed that
replacing a six-layer FFNN with a CNN (which surpassed a
TCN) resulted in an F1 macro score enhancement of 5.7% in an
online Motion Test. Our findings, which demonstrate improve-
ments of up to 250% in gameplay and 35% of F1 macro score in
a Motion Test using the same six-layer fully-connected network
as in [19] underscore the significance of data collection and
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Fig. 7. Mean and standard deviation for number of action changes
during gameplay over all repetitions. Note that the optimal number of
changes for the test song is 96. The number of changes consistently
decreases for all participants, even for the lower outliers found in Fig. 5
and Fig. 6.

learning method instead of exclusively focusing on the network
architecture.

Chen et al. [24] demonstrated substantial gains in accuracy us-
ing their proposed transfer learning approach. Specifically, they
achieved an enhancement of 67.8% when employing a CNN-
only architecture and 28.4% with a CNN+LSTM, compared to
plain SL training, in offline evaluations for scenarios where the
target labels differ from the source labels. Furthermore, Hannius
et al. [45] achieved a 9% improvement in online decoding ac-
curacy by employing Sliced Wasserstein Discrepancy in a limb
position domain shift problem. While transfer learning mainly
aims to improve generalization by using additional offline data,
our results show that the problem of distributional shift between
training and deployment can also be tackled during fine-tuning,
as evidenced by our competitive improvements. It is important to
note that our method does not replace transfer learning, instead,
we show that carefully designed fine-tuning can significantly
increase decoding performance as well. Further note that our
results are not directly comparable to those by Vasan and Pi-
larski [28] as in their RL approach they estimate joint velocities,
whereas we focus on motion classification.

A limitation of our study is that we are unable to indepen-
dently assess the distinct contributions of our game environ-
ment and RL training procedure. We leave it as an open issue
for future research to explore the independent effects of each
component.

B. What Does the RL Policy Learn?

Upon further inspection of the results, we noticed that the
greatest improvement was found in single DOF classes, whereas
movements involving 2 or 3 simultaneous DOFs displayed less
marked changes (see Fig. 6(a)—(d)). We believe that this might
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Fig. 8. Snapshot of predicted gameplay actions for subject 10 in the

last two repetitions of the serious game. As in Fig. 7, green is the
pretrained SL policy 7o, orange after RL training (7g) and in grey the
ideal predictions. It can be seen that RL predicts actions much more
consistently, nearly matching the ideal actions. Subject 10 was chosen
as their return increased the most during gameplay, to illustrate the ideal
outcome of our method. The time frame was chosen randomly.

be because single DOF movements are more challenging to
decode due to their relatively lower muscle activation compared
to movements with multiple DOFs, explaining the relatively
lower EMR and F1 scores. On one hand, lower scores inherently
provide more room for improvement. On the other hand, this
could also mean that the RL approach primarily focuses on
refining movements that initially perform poorly. These trends
are consistent across both the game environment and the Motion
Test, with slightly more pronounced effects observed in the game
environment.

A noticeable outcome of RL training is the reduction in policy
prediction changes, indicating improved stability, as shown in
Fig. 7. The average changes decrease from 672 with m to 406
with 7g, consistently observed across all users, including outliers
depicted in Figs. 5 and 6. This stability induces confidence in
the system’s performance, making the policy’s behavior more
predictable for the user.

While this trend was observed across all participants, Fig. 8
offers an illustrative snapshot chosen at random of predicted
actions for subject 10 during gameplay. Actions are predicted
more accurately and cohesively with g, as demonstrated by
the contiguous blocks of predictions, displaying a marked im-
provement in stability over the more intermittent predictions
associated with 7g.

C. When Is the RL Policy Unable to Learn?

Although substantial improvements were observed in most
cases, there were two low outliers depicted as circles in Figs. 5
and 6, which we aim to analyze in this section. Participant
3 corresponds to the lowest outlier and actually showed a
decrease in performance with the RL policy. Participant 12

TABLE Il
SNR FOR PRETRAINING AND MEAN AND STANDARD DEVIATION OF SNR
FOR EACH PARTICIPANT OVER RL REPETITIONS

PERSON ID SL RL

SNR EMR SNR EMR
1 8.48 0.33 15.28+£1.40  0.58
2 2544  0.38 10.56 £3.35  0.52
3 17.04  0.22 11.49£2.67  0.17
4 2252 033 16.94+3.53 0.66
5 16.54  0.68 13.24+£1.76  0.71
6 10.42  0.45 12.38 +£1.24  0.60
7 7.69 0.50 15.74 £1.11 0.74
8 10.16  0.35 14.54+1.27  0.61
9 17.28  0.31 5.07 £ 3.82 0.72
10 19.67  0.49 15.52+1.60 0.66
11 10.46  0.39 12.31 £ 1.41 0.56
12 31.88 0.09 11.81£1.03  0.23
13 9.52 0.64 16.29+£1.92  0.72
14 9.83 0.59 13.71£2.19  0.72
15 7.22 0.73 11.46+2.58 0.83

For comparison, the Motion Test EMRs for mp and 7g are shown below.
Outliers are highlighted in gray color.

corresponds to the second lowest outlier, but still showed a
significant improvement using our method. However, since this
participant had an under-performing SL policy (lowest across all
participants, closely followed by participant 3), even with this
improvement, the final RL policy still resulted in a comparatively
low performance.

These outliers motivated us to take a closer look at the results
and investigate which factors may influence the success of our
RL-based procedure. We hypothesize that the poor performance
for participants 3 and 12 was due to either (a) low quality
EMG data, which can be caused by several factors like electrode
placement and noisy connections, or (b) high variability in the
participant’s muscle activations, including incorrect movements,
which could complicate training.

If hypothesis (a) is true, then there should be an impact
throughout the whole experiment, assuming that EMG signal
quality did not change during a session. Thus, both pretraining
and gameplay data would be affected. This seemed like a valid
explanation, since in fact, both participants had an initial policy
o with poor performance, as evidenced by the Motion Test EMR
of 0.22 for participant 3 and 0.085 for participant 12 (worst two
across all participants, see Fig. 12). For participant 3in particular,
performance did not increase during gameplay, which would
also be in line with this assumption. However, when looking at
the Signal to Noise Ratio (SNR) values it becomes clear that
both outliers have similar values to the rest of the participants,
as shown in Table II, indicating that the EMG signal was not
the root cause of the poor results. Refer to Appendix B1 in
supplementary material for details on how the SNR values are
calculated for our analysis.

This leads us to investigate the validity of hypothesis (b),
i.e., that the participants’ inconsistency, rather than poor signal
quality, is the primary factor. To this end, we calculate the
Mutual Information (MI) between the recorded features and the
ideal labels I(s; a*) for each repetition during online training.
Notably, we observe that the MI increases across gameplay, with
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Fig. 9. Ml values are calculated as the mean over repetition 8, where 7 was tested. These are then plotted against the EMR values taken from

(a) gameplay from repetition 8 and (b) the Motion Test for both g and 7. Note that for the latter plot, the = and y axes represent separate datasets,
one from the gameplay (z) and the other from the Motion Test (y). As both plots indicate, the EMR increases proportionally with the MI during
gameplay, suggesting that it can be used as a reasonable predictor of our method’s training success. Notably, the two outliers in EMR also exhibit
the lowest MI. Furthermore, despite corresponding to different datasets, a relatively similar trend is observed in the Motion Test EMR with 7g, albeit
with a slightly worse fit. Conversely, the EMR with 7 does not have a strong correlation with the gameplay Ml indicating that the SL policy is affected

by a distributional shift.

the highest mean MI observed in repetition 8 (See Fig. 10 in the
supplementary material). This indicates that participants are able
to generate signals that are more aligned with their intention over
time. However, the MI drops in repetition 9 with 7, indicating
that the policy influences how much information a user is able
to convey about ideal labels, a*.

It is important to highlight that the MI is independent of both
the policy and how itis trained, as it only quantifies the amount of
information about the ideal labels present in the features. Further
details on the MI calculation can be found in supplementary
material. To better understand how MI relates to classification
performance, we look at mean gameplay MI values versus EMR
in the final repetitions of the experiments.

In Fig. 9(a), we plot the mean gameplay MI for repetition
8 versus the corresponding gameplay EMR for RL policy 7g
and, fit a linear function to the data. This plot clearly shows that
the success of our method increases proportionally with the MI,
given the resulting strong linear fit (R? = 0.85).

In Fig. 9(b), we further compare the mean gameplay MI for
repetition 8 with the Motion Test EMR for both the SL policy,
7o, and the RL policy, mg. While the gameplay MI also seems
to be a reasonable indicator for the Motion Test EMR with g
(R? = 0.65), this relationship is not as strong with my (R? =
0.31). Given that the gameplay MI with g is predictive of the
respective Motion Test EMR, a natural question to ask is whether
the gameplay MI with 7 is similarly predictive of the Motion
Test EMR of my. We investigate this question using Fig. 11 in the
Appendix in supplementary material and find that the gameplay
MI with 7 is less predictive of its performance compared to 7g.

Both plots in Fig. 9 indicate that indeed hypothesis (b) is the
most likely explanation for the two outliers, as they correspond
to the lowest M1 values. It is worth noting that some human errors
and inconsistencies occur for all participants during the training
process. While this may prolong the learning time, it does not
seem to hinder improvement for the majority of participants.

Moreover, there may be a threshold in MI somewhere between
[0.28, 0.35], below which pattern recognition methods begin
to struggle to overcome the lack of consistent information.
Importantly, that does not necessarily mean that the participants
performed unintended movements, but rather that the variability
of each movement was higher than for other participants. A
promising direction for future work would be to utilize these
findings to refine our method.

Finally, in addition to MI we also investigated the Population
Stability Index (PSI) in Appendix B3 in supplementary material,
and explored how variation in contraction force correlates to
learning success (see Appendix B5 in supplementary material
for details).

VIIl. CONCLUSION

In this study, we proposed an RL-based procedure to improve
the decoding of motion intent with the aim of creating more
intuitive and responsive myoelectric controllers. Our approach
using an interactive game significantly enhanced the online,
human-in-the-loop performance of an ML controller for all
evaluation metrics, thus bridging the gap between offline training
and real-life usage.

Since our results are promising, future investigations will be
carried out on individuals with amputation, which will provide
valuable insights into the effectiveness of our approach in a
clinical setting. Additionally, our method exhibits a versatile
nature, allowing for its extension to other serious games that
more accurately simulate daily prosthetic use, thereby ensuring
a higher level of realism and applicability.

Finally, our work opens up avenues for further advance-
ments by incorporating fine-tuning techniques based on human
feedback. This has the potential to greatly improve prosthetic
functionality as it enables individuals to train on any tasks
encountered in their daily lives.
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