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SUMMARY

Metal ions have crucial roles in cells, but the impact of their availability on biological networks is underex-

plored. We systematically quantified yeast cell growth and the corresponding metallomic, proteomic, and ge-

netic responses to perturbations in metal availability along concentration gradients of all growth-essential

metal ions. We report a remarkable metal concentration dependency of cellular networks, with around half

of the proteome, and most signaling pathways such as target of rapamycin (TOR), being metal responsive.

Although the biological response to each metal is distinct, our data reveal common properties of metal

responsiveness, such as concentration interdependencies and metal homeostasis. Furthermore, our

resource indicates that many understudied proteins have functions related to metal biology and reveals

that metalloenzymes occupy central nodes in metabolic networks. This work provides a framework for under-

standing the critical role of metal ions in cellular function, with broader implications for manipulating metal

homeostasis in biotechnology and medicine.

INTRODUCTION

Metal ions played an important role during early metabolic evolu-

tion and remain crucial for various biological processes, such as

cell growth, protein folding, DNA repair, neurotransmission, and

immune function.1 As catalysts in enzyme active sites, reactant

cofactors in redox reactions, and mediators of protein-protein

and protein-small-molecule interactions, they are critical for meta-

bolic reactions,2,3 protein evolution,4 energy transformation,

stress response, and cellular signaling across prokaryotic and eu-

karyotic metabolic biochemical networks.5 The essential roles of

metal ions are reflected in the diversity of metal ion transporters

and binders encoded in the proteomes of numerous species.6

Metal ions fluctuate in the extracellular environment, conse-

quently, cells must sense, control, and buffer their concentra-

tions intracellularly.7,8 Yet, at present, experiments addressing

the role and effects of fluctuating metal ion concentrations are

heavily underrepresented in the scientific literature. For example,

metal ion concentration was modified in only 0.8% of ∼14,500

yeast deletion (knockout) mutant screens,2,9 and, of these,

most only explored the effects of metal ion toxicity and did not

consider the effects of concentration changes within a physio-

logically relevant range (Figure S1A). Moreover, we noted that

none of these screens had assessed the impact of metal ion

depletion in minimal media (devoid of amino acid supplements),

which is a requirement for assessing the role of metal ions in

biosynthetic metabolic pathways where metal-containing en-

zymes serve as catalysts (Figure S1B). However, focused

studies on the depletion of individual metals have revealed wide-

spread cellular responsiveness to altered metal ion availability on

the transcriptome and proteome,4,10–14 calling into question the

practice of not varying or measuring metal concentrations in cul-

ture media in laboratory experiments. Mapping the interaction of

metal ion levels and the cellular transcriptome or proteome

poses numerous challenges. For instance, because of the exten-

sive cellular buffering capacity for metal ions,5,7 changes in metal

concentrations in media do not directly translate into similar

changes in cellular metal concentrations.15–17 Moreover, metal

ion transporters are promiscuous, such that altering the concen-

tration of one metal ion can inadvertently influence the cellular

Cell Systems 16, 101319, July 16, 2025 © 2025 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Metal ion homeostasis and concentration interdependence

(A) Experimental design for media generation and the growth, metallomic, and proteomic characterization of S. cerevisiae cells cultivated in metal perturbation

conditions. The 91 media consist of a series of concentrations of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, and Zn. Created in BioRender. Grüning, N. (2025) https://

BioRender.com/0pwuf6j.

(B) Growth rate of a prototrophic BY4741 derivative along each metal perturbation series. Colors denote the metal concentration that was changed in the

environment and the two red lines correspond to an environmental metal concentration change of 5-fold.

(C) The buffering capacity of cellular metal concentrations against changes in environmental metal concentrations. Different metals are color coded and the

intensity of color reflects metal concentration in metal perturbation cultivation media relative to those in control media, with lighter circles indicating lower

concentration and darker circles indicating higher concentrations. Black stars indicate cellular metal concentrations in each environmental condition relative to

control conditons.

(D) Correlation between the metal concentration in cultivation media (environmental concentration) and the cellular concentration of other metals.

(E) Correlation between the environmental concentration of one metal (x axis) and the measured cellular concentration of other metals (y axis). Different metals are

color coded and the intensity of color reflects metal concentrations, with lighter circles indicating lower concentration and darker circles indicating higher

concentrations.

(legend continued on next page)
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concentration of other metal ions, therefore, the transcriptome

and proteome responses measured in cells under metal pertur-

bation conditions are only indirectly related to any extracellular

change in metal ion concentration. As a consequence, the role

of metal ions in cellular networks remains understudied, even

in well-studied model organisms like Saccharomyces cerevisiae.

In this study, we aimed to address the gaps in knowledge

about the functions of metal ions in cellular biochemical net-

works and create a genome-spanning resource that systemati-

cally records cellular responses to environmental variation in

essential metal ions across multiple molecular layers.

RESULTS

Homeostasis is metal specific and involves

concentration interactions

We started by establishing cultivation conditions in which the nine

typical metallic constituents of synthetic yeast medium—calcium

(Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), man-

ganese (Mn), molybdenum (Mo), sodium (Na), and zinc (Zn)—are

varied in 12 steps, over five orders of magnitude (Figure 1A;

Table S1; Methods Table S10). We created these series in syn-

thetic minimal media, without amino acid supplements,18 to

ensure that the cultured cells are dependent on the amino acid

biosynthetic pathways, many of which require metal-binding pro-

teins.19,20 We did not use chelators to completely deplete metals

below trace concentrations, to avoid any confounding off-target

effects21–23 (Methods Table S11). Instead, to account for the fact

that metal ions can be present as trace contaminants, we accu-

rately determined the metal concentration for each condition

generated using inductively coupled plasma mass spectrometry

(Figure S1C; Table S2). Then, we selected a prototrophic, haploid

S. cerevisiae strain derivative of BY474119,24,25 as our model or-

ganism. We cultured these yeast cells in each of the resulting 91

media (and control) combinations in triplicate and monitored their

growth rates.

Consistent with an extensive homeostatic machinery that al-

lows cells to buffer cellular metal ion concentrations in response

to environmental changes,7,16 the cells showed consistent

growth across large parts of the concentration series (growth

was maintained in 79/91 total conditions across the 9 series)

(Figures 1B and S1D; Table S3). In the ‘‘depleted’’ media (i.e.,

in media with metal ion concentrations below the concentration

in standard media), yeast growth rates slowed upon an ∼2-fold

depletion of the abundant metals K, Mg, and Zn and upon an

∼8-fold depletion of Ca and Cu (Figure 1B). By contrast, no

growth defects were observed when depleting Mo, Mn, Fe,

and Na to the lowest levels. Because the lowest Fe concentration

obtained through metal omission was 1/10th of the concentration

in standard media, the absence of growth defects was expected.

However, for other metals, where omission efficiently depleted

the metal ion (Na to 1/100th of the typical media levels, Mn to

7/1,000th, and Mo to 4/100th), this absence of growth defects

was surprising and suggests that these elements are required

either in extremely low amounts, or not required at all, for yeast

to grow. In the ‘‘excess’’ media, only changes >5-fold (1 mg/L

Na2MoO4) of Mo and >20-fold of Cu and Fe (0.8 mg/L CuSO4

and 5 mg/L FeCl3) resulted in a slowing of cell growth, indicating

toxicity.

We next aimed to annotate the relationship between intracel-

lular and extracellular metal ion concentrations. First, we quanti-

fied the total Ca, Fe, K, Na, Zn, and Mg cellular concentrations

(Table S4) using a modified version of an ICP-MS based metal-

lomics protocol26 (STAR Methods). The relative concentrations

of these metals were consistent with previous reports, thus vali-

dating our approach (Figure S1F). We then determined ‘‘buff-

ering range,’’ the range of extracellular metal ion concentrations

during which cells can maintain a consistent cellular concentra-

tion. The broadest buffering ranges were observed for K, Mg,

and Fe, followed by Zn, Ca, and Mn (Figure 1C; Table S5). This

pattern was consistent when cellular concentrations of each

metal were measured in response to changes in environmental

concentrations of all other metals that we tested, with the

maximum decrease in intracellular K and Mg observed being

28% (K) and 29% (Mg), across all perturbation conditions, and

the maximum increase being 8% (K) and 12% (Mg) (Table S4).

Because many proteins that interact with biologically relevant

metal ions exhibit promiscuity of metal interactions due to the

similar physical and chemical properties of metal ions,7,8 we

next determined the relationship between the environmental

concentration of one metal and the cellular concentration of

every other metal. We found that 7/9 environmental metal con-

centration series altered the cellular concentrations of at least

one other metal (Figure 1D; Table S6). Cellular Mn and Ca levels

were most sensitive to changes in the extracellular concentra-

tions of other metals (Figure 1E), i.e., the cellular concentrations

of Mn and Ca showed high correlation to changes in environ-

mental concentrations of other metals.

Principal-component analysis (PCA) of the cellular metallomic

profiles revealed that although samples could be arranged along

the environmental metal concentration gradients in which the

cells were cultivated, samples from each metal series could

not be completely separated from other series, likely due to

the interdependence of cellular metal concentrations (Figure 1F).

The yeast proteome responds globally to changes in

metal availability

We next conducted a quantitative proteomic experiment to cap-

ture the molecular responses of yeast cells grown in the 88

conditions that allowed cells to grow. We employed a high-

throughput proteomic pipeline that combined cell cultivation in

multi-well plates, semi-automated sample preparation, micro-

flow liquid chromatography, data-independent mass spectrom-

etry data acquisition, and data analysis using the DIA-NN soft-

ware.27,28 We obtained precise quantitative expression values

for 2,330 unique proteins (representing 22% of the annotated

S. cerevisiae proteome), of which 1,433 were detected in at least

85% of all samples (STAR Methods; Table S7). Then, using

quantitative copy-number data for 3,841 proteins (63% of the

S. cerevisiae proteome29), we estimated that our dataset

(F) PCA based on all measured total cellular metal concentrations separates a subset of samples according to the metal perturbed in the environment. Colors

indicate each unique cultivation condition, with darker shades indicating high amounts of each metal and lighter shades representing low amounts. Arrows

indicate increasing value of PCA loadings.
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Figure 2. Identifying metal-responsive proteins

(A) Examples of six proteins that represent different metal ion-protein abundance relationships along an environmental (top row) and cellular (bottom row) metal

concentration series. The plots display protein abundance changes in response to the varied metal ion concentrations.

(legend continued on next page)
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quantifies around 87.9% of the proteomic mass (STAR

Methods), with the technical noise being much smaller (coeffi-

cient of variation [CV] of 15.7%) than the biological variation be-

tween conditions (CV ∼27.9%).

To identify differentially expressed proteins, we first deter-

mined which statistical model best represents the relationship

between environmental metal concentrations and protein abun-

dance in our cells: no relationship (null), linear (1st degree),

quadratic (2nd degree), or a cubic (3rd degree) (Figures 2A and

S2A; Tables S8 and S9; STAR Methods). We defined a protein

as differentially abundant if the p value of the model that best

represents the modeled relationship was <0.05 and if the differ-

ence between the minimum and maximum protein quantity along

the environmental metal concentration series was at least 1.5-

fold. We used the same methodology to identify proteins altered

along measured cellular metal concentrations. We used binned

metal concentrations and protein abundance data across the

entire dataset and identified protein-metal interactions resulting

from the interdependencies between different metals.

In total, 1,545 unique proteins were found to be metal respon-

sive, representing 66% of the measured proteins and 81% of the

quantified protein mass. On average, 205 proteins were altered

per metal perturbation series when considering environmental

concentration and 342 when considering cellular metal concentra-

tions (Table S7). The most pronounced response was to Zn (995

responsive proteins when considering both environmental and

cellular concentrations), contrasting with Mo, for which we de-

tected no responsive proteins upon its depletion (Figure 2B). Using

measured cellular concentration changes, we identified 445 addi-

tional metal-responsive proteins for K and 71 for Mg (Table S7).

Across all metals, 1,055 proteins (45% of the proteins we

quantified) were responsive to at least one environmental metal

concentration change, and 1,386 proteins were responsive to at

least one cellular concentration change. By contrast, 159 and

490 proteins changed in response to environmental (Figure 2A,

top) or cellular (Figure 2A, bottom) variations in only one metal,

respectively. Finally, 712 proteins (∼60%) responded along

both the environmental and the cellular concentration series

(either for the same or different metals) (Figure 2A).

We finally aimed to map the ‘‘tipping points,’’ which we define

as the minimum change in metal concentration that initiates a

significant shift in the proteome relative to the control steady

state condition. To achieve this, we defined the threshold for pro-

tein-level responsiveness as a change in protein abundance

greater than 50% relative to the control, and then evaluated

the cumulative fraction of responsive proteins at 5% increments

in the magnitude of the measured cellular metal concentration

(Figure 2C). We revealed notable differences in the critical con-

centration of metal ions that cells respond to at the protein level.

For instance, at least a 75% change in the cellular Zn concentra-

tion but only a 10% change in Fe cellular concentration was

required to induce a proteomic response (Figure 2C).

The cellular response to metal ion perturbation reflects

concentration interdependencies between metal ions

Although altering levels of Fe or Zn individually impacts the tran-

scriptome10–12 and proteome,13 our metallomic data suggest

that the cellular proteomic response to a perturbation of metal

availability may also depend on how metal levels interact with

each other (Figure 1D). Indeed, 761 proteins, or 49% of all

metal-responsive proteins, showed changes in protein abun-

dance, possibly caused by covarying metal concentrations. To

assess how interlinked the proteomic responses to perturba-

tions of different metals were, we first visualized the intersections

between differentially abundant proteins along each metal

(Figure 2D). Of the 10 largest intersections, four (Fe-Zn, Fe-Zn-

Na, and Na-K) corresponded to differentially abundant proteins

in a combination of two or more metals (Figure 2D). Proteins

varying along the Zn series, followed by those changing along

both Zn and Fe, and Fe alone, triggered the largest responses

(Figure 2D).

We next compared the number of differentially abundant pro-

teins for each environmental and cellular metal concentration se-

ries with the correlation between the measured environmental

(cultivation media) and cellular metal concentrations for each

pair (Figure 2E). Some intersections resembled the metal-metal

correlations unveiled by the metallomic data. For example, 165

of the 717 proteins that were differentially abundant along the

(B) The number of differentially abundant proteins along each metal concentration series.

(C) The cellular metal concentration thresholds at which the proteome responds to a metal perturbation.

(D) Overlap between differentially abundant proteins along each metal perturbation series (either environmental or cellular). Pink bars indicate the size of the

overlap of differentially expressed proteins between the metal series listed on the left. Light blue bars indicate the number of proteins differentially abundant along

each metal perturbation series.

(E) Relationship between the number of proteins that are differentially abundant both along environmental concentration of one metal as well as the cellular

concentration of another metal and the correlation between the environmental concentration of the first metal and the cellular concentration of the second. The

first metal in the text next to each point indicates the environmental (media) concentration series and the second indicates cellular (measured) concentration

series.

(F) The fraction of differentially abundant proteins shared between the proteomics response to changes in environmental concentration of one metal and the

proteomic response to changes in cellular concentration of another that can be explained by interlinked metal cellular concentration changes. y axis: border

indicates total number of differentially abundant metal-binding proteins along environmental concentrations of metals indicated on x axis that are also differ-

entially abundant along cellular concentrations of any other metal. y axis fill indicates the number of such proteins that can be explained by a correlation between

environmental concentration of metal on x axis and cellular concentration of another metal.

(G) Comparison of correlation coefficients between metallomic and proteomic profiles for each pair of unique cultivation conditions.

(H) PCA of proteomic data, showing separation of cultivation conditions along the first three principal components.

(I and J) Average abundance of metal-binding proteins (I) or metal transporters (J) in S. cerevisiae cells cultivated in media with a series of metal concentration

variations. Numbers in upright font indicate the total number of proteins bearing annotations for the same metal being perturbed, those in italics indicate the total

number of proteins that have an annotation that is different from the metal being perturbed.

(K) Gene Ontology Slim (biological process) terms enriched in differentially abundant proteins, depending on the extracellular (left) and cellular (right) metal ion

concentration. The perturbed metal is indicated in color in the center.
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Fe series (environmental and cellular concentrations considered

together) were also significantly altered in abundance along the

Zn or Na series (Figure 2E). This overlap coincided with a high

correlation coefficient between environmental Fe concentration

changes and cellular Na and Zn concentrations, as well as the

link between environmental Zn concentration and cellular Fe

concentration (Figure 2E). Ca also showed a strong relationship

with other metals at the proteome level: all differentially abundant

proteins along the environmental Ca series and the cellular con-

centration of any of the other metals could be explained by a

metal-metal connection (correlation between environmental

concentration of the metal perturbed and the cellular concentra-

tion of another metal) discovered in the metallomic data

(Figure 2F).

We then evaluated how closely the proteome of a sample is

related to its metal content by measuring the similarity between

the proteomic and metallomic profiles across all samples. We

computed correlation coefficients for all possible condition pairs

(3,828 unique pairs from combinations of 88 conditions) based

on the metallome and proteome separately and then compared

the correlation coefficients for each paired sample to assess

whether the proteome and metallome capture different aspects

of metal ion biology (Figure 2G). This revealed an overall agree-

ment between the proteomic and metallomic data about the rela-

tive similarity of pairwise samples, with a few minor differences

and more granularity in groups of similar samples being captured

by the proteomic data. PCA of the proteomic dataset revealed

that Zn depletion, Fe depletion, and K depletion samples were

clearly distinct from each other, whereas the remaining samples

formed biologically relevant clusters of conditions, with a small

overlap (Figure 2H). While PCA of the metallomic dataset showed

a clear separation between Mg depletion and Mn excess samples

were distinct groups, PCA of the proteomic dataset indicated that

Mn excess samples clustered near the Mo and control samples

and Mg depletion clustered centrally among all other samples.

Altered metal availability induces specific cellular

responses

Metal-binding proteins were responsive to variation in the con-

centration of the metal they bind (Figure 2I). Our data show

that the extent of this relationship differs across metal ions. For

example, Zn depletion had a lower impact upon the abundance

of Zn-binding proteins relative to the effect Ca, Cu, or Fe deple-

tion on proteins that bind each corresponding metal (Figures 2I

and S2H). Also, the responses within metal ion transporters

were distinct. While the abundance of Fe, Zn, and Mn trans-

porters increased in response to the depletion of the metal that

they transport, the abundance of the two quantified Ca trans-

porters decreased at high Ca levels, indicating the presence of

a negative feedback response (Figures 2J and S2I). Intriguingly,

the abundance of metal transporters annotated to transport

metals other than Ca also decreased in the context of Ca deple-

tion, further reflecting the interlinked nature of metal ion homeo-

stasis (Figure 2J).

Because the metal requirement for the mitochondrial respira-

tory chain is well established, we next queried our dataset to

explore the relationship between metal availability and the gen-

eration and maintenance of the proton motive force (PMF) across

various cellular membranes. Our findings reveal that alterations

in metal availability impact proteins involved in PMF generation,

not only across mitochondrial membranes but also within the

vacuolar, plasma, Golgi, and the interconnected endosomal sys-

tem membranes (Figures S2J and S2K).

To explore the proteomic responses in a systematic manner,

we conducted a gene set enrichment analysis using the Gene

Ontology (GO), GO slim, and Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases. Cellular respiration, transla-

tion and transcriptional processes, stress response pathways,

metabolic pathways, and ion homeostasis processes were

over-represented among the differentially abundant proteins

(Figure 2K). While our analysis recapitulated known metal-spe-

cific molecular functions: for example, Fe binding, Fe-S cluster

binding, heme binding, and enzymes with oxidoreductase activ-

ity were enriched along the environmental Fe perturbation series;

lyase and oxidoreductase activity were enriched along the Cu

series; and many ribosomal and oxidoreductase processes

were enriched along the Zn series (Figure S2G; Table S10), it

also revealed less-well-documented responses to changes in

metal ion availability. Notably, we observed broad crosstalk be-

tween metal ion concentrations and cellular signaling pathways.

In 28/34 signaling pathways (GO biological process annotations)

for which proteins were quantified in our dataset, at least one

protein was responsive to a perturbation of metal availability

(Table S11). These included known metal response pathways,

such as the calcineurin signaling pathway,30 both quantified pro-

teins of the osmosensory pathway,31 but also signaling path-

ways with other canonical functions, including all four quantified

proteins (Gpa1, Gpa2, Asc1, and Cyr1) of the G-protein-coupled

receptor pathway (involved in the pheromone response and

glucose sensing32) and four of the five proteins quantified that

map to protein kinase A signaling.33 Furthermore, our dataset re-

vealed a strong metal response within the target of rapamycin

(TOR) pathway, which, to the best of our knowledge, has not

been associated with metal ion responsiveness thus far. Specif-

ically, seven out of eight quantified TOR-related proteins (Sit4,

Ksp1, Kog1, Slm1, Stm1, Tap42, and Tip41) were differentially

expressed in metal perturbation media. For example, Kog1, a

subunit of TORC1, responded to Cu, Fe, and Zn availability,

whereas Sit4 responded to Fe and Na.

Due to their low abundance, we could quantify only 22 tran-

scription factors. Twelve of these, such as Yap1, which has a

known role in Fe homeostasis,34,35 and Zn-finger or Zn cluster

transcriptional activators such as Cat8, Gat1, and Gts1, were

differentially expressed in at least one metal perturbation series.

Our dataset quantified at least one component of 340 protein

complexes (GO cellular compartment annotation). We detect

a metal ion response in 289 of these (Table S12). For 145

complexes, we quantified at least 75% of the components

(Table S12). In 128 of these (∼88%), at least one component

was metal responsive, with 112 (∼77%) showing a change in

at least 50% of their components. All the 38 large (five or more

proteins involved) complexes (including the proteasome, vacu-

olar proton-transporting V-type ATPase, retromer complex,

mannan polymerase, and GPI-anchor transamidase complex)

that were quantified with over 75% coverage contained at least

one protein that was metal responsive.

Finally, our dataset revealed a network-wide responsiveness of

metabolism-to-metal availability. In 38/39 KEGG metabolic
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pathways, for which we quantified more than 75% of the en-

zymes, at least one enzyme was differentially expressed along

the metal concentration series. In 35 of these pathways, at

least 50% of the quantified enzymes were metal responsive

(Table S13). Highly metal-responsive KEGG pathway terms

include steroid biosynthesis (85% proteins responsive), glycolysis

(75%), tri-carboxylic acid (TCA) cycle (72%), and biosynthesis of

secondary metabolites (81%). All proteins mapping to fatty acid

biosynthesis and elongation (5), histidine metabolism (12), thia-

mine metabolism (4), and propanoate metabolism (9); 14/15 en-

zymes of tryptophan metabolism; and 10/11 enzymes of the lysine

biosynthesis pathway were differentially expressed alongside a

metal concentration series. Notably, the only four KEGG terms

that we quantified at a high coverage, but for which we did not

observe a high responsiveness, are indirect participants in the

metabolic network (i.e., ABC transporters, protein export, and

RNA polymerase) and, thus, essentially, all measured primary

metabolic processes were responsive to at least one metal ion

perturbation.

Quantitative proteomic responses to perturbations of

metal availability cluster proteins according to function

Having cataloged the broad set of cellular responses to altered

metal availability, we next explored our datasets to obtain novel

insights into protein function. Previous studies, including our

own, on the yeast metabolome and proteome27,36 have revealed

that the clustering of ‘‘omic’’ profiles can be an effective strategy

for protein functional annotation. Therefore, we employed an

ensemble clustering approach37 and analyzed the proteomes

in two parallel analysis pipelines: in the first, we clustered the

proteomes of cells cultivated in each individual metal series

separately, whereas in the second, we clustered all proteomic

data obtained in the metal series together.

For the former (metal-wise clustering), only proteins that were

identified as differentially abundant along each metal series

were retained for that specific metal. For the latter (all-metal

clustering), all proteins detected in at least 85% of the entire

dataset were included. In both instances, we used three

clustering algorithms—density-based CommonNN,38,39 spatial

k-Means(++),40,41 and a community-detection algorithm (Lei-

den42). Then, we integrated the co-clustering matrices into a

singular matrix with equal weighting, followed by a final hierar-

chical clustering (Ward’s method43) (Figure S3A). We obtained

a total of 96 ‘‘fuzzy’’ (partially overlapping) clusters (with a range

from 4 clusters for Mg and Mn to 27 clusters along the Zn con-

centration series) from the metal-wise clustering pipeline and

35 clusters from all-metal clustering. The coarse structure of

the clustering was mainly driven by the Leiden-clustering algo-

rithm and the fine structure by the CommonNN- and the k-

Means-clustering algorithms.

Next, we performed a functional enrichment analysis for each

cluster using the GO, GO slim, KEGG, and Enzyme Commission

(EC) databases (Figures 3A–3C). Twenty of the 35 all-metal clus-

ters and 26/96 of the metal-wise clusters, cumulatively represent-

ing ∼60% (1,061/1,764) of the proteins, were enriched in at least

one functional term (Table S14). For example, a cluster of 29 pro-

teins displayed an increase in abundance at low Cu concentra-

tions (Figure 3A). These proteins included enzymes for amino

acid biosynthesis, mitochondrial function, and metabolism, thus

reflecting the key role of Cu for mitochondrial respiratory chain

proteins and amino acid precursor production. Another cluster

obtained via the all-metal clustering pipeline identified a group

of 90 proteins with a complex profile, involving protein abundance

changes along the Ca, Zn, Mn, Cu, and Fe series. The cluster was

enriched for terms related to cation transport activity (Figure 3B).

Overall, the largest functional categories represented in the

clusters were metal binding, mitochondrial proteins, and ribo-

somal functions. The remaining clusters were enriched for a

range of GO biological process and KEGG pathway terms not

usually linked to metal ions, such as the organization of the

cytoskeleton and the assembly of organelles (Figure 3C;

Table S14). Notably, 44 of the 72 previously poorly character-

ized proteins that were included in the clustering pipeline

were placed within clusters enriched in specific functions

(Figures S3B and S3C), suggesting novel functional links

between the poorly characterized proteins and those with

well-defined molecular functions. Taken together, these obser-

vations reflect the critical involvement of metal ions in major or-

ganelles of eukaryotic cells, as well as the potential of our

approach to propose novel protein function annotations.

Incorporating functional genomics datasets to elucidate

protein function

Having discovered that many of the poorly characterized pro-

teins were assigned to clusters enriched for a functional term,

we sought to validate these functional propositions with comple-

mentary molecular data. To evaluate whether the clustering-

based associations provide relevant functional information, we

incorporated additional and complementary genome-scale da-

tasets relevant to metal biology. We cultivated a genome-wide

deletion mutant collection consisting of 4,850 single-gene dele-

tion mutants of S. cerevisiae in a prototrophic background19,25 in

16 different metal omission media (see STAR Methods) for 48 h

and obtained 357,972 colony size measurements, from which

we calculated the effect sizes for the growth of each mutant un-

der each cultivation condition.

We identified 734 significant genetic interactions with

metal ion availability, involving 642 unique gene deletions

(Figure 4A; Table S15; STAR Methods). At the individual metal

level, most genetic interactions were discovered for K (516)

and Mg (175), followed by Zn (26) and Ca (16) (Figures 4B and

S4A). The identified genetic interactions were enriched for

metal protein binding, endosomes, protein complexes, ribo-

somes, translation, mitophagy, amino acid, amide, and peptide

biosynthetic pathways (Table S16). Translation, gene expres-

sion, and the nitrogenous compound and peptide metabolic

processes were over-represented in the deletions that led to

growth aberrations in K and Mg. For Ca depletion, we detected

a specific signature for endosomal transport, vesicle-mediated

transport, and Golgi-vesicle transport (Figure S4B; Table S16).

To test whether vacuolar buffering could contribute to the

maintenance of overall growth despite reductions in total

cellular metal content that we observed earlier, we analyzed

genes encoding vacuolar proteins. We identified 33 such genes

with reduced fitness (effect size <− log2(1.2), p < 0.1 after

Benjamini-Hochberg correction). These genes encompass

various functional roles, including vacuolar transporters, regu-

lators of vacuolar morphology, and components of vacuolar
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Figure 3. Metal responsiveness clusters proteins according to function

(A and B) Examples of clusters of proteins resulting from ensemble clustering analysis of proteomes from each metal series considered individually (A) and all

metal series combined. In (A) the color indicates the UniProt annotation score and the names of any protein bearing UniProt annotation score < 3 (poorly

characterized proteins). In (B) the color indicates the metal perturbation series, and the gray zone indicates the 95% confidence interval around the mean

abundance of all proteins in each metal perturbation series. Network plots indicate the GO biological processes over-represented in the cluster, which are shown

on the right: the circles represent individual gene set terms, the circle size corresponds to the number of proteins mapping to the term, gray lines connect gene

sets with shared proteins, clusters are annotated with names that summarize groups of gene set nodes.

(C) Summary of the Gene Ontology slim biological process (GO slim BP) terms enriched in each cluster obtained via ensemble clustering. The two columns in the

middle indicate the cluster number. The links between the outer text column and clusters (two middle columns) connect each cluster to the gene set term that was

enriched in the cluster. Links between the two middle columns connect each protein to itself across the two types of clusters. Colored links represent proteins

belonging to each metal-wise cluster with a UniProt annotation score >2; black links represent proteins with a UniProt annotation score < 3. Only proteins that are

part of a cluster (metal-wise or all-metal) that is enriched for at least one GO slim-BP term are included.
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protein sorting, among others, suggesting potential involve-

ment of vacuolar mechanisms in growth maintenance under

metal-limiting conditions.

Next, to determine how the deletion of a metal-binding or

metal-transport protein impacts other proteins that are con-

nected to the same metal, we integrated the quantitative

proteomes of deletion mutants.27 1,391 unique proteins were

differentially expressed in the 304 deletion mutants bearing a

metal-related GO annotation (Table S17). In this dataset, all

metals showed an average of six to eight differentially abundant

proteins per deletion, except for K and Mn, which had 11 and 4

(Table S18). Further, we found that ∼72% (48/66) of metal-bind-

ing protein deletions only impacted the abundance of one or two

other metal-binding proteins. However, 9 deletions (like ACO2,

LEU3, and IDH1), affected the expression levels of five or more

metal-binding proteins (Figure S4C). These outliers can be partly

explained by of the slow growth rate of the deletion mutants and

the previously reported negative correlation between growth rate

of deletion mutants and high proteome impact.27 For Ca- and

Cu-related proteins, a decrease in the abundance of metal-bind-

ing proteins upon the deletion of other proteins annotated to bind

the same metal was common. By contrast, Fe- and Zn-binding

proteins exhibited mixed patterns, i.e., whereas some metal-

binding proteins increased in abundance upon deletion of a pro-

tein that binds the same metal as the measured protein, others

decreased in abundance in response to the deletion, indicating

complex regulatory interactions within the cell (Figure S3E).

Lastly, we incorporated gene-metal concentration interactions

by including two datasets comprising cellular quantities of metal

ions in the S. cerevisiae gene deletion and overexpression col-

lections.26,44 Using Z scores computed by Iacovacci et al.,45

we found that the number of gene deletions that affected the

cellular concentration of a metal was quite variable, with the

highest number identified for Mn, followed by Mo, Na, K, Ca,

Zn, Cu, and then Fe (Figures 4B and S4D).The original metallo-

mic experiments to generate this dataset were conducted using

heavy metal supplemented rich yeast peptone dextrose (YPD)

media. Mn and Mo are toxic at the supplemented concentra-

tions, which accounts for the high number of hits for Mn and

Mo in these screens.

When we analyzed the metallomic profiles of deletion and

overexpression mutants of genes encoding metal-binding pro-

teins, we observed the following types of cellular metal abun-

dance patterns. The first was a group of genes encoding Cu-,

Fe-, or Mn-binding proteins for which a deletion leads to a

decrease in the cellular quantity of the corresponding metal

and vice versa (e.g., Cu concentration in CUP2 mutants and

Mn concentration in YFR006W mutants) (Figure S3F). This likely

reflects the loss of metal storage capacity upon deletion of the

gene that encodes the metal binding protein. For another group

Figure 4. Data integration to generate a comprehensive resource for studying metal-responsive proteins

(A) Summary of genetic, metallomic, and proteomic data that were integrated with metallomic and proteomic data captured from cells cultivated along metal

concentration gradients. Deletion mutant libraries have been abbreviated as KO for knockout and overexpression mutants as OE. Created in BioRender. Grüning,

N. (2025) https://BioRender.com/e17pk2v.

(B) Number of open reading frames (ORFs) or proteins encoded by ORFs identified as significantly affected across the five datasets as summarized in (A). The x

axis indicates the metal that was perturbed or the metal that was connected (based on Gene Ontology database molecular function [GO-MF] annotations) to the

gene being deleted. The color indicates the type of assay (yellow, fitness inferred from end point colony size measurements; pink, cellular metal concentration;

blue, proteomes); the shape indicates each individual dataset. Deletion mutant libraries have been abbreviated as KO for knockout and overexpression mutants

as OE.

(C) Number of ORFs or proteins encoded by ORFs assayed across the five datasets. Deletion mutant libraries have been abbreviated as KO for knockout and

overexpression mutants as OE.

(D) Intersection between ORFs (or protein encoded by ORF) and ORF (or protein encoded by ORF)-metal combinations that were identified as a significant hit

across the five datasets. The size of the circle indicates how many datasets are considered, with the largest circle representing the set of ORFs or ORF-metal pairs

that are significant in any one dataset and the smallest representing those that are significant in all five. Numbers outside the largest circle represent the total

number of unique ORFs (or protein encoded by ORF) and ORF (or protein encoded by ORF)-metal pairs that were measured in all five datasets, cumulatively.

(E) Intersection between the list of ORFs (or protein encoded by ORF) that were a significant hit in any of the five datasets. Black circles (and lines) indicate the

identity of the datasets in the overlap; pink bars indicate the number of ORFs (or protein encoded by ORF) that are shared between the datasets indicated by the

black circles and lines. Deletion mutant libraries have been abbreviated as KO for knockout and overexpression mutants as OE.

(F) Metal-related proteins identified as significantly affected in each dataset. Panels represent the type of annotation a protein has in the GO molecular function

(MF) database. The outer bar outline represents the total number of ORFs (or protein encoded by ORF) measured or assayed in each dataset and the inner filled-

up bar represents the number that was significantly affected in at least one metal perturbation condition or metal-related mutant). Deletion mutant libraries have

been abbreviated as KO for knockout and overexpression mutants as OE.

(G) Protein abundance changes of Ymr196w in S. cerevisiae cells cultivated under varying Fe concentrations.

(H) Z score of the cellular Fe concentration of the YMR196W overexpression mutant relative to Z scores of all other mutants. Black vertical line indicates the

Z score of the YMR196W overexpression mutant (2.23).

(I) Impact of Fe related protein deletions on Ymr196w protein abundance in each mutant strain. The points correspond to Ymr196w protein abundance in each

deletion mutant (indicated by gene names on the figure).

(J) Protein abundance of Ybr298w in wild-type (WT) S. cerevisiae cells cultivated in each metal concentration series (indicated by panel) along which it was

deemed to exhibit a significant change.

(K) Impact of Ybr298w gene deletion on S. cerevisiae cell growth in metal depletion media.

(L) Impact of Ybr298w deletion and overexpression on cellular concentrations of various metals. The x axis shows the metal that was quantified using ICP-MS by

Danku et al.26 (deletions) and Winzeler et al.25 (overexpression). y axis: Z score of the concentration of each metal in the YBR287WW mutants.27 The color in-

dicates the metal that was quantified.

(M) Impact of deletion of metal-related proteins on the abundance of Ybr298w protein in each deletion mutant. Points correspond to Ybr298w protein abundance

in each deletion mutant (indicated by gene names). Colors indicate the metal annotation of the deleted gene based on the GO molecular function (MF) database.

(N) Impact of the deletion of Ybr298w gene on the abundance of metal-related proteins. Points correspond to protein abundance of each metal-related protein

(indicated by gene names) in the Ybr298w deletion mutant. Colors indicate the metal annotation of the measured protein.

ll
OPEN ACCESS Article

10 Cell Systems 16, 101319, July 16, 2025

https://BioRender.com/e17pk2v


of deletion mutants, we saw an increase in the cellular concen-

tration of a metal upon deletion of a gene encoding a protein

that binds the same metal, while displaying a concomitant small

increase in the metal or no change in the overexpression mutant

(e.g., CNE1, EDE1, CNB1 [for Ca], SOD1 [for Cu], and IDH1 and

IDH2 [for Mg]) (Figure S3F). These findings might reflect a disrup-

tion of metal homeostasis and the activation of compensatory

mechanisms. For a minority of genes, exemplified by Cu concen-

trations in COX11 mutants, we observed similar cellular metal

concentration changes in both deletion and overexpression mu-

tants (Figure S3F).

Multi-layer data integration improves the functional

annotation of understudied proteins

Out of a total of 6,349 putative and confirmed protein-coding

open reading frames (ORFs) represented in the five datasets

(proteomics of metal perturbation samples, proteomics of dele-

tion mutants, metallomics of deletion mutants, metallomics of

overexpression mutants, and growth of overexpression mu-

tants), we could assess about half in at least three datasets

and 1,044 across all five datasets (Figure 4C). In total, around

half (3,662/6,349) of the tested ORFs were associated with a

metal ion in at least one dataset (Figure 4D, left), with 110

ORFs showing a phenotype in at least one metal condition in

three or more datasets; only nine showed phenotypes across

all 5 datasets (Figure 4D, left). When ORF-metal pairs were

considered, only two exhibited phenotypes across 4 datasets,

104 across ≥3 datasets, and 1,692 across ≥2 datasets

(Figure 4D, right). The intersections between lists of ORFs (or en-

coded proteins) observed to be linked to a metal across each

dataset are represented in Figure 4E. Overall, the proteomic da-

tasets captured the largest fraction of responses within the

known metal-related proteins, followed by the metallomics study

of overexpression mutants, the metallomics study of the deletion

mutants, and the growth screen of the deletion mutants

capturing the lowest signal for known metal-related genes

(Figure 4F).

We then sought to determine to what extent the orthogonal na-

ture of the five datasets improves the functional annotation of

the yeast proteome. Understudied proteins (UniProt annotation

score of 1 or 2) produced a similar number of hits in our datasets

compared with well-studied genes (UniProt annotation score >

2), indicating that our resource can help mitigate annotation

biases. Indeed, 470 poorly characterized proteins, including

the 55 proteins that were functionally annotated in our ensemble

clustering of the proteome, were a hit in at least one of the five

datasets (Tables S19 and S20). To illustrate how the proteomic,

metallomic, and genetic interactions provide signals for comple-

mentary sets of genes, we studied two examples of proteins that

were identified in different datasets to generate hypotheses

about their function: Ymr196wp and Ybr287wp.

First, we report that Ymr196wp decreases in abundance when

exposed to excess Fe (Figure 4G). The ensemble clustering pipe-

line assigned it to Fe cluster 10 based on metal-wise clustering

and to cluster 23 in the all-metal clustering. Both clusters were

enriched for functional terms related to oxidative stress and

chemical stress, but Fe cluster 10 was also enriched for proteins

that localize to the mitochondria (Figure 3A; Table S14). Overex-

pression of Ymr196wp led to an increase in the cellular Fe con-

centration (Figure 4H), whereas its abundance decreased upon

the deletion of seven metal-binding proteins (Figure 4I). Proteo-

mic profiles of the S. cerevisiae gene deletion collection showed

that Ymr196wp was associated with the respiratory chain and

the TCA cycle.27 We thus posit from its comprehensive metal-

linked molecular profile that Ymr196wp is linked to mitochondrial

Fe metabolism.

Our second example, Ybr287wp, localizes to the endoplasmic

reticulum46 and contains eight transmembrane domains.47,48

The abundance of Ybr287wp was correlated to environmental

Ca, Cu, Fe, and Zn concentrations (Figure 4J) and was placed

in a cluster enriched in Fe transport and cation channel terms

(cluster 14; see Figure 3B) by our clustering analysis. Deletion

of YBR287W resulted in decreased growth rates in the context

of K and Mg depletion media, with milder changes observed in

the context of Cu, Fe, Mn, and Na depletion media (Figure 4K).

Ybr287wp deletion and overexpression mutants revealed

mirrored cellular metal concentration profiles with altered cellular

concentrations of Cu, Mn, Mo, and Na and minor alterations in

Ca, Fe, and Zn (Figure 4L). Furthermore, the deletion of eight

other metal-binding proteins led to the downregulation of

Ybr287wp (Figure 4M), whereas the deletion of Ybr287w itself

led to a significant decrease in the abundance of the Ca-binding

protein Nth2 and smaller changes in Zn- and Mg-binding pro-

teins (Figure 4N). Collectively, these data suggest that Ybr287wp

is associated with metal biology, with a molecular profile sugges-

tive of a promiscuous metal ion transporter.

Centrality of metal-requiring enzymes translates to high

metal responsiveness of metabolism

Metabolism was identified by our functional enrichment analyses

(Figures 2K, S2G, and S4B) as one of the cellular networks most

affected by metal availability. We therefore selected the

S. cerevisiae metabolic network to exemplify the utility of our da-

taset to assess the system-wide impact of metal availability. An-

notations from various metabolic databases (GO, KEGG, EC,

and Yeast8 metabolic model) suggest that between 13% and

29% of enzymes and ∼13% of reactions in the genome-scale

metabolic model (Table S21) are linked to at least one metal

through direct binding, transport, or complex-metal-containing

cofactor binding (Figures 5A left and 5B). Furthermore, 81% of

all EC numbers and 91% of all KEGG pathways involve at least

one metal-associated protein (Figure 5A, right). Oxidative phos-

phorylation contains the highest fraction of metalloenzymes

(80%), closely followed by folate biosynthesis (75%) (Table S22).

To complement our protein-level changes, we simulated

metabolic flux changes in response to metal depletion and

excess using the CofactorYeast framework20 (STAR Methods).

Then, we represented the Yeast8 genome-scale metabolic

model as a directed, bipartite graph and annotated the enzyme

nodes with known metal related functional annotations

(Figures 5C and 5D), the simulated flux changes, and the exper-

imentally observed protein-level responses from our experi-

ments (Figure 5E). The simulated flux-level responses were lower

(32% of simulated reaction fluxes for metal-related enzymes and

25% for non-metal-annotated enzymes were changed by more

than 50%) than those experimentally observed (∼73% of both

metal-related and non-metal-annotated enzymes) (Figure 5F).

This indicates a potential flux-level buffering of the effects of
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changes in metal availability enabled by compensatory changes

in protein abundance.

Notably, over half of the nodes without metal annotations also

showed significant protein abundance changes (Figure 5F),

prompting us to examine whether this reflects still-missing

metal-binding annotations or is a consequence of inherent

network connectivity. We noted some trends between the short-

est distance to or from a metal-requiring reaction node and the re-

action nodes identified as showing significant simulated flux

changes and protein abundance changes along cellular and envi-

ronmental metal concentration gradients (Figure 5G). Although

only 13% of reactions were annotated as being catalyzed by a

metal-requiring enzyme, 46% of reaction nodes are one reaction

away from a metal-dependent enzyme (Table S21) and 60% of

metabolites are directly connected to, or just one reaction away

from, a metal-requiring reaction node (Table S23). This close con-

nectivity to metal-binding enzymes appears to be a consequence

of the network structure, as calculating shortest distances to a

random selection of 13% of reaction nodes produced similar re-

sults. Highly connected metabolites like ATP can skew biologi-

cally meaningful shortest distances by reducing average path

lengths and creating dense connections. Even though we

excluded H+ and H2O from the graphs before calculating shortest

distances, over 50% of shortest distances in the network were

just one reaction, likely due to other frequently occurring metab-

olites that would require hypothesis-specific manual curation to

exclude. Therefore, we restricted further analysis to determining

whether significantly altered fluxes and protein abundances

directly coincided with metal nodes more than with random no-

des. Our analysis confirmed that nodes with significant changes

in flux and protein abundance were indeed more likely to directly

coincide (distance zero) with metal-requiring nodes than with a

random set of notes (Figure 5H). These results were robust to

testing 10, 100, or 1,000 iterations of random node picking.

A feature of certain metal-requiring pathways is the presence

of alternative enzymes or bypasses that help maintain flux

through critical pathways during metal limitation. For example,

upon Fe deprivation, S. cerevisiae cells switch from the Fe-

dependent NADPH-dependent glutamate synthase (Glt1) to

the NADH-dependent glutamate dehydrogenase (Gdh1 or

Gdh2), enabling continued glutamate synthesis despite reduced

Fe availability.49 To explore the presence of enzyme pairs that

catalyze the same reaction but show complementary metal re-

sponses, we identified enzyme pairs catalyzing the same reac-

tion (isozymes) but showing different responses to metal pertur-

bations. Of 246 unique metal-binding isozyme pairs, 43 showed

anti-correlated abundance patterns (Figure S5B), i.e., we

observed a simultaneous increase in the abundance of one

isoenzyme and a decrease in the abundance of another, or

vice versa (Table S24), suggesting complementary metal re-

sponses. For instance, Zn-binding Adh3 and Fe/Zn-binding

Adh4 exhibit anti-correlated abundance profiles under Zn limita-

tion (Table S24), with Fe2+-dependent Adh4 being induced upon

Zn limitation conditions and decreases in abundance in Fe limi-

tation (Figure S5C). We identified 28 such isozyme pairs along

the Zn perturbation series and 15 pairs along each of the Ca,

Cu, Fe, and Na perturbation gradients, 11 of which were nega-

tively correlated along more than one metal perturbation series

(Table S24).

Although the presence of isozymes with differential metal re-

quirements explains some of the observed protein abundance

patterns along metal perturbation gradients, it does not fully ac-

count for the significant changes observed in over 60% of the

metabolic network under metal perturbation, which far exceeds

the fraction of metal-requiring nodes. Therefore, we turned to

methods of analyzing node importance in networks that cannot

be captured by shortest distances alone. We compared nine

centrality metrics that quantify a node’s influence across the

Figure 5. Central role of metal-dependent enzymatic reactions results in a network-wide metal dependency of metabolism

(A and B) The fraction of enzymes in the Enzyme Commission (EC) and KEGG databases and the Yeast8 genome-scale metabolic model (ScGEM) with annotated

connections to metals. (A) Summarizes annotations at the protein level. The outer rectangle of the bars indicates the total number of proteins in the database; the

inner bar indicates the number of proteins that have any metal-related annotations in the Gene Ontology molecular function (GO-MF) database. The percentage of

proteins with metal-related functions in each database is given. (B) Summarizes annotations at the pathway and enzyme-class level. The outer rectangle of the

bars indicates the number of pathways (for KEGG) and the number of unique EC numbers (up to level 2), whereas the inner filled bar represents the number of

KEGG pathways or EC number categories for which at least one member protein had a metal-related annotation. The percentage of KEGG or EC categories that

contained at least one protein with a metal-related annotation is given.

(C) Visualization of the directed bi-partite graph representation of the S. cerevisiae Yeast8 GEM. Each metabolite and reaction is represented by a unique node in

the graph. Links in the graph are directed (from substrate metabolite to reaction and from reaction to product), with irreversible reactions added twice (to link each

reaction - metabolite node in both directions).

(D) The fraction of the metabolic network that responds to perturbations of metal availability at the flux (simulated) and protein-abundance (experimentally

quantified) levels. The outer rectangle of the bars represents the total number of enzymes measured or fluxes assessed in the simulation; the inner filled bar

represents the number of enzymes for which a significant flux change through the enzyme was detected in the simulation (light green); a protein abundance

change was detected in linear models fit along the environmental (cultivation media) metal concentration (dark blue) or the cellular metal concentration (light blue)

for at least one metal. The percentage of fluxes or protein abundances that were significantly altered is given.

(E) Metal-related enzymes in the S. cerevisiae metabolic network.

(F) Metal responsiveness of the S. cerevisiae metabolic network, highlighting changes in simulated fluxes and measured protein abundance changes upon

perturbations in metal availability.

(G) The relationship between the shortest distance from a reaction node to a metal-related reaction node (upstream), or from a metal-related reaction node to a

reaction node (downstream), and the fraction of nodes at each distance in the metabolic network will be affected by perturbed metal availability. Zero indicates

that the reaction node itself maps to at least one gene or encoded protein with a metal-related annotation. The percentage of fluxes or protein abundances that

were significantly altered at each distance from the nearest metal-related reaction node is visualized.

(H) Metal-requiring nodes are more likely to coincide (same node or distance zero) with the reaction nodes showing significant simulated flux changes and

significant protein abundance changes along cellular and environmental conditions than a random set of nodes.

(I) Centrality metrics of metal-related reaction nodes as compared with a randomly selected set of nodes. The green bars indicate effect size of each metric (metal-

related nodes versus randomly selected nodes), whereas the blue bars indicate p values between metal-binding nodes and randomly selected nodes.
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network (Figure 5I). For example, betweenness centrality mea-

sures the frequency with which a node appears on the shortest

paths between other nodes, highlighting its role as a connector

or bridge within the network. Our results indicate that nodes

with metal-related annotations occupied more important posi-

tions in the metabolic network. Interestingly, the metal-binding

enzyme nodes tended to have fewer substrate connections

(lower degree) compared with a randomly selected set of nodes

from the network (Figure 5I), suggesting that metal-requiring en-

zymes catalyze reactions with a lower-than-average number of

substrates and products. However, all metrics of centrality and

node importance that consider paths traversed through nodes

suggested that metal-binding nodes were more important in

the network compared with random nodes (Figure 5I). Thus,

although metal-binding nodes do not directly participate in reac-

tions involving a higher number of substrates or products, the re-

actions they participate in have a higher importance in the meta-

bolic network. To summarize, our network analysis results

suggest that a combination of the low average shortest path be-

tween nodes in the metabolic network and the high centrality of

metal-requiring reaction nodes is the likely cause of the high

metal responsiveness of the metabolic network.

DISCUSSION

The availability of metal ions not only varies across evolutionary

periods and geological landscapes but also across ecological

and physiological niches. At the cellular level, the importance

of metal ions for metabolic and protein function and the vari-

ability in metal availability has driven the evolution of metal-ion

sensing, transport, and buffering systems. Indeed, many trans-

porters, chaperones, and metal-responsive transcriptional ele-

ments that maintain metal ion balance have been described.5,7

Nevertheless, our understanding of how biological networks

respond to physiologically relevant changes in metal availability

on a broader scale, and the signaling systems contributing to

metal ion homeostasis and their connection to cellular pheno-

types, remains limited. Experiments conducted with metal con-

centrations that deviate from standard media formulations are

highly underrepresented in molecular biology and systems

biology experiments. A further limitation emerges from (1) the ca-

pacity of cells to buffer against environmental fluctuations, and

(2) the promiscuity of metal ion transport and sensing systems

disentangles extracellular from cellular metal ion levels. The con-

centration of metal ions in a cell does not correlate directly with

concentration changes induced in the growth media, which

greatly complicates the interpretation of experimental results ob-

tained in any metal concentration perturbation experiment. To

address the first limitation, we varied all major metallic compo-

nents of minimal media for S. cerevisiae over five orders of

magnitude in concentration. To address the second, we applied

quantitative metallomics to compare cellular and environmental

metal concentrations and to systematically detect the interac-

tions between environmental and cellular metal concentrations

in the context of eliciting cellular responses.

By using S. cerevisiae as our model organism, we could

leverage prior knowledge to assess the responses of proteins

with metal binding, metal transport, metabolic, or other functions

to changes in metal availability and integrate uniquely available

genomic data for yeast (e.g., genome-scale metallomic pro-

files,26,44 proteomes of a genome-scale deletion mutant

library,27 and a genome-scale metabolic model that includes

metal ions as cofactors20). Moreover, a key factor that distin-

guishes our study from previous systematic analyses of metal

biology (besides its scale) is that we utilized a prototrophic

S. cerevisiae strain that could grow in minimal media lacking

amino acids. As a result, we could assay the impact of altered

metal ion availability under conditions where metals fulfill one

of their most important biochemical functions, i.e., as cofactors

in biosynthetic enzymes.5 These combined efforts yielded a

comprehensive picture of the effect of metal ion concentrations

on cellular networks and revealed, at the proteomic scale, the

remarkable interdependence of cellular processes and their met-

allomic environment. Interestingly, although we observed high

correlations between the cellular concentrations of different

metals, the proteomic responses to these metal perturbations

were highly specific to each metal. This suggests that despite in-

terlinked fluctuations in cellular metal concentrations, each

metal perturbation triggers distinct biological responses, likely

due to the unique catalytic roles, specific sensing mechanisms,

and biomolecular interactions associated with each metal.

Although we intend for our dataset to serve as a resource for

the research community to study metal ion biology at various

molecular layers, we have derived several general principles

that govern cellular responsiveness to metal ion perturbations.

For example, we have revealed that metal ion homeostasis

strongly varies between metals and is evident only for those

that are physiologically important. For instance, Mo was not buff-

ered and elicited cellular responses only when present at

high, toxic concentrations, whereas its depletion caused no

growth defects or protein responses. We thus conclude that

S. cerevisiae cells do not require Mo and so its addition to com-

mon synthetic yeast media formulation50 is unnecessary.

Indeed, our results also suggest that the concentrations of

most essential metals in synthetic minimal media exceed what

is required for normal cell growth, consistent with earlier conclu-

sions.51 Although this practice is not inherently problematic (as

the routinely supplied concentrations of essential metals are

within the physiological, non-toxic range), relevant phenotypes,

such as ion transport defects, might be masked in experiments

conducted in these media. We anticipate that decreasing the

concentration of metal ions in standard media recipes might

lead to new discoveries.

It is important to note that our measurements of intracellular

metal concentrations represent an average of both cytoplasmic

and organellar contents, including significant stores in the vacu-

ole. The vacuole is a major reservoir for metals such as Zn, Fe,

Mn, and Ca, and fluctuations in vacuolar storage and release

can impact cytoplasmic metal levels and cellular homeostasis.

Indeed, we find several vacuolar genes to influence metal ion re-

sponses, underlining the important role of metal ion storage in

homeostasis and the buffering process. This implies that the

buffering capacities we describe at the whole-cell level are a

likely underestimation of the degree of buffering that occurs in

specific organelles and the cytoplasm. In parallel, our compre-

hensive quantitative metallomic data have revealed the interde-

pendence between the cellular concentrations of several metals.

These results help not only the interpretation of our own data,
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such as the proteomes, but could also provide key context for

the interpretation of results of other metal ion perturbation

experiments.

Overall, our study provides a comprehensive blueprint for un-

derstanding how cells adapt to variations in metal ion concentra-

tions at the molecular level. The systematic nature by which we

collected our data allowed us to unveil the comprehensive

cellular response to changes in metal availability and how these

responses are integrated across different molecular layers of the

cell. Even though our experiments addressed the response to

metal concentration changes in a single environmental condition

and within a single genetic background of one eukaryotic spe-

cies, we discovered that the abundance of approximately 60%

of proteins is influenced by metal availability, with Zn, Fe, Ca,

and Cu inducing the most widespread responses. We speculate

that most biological responses are dependent on cellular metal

availability. In this context, it is interesting that major compo-

nents of cellular transcription and signaling machinery, espe-

cially most kinase pathways, are among the metal-responsive

pathways. For example, proteins in 28/34 of the signaling path-

ways captured by our proteomes seem to change in abundance

to several metal ions. Notably, these pathways included TOR,52

a signaling pathway that functions at the crossroads of cellular

transport, the lysosome, and energy metabolism, which are all

processes related to metal biology. Additionally, our findings

reveal an interplay between metal availability and membrane po-

tentials. Alterations in metal ion concentrations led to substantial

changes in the abundance of key components involved in the

generation and maintenance of the proton motive force across

various cellular membranes. This suggests that metal availability

can influence membrane potentials, either through direct modu-

lation or by necessitating compensatory changes in protein

abundance to maintain homeostasis. We can exclude changes

in growth rate as a main driver for most of these responses: pro-

teomic responses explained by a change in growth rate were

only detected in the case of Zn and K depletion and under con-

ditions with extremely high levels of Fe and Cu and represent

only a subset of the proteomic signature of altered metal

availability.

Our resource also provides a fresh perspective on a common

problem in molecular biology—the high number of understudied

proteins. Even in the most well-studied organisms, approxi-

mately 20% of the proteome lacks functional annotation, and,

for many more proteins, our functional annotation remains

incomplete. We previously speculated that the limited number

of experimental conditions tested in most laboratory experi-

ments might be a leading cause of missing protein functional

annotation.53 The results of our present study support this

conjecture. We find that understudied proteins, except for those

with very low evidence for their expression (UniProt annotation

score of 1), are as likely to be identified as being a hit (having a

genetic or proteomic interaction with metal availability) across

our datasets as proteins with high annotation scores. Many of

the thus far unknown proteins thus have functions related to

metal biology, and systematically varying metal ion levels can

thus help to mitigate the annotation bias and provide testable hy-

potheses about new protein functions. We highlight two exam-

ples that are linked to metal biology across multiple datasets:

Ymr196w, for which we obtained a molecular profile consistent

with regulator of in Fe homeostasis, and Ybr287w, for which

we obtained a molecular profile consistent with it being a promis-

cuous metal ion transporter.

The essential roles of metal ions in cellular biochemistry are

thought to be derived from their functions as critical catalysts

early in evolution of metabolic networks. For example, the central

role of Fe(II)-based catalysis can be correlated to the fact that Fe

(II) was readily available both as an electron donor and as a cata-

lyst during planet Earth’s period of low atmospheric oxygen

levels.54,55 The widespread availability of this catalyst likely

shaped the evolution of the first metabolic networks, as sug-

gested by the discovery that Fe(II) can catalyze non-enzymatic

reactions in a manner that closely resembles the biochemistry

underlying central metabolic pathways.56–61 Similarly, the emer-

gence of new protein domains throughout life has also likely

been influenced by changes in the availability of metals on

Earth’s surface.2,62 The fundamental importance of metal ions

for metabolic reactions was reflected in the high responsiveness

of the metabolic network across our analyses. Although metal-

dependent reaction nodes comprise only∼13% of the metabolic

network, they are present at key locations in the network (as re-

flected by a higher betweenness, closeness, and centrality),

which, combined with the low average shortest distances be-

tween nodes in the metabolic network, is the likely cause of a

high metal responsiveness at the proteome level. We speculate

that this centrality of metal-related nodes stems from the use of

metals as catalysts in early metabolic evolution, which is

conserved as the core of modern-day metabolic networks. It

is also likely that the evolution of metal-requiring enzymes is

more constrained relative to other proteins due to the essential

catalysis they enable. Finally, we report here a subset of reac-

tions catalyzed by pairs of isoenzymes that catalyze similar reac-

tions but use different metal cofactors and show negatively

correlated protein abundance patterns, which suggests either

divergent evolution or a mechanism to compensate for variability

in metal availability for essential reactions. We posit that the cen-

tral role of metalloenzymes, combined with dramatic changes in

metal availability across time and ecological niche, is a driver of

enzyme evolution.

Despite the systems-scale and quantitative nature of all our

experiments, our study has limitations that need to be consid-

ered while interpreting and querying our dataset. The first is

that we restricted the scope of our study to a single species, a

single reference growth condition, and excluded metal toxicity.

The biological response to metal ion perturbation is therefore

more extensive than that reported herein. Second, we measured

total cellular metal concentrations and did not address differ-

ences in metal ion concentrations between subcellular compart-

ments, which can vary significantly and impact protein function

within compartments. The buffering capacities we report here

are likely modulated by the organelle-level reserves. For

example, our data as well as previous literature assign metal

buffering functions to the vacuole. Future studies could build

on our work and assess the impact of subcellular metal distribu-

tion and resolve cellular responses to perturbed metal availability

at the subcellular scale. Third, we faced analytical constraints

while varying and quantifying certain metals. We varied K and

Mg in this growth experiment for not more than one order of

magnitude in order to maintain general properties of the media,
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especially ionic strength. We made this choice because K and

Mg salts are present at much higher levels than the other metals.

Therefore, it is likely that we have missed the metal responsive-

ness of some genes, pathways, and processes relevant for K and

Mg homeostasis. Fourth, and last, although our findings lend

strong support to many proposed functions of poorly character-

ized proteins, the mutant libraries used to validate our hypothe-

ses suffer from limitations common to such libraries, such as

secondary mutations. Hence, we advocate for the use of our

resource to derive system-level insights into the role of metals

in biology and as a foundation for hypothesis generation to be

validated by future studies.

Our comprehensive resource highlights the central role of

metal ion homeostasis within the regulatory and functional land-

scape of the cell. We envision that this dataset will serve as a

foundational reference for unraveling the connections between

metal ions and a spectrum of biological processes, facilitating

the integration of metal ions into a system-wide understanding

of cellular function. Our dataset opens avenues for exploring

the roles of previously understudied genes and proteins, enrich-

ing our comprehension of signaling pathways and gene regulato-

ry networks.

Our findings also advocate for a paradigm shift in current lab-

oratory practices that rarely vary metal ion concentrations within

the physiologically relevant ranges. This practice starkly con-

trasts the dynamics of metal ion availability in natural settings,

and our data show that the cellular biochemical network re-

sponds to these fluctuations. Thus, current laboratory practices

both mask biological discoveries and potentially hamper the

reproducibility of laboratory research. By varying and diligently

reporting metal ion concentrations, researchers can unlock

new biological insights and enhance experiment reproducibility.
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19. Mülleder, M., Capuano, F., Pir, P., Christen, S., Sauer, U., Oliver, S.G.,

and Ralser, M. (2012). A prototrophic deletion mutant collection for yeast

metabolomics and systems biology. Nat. Biotechnol. 30, 1176–1178.

https://doi.org/10.1038/nbt.2442.

20. Chen, Y., Li, F., Mao, J., Chen, Y., and Nielsen, J. (2021). Yeast optimizes

metal utilization based on metabolic network and enzyme kinetics. Proc.

Natl. Acad. Sci. USA 118, e2020154118. https://doi.org/10.1073/pnas.

2020154118.

21. Britigan, B.E., Rasmussen, G.T., and Cox, C.D. (1998). Binding of iron

and inhibition of iron-dependent oxidative cell injury by the ‘‘calcium

Chelator’’ 1,2-bis(2-aminophenoxy)ethane N,N,N′,N′-tetraacetic acid

(BAPTA). Biochem. Pharmacol. 55, 287–295. https://doi.org/10.1016/

s0006-2952(97)00463-2.

22. Tang, Q., Jin, M.-W., Xiang, J.-Z., Dong, M.-Q., Sun, H.-Y., Lau, C.-P.,

and Li, G.-R. (2007). The membrane permeable calcium chelator

BAPTA-AM directly blocks human ether a-go-go-related gene potassium

channels stably expressed in HEK 293 cells. Biochem. Pharmacol. 74,

1596–1607. https://doi.org/10.1016/j.bcp.2007.07.042.

23. Li, S., Crooks, P.A., Wei, X., and de Leon, J. (2004). Toxicity of dipyridyl

compounds and related compounds. Crit. Rev. Toxicol. 34, 447–460.

https://doi.org/10.1080/10408440490503143.

24. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and

Boeke, J.D. (1998). Designer deletion strains derived from

Saccharomyces cerevisiae S288C: a useful set of strains and plasmids

for PCR-mediated gene disruption and other applications. Yeast 14,

115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::

AID-YEA204>3.0.CO;2-2.

25. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K.,

Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. (1999).

Functional characterization of the S. cerevisiae genome by gene deletion

and parallel analysis. Science 285, 901–906. https://doi.org/10.1126/sci-

ence.285.5429.901.

26. Danku, J.M.C., Gumaelius, L., Baxter, I., and Salt, D.E. (2009). A high-

throughput method for Saccharomyces cerevisiae (yeast) ionomics.

J. Anal. At. Spectrom. 24, 103–107. https://doi.org/10.1039/B803529F.

27. Messner, C.B., Demichev, V., Muenzner, J., Aulakh, S.K., Barthel, N.,
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Ammonium sulphate Sigma Aldrich 204501-250G

Biotin Sigma Aldrich B4501-100MG

Calcium pantothenate MilliporeSigma C8731-25G

Folic Acid MilliporeSigma F8798-5G

Inositol MilliporeSigma I5125-50G

Nicotinic Acid MilliporeSigma 73763-5G

p-Aminobenzoic acid Sigma Aldrich 429767-1G

Pyridoxine HCl MilliporeSigma P9755-25G

Riboflavin MilliporeSigma R7649-25G

Thiamine HCl MilliporeSigma T4562-25G

Boric Acid Sigma Aldrich 202878-10G

Copper Sulfate Sigma Aldrich 451657-10G

Postassium Iodide Sigma Aldrich 204102-10G

Ferric Chloride Sigma Aldrich 701122-1G

Manganese sulfate Sigma Aldrich 229784-25G

Sodium molybdate Sigma Aldrich 737860-5G

Zinc sulphate Sigma Aldrich 204986-10G

Potassium phosphate monobasic Sigma Aldrich 229806-25G

Magnesium sulphate Sigma Aldrich 203726-25G

Sodium Sulfate Sigma Aldrich 204447-10G

Sodium phosphate monobasic Sigma Aldrich 229903-10G

Sodium chloride Sigma Aldrich 204439-20G

Calcium chloride Sigma Aldrich 499609-10G

Glucose Sigma Aldrich G8270

DiPyridyl Sigma Aldrich D216305-10G

UltraPure™ Agarose Invitrogen Thermo Fisher Scientific 16500500

HNO3 (Optima™, for Ultra Trace Elemental

Analysis)

Fisher Chemical™ A467-1

Internal metal standards Agilent 5188-6525

Metal standard - CGP10 Inorganic Ventures (EssLab) CGP10

Metal standard - K-CGK10 Inorganic Ventures (EssLab) K-CGK10

Metal standard - Ca-MSCA100PPM Inorganic Ventures (EssLab) Ca-MSCA100PPM

Metal standard - S-CGS10 Inorganic Ventures (EssLab) S-CGS10

Metal standard - S-MS100PM Inorganic Ventures (EssLab) S-MS100PM

Metal standard - Zn-MSZN100PPM Inorganic Ventures (EssLab) Zn-MSZN100PPM

Metal standard - P-MSP-100PPM Inorganic Ventures (EssLab) P-MSP-100PPM

Metal standard - Mo-MSM010PPM Inorganic Ventures (EssLab) Mo-MSM010PPM

Metal standard - Mg-CGMG1 Inorganic Ventures (EssLab) Mg-CGMG1

Metal standard - Na- CGNA1 N/A

Tuning solution Agilent 5185-5959

PA solution Agilent 5188-6524

8M urea Honeywell Research Chemicals 33247H

Di-thio threitol (DTT) Sigma Aldrich 43815

Iodacetamide (IAA) Sigma Aldrich I1149
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ammonium bicarbonate Sigma Aldrich 40867

Trypsin (Sequence grade) Promega Cat# V511X

Deposited data

Growth rates in perturbed metal conditions This study Zenodo: https://zenodo.org/records/

10708992

Measured metal concentration of cells This study Zenodo: https://zenodo.org/records/

10708992

Raw proteome data This study http://proteomecentral.proteomexchange.

org/ dataset ID = PXD057956.

Processed proteome data This study Zenodo: https://zenodo.org/records/

10708992

Absolute protein abundance data Ghaemmaghami et al.29 https://www.nature.com/articles/

nature02046

Raw growth screen of knockouts This study Zenodo: https://zenodo.org/records/

10708992

Processed growth screen of knockouts This study Zenodo: https://zenodo.org/records/

10708992

Processed proteome data from

Messner et al.

Messner et al.27 ProteomeXchange: PXD036062

Processed metallomics data Iacovacci et al.45 https://www.mdpi.com/2218-1989/10/

11/435

Experimental models: Organisms/strains

BY4741+pHLUM library Mülleder et al.19 https://pubmed.ncbi.nlm.nih.gov/

23222782/

Prototrophic Saccharomyces cerevisiae

deletion collection (MATa, restored

prototrophy)

Winzeler et al.25 and Mülleder et al.19 https://www.science.org/doi/10.1126/

science.285.5429.901, https://pubmed.

ncbi.nlm.nih.gov/23222782/

Software and algorithms

Pyphe Kamrad et al.63 https://github.com/Bahler-Lab/pyphe

DIA-NN Demichev et al.64 https://github.com/vdemichev/DiaNN

iPath3 Darzi et al.65 https://pathways.embl.de/

TECAN N/A

Agilent ICP-MS MassHunter Version

C.01.05 (SI 588.15)

Agilent https://www.agilent.com/en/product/

atomic-spectroscopy/inductively-coupled-

plasma-mass-spectrometry-icp-ms/icp-

ms-software/icp-ms-masshunter-software

Scanners pyphe https://elifesciences.org/articles/55160

R Statistical Computing Software The R Foundation https://www.r-project.org/

RStudio https://posit.co/download/rstudio-

desktop/

https://posit.co/download/rstudio-

desktop/

python https://www.python.org/ https://www.python.org/

Anaconda https://www.anaconda.com/ https://www.anaconda.com/

jupyterlab https://jupyter.org/ https://jupyter.org/

MATLAB https://www.mathworks.com/products/

matlab.html

https://www.mathworks.com/products/

matlab.html

growthcurver Sprouffske and Wagner66 https://cran.r-project.org/web/packages/

growthcurver/index.html

AnnotationDbi Carlson & Maintainer, Bioconductor https://bioconductor.org/packages/

release/bioc/html/AnnotationDbi.html

org.Sc.sgd.db Bioconductor https://bioconductor.org/packages/

release/data/annotation/html/org.Sc.sgd.

db.html

GO.db Bioconductor https://bioconductor.org/packages/

release/data/annotation/html/GO.db.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

piano Väremo et al.67 https://bioconductor.org/packages/

release/bioc/html/piano.html

KEGGREST Tenenbaum and Maintainer68 https://bioconductor.org/packages/

release/bioc/html/KEGGREST.html

plotly Plotly https://plotly.com/r/

aPEAR Kerseviciute and Gordevicius69 https://github.com/kerseviciute/aPEAR

viridis Garnier et al.70 https://sjmgarnier.github.io/viridis/

RColorBrewer Neuwirth71 https://cran.r-project.org/web/packages/

RColorBrewer/index.html

circlize Gu et al.72 https://jokergoo.github.io/circlize_

book/book/

ggplot2 Wickham et al.73 https://ggplot2.tidyverse.org/

UpSetR Gehlenborg et al.74 https://cran.r-project.org/web/packages/

UpSetR/index.html

gitter Wagih and Parts75 https://github.com/omarwagih/gitter

scikit-learn Pedregosa et al.76 https://scikit-learn.org/

seaborn Waskom77 https://seaborn.pydata.org/

scipy Virtanen et al.78 https://www.scipy.org/

numpy Harris et al.79 https://numpy.org/

igraph Csárdi et al.80 https://igraph.org/python/

leidenalg Traag et al.42 https://github.com/vtraag/leidenalg

pyphe Kamrad et al.63 https://github.com/Bahler-Lab/pyphe

COBRA Toolbox Heirendt et al.81 https://opencobra.github.io/cobratoolbox/

stable/

CofactorYeast Chen et al.20 https://github.com/SysBioChalmers/

CofactorYeast

Github repository containing all code

related to this manuscript

https://github.com/Ralser-lab/metallica https://doi.org/10.5281/zenodo.15047222

Other

BreathEasy breathable seals Sigma Aldrich Z380059

Adhesive PCR plate foil Thermo Scientific AB0626

Short-well 96-well plates Corning Costar Fischer Scientific 10695951

PVDF membrane plates (pore size 0.45um) Agilent 200931–100

Spherical glass beads Sigma Aldrich G8772

Silicone mats Spex SamplePrep UY-04575-65

Solid Phase Extraction plates –

BioPureSPN PROTO C18 MACRO

50–450 μL

The Nest Group Cat#SNS SS18VL

Collection plate (for SPE) Agilent 204355–100

Collection plate (for peptide extracts) Waters 186005837

Lunatic plates Unchained Labs 7012000

Cap mats Spex Cat#2201

Corning multiwell plates, plate lids and

sealing mats

Sigma Aldrich Cat#CLS3098

ABgene storage plates Thermo Scientific Cat#AB-0661

Spark-Stacker TECAN https://lifesciences.tecan.com/spark-stack

Biomek NXP Beckman Coulter https://www.beckman.com/liquid-

handlers/biomek-nxp

Agilent 7900 ICP-MS Agilent https://www.agilent.com/en/product/

atomic-spectroscopy/inductively-coupled-

plasma-mass-spectrometry-icp-ms/icp-

ms-instruments/7900-icp-ms
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EXPERIMENTAL MODEL DETAILS

Strains and mutant libraries

Saccharomyces cerevisiae (S288C) haploid (MATa) was used as the experimental model system. Specifically, the his3Δ deletion

strain from the prototrophic BY4741 + pHLUM library19 was used as the wild type (WT) strain for the growth rate, cellular metallomics

and proteomics experiments in metal perturbation media conditions. The library contains a centromeric plasmid containing the HIS3,

LEU2, URA5 and MET17 genes to restore prototrophy in the BY4741 strain. The his3Δ deletion strain contains a kanamycin resistance

cassette at the HIS3 locus, which is complemented by the pHLUM plasmid, rendering the strain metabolically prototrophic like the

parent S299c strain. It was chosen as the WT strain for consistency with previous genome scale work.27,36 The same19 deletion

mutant library was employed for the growth screen under metal depletion conditions on agarose media and the his3Δ deletion strain

was used as the control strain reference to assess growth alterations for this screen.

METHOD DETAILS

Cultivation of wild type S. cerevisiae cells

Wild type (WT) S. cerevisiae cells were revived from cryostocks on YPD (Yeast Peptone Dextrose) agar plates and incubated at 30◦C

for ∼24 hrs (until colonies appeared). A single colony was picked and streaked onto synthetic minimal (SM) media agarose plates and

incubated at 30◦C for ∼36 hrs (until colonies appeared). Then, a single colony from the SM plate was used to inoculate a 5mL starter

liquid SM culture, which was then incubated on a shaker at 30◦C for ∼36 hrs. The pellet from this culture was washed three times with

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SPS 4 Autosampler for ICP-MS Agilent https://www.agilent.com/en/product/

atomic-spectroscopy/inductively-coupled-

plasma-optical-emission-spectroscopy-

icp-oes/icp-oes-accessories/sps-4-

autosampler

Spex Sample Prep MiniG 1600 Thermo Fisher Scientific https://www.fishersci.co.uk/shop/

products/minig-1600-homogenizer/

15340422

Speedvac N/A

Lunatic Unchained Labs https://www.unchainedlabs.com/lunatic/?

gad_source=1&gclid=CjwKCAiAlcyuBh

BnEiwAOGZ2S_-j7WznkNUZFZaxtEa4

weCiao6_LuQQWrBoUOdksa1Im9NTYlm

E8xoCACUQAvD_BwE

nanoAcquity UPLC System Waters https://www.waters.com/webassets/cms/

library/docs/720001083en.pdf

nanoEasy M/Z HSS T3 column Waters https://www.waters.com/nextgen/en/

shop/columns/186009249-nanoease-m-z-

hss-t3-column-100a-18–m-300-mm-x-

150-mm-1-pk.html

TriopleTOF 6600 Sciex https://sciex.com/content/dam/SCIEX/pdf/

customer-docs/user-guide/6600-system-

user-guide-en.pdf

V800 PHOTO scanner Epson https://www.epson.co.uk/en_GB/

products/scanners/consumer/perfection-

v800-photo/p/13567?srsltid=AfmBOooJ

GN0qT27PGHb4gWbJjrdjpXdMc8a5Mi8

irignGjUpS9deFp4n

Yeast reference proteome databases Uniprot https://www.uniprot.org

Full GO term annotation Gene Ontology Consortium http://current.geneontology.org/products/

pages/downloads.html

GO slim terms Cherry et al.82 https://www.yeastgenome.org/

KEGG Kanehisa et al.83 https://www.genome.jp/kegg/

Summary of all S. cerevisiae growth

screens

Turco et al.9 https://www.science.org/doi/10.1126/

sciadv.adg5702

Brenda Enzyme Commission Numbers Schomburg et al. (2002))84 https://www.brenda-enzymes.org/
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water and resuspended in SM media without the addition of metal salts (SM0 media) except for KH2PO4, Mg2SO4 and ZnSO4.7H2O

(Methods Table S1). The resuspended pellet was used to inoculate 300mL of SM0 media such that the OD600 of the culture at inoc-

ulation was 0.05. After incubation in a shaker at 30◦C, the pellet from the SM0 culture was washed three times with water and used to

inoculate deep-well 96-well plates (Eppendorf, 10052143) filled with each of the 91 cultivation media containing perturbed metal con-

centrations (Methods Table S1) such that the starting OD600 of the culture was 0.05. Four replicates of each cultivation condition were

distributed across at least two different 96-well plate layouts (Methods Table S2). Each 96-well plate contained six control media

(known as ‘‘Allele media’’) which were identical to SM but created in the same manner as all other media. The borders of each plate

were filled with water instead of cultures to avoid edge effects that were observed in preliminary tests. Three wells in each plate were

emptied and filled with technical controls for mass-spectrometry (MS) measurements post-cultivation. All media were prepared in

plastic, all reagents used for preparation were of ICP-MS grade (except for glucose), and only deionized water that had previously

been checked for metal contamination by ICP-MS was used for preparing media or washing the cells. All deep-well 96-well plates

were covered with Breathe-Easy seals during cultivation.

ICP-MS measurements of cultivation media

All cultivation media bearing variations in metal concentrations were analysed by ICP-MS to quantify the concentration of each metal.

A 17-point calibration series was freshly prepared (up to 24 hrs before measurement) using certified metal standards (key resources

table; Methods Table S3). Plate layouts for ICP-MS measurements of media are in Methods Table S4. All samples were measured on

an Agilent 7900 ICP-MS coupled to an SPS-4 auto-sampler and an Agilent MicroMist nebulizer. The instrument was operated with

Nickel (Ni) cones and the measurement parameters were optimised using Tuning and PA solutions. The following gas modes were

used for different metals: Helium (24Mg, 59Co, 63Cu, 66Zn), High Energy Helium (32S, 31P, 55Mn), and hydrogen (39K, 40Ca, 56Fe) mode.

Details of all peristaltic pump settings, tune parameters and all raw data from the ICP-MS can be found in Methods Table S12.

Growth rate measurement of WT S. cerevisiae cells

WT S. cerevisiae cells were prepared as described above and inoculated into short-well 96-well plates with 180 μL of media in each

well. The plates were then placed in a Spark-Stacker (TECAN) plate reader operating in kinetic mode for sequential acquisition of

multiple 96-well plates. Absorbance at OD600 was calculated from the mean values of five multi-well reads obtained every 30 min

for 48 hrs for each position.

ICP-MS measurements of WT S. cerevisiae cells

Immediately before inoculation, the media for cultivating cells for intracellular metal quantification with ICP-MS was filtered through a

PVDF membrane plate (Agilent 200931–100) into fresh, deep-well (2 mL) 96-well plates to ensure no insoluble precipitates were pre-

sent that could interfere with cell washing on PVDF membranes post-cultivation or the ICP-MS measurements. WT S. cerevisiae cells

were prepared, inoculated into deep-well 96-well plates (Eppendorf, 10052143) containing metal perturbation media and cultivated

on a shaker at 30◦C for 24 hrs as described above. After cultivation, the cells were collected by filtering the cultures in each deep-well

96-well plate through a 96-well PVDF membrane plate. The yeast cells on the 96-well PVDF membranes were then washed three

times with a solution composed of 10μM EDTA and 3μM TrisHCl. Centrifugation speeds and durations were modified as needed

to ensure that the entire volume of each culture passed through the PVDF membrane. Then, the PVDF membrane plates bearing

the washed cells were incubated on a hot plate at 70◦C until completely dry. Internal metal standards were added to the membranes

and the dried cell pellet was then digested by adding 60μL of HNO3 and heating at 94◦C for 40 min. Deionised water was added to

each digested pellet to achieve a final HNO3 concentration of 10% (v/v). Due to minor differences in evaporation rates, slightly

different volumes remained in each plate after incubation at 94◦C; therefore, the total amount of deionized water to be added and

the final volume available for ICP-MS varied (Methods Table S5). The diluted cell extracts from one batch (96-well plate) at a time,

together with the fresh calibrants, were measured on an Agilent 7900 ICP-MS coupled to an SPS-4 auto-sampler and an Agilent

MicroMist nebulizer using the same methodology as described for ‘ICP-MS measurements of cultivation media’.

Proteomics sample preparation

WT S. cerevisiae cells were prepared, inoculated into deep-well 96-well plates (Eppendorf, 10052143) (Eppendorf, 10052143) con-

taining metal perturbation media and cultivated at 30◦C with 1000 rpm shaking (Heidolph Titramax incubator) for 24 hrs. Then, pep-

tide extract preparation from cell pellets and measurement of mass spectrometry data was performed as previously described.27

Briefly, after cultivation, 50μL culture was removed from each well and transferred into a transparent, short-well, 96-well plate

pre-filled with 50μL H2O for OD600 measurements. Each deep-well plate was centrifuged at 3220 rcf (Eppendorf Centrifuge

5810R) to pellet the cells. Then, the Breathe-Easy seals and the supernatant were removed, and the plates were sealed with adhesive

PCR plate foil and a plastic lid and frozen at -80◦C until further processing. Protein extraction and digestion was carried out in batches

of four, 96-well plates (384 samples). To reduce batch effects, stock solutions (120 mM iodoacetamide, 55 mM DL-dithiothreitol, 9 μl

0.1 mg/ml trypsin, 2 μl 4x iRT) were prepared one time and stored at –80◦C until required. Stock solutions of 7 M urea, 0.1 M ammo-

nium bicarbonate, 10% formic acid were stored at 4◦C. All pipetting steps were carried out with a Beckman Coulter Biomek NXP

liquid-handling robot.

To lyse the cells, 200 μl 7 M urea / 100 mM ammonium bicarbonate and glass beads (∼100 mg/well, 425–600 μm) were added to the

frozen pellet. Then, each plate was sealed with a silicone mat [Cap mats, (Spex) 2201] and the cells were lysed using a Geno-Grinder
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(Spex) bead beater for 5 min at 2300 g. After centrifuging the plates for 1 min at 2300 g, 20 μl 55 mM dithiothreitol (DTT) was added and

mixed to achieve a final concentration of 5 mM. The samples were then incubated for 1 h at 30◦C before 20 μl 120 mM iodoacetamide

was added (final concentration 10 mM) to each well. The plates were incubated for 30 min in the dark at room temperature before

adding 1 mL 100 mM ammonium bicarbonate. Each plate was centrifuged for 3 min at 2300 g and then 230 μL of the supernatant

was transferred to prefilled trypsin plates. The samples were incubated for 17 h at 37◦C for trypsin digestion, after which 24 μl

10% formic acid was added to each well. The digestion mixtures were cleaned up using BioPureSPN PROTO C18 MACRO

96-well plates.

For solid-phase extraction, the samples were centrifuged for 1 min at various speeds (listed below) using an Eppendorf 5810R

centrifuge 5810R. For the solid-phase extraction, each plate was conditioned with methanol (200 μl, centrifuged at 50 g), washed

twice with 50% acetonitrile (ACN) (200 μl, centrifuged at 50 g and flow-through discarded), and equilibrated three times with 3%

ACN, 0.1% formic acid (FA) (200 μl, centrifuged at 50 g, 80 g, 100 g, respectively, flow-through discarded). Finally, 200 μl of each

trypsin-digested sample was loaded onto solid phase extraction column plates, centrifuged at 100 g and washed three times with

200uL of a solution of 3% ACN and 0.1% FA (centrifuged at 100 g). After the last washing step, the plates were centrifuged once

more at 180 g before the peptides were eluted in three steps (eluted twice with 120 μL and once with 130 μL 50% ACN; centrifugation

at 180 g) into a collection plate (1.1 mL, V-bottom). The collected material was completely dried in a vacuum concentrator (Concen-

trator Plus (Eppendorf)) and redissolved in 40 μL of the 3% ACN plus 0.1% FA solution before being transferred into a 96-well plate

(700 μL round, Waters, 186005837). Quality control samples for repeat injections were prepared by pooling the digested and cleaned-

up control samples from all the 96-well plates. To quantify the total peptide concentration, 2 μl of each sample were loaded onto Lu-

natic microfluidic 96-well plates (Unchained Labs) and measured with the Lunatic instrument (Unchained Labs). The total peptide

concentration in each peptide extract was calculated using the Lunatic’s native software from the absorbance value at 280 nm

and the protein-specific extinction coefficient.

Liquid chromatography–mass spectrometry

The digested peptides were analysed on a nanoAcquity (Waters) running as microflow LC (5 μl/min), coupled to a TripleTOF 6600

(SCIEX). The yeast digests (2 μg; the injection volume was adjusted for each sample based on the measured peptide concentration)

were injected and the peptides were separated in a 19-min nonlinear gradient (Methods Table S8) ramping from 3% B to 40% B

(solvent A: 1% acetonitrile/0.1% formic acid; solvent B: acetonitrile/0.1% formic acid). A HSS T3 column (Waters,

150 mm × 300 μm, 1.8 μm particles) was used with a column temperature of 35◦C. The DIA acquisition method consisted of an

MS1 scan from 400 to 1,250 m/z (50 ms accumulation time) and 40 MS2 scans (35 ms accumulation time) with variable precursor

isolation width covering the mass range from 400 to 1250 m/z. Rolling collision energy (default slope and intercept) with a collision

energy spread of 15 V was used. A DuoSpray ion source was used with ion source gas 1 (nebuliser gas), ion source gas 2 (heater gas),

and curtain gas set to 15 psi, 20 psi, and 25 psi, respectively. The source temperature was set to 0◦C and the ion-spray voltage to

5,500 V. The measurements were conducted over a period of 2 months on the same instrument.

Growth screen of deletion mutants

Growth assays were performed to explore the contribution of each non-essential gene to fitness in the context of media depleted for

each metal. The prototrophic S. cerevisiae haploid deletion collection, abbreviated as PHKo (Ko for knock-out)29 was grown on 20

different media (corresponding to depletion of Ca, Cu, Fe, K, Mg, Mn, Mo, Na and Zn and the control; Methods Table S9) chosen after

pre-tests in which the WT prototrophic S. cerevisiae BY4741+pHLUM strain was cultivated on agarose media containing various con-

centrations of metal salts. These media included two types of depletion for Ca and Fe [Ca omission, Ca omission with chelator EGTA

(Ethylene glycol tetraacetic acid), Fe omission and Fe omission combined with the chelator dipyridyl (DiP)], three concentrations of K,

Mg and Zn and three controls (SM media, SM with DiP and SM with EGTA). The PHKo library was revived from Yeast extract Peptone

Dextrose (YPD) and glycerol stocks in 96-well plates frozen at -80◦C on YPD-agar and then combined with a grid of the control strain

for the library (BY4741+pHLUM his3Δ) into a 1,536-spot layout on SM-agarose in four different arrangements. The resulting assay

contained four biological replicates of each strain in the PHKo collection.

As the growth of neighbouring strains may affect the colony size of a strain, the re-arrangement strategy allowed for neighbourhood

effects on colony size to be considered before making inter-strain comparisons. For the reference grid, the BY4741+pHLUM his3Δ
control strain was streaked out on SM agar and grown at 30◦C for 2 days. A 24-hr culture of a single colony was made in 40 mL of

liquid YPD media and pinned from a bath on YPD agar in 96-spot format and incubated at 30◦C for 2 days. The PHKo library was

revived from cryostocks in 384-spot format on YPD agar and incubated for 2 days at 30◦C. A custom Singer ROTOR HD™ program

was used to reshuffle the library (using 96 short pins) into four random arrangements, consisting of five plates each, on standard SM

media. At this stage, the reference grid was combined with the library by pinning the reference strain colonies onto the combined

plates into the A1, D4 and C2 sub-positions in 1,536-spot format. These combined plates, containing all the library strains and

the reference grid, were cultivated at 30◦C for 2 days and then copied onto fresh SM agarose plates to obtain a clean source plate

with evenly spaced and sized colonies. Three copies of each combined plate were made, yielding 60 source plates in total, which

were incubated at 30◦C for 2 days. Finally, colonies from the source plates were transferred onto the assay agarose plates

bearing different concentrations of metal salts, using the ‘Replicate Many’ program of the Singer ROTOR HD™ with the following set-

tings: recycle = Yes, revisit = Yes, source_pressure = 40%, source_pin_speed = 15 mm/s, source_overshoot = 1.5 mm, target_

pressure = 25%, target_pin_speed = 13mm/s, target_overshoot = 1.2 mm, target_max = No, source_mix = No. After 2 days of
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incubation at 30◦C, all plates were scanned on an Epson V800 PHOTO scanner in grey and transmission scanning mode at 600 dpi

using pyphe.85

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of growth curves of WT cells

Data from the TECAN Spark-Stacker were processed in R64. OD600 values of blank wells were subtracted from all sample wells before

fitting sigmoidal growth curves using the growthCurver66 R package.

Analysis of ICP-MS data

Raw data from the Agilent 7700 ICP-MS were processed using Agilent MassHunter™. The metal concentration [in parts per billion

(PPB)] in each cultivation media and cell digest was calculated in MassHunter™ using measurements of the calibrants (a 17-point

dilution series of certified element standards) and scandium (Sc) as the internal standard to correct for minor deviations of the instru-

ment during measurement. These values were processed further in R. For the cultivation media measurements, data from each me-

dia were compared with values in the control media and visualised. For the cell digests, minor deviations in the total volume after the

dried pellets on the PVDF membrane from each batch (Methods Table S5) were first corrected for; then, PPB values for each element

in the blank samples was used to determine the Limit of Quantification (LOQ). The LOQ was defined as follows: mean (PPB) + 5*sd

(PPB) of the signal of each metal in the blanks of each individual batch. For all elements other than Na in batches 2-8 and Cu in batch

4, the quality control sample had a mean (PPB) > LOQ; in total, 23/342 samples were filtered out from the cellular metallomics data

(Figure S1F).

To correct for varying cell numbers in the cell digests, phosphorus (P) and OD600 normalisation strategies were compared. The

P-normalised data was less variable across biological replicates. Therefore, after filtering based on LOQ, the P signal (which was

observed to be stable and dependent on cell count) was used to normalise all other metals and the PPB values were scaled up to

the original scale using the mean PPB values of the control samples, as follows:

Normalised PPB(m;x) =
PPB(m;x)

PPB(P;x)

× mean
(
PPB(P;belongs to SM control)

)

Batch correction was carried out such that the median value of each metal in the control samples was the same across batches.

Data from samples with OD600 values > 0.1 were discarded. Nanograms per well values (1 ng/ml = 1 PPB) after P normalisation were

used to compare metal quantities across samples. For buffering capacity calculations, the measured metal concentrations in culti-

vation media were combined with those measured in cell digests and each set was normalised to the metal quantities in control sam-

ples (SM media and cells cultivated in SM media, respectively). To estimate the atoms per cell, the cell number was estimated using

OD600 values as previously described80:

Atoms per cell =
6:022 × 1023

atomic mass
⋅pg per cellBC × 10− 12

where pg per cellBC =
pg per cell

median (pg per cell in controls of batch)
× median (pg per cell across all batches)

and

pg per cell =
PPB of metal (ng=ml) × 1000

OD600 × 1:8 × 107 × volume of culture transferred to each filter plate

The average coefficient of variation (CoV) across biological replicates of the ng/mL of digested cell cultures was 0.042, while the

CoV across biological replicates of control samples was 0.032 (Methods Table S6) and the CoV of picogram per cell estimations

across biological replicates of control samples was 0.13 (Methods Table S7). These values indicate that the OD600 estimates are

noisier than the ICP-MS measurements and better cell counting methods are required to obtain reliable estimations of atoms of

each metal per cell. For most metals, the obtained cellular concentrations were consistent with previous studies, except for Ca

and Mn that were slightly higher than in previous reports20,86–88 (Figure S1F)

Processing of LC-MS data using DIA-NN

All raw proteomics data (.wiff files) were processed using DIA-NN (Data-Independent Acquisition by Neural Networks28,64; version

1.8, compiled on 28 June 2021). The DIA spectral library (available at http://proteomecentral.proteomexchange.org/) dataset

ID PXD03606227(resubmitted to proteomeXchange with the dataset from this study, ID = PXD057956 ) and FASTA file for

the UniProt yeast canonical proteome (downloadable from https://ftp.uniprot.org/pub/databases/uniprot/current_release/

knowledgebase/pan_proteomes/UP000002311.fasta.gz) used were identical to those generated and described previously.27

The DIA-NN parameters used to process data are described in Methods Table S13.

Normalisation, batch correction, filtering, and protein quantification

Quality control metrics exported by DIA-NN [including the number of identified precursors > 0.4*max(number of precursors identified

in any individual file), number of proteins identified >1000, total signal quantity > 1000000, MS1 signal quantity > 1000000, MS2 signal
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quantity > 10000000, normalisation instability < 0.5, Proteotypic ==1, Q value < 0.01, GG Q Value <= 0.01 and PG Q value < 0.01 ], the

optical density measured at the end of cultivation (OD600 units sampled > 0.75) and manual inspection of the total ion chromatograms

of certain problematic files (26 files) were used to filter data processed by DIA-NN. In addition, 11 conditions (Cu 50, Cu 100, Fe 100,

K 10, Mg 20, Mg 50, Mo 20, Mo 50, Zn 2e-04, Zn 0.001, Zn 0.002) were deemed as unsuitable for inclusion based on growth rate and

metallomics measurements of media. Samples corresponding to perturbations of H3BO4 that were acquired and processed with the

dataset were excluded to focus the study on metals. In total, 266/437 proteome data files were retained.

Protein quantities were estimated from peptide quantities using maxLFQ [using the DIA-NN R function diann_maxlfq()89]. Batch

correction (median scaling) was carried out using the median protein quantities of all control samples (WT yeast cells cultivated in

SM media). No imputation was carried out before statistical analysis unless otherwise stated. After all processing steps, the average

replicate CoVs for perturbation condition samples was ∼15.7% with an average of 1,837 proteins quantified per sample. For the con-

trol samples alone, the replicate CoV was also ∼15.7% with an average of 1,871 proteins quantified per sample.

Protein mass values were downloaded from the UniProt database (on 4th February 2024) and previously reported protein copy

number values29 were combined with these to calculate what fraction of the protein mass of the 3,841 proteins (for which protein

copy number data was available) was measured or significant along any metal perturbation or cellular metal concentration series.

Identification of proteins differentially abundant along environmental metal concentration

Linear models with 0 (null model), 1, 2, and 3 degrees of freedom (dof) were fitted for each protein, modelling protein abundance as a

function of the measured metal concentration in cultivation media i.e. protein abundance ∼ poly (metal concentration, dof), where

dof = 0, 1, 2 or 3. Only protein–metal combinations with at least four distinct points along the concentration gradient (rounded to

3 decimal spaces) and at least eight individual protein abundance measurements were used to fit the linear models. A series of

F-tests was conducted between all combinations of fitted models, using the anova() R function. P values from each F-test were

adjusted using the Benjamini-Hochberg correction for multiple testing. To choose the simplest model that explains the data, the

following logic was used:

i. If the cubic (dof=3) model significantly outperformed all other models (dof=2, dof=1, and dof=0) i.e., adjusted p-value < 0.05, the

cubic polynomial model was chosen.

ii. If the cubic model did not outperform the linear model (dof=1), and the quadratic model (dof=2) did not surpass the linear

model, but the linear model was better than the null model, the linear model was preferred.

iii. If the cubic model was not better than the linear model (dof=1), and the quadratic model (dof=2) was not better than the linear

model, but the linear model was better than the null model, the linear model was selected.

iv. If the cubic model was not better than the quadratic model, and the quadratic model was better than both the linear and null

models, the quadratic model was chosen.

v. If none of the cubic, quadratic and linear models performed better than the null model, the null model was selected as the

simplest model.

After selecting the least complex model, an additional threshold was applied for determining significant differential abundance

along the metal perturbation series: proteins with a magnitude of fold difference (relative to control sample) change along metal

perturbation series of at least 50% [ i.e. abs(max(fold difference along metal) − min(fold difference along metal)) > log2(1:5) ]

and P value of the simplest model to explain the expression pattern < 0.05 were deemed significantly affected.

Identification of proteins differentially abundant along cellular metal concentration

To identify differentially abundant proteins along measured cellular metal concentrations, relative metal quantification values from all

data (e.g., Fe values from Fe perturbation as well as along Mg, Zn, Ca etc perturbations) were binned into bins of size 0.01 (the metal

concentration in each sample was normalised to that in control samples and rounded to two decimal places). For each measured

metal and each protein, the median protein abundance values across the entire dataset corresponding to each bin along the

measured cellular metal concentration was modelled as a function of the measured cellular metal concentration (as described above)

to identify significantly differentially abundant proteins along environmental (media) metal concentration.

Correlation analysis using proteomics and metallomics profiles

The Spearman’s rank-based correlation coefficient between each pair of samples within the metallomics dataset was computed in

python 3 using the scikit-learn library.76 The correlation coefficients were visualised as a heat map using the seaborn library.77 The

same methodology was followed for computing correlation coefficients between each pair of samples using proteomics data. The

correlation coefficients computed based on proteomes and metallomes were then compared using the pearsonr and spearmanr

functions from scipy.stats.78

Focused analysis of metal-related proteins

Gene function annotations in the gene ontology–molecular function (GO–MF) database (annotations were fetched using the

AnnotationDbi,90,91 org.Sc.sgd.db92 and GO.db93 R libraries) were used to annotate proteins associated with open reading frames

(ORFs) in the databases as ‘‘metal binding proteins’’, ‘‘metal transport proteins’’ or ‘‘other metal related proteins’’.
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Metallochaperones classified both as metal-binders and metal-transporters were considered ‘‘metal transport proteins’’ because

their main function is to facilitate the incorporation of a metal into other metal-requiring proteins. Proteins for which a metal-specific

annotation existed in the GO–MF were annotated with that metal, while those annotated for more than one metal were included in

metal-binding or metal-transport lists for both metals and those that bore ‘‘metal binding’’ or ‘‘metal transport’’ annotations without

any specific annotations for a metal were labelled ‘‘orphan’’.

Focused analysis of proteins involved in proton motive force generation

Gene function annotations in the gene ontology biological process (GO–BP) database (annotations were fetched using the

AnnotationDbi,90,91 org.Sc.sgd.db92 and GO.db93 R libraries) were used to shortlist proteins annotated with terms ‘‘proton trans-

membrane transport’’. These annotations were merged with subcellular localisation annotations from the gene ontology cellular

compartment (GOCC) database. The subset of these proteins that showed significant alterations in protein abundance along envi-

ronmental or cellular metal concentrations were visualised in Figures S2J and S2K.

Ensemble clustering analysis

An ensemble clustering framework was set up in Python 3.9.13 (numpy 1.22.4,79 scikit-learn 1.1.1,76 igraph 0.9.9,80 leidenalg 0.8.9,42

seaborn 0.12.077 and scipy 1.8.178 ), as previously described.37 Briefly, the proteomics data were clustered into two parallel

branches. The first, called allmetal-clustering, included proteins that were detected in at least 85% of all samples. The missing values

in this dataset were imputed using the following imputation strategy:

i. If measured quantities for a protein were missing in all samples in a metal perturbation condition [e.g., Fe depletion (all samples

cultivated in media containing lower Fe concentration than control SM media)], then the missing values for the protein in each

sample corresponding to this perturbation were replaced with the minimum quantity of the protein detected in the entire

dataset.

ii. If the protein was measured in at least one sample in the metal perturbation but missing in all replicates of a specific condition

(e.g., protein detected in Fe 0.5, but absent in all replicates of Fe 0.1), the missing values were replaced with the median quantity

measured for the protein in all the control samples (cells cultivated in synthetic minimal media).

iii. If the quantity of a protein was missing in only some replicates of a cultivation condition (e.g., two replicates of Fe 0.5 have

missing values for a protein while the remaining two do not), the missing values were replaced by the median of the protein

quantity of the replicates for which protein quantities were available.

For the second branch of ensemble clustering, called metalwise-clustering, a completeness filter of detection in at least 60% of all

samples along each metal perturbation series was used before the imputation was carried out as described above. Of note, an addi-

tional filter was applied before performing the ensemble clustering analysis—only those proteins that were detected as being differ-

entially abundant along either the environmental (media) metal concentration or along the measured cellular metal concentration

were retained.

Three separate clustering algorithms were then used to cluster the proteomics data within each parallel clustering pipeline:

i. CommonNN38,39,94,95 — the parameter R was varied equal-distant between 0.5*R_cut and R_cut, where R_cut was defined as

the distance at which around 5% (2.5% for Mg and Mn due to smaller data set size) of the distances are smaller than R_cut

(10 Rs), the number of shared nearest neighbours N was varied between 2 and 10 (step size 1; 9 Ns), the minimal cluster

size M was set to 5. In total 90 R, N- combinations were used.

ii. kMeans++40,41,76 — the cluster number k was varied between 10 and 98 with a step size of 2 (between 10 and 55 with a step

size of 1 for Mg and Mn). In total, there were 45 clustering steps.

iii. Leiden42 — the graph was set up using the 10 closest neighbours for each data point, with edge weights of 1-scaled(distance),

and all distances scaled between 0 and 1.

For reproducibility, the seed was fixed to 42 for all clustering analyses. For each clustering algorithm a co-clustering matrix was

calculated, where each element denotes the probability that two data points were clustered together. The co-clustering matrices

from each clustering algorithm were combined into a single matrix, using equal weights. The final clusters were obtained by hierar-

chical clustering of the combined co-clustering matrix (Ward clustering43,78), using a linkage-based cutoff for cluster extraction.

Results from the clustering analysis were exported to R(96 for gene-set enrichment analysis and visualisation as described above.

The functions are available at: https://github.com/OliverLemke/ensemble_clustering and within the code folder associated with

this publication.

Gene set enrichment analysis

All gene set enrichment analyses (except for the network plots used to visualise clusters resulting from the ensemble clustering anal-

ysis shown in Figures 3D and 3E) were performed in R64 using the piano67 library and gene sets defined using the GO database

(terms fetched as described above), KEGG database (fetched using the KEGGREST68 library) and GOslim annotations downloaded

from the Saccharomyces Genome Database (http://sgd-archive.yeastgenome.org/curation/literature/go_slim_mapping.tab). The

piano::runGSAhyper() function was used to carry out the enrichment analysis with gene set size limits of 3 (lower limit) and 400 (upper
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limit), using all proteins or ORFs (in the case of genes) quantified as the background. The Benjamini-Hochberg method was used to

correct P values of enrichment for multiple testing. Gene set terms with a P value (adjusted) < 0.05 were considered significant. The

results were visualised as Sankey plots (Figures 2K, 3C, S2G, and S4B) using the plotly97 R library. Gene set enrichments and visual-

isation for Figures 3A and 3B were conducted using the aPEAR R library.69

Analysis of growth screen of deletion mutants

Images of agarose plates from the Epson V800 PHOTO scanner were processed using the Gitter R library to extract the colony size.

The.dat output from gitter75 were combined with the experiment design table and analysed further (grid normalisation, data aggre-

gation, quality control checks and statistical analysis to obtain effect sizes and P values) using pyphe.85 Only 1% of the negative con-

trol positions (footprints) (49/4,875 empty spots in total across all agarose plates) were contaminated and no systematic contamina-

tion was observed. One plate (corresponding to the reduction of K to 1/50th the level in synthetic minimal agarose media) contained

13 contaminated footprints and was therefore excluded from further analysis. Correlation between replicates of the control strain

within a single plate was 0.78 for the raw colony sizes and increased to 0.95 after correction for surface effects using the control strain

grid. Next, pyphe-interpret was used to obtain effect sizes of each mutant relative to the control strain (Δhis3 from the haploid pro-

totrophic library we used). The P values derived from Welch’s t-test for samples with unequal variance were corrected for multiple

testing using the Benjamini-Hochberg method. In total, 357,972 colony size measurements, corresponding to 4,759 unique deletion

(and control) strains across 17 cultivation media conditions, remained after data processing. A P value (adjusted) threshold of < 0.10

and an abs(log2(effect size)) > log2(1.2) was chosen to determine which mutants showed significantly altered growth in each condi-

tion. Data from different levels of depletion of K, Mg and Zn and from Fe depletion and Fe depletion combined with the dipyridyl

chelator, were combined at this stage to determine the final list of ORF deletions that were affected to enable a metal-wise compar-

ison with all other datasets.

Defining metal-related genes

Molecular Function gene ontology (GO) annotations93 were used to determine a set of metal-binding proteins, metal-transport

proteins and other metal-related genes that do not fall under the first two categories (e.g., ‘‘calcium-dependent protein kinase C ac-

tivity’’). Proteins encoded by ORFs mapping to GO terms containing the word ‘‘binding’’ and any word reflecting involvement of Ca,

Cu, Fe, Mg, Mn, Mo, Na, Zn, heme or protoheme were included in the metal-binding annotation set with specific annotations. Proteins

encoded by ORFs mapping to terms containing the words ‘‘metal binding’’ but no indication of which metal or metal-containing group

is bound were annotated as ‘‘orphan’’.

Metal transporters and other metal-related proteins were filtered from the GO molecular function database using a manual creation

process; text parsing using regular expressions was not sufficient to include only metal-related transporters or the metal-dependent

enzyme activities included in the ‘‘other metal related’’ set. A list of these terms is available within the code repository associated with

this publication.

Comparison and integration with published datasets

The metallomics data we used for integration with our results were the Z-scores of the cellular metal concentration in each deletion

and overexpression mutant reported by Iacovacci et al.,45 which were calculated using metal concentration measurements collected

by Danku et al.26 (cellular metal concentration in each haploid deletion mutant of S. cerevisiae) and Yu et al.44 (overexpression mu-

tants). Any Z-score with an absolute value > 1.959 (corresponding to P value < 0.05) was annotated as a significant change in metal

concentration in a mutant. Protein abundance data in haploid deletion mutants were sourced from Messner et al.27 This dataset was

filtered to retain only deletion mutants of genes known to be connected to specific metals in the GO molecular function database-

based mapping described above, and any protein quantified in these mutants with absolute log2(fold difference vs.

control) > log2(1.5) and a P value < 0.05 were considered as being significantly altered. The upset plot (Figure 4E) to visualise com-

monalities between genes identified as being connected to metals were created using the upSet98 R package. UniProt annotation

status annotations were merged with all the datasets to assess how many poorly characterised genes were identified as significantly

affected in each dataset. The circular plot to summarise current annotation status, the metal-binding and metal transporter annota-

tions and all the datasets were created using the circos99 R library. Gene set enrichments shown in Figure S4B were conducted and

visualised as described above.

Simulations of metabolic flux using CofactorYeast

Simulations of excess and depletion of each metal were carried out in MATLAB using the cobratoolbox81,100 and the CofactorYeast

framework.20 CofactorYeast incorporates metal ion cofactors and import and export reactions for each metal ion into the Yeast8

genome-scale metabolic model.101 Growth rates were fixed to the lowest experimentally measured growth rate upon each metal

perturbation (e.g., Fe depletion or Zn excess). The protein abundances of each enzyme were allowed to vary to minimise or maximise

metal uptake. A flux balance analysis was carried out to simulate the fluxes required to achieve the objective function (minimisation or

maximisation of the metal transport) under the growth rate constraint. The flux results (Supplementary Information – Results) were

then processed in R(96 to calculate the flux change values (flux in perturbation condition / flux in control condition). This processing

resulted in several infinite values due to flux = 0 of either the control condition simulation or the perturbation condition simulation.

Therefore, infinite flux changes values of conditions for which both the control condition and simulation condition flux was 0, was
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set to 1. For conditions where the control condition flux was not zero, but the test condition flux was zero were set to a low value with

the correct direction (i.e., log2(fold change flux) = − sign(control condition flux) and for those where the control condition flux was

zero, but the perturbation flux was nonzero, it was set to log2(fold change flux) = sign(perturbation flux). Reactions through which

abs(log2(fold change flux)) > log2(1:5) were considered significantly affected.

Metabolic network analysis using igraph

The Yeast8 metabolic model101,102 was used as the input to create a directed, bipartite graph using the igraph80 python library. Re-

action IDs and metabolite IDs were used as the two types of nodes. Directed edges between the nodes were from each substrate

metabolite node to each reaction node and from each reaction node to each product node. As 1,670 of the 4,131 reactions in the

Yeast8 model were reversible, directed edges were added to the graph in both directions for these cases. A slight imbalance was

noted in the fraction of reversible reaction nodes mapping to at least one metal-linked enzyme versus those that did not: only

21.38% of the metal-linked reaction nodes were reversible while 43.71% of those without metal-linked annotations were reversible.

Therefore, calculations on the igraph that were grouped using the metal-linked annotation have a slight bias of counting nodes

without metal annotations more often than metal-requiring nodes. The final graph was not a fully connected graph as 99.55% of no-

des would be retained if the graph was filtered for its largest weakly connected component and 88.47% nodes would be retained in

the largest strongly connected component. Weakly or strongly connected components were determined by the clusters (mode =

‘‘weak’’) and clusters (mode = ‘‘strong’’) functions from the igraph python library. The graph was visualised, and all centrality metrics

were calculated using igraph functions. For the control for network based metrics, an equal number of nodes as metal-binding nodes

in the test graph were picked randomly 1000 times and centrality metrics were calculated on each iteration. We also tested the same

analysis after removing H+ and H2O from the metabolic network as connectivity through these nodes is not biologically meaningful for

most metabolic pathways. We obtained similar results for all centrality metric calculations except for closeness which could not be

calculated due to the graph becoming more disconnected as well as hub score which showed no difference between the metal nodes

and the randomly selected nodes. To calculate distances to and from nearest metal requiring nodes (Figures 5G and 5H), we used the

H+ and H2O filtered network (graphical representation in Figure S5B) to have a more robust analysis as shortest distance calculations

are more susceptible to being skewed by hyperconnected metabolite nodes than overall graph centrality metrics.

Publicly available databases used for analysis

Gene Ontology database93

Kyoto Encyclopedia of Genes and Genomes103

Saccharomyces Genome Database92

Brenda Enzyme Commission Numbers104

UniProt105

Data visualisation

All data visualisations except Figures 5B, 5C, and 5G were created in R using the ggplot2,73 plotly,97 viridis,70 aPEAR,69 RColorBrewer71

and circlize.72 The bipartite, directed network in Figure 5C was visualised using the igraph80 python library and Figures 5B and 5G were

created using iPATH.106 Adobe illustrator and Biorender were used to assemble some figures.

ll
OPEN ACCESS Article

e11 Cell Systems 16, 101319, July 16, 2025


	The molecular landscape of cellular metal ion biology
	Introduction
	Results
	Homeostasis is metal specific and involves concentration interactions
	The yeast proteome responds globally to changes in metal availability
	The cellular response to metal ion perturbation reflects concentration interdependencies between metal ions
	Altered metal availability induces specific cellular responses
	Quantitative proteomic responses to perturbations of metal availability cluster proteins according to function
	Incorporating functional genomics datasets to elucidate protein function
	Multi-layer data integration improves the functional annotation of understudied proteins
	Centrality of metal-requiring enzymes translates to high metal responsiveness of metabolism

	Discussion
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model details
	Strains and mutant libraries

	Method details
	Cultivation of wild type S. cerevisiae cells
	ICP-MS measurements of cultivation media
	Growth rate measurement of WT S. cerevisiae cells
	ICP-MS measurements of WT S. cerevisiae cells
	Proteomics sample preparation
	Liquid chromatography–mass spectrometry
	Growth screen of deletion mutants

	Quantification and statistical analysis
	Analysis of growth curves of WT cells
	Analysis of ICP-MS data
	Processing of LC-MS data using DIA-NN
	Normalisation, batch correction, filtering, and protein quantification
	Identification of proteins differentially abundant along environmental metal concentration
	Identification of proteins differentially abundant along cellular metal concentration
	Correlation analysis using proteomics and metallomics profiles
	Focused analysis of metal-related proteins
	Focused analysis of proteins involved in proton motive force generation
	Ensemble clustering analysis
	Gene set enrichment analysis
	Analysis of growth screen of deletion mutants
	Defining metal-related genes
	Comparison and integration with published datasets
	Simulations of metabolic flux using CofactorYeast
	Metabolic network analysis using igraph
	Publicly available databases used for analysis
	Data visualisation




